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Abstract

Bollobás and Thomason showed that every 22k-connected graph is k-linked. Their result
used a dense graph minor. In this paper we investigate the ties between small graph minors
and linkages. In particular, we show that a 6-connected graph with a K−

9 minor is 3-linked.
Further, we show that a 7-connected graph with a K−

9 minor is (2, 5)-linked. Finally, we show
that a graph of order n and size at least 7n− 29 contains a K−−

9 minor.

1 Introduction

All graphs considered in this paper are simple graphs, that is, finite graphs without multiple edges
or loops. For any graph G, we will use |G| and ||G|| to denote the number of vertices and the
number of edges of G, respectively. Let H be a connected subgraph of a graph G, then let G/H
denote the graph obtained by contracting all vertices of H to a vertex and let G[H] = G[V (H)]
denote the subgraph induced by the vertex set of H in G. In this paper, Kn always stands for the
complete graph with n vertices, K−

n denotes a subgraph of Kn with exactly one edge deleted, and
K−i

n denotes a subgraph of Kn with exactly i(≥ 2) edges deleted. When i = 2, we sometimes use
K−−

n for K−2
n .

Let s1, s2, . . . , sk be k positive integers. A graph G is said to be (s1, s2, . . . , sk)-linked if it
has at least

∑k
i=1 si vertices and for any k disjoint vertex sets S1, S2, . . . , Sk with |Si| = si, G

contains vertex-disjoint connected subgraphs F1, F2, . . . , Fk such that Si ⊆ V (Fi). The case
s1 = s2 = · · · = sk = 2 has been studied extensively. A (2, 2, . . . , 2)-linked graph is called k-linked,
that is, for any 2k distinct vertices x1, y1, x2, y2, . . . , xk, and yk there exist k vertex-disjoint paths
P1, P2, . . . , Pk such that Pi joins xi and yi, 1 ≤ i ≤ k.

A graph H is a minor of a graph G if H can be obtained from G by deleting edges and/or
vertices and contracting edges. An H-minor of G is a minor isomorphic to H. A subdivision of a
graph is obtained by replacing some of its edges by paths so that the paths are pairwise internally
disjoint. Clearly, if G contains a subdivision of H then G has H as a minor, but the converse is
not necessarily true.
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Linkages, subdivisions and minors have been related in a number of results. For example,
Larman and Mani [12] and Jung [5] noticed that if κ(G) ≥ 2k and if G contains a subdivision
of K3k then G is k-linked. Mader [15] showed that a graph contains a subdivision of K3k if its
connectivity is sufficiently large. Robertson and Seymour [16] showed that the observation of
Larman and Mani and of Jung remains true under the very much weaker condition that G has
K3k as a minor. Instead of considering K3k minors, Bollobás and Thomason [1] considered graphs
containing a dense graph as a minor. Using this idea they showed that every 22k-connected graph
is k-linked, thus confirming the long standing belief that linear connectivity would suffice.

Jung [10] showed that every 4-connected non-planar graph is 2-linked. Thomassen [20] and
Seymour [18] gave a characterization of graphs which are not 2-linked. Our main purpose is to
develop more ties between small graph minors and graph linkages. To do so, we study graphs
containing dense minors on 9 vertices. In particular, the following results are obtained.

Theorem 1.1 If a 6-connected graph G has K−
9 as a minor, then G is 3-linked.

Yu [22] completely characterized graphs G which do not contain two vertex-disjoint connected
subgraphs F1 and F2 such that S1 ⊆ V (F1) and S2 ⊆ V (F2) for two disjoint vertex sets S1 and S2

with |S1| = 2 and |S2| = 3. Consequently, he proved that every 8-connected graph is (2, 3)-linked.
We will prove the following theorem.

Theorem 1.2 If a 7-connected graph G has K−
9 as a minor, then G is (2, 5)-linked.

Note that in [2], we consider several additional questions of this type. Finally, we show the
following.

Theorem 1.3 If G is a graph on n ≥ 9 vertices with at least 7n− 29 edges, then G has K−−
9 as a

minor.

We do not feel Theorem 1.3 is best possible. Hence, we make the following conjecture.

Conjecture 1.4 If G is a graph on n vertices with at least 6n − 20 edges, then G has K−−
9 as a

minor.

In addition, we make these related conjectures.

Conjecture 1.5 If G is a graph on n vertices with at least 13n−47
2 edges, then G has K−

9 as a
minor.

Conjecture 1.6 If G is a graph on n vertices with at least 7n − 27 edges, then G has K9 as a
minor with finitely exceptions.

Conjecture 1.7 If G is a 6-connected graph with K−−
9 as a minor, then G is 3-linked.

Very recently a proof of Conjecture 1.6 was announced by Thomas, et. al [19].
Finally, we note another long standing conjecture.

Conjecture 1.8 Every 8-connected graph graph is 3-linked.

We will give proofs of Theorems 1.1 and 1.2 in Section 2 and of Theorem 1.3 in Section 3.
We define G + H be the graph with vertex set V (G)∪ V (H) and edge set E(G)∪E(H), where

G and H are two vertex disjoint graphs. We define 2G = G + G′ where G′ is isomorphic to G
and V (G′) ∩ V (G) = ∅. Let G be a graph and A be a subset of V (G). To avoid cumbersome
notation, at times we simply use A to denote the subgraph induced by A, that is G[A], provided
no confusion will arise.
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2 Linkages

In this section we will prove Theorem 1.1 and Theorem 1.2. We will use inductive arguments
showing slightly stronger statements of each result. We will need the following definitions.

Definition 2.1 Let S, A,B ⊆ V (G) be sets of vertices in a graph G. Let ` = |A ∩ B|. If S ⊆ A,
V = A∪B, and there are no edges between A\B and B \A, then we call (A,B) an S-cut of size `.

Definition 2.2 Let H be a minor of a connected graph G. Let C1, C2, . . . , C|H| be a partition of
V (G), such that each G[Ci] is connected, and contraction of the Ci yields H. Let S ⊆ V (G). An
S-cut (A,B) of G is called an SH-cut if Ci ⊆ B \A for some 1 ≤ i ≤ |H|.

2.1 Proof of Theorem 1.1

Now we are ready to give the first of our slightly stronger statements.

Theorem 2.1 Let G be a graph, and let S = {x1, x2, y1, y2, z1, z2} ⊂ V (G) be a set of 6 vertices.
Let G∗ be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a
partition C1, C2, . . . , C9 of V (G), such that each G∗[Ci] is connected, and contraction of the Ci in
G∗ yields H = K−

9 . Further suppose that G∗ has no SH-cut of size smaller than 6. Then there are
three vertex disjoint paths in G connecting (x1, x2), (y1, y2), and (z1, z2), respectively.

Proof: Suppose the statement is false, and G is a counterexample with the minimum number of
edges. Let S, C1, C2, . . . C9 be as in the theorem, and suppose the desired linkage can not be found.
As G is minimal, we know that G[S] contains no edges.

Claim 2.1.1 The subgraphs G[Ci] contain no edges.

Suppose to the contrary that for some i, G[Ci] contains an edge. Without loss of generality we
may assume that uv ∈ E(C1), and since G[S] is empty, v 6∈ S. As G is minimal, there has to be
an SH -cut (A,B) of size 6 with u, v ∈ A∩B, otherwise the contraction of uv would yield a smaller
counterexample.

A simple count shows that at least four of the nine Ci sets contain no vertices of A ∩ B. By
symmetry we may assume that Ci ∩A ∩B 6= ∅ for 1 ≤ i ≤ k, and Ci ∩A ∩B = ∅ for i > k, where
k is an integer with 1 ≤ k ≤ 5. As S ⊆ A, and G∗[Ci] is connected, we know that Ci ⊆ B \ A or
Ci ⊆ A \B for each i > k. By the definition of SH -cuts we know that Ci ⊆ B \A for at least one
i > k, hence it is in fact true that Ci ⊆ B \A for all i > k, otherwise the Ci would not contract to
a K−

9 in G∗.
Since there is no SH -cut of size less than 6 in G∗, there does not exist a cut of size less than 6

in A separating S and A ∩ B. By Menger’s Theorem, there are 6 vertex disjoint paths from S to
A ∩B in G[A]. Label the vertices of S′ = A ∩B with x′1, x

′
2, y

′
1, y

′
2, z

′
1, z

′
2 according to the starting

vertices in S of these paths. Let C ′
i = Ci ∩ B for 1 ≤ i ≤ 9. The graph G[B] satisfies all the

conditions of the statement, and G[B] is smaller than G as there is at least one vertex in S \ B
(note that v 6∈ S).

By the minimality of G, we can find three vertex disjoint paths in G[B] connecting (x′1, x
′
2),

(y′1, y
′
2), and (z′1, z

′
2), respectively. This, together with the six paths in G[A], produces three vertex

disjoint paths in G connecting (x1, x2), (y1, y2), and (z1, z2), respectively, a contradiction. This
shows that the G[Ci] contain no edges. 2
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Note that this implies that for each 1 ≤ i ≤ 9, Ci ⊆ S or |Ci| = 1. Therefore, 9 ≤ |V (G)| ≤ 14.
We will finish the proof by an analysis broken into cases according to |V (G)|. We may always
assume that |Ci| ≥ |Cj | for 1 ≤ i < j ≤ 9.

Case 2.1.1 Suppose |V (G)| = 9.

Note that in this case |Ci| = 1 for all 1 ≤ i ≤ 9. Let V (G) \ S = {v1, v2, v3}. Since

{x1v1x2, y1v2y2, z1v3z2} and {x1v2x2, y1v3y2, z1v1z2}

are edge disjoint, one of them is the desired set of vertex-disjoint paths, a contradiction.

Case 2.1.2 Suppose |V (G)| = 10.

In this case |C1| = 2. Let V (G) \ S = {v1, v2, v3, v4}.
First suppose that C1 = {x1, x2} (the cases C1 = {y1, y2} and C1 = {z1, z2} are analogous).

There exists a matching from C1 into V (G)\S, otherwise there is an SH -cut smaller than 6. We may
assume that {x1v1, x2v2} is such a matching. If v1v2 ∈ E, then one of {x1v1v2x2, y1v3y2, z1v4z2}
and {x1v1v2x2, y1v4y2, z1v3z2} is the desired set of vertex-disjoint paths, a contradiction. Thus, we
may assume that v1v2 6∈ E. As G∗ contracts to a K−

9 , v3 has a neighbor in C1, hence we may
assume that x1v3 ∈ E(G). But now {x1v3v2x2, y1v1y2, z1v4z2} is the desired set of vertex-disjoint
paths, a contradiction.

Now suppose that C1 = {x1, y1}, (again the other cases are handled by a similar argument).
There exists a matching from C1 into V (G) \ S. We may assume that {x1v1, y1v2} is such a
matching. At most one of the edges in {x1v1x2, y1v2y2, z1v3z2} is missing, but then this edge can
be replaced by a path of length 2 through v4 to produce the desired set of vertex disjoint paths, a
contradiction completing this case.

Case 2.1.3 Suppose |V (G)| = 11.

Let V (G) \ S = {v1, v2, v3, v4, v5}.
First suppose that |C1| = 3. We may assume that x1, y1 6∈ C1. Now G∗[x1, y1, v1, v2, v3, v4, v5]

is a K7 or a K−
7 , and therefore 3-linked. We can find a matching from {x2, y2, z1, z2} into

{v2, v3, v4, v5}, otherwise there is an SH -cut smaller than 6. Without loss of generality suppose
the matching is x2v2, y2v3, z1v4, z2v5. We can now connect the paths in the necessary manner
inside of G∗[x1, y1, v1, v2, v3, v4, v5], since this graph is 3-linked. Note that the edge x1y1 is not used
in this path system, so this is in fact a path system in G, a contradiction.

Now suppose that |C1| = |C2| = 2. If x1, y1 6∈ C1 ∪ C2, the same argument as above applies.
By symmetry we may assume that C1 ∪ C2 = {y1, y2, z1, z2}. If xjvk 6∈ E for some 1 ≤ j ≤ 2
and some 1 ≤ k ≤ 5, say x1v1 6∈ E, then G[x2, v1, v2, v3, v4, v5] is a K6 and thus 3-linked, and
a very similar argument can be used to find the paths. Thus, we may assume that xjvk ∈ E
for 1 ≤ j ≤ 2 and 1 ≤ k ≤ 5. There is a matching from {y1, y2, z1, z2} into {v1, v2, v3, v4, v5},
say y1v1, y2v2, z1v3, z2v4 ∈ E. If v1v2, v3v4 ∈ E, then {x1v5x2, y1v1v2y2, z1v3v4z2} is the desired
set of vertex disjoint paths, a contradiction. Hence, we may assume that v1v2 6∈ E. As G∗

contracts to a K−
9 , v5 is adjacent to both C1 and C2. If v5y1 ∈ E (and similarly if v5y2 ∈ E), then

{x1v1x2, y1v5v2y2, z1v3v4z2} is the desired set of vertex disjoint paths. Hence, v5z1, v5z2 ∈ E. But
then {x1v4x2, y1v1v3v2y2, z1v5z2} are the desired paths and this contradiction completes this case.

Case 2.1.4 Suppose |V (G)| = 12.
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Let V (G) \ S = {v1, v2, v3, v4, v5, v6}. Suppose that C3 ⊂ S. If |C1| ≥ 3, then |C3| = 1 and
G[C3 ∪ {v1, v2, v3, v4, v5, v6}] is a K7 or a K−

7 and the same argument as in Case 2.1.3 applies.
Hence, we may assume that |C1| = |C2| = |C3| = 2.

There is a matching from S into V (G) \ S, say {x1v1, x2v2, y1v3, y2v4, z1v5, z2v6} is such a
matching. One of the edges v1v2, v3v4, v5v6 is missing, otherwise the three paths are easy to find.
This implies that every vi has at least three neighbors in S, one in each of C1, C2 and C3. Further,
each vertex in S has at least two neighbors in V (G) \ S, otherwise G is not minimal.

Suppose that x2v1 ∈ E. Then, similar to our earlier arguments, either {x1v1x2, y1v3v4y2,
z1v5v2v6z2} or {x1v1x2, y1v3v2v4y2, z1v5v6z2} is the desired path system, a contradiction. By
similar arguments we may conclude that x1v2, y1v4, y2v3, z1v6, z2v5 6∈ E.

Suppose that x1v3, x2v3 ∈ E. If y1v1 ∈ E or y1v2 ∈ E, a path system can easily be found.
Thus, y1v5 ∈ E or y1v6 ∈ E, by symmetry we may assume y1v5 ∈ E. If z1v1 ∈ E, then
{x1v3x2, y1v5v4y2, z1v1v6z2} is a path system, a contradiction. Similarly, z1v2 6∈ E. As v1 and
v2 have at least three neighbors in S, we have y2v1, y2v2, z2v1, z2v2 ∈ E. If z1v4 ∈ E, then
{x1v3x2, y1v5v1y2, z1v4v6z2} is a path system, a contradiction. Thus, z1v4 6∈ E, and z1v3 ∈ E
as z1 has at least two neighbors in V (G) \ S. If x1v4 ∈ E, then {x1v4v2x2, y1v5v1y2, z1v3v6z2} is a
path system, a contradiction. Thus, x1v4 6∈ E, and similarly x2v4 6∈ E. But now the only possible
neighbors of v4 in S are y2 and z2, a contradiction establishing that x1v3 and x2v3 can not both be
edges.

By symmetrical arguments, we can establish that N(x1) ∩ N(x2) = N(y1) ∩ N(y2) = N(z1) ∩
N(z2) = ∅. Therefore, every vi has exactly three neighbors in S.

By symmetry, we may assume that v1v2 6∈ E and N(v1) = {x1, y1, z1}. If x1v3 ∈ E, then
{x1v3v2x2, y1v1v4y2, z1v5v6z2} is a path system, a contradiction. Thus, x1v3 6∈ E and hence x2v3 ∈
E.

If y1v2 ∈ E, then {x1v1v3x2, y1v2v4y2, z1v5v6z2} is a path system, a contradiction. Thus, y1v2 6∈
E and hence y2v2 ∈ E.

If x2v4 ∈ E, then {x1v1v4x2, y1v3v2y2, z1v5v6z2} is a path system, a contradiction. Thus,
x2v4 6∈ E and hence x1v4 ∈ E.

If y2v5 ∈ E, then {x1v4v2x2, y1v3v5y2, z1v1v6z2} is a path system, a contradiction. Thus,
y2v5 6∈ E and hence y1v5 ∈ E. But now, {x1v4v3x2, y1v5v2y2, z1v1v6z2} is a path system, the
final contradiction finishing the case |V (G)| = 12.

Case 2.1.5 Suppose |V (G)| > 12.

Let V (G) \ S ⊇ {v1, v2, v3, v4, v5, v6, v7}. Then G[v1, v2, v3, v4, v5, v6, v7] is a K7 or a K−
7 , and

therefore 3-linked. The path system can easily be found, establishing this last case and completing
the proof of the theorem. 2

2.2 Proof of Theorem 1.2

Again, we will prove a slightly stronger statement.

Theorem 2.2 Let G be a graph, and let S = {x1, x2, y1, y2, y3, y4, y5} ⊂ V (G) be a set of 7 vertices.
Let G∗ be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a
partition C1, C2, . . . , C9 of V (G), such that each G∗[Ci] is connected, and contraction of the Ci in
G∗ yields H = K−

9 . Further suppose that G∗ has no SH-cut of size smaller than 7. Then there are
two vertex disjoint connected subgraphs in G containing {x1, x2} and {y1, y2, y3, y4, y5}, respectively.

5



Proof: Suppose the statement is false and G is a counterexample with the minimum number of
edges. Let S, C1, C2, . . . C9 be as in the theorem, and suppose the desired subgraphs can not be
found. As G is minimal, we know that G[S] contains no edges.

Claim 2.2.1 The subgraphs G[Ci] contain no edges.

Suppose the result fails to hold. Without loss of generality we may assume that uv ∈ E(C1),
and v 6∈ S. As G is minimal, there has to be an SH -cut (A,B) of size 7 with u, v ∈ A∩B, otherwise
the contraction of uv would yield a smaller counterexample.

A simple count shows that at least three of the nine Ci sets contain no vertices of A ∩ B. By
symmetry we may assume that Ci ∩A ∩B 6= ∅ for 1 ≤ i ≤ k, and Ci ∩A ∩B = ∅ for i > k, where
k is an integer with 1 ≤ k ≤ 6. As S ⊆ A, and G∗[Ci] is connected, we know that Ci ⊆ B \ A or
Ci ⊆ A \B for each i > k. Since Ci ⊆ B \A for at least one i > k, it is in fact true that Ci ⊆ B \A
for all i > k, otherwise the Ci would not contract to a K−

9 in G∗.
Since there is no SH -cut of size less than 7 in G∗, there are 7 vertex disjoint paths from S

to A ∩ B in G[A]. Label the vertices of S′ = A ∩ B with x′1, x
′
2, y

′
1, y

′
2, y

′
3, y

′
4, y

′
5 according to the

starting vertices of these paths. Let C ′
i = Ci ∩ B for 1 ≤ i ≤ 9. The graph G[B] satisfies all the

conditions of the statement, and G[B] is smaller than G as there is at least one vertex in S \ B
(note that v 6∈ S).

By the minimality of G, we can find two vertex disjoint connected subgraphs in G[B] containing
{x′1, x′2} and {y′1, y′2, y′3, y′4, y′5}, respectively. This, together with the seven paths in G[A], produces
the desired subgraphs in G, a contradiction, completing the claim. 2

Note that this implies that for each 1 ≤ i ≤ 9, Ci ⊆ S or |Ci| = 1. Therefore, 9 ≤ |V (G)| ≤ 15
and we can assume that |V (Ci)| ≥ |V (Cj)| for 1 ≤ i < j ≤ 9. We will finish the proof by an
analysis broken up into cases according to |V (G)|.

Case 2.2.1 Suppose |V (G)| = 9.

Note that in this case |Ci| = 1 for all 1 ≤ i ≤ 9. Let V (G) \ S = {v1, v2}. Then one of
G[x1, x2, v1], G[y1, y2, y3, y4, y5, v2] and G[x1, x2, v2], G[y1, y2, y3, y4, y5, v1] is the desired set of con-
nected subgraphs, a contradiction.

For all other cases note that every vertex in S has at least two neighbors in V (G) \S. Suppose
the contrary, say y1 has at most one neighbor in V (G) \ S. If y1 has no neighbors in V (G) \ S,
then (A = S, B = V (G) \ {y1}) is an SH -cut of size 6. On the other hand, if y1 has exactly one
neighbor in V (G) \ S, say y1v1 ∈ E, then Ci \ {y1} 6= ∅ for all 1 ≤ i ≤ 9 since |V (G) \ S| ≥ 3, and
G− y1 with y′1 = v1 would be a smaller example, contradicting the minimality of E(G).

Case 2.2.2 Suppose |V (G)| = 10.

Now |C1| = 2. Let V (G) \ S = {v1, v2, v3}. We know that N(x1)∩N(x2)∩ V (G) \ S 6= ∅, since
|N(x1) ∩ V (G) \ S| ≥ 2 and |N(x2) ∩ V (G) \ S| ≥ 2. We may assume that x1v1, x2v1 ∈ E. Every
yi is connected to at least one of v2 and v3. All we need to show in order to find a contradiction
is that G[y1, y2, y3, y4, y5, v2, v3] is connected. If v2v3 ∈ E, this is clear. Otherwise, observe that
|Ci| = 1 for 2 ≤ i ≤ 9, and thus there is a yj with yjv2, yjv3 ∈ E.

Case 2.2.3 Suppose |V (G)| = 11.
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Let V (G) \ S = {v1, v2, v3, v4}. If N(x1) ∩ N(x2) ∩ V (G) \ S 6= ∅, say x1v1, x2v1 ∈ E, then
G[x1, x2, v1] and G[y1, y2, y3, y4, y5, v2, v3, v4] are connected subgraphs. Thus, suppose that N(x1)∩
N(x2) ∩ V (G) \ S = ∅, say N(x1) = {v1, v2} and N(x2) = {v3, v4}. Note that this implies that
neither x1 nor x2 is in a Ci by itself, so at least three of the yi have at least three neighbors in
V (G) \ S, at least two of the yi are connected to all four vertices in V (G) \ S.

By symmetry we may assume that v1v3, v1v4, v2v3 ∈ E (potentially v2v4 6∈ E). As there are
at most two vertices in {y1, y2, y3, y4, y5} with less than three neighbors in V (G) \ S, we can pick
1 ≤ j < k ≤ 4 such that G[x1, x2, vj , vk] is connected, and such that every yi has a neighbor in
{v1, v2, v3, v4} \ {vj , vk}. But now G[V (G) \ {x1, x2, vj , vk}] is connected, a contradiction.

Case 2.2.4 Suppose n = |V (G)| ≥ 12.

Let V (G) \ S = {v1, v2, v3, . . . , vn−7}. If N(x1) ∩N(x2) 6= ∅, say x1v1, x2v1 ∈ E, then G[x1, x2, v1]
and G[y1, y2, y3, y4, y5, v2, v3, . . . , vn−7] are connected subgraphs. Thus, suppose that N(x1) ∩
N(x2) = ∅.

Suppose that |N(x1)| = |N(x2)| = 2, say N(x1) = {v1, v2} and N(x2) = {v3, v4}. By symmetry
we may assume that v1v3, v1v4, v2v3 ∈ E (potentially v2v4 6∈ E). If every yi has a neighbor in
{v1, v2, v3, . . . , vn−7} \ {v1, v3}, then G[x1, x2, v1, v3] and G[y1, y2, y3, y4, y5, v2, v4, v5, . . . , vn−7] are
connected subgraphs. Therefore, there is an yi with N(yi) = {v1, v3}, say i = 1. Similarly, we
may assume that N(y2) = {v1, v4} and N(y3) = {v2, v3}. But now (A = S ∪ {v1, v2, v3, v4}, B =
{y4, y5, v1, v2, . . . , vn−7}) is an SH -cut of size 6, a contradiction.

Now suppose that |N(x1) ∪ N(x2)| ≥ 5, say N(x1) ⊇ {v1, v2} and N(x2) ⊇ {v3, v4, v5}. By
symmetry we may assume that v1v3, v1v4, v1v5, v2v3, v2v4 ∈ E (potentially v2v5 6∈ E). By similar
arguments as above, N(y1) = {v1, v3}, N(y2) = {v1, v4}, N(y3) = {v1, v5}, N(y4) = {v2, v3}, and
N(y5) = {v2, v4}. Further, we actually have N(x1) = {v1, v2} and N(x2) = {v3, v4, v5}.

If k = 12, then four of the Ci consist of vertices in S, and hence |N(u)| ≥ 4 for some u ∈ S, a
contradiction. If k > 12, then (A = S ∪ {v1, v2, v3, v4, v5}, B = {v1, v2, . . . , vn−7}) is an SH -cut of
size 5, a contradiction, completing the proof. 2

3 Graph Size and Minors

The center piece of studying graph minors is the following conjecture due to Hadwiger [4].

Conjecture 3.1 For all k ≥ 1, every k-chromatic graph has a Kk minor.

For k = 1, 2, 3, it is easy to prove, and for k = 4, Hadwiger [4] and Dirac [3] proved it indepen-
dently. In 1937, Wagner [21] proved that the case k = 5 is equivalent to the Four Color Theorem.
Robertson, Seymour, and Thomas [17] proved that a minimal counterexample to the case k = 6 is
a graph G which has a vertex v such that G − v is planar. Hence, the case k = 6 of Hadwiger’s
conjecture holds. For k = 7, Kawarabayashi and Toft [11] proved that any 7-chromatic graph has
either K7 or K4,4 as a minor. Jakobsen [6] proved that every 7-chromatic graph has a K−−

7 as a
minor.

To study extremal graphs, for any positive integer k, let g(k) be the least value such that every
graph on n vertices and g(k)n edges contains Kk as a minor. Mader [15] showed that g(k) existed
and was at most 2k−3. In fact, Mader [14] proved that g(k) ≤ 8klog2(k) and that g(k) = k − 2 for
k ≤ 7. Jørgensen [9] proved that every graph G with ||G|| ≥ 6|G| − 20 has K8 as a minor or G is
a special graph. We will prove Theorem 1.3 in this section. We first state the following related
results.
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Theorem 3.2 [14] For any k ≤ 7, every graph with |G| ≥ k vertices and ||G|| ≥ (k − 2)n − (k −
1)(k − 2)/2 + 1 contains Kk as a minor.

Theorem 3.3 [6] Every graph G with |G| ≥ 7 and ||G|| ≥ 4|G| − 8 contains K−2
7 as a minor.

Theorem 3.4 [8] Every graph G with |G| ≥ 7 and ||G|| ≥ (9|G| − 23)/2 contains K−
7 as a minor

or a special graph with 8 vertices.

Theorem 3.5 [7] Every graph G with |G| ≥ 8 and ||G|| ≥ 5|G| − 14 has K−2
8 as a minor.

Theorem 3.6 [9] Every graph G with |G| ≥ 8 and ||G|| ≥ 6|G| − 20 has K8 as a minor, unless G
belongs to a special class of graphs with ||G|| = 6|G| − 20 and |G| = 5m for some integer m ≥ 2.

Let t be a positive integer and H be a graph. For any A ⊆ V (H), let DE(A) denote the set of
edges dominated by A. Define

γt(H) = max
A⊆V (H)

{|DE(A)| : |A| = t}.

Clearly, γ1(H) is the maximum degree of H. Let H denote the complement of H and define that
γ′t(H) = γt(H). Let v be a vertex and N(v) the neighborhood of v. A vertex set S ⊆ N(v) is
called a v-saturated cut if S ∪ {v} is a cut of G. A v-saturated cut S is minimal if there is no
v-saturated cut which is a proper subset of S.

3.1 Proof of Theorem 1.3

We will proceed by induction on the order of G. For the base case of |G| = 9, we have that
||G|| ≥ 7× 9− 29 = 34, which implies that G is a K−−

9 .
Suppose that |G| = n > 9 and Theorem 1.3 is true for any graph of order less than n (but ≥ 9).

Let δ denote the minimum degree of G, v be a vertex of G such that d(v) = δ, H = G[N(v)],
h = |H| = d(v), and δ(H) be the minimum degree of H. Since G does not have K−−

9 as a minor,
no subgraph of G has K−−

9 as a minor. In particular, G−v does not have K−−
9 as a minor. Thus,

||G − v|| < 7|G − v| − 29, which implies that δ ≥ 8. On the other hand, if δ ≥ 14, then it is
readily seen that ||G− v|| ≥ 7|G− v| − 14, thus G− v has K−−

9 as a minor and hence, so does G,
a contradiction. Thus, we have that

8 ≤ d(v) ≤ 13.

Claim 3.1.1 δ(H) ≥ 7 and hence, δ(G) ≥ 9.

Proof: Suppose to the contrary, there is a vertex u ∈ N(v) such that dH(u) = |N(u) ∩N(v)| ≤ 6.
Then, G/uv, the graph obtained from G by contracting the edge uv, has |G| − 1 vertices and

||G/uv|| ≥ ||G|| − 7 ≥ 7|G| − 29− 7 = 7|G/xy| − 29.

By our induction hypothesis, G/uv has K−−
9 as a minor, a contradiction. Since H is not K8, the

fact that δ(G) ≥ 9 is clear. 2

Claim 3.1.2 ||H|| ≤ 5h− 15.

Proof: Suppose the claim failed, then by Theorem 3.5, H has K−−
8 as a minor. Thus, G has K−−

9

as a minor since v is adjacent to every vertex of H. 2
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Claim 3.1.3 We have that h ≥ 10. Further, equality holds only if G − N [v] is disconnected and
any neighbor of x and any neighbor of y are not in the same component for any two nonadjacent
vertices x, y ∈ N(v).

Proof: By Claim 3.1.1, ||H|| ≥ 7h/2. Combining it with Claim 3.1.2, we have that

7h/2 ≤ 5h− 15,

and thus, h ≥ 10. If there are two nonadjacent vertices x and y ∈ N(v) such that both are adjacent
to the same component of G − N [v], contracting this component with vertex x, we see that the
resulting graph in H still cannot have K−−

8 as a minor, or G would have K−−
9 as a minor. Hence,

we have that
7h/2 + 1 ≤ 5h− 15,

which implies that h ≥ 11. 2

Claim 3.1.4 Let B be a minimal v-saturated cut. Then,

||B|| ≤ 6b− 24− 2γ′1(B),

where b = |B|.

Proof: Since B ∪ {v} is a cut of G, let G1 and G2 be two induced subgraphs of G such that
V (G1) ∪ V (G2) = V (G) and V (G1) ∩ V (G2) = B ∪ {v}. By the minimality of B, we have that all
vertices of B are adjacent to every component in G − (B ∪ {v}). Note that v may not have this
property. Let x1 be a vertex of B such that d

G[B]
(x1) = γ′1(G[B]). Contracting a component of G2

to x1, we obtained a graph G∗
1. Clearly,

|G∗
1| = |G1| and ||G∗

1|| = ||G1||+ γ′1(B).

Since G does not have a K−−
9 as a minor, G∗

1 does not have a K−−
9 as a minor. Thus,

||G∗
1|| ≤ 7|G∗

1| − 30.

Thus, we have that
||G1|| ≤ 7|G1| − 30− γ′1(B).

Similarly, we can show that

||G2|| ≤ 7|G2| − 30− γ′1(B).

Thus,

7|G| − 29 ≤ ||G|| = ||G1||+ ||G2|| − ||B ∪ {v}||
≤ 7|G1| − 30− γ′1(B) + 7|G2| − 30− γ1(B)− ||B|| − b

= 7(|G|+ b + 1)− 60− 2γ′1(B)− ||B|| − b

= 7|G|+ 6b− 53− 2γ′1(B)− ||B||.

Thus, Claim 3.1.4 follows. 2
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Claim 3.1.5 Let B be a minimal v-saturated cut. Then, b = |B| ≥ 5 and γ′2(B) ≥ 5, with the
exception that b = 7 or 8 and B is a 2-regular graph. In any case, we have that γ′2(B) ≥ 4 and
γ′3(B) ≥ 5.

Proof: The inequality b ≥ 5 directly follows from Claim 3.1.4 since

0 ≤ ||B|| ≤ 6b− 24− 2γ′1(B).

Note that γ′2(B) ≥ 5 if γ′1(B) ≥ 4 and ||B|| ≥ 5. By the fact that ||B||+ ||B|| = b(b− 1)/2 and
Claim 3.1.4, we have that ||B|| ≥ 5 if γ′1(B) ≥ 4. Thus, we assume that γ′1(B) ≤ 3.

Suppose that γ′1(B) = 3 and γ′2(B) < 5. Let x be the vertex such that dB(x) = 3. Then, the
maximum degree of B − x is at most 1. Thus,

||B|| ≤ 3 + (b− 1)/2 ≤ (b + 5)/2.

Applying that γ′1(B) = 3 to Claim 3.1.4, we have that

||B|| = b(b− 1)/2− ||B|| ≥ b(b− 1)/2− (6b− 24− 6) ≥ 1
2
(b2 − 13b + 60).

However, the equation

(b + 5)/2 ≥ 1
2
(b2 − 13b + 60)

does not have a solution. Thus, γ′1(B) ≤ 2.
Suppose that b = 5. In this case we have that ||B|| + ||B|| = 10 and ||B|| ≤ 6 − 2γ′1(B) ≤ 6.

Thus, ||B|| ≥ 4, so γ′1(B) ≥ 2, which in turn implies that ||B|| ≤ 2. But then, γ′2(B) ≥ 5, proving
the claim in this case.

Suppose now that b = 6. Then we have that ||B||+ ||B|| = 15 and ||B|| ≤ 12− 2γ′1(B). Thus,
||B|| ≥ 3 and so γ′1(B) ≥ 2. This in turn implies that ||B|| ≤ 8. Now ||B|| ≥ 7, which implies that
γ′1 ≥ 3, a contradiction.

Since G does not have K−−
9 as a minor, B does not contain K7 as a subgraph. Thus, γ′1(B) ≥ 1

for b ≥ 7.
Now suppose that b = 7. Then we have that ||B||+ ||B|| = 21 and ||B|| ≤ 18− 2γ′1(B) ≤ 16.

Thus, ||B|| ≥ 5, so γ′1(B) ≥ 2, which in turn implies that ||B|| ≤ 14. Thus, ||B|| ≥ 7. Since γ′1 ≤ 2
and b = 7, B is a 2-regular graph.

Suppose next that b = 8. Then ||B|| + ||B|| = 28 and ||B|| ≤ 24 − 2γ′1(B) ≤ 22, so that
||B|| ≥ 6. Thus, γ′1 ≥ 2, which in turn implies that ||B|| ≤ 20. But since γ′1(B) ≤ 2 and b = 8, B
is a 2-regular graph.

Now let D1 and D2 be two components of G− (B ∪ {v}) such that D2 ∩N(v) 6= ∅.
If B has K6 as a minor, contracting D1 and D2 along with using v yields a K−−

9 . Thus, we may
assume that B does not have K6 as a minor. Using Theorem 3.2 for the case k = 6, we have that

||B|| ≤ 4b− 10.

Suppose that b = 9. In this case we have that

||B|| ≤ 4 · 9− 10 = 26,

and so , ||B|| ≥ 10. This however implies that γ′1(B) ≥ 3, a contradiction.
Suppose that b = 10. Then

||B|| ≤ 4 · 10− 10 = 30.
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Thus, ||B|| ≥ 15, which implies that γ′1 ≥ 3, a contradiction.
By similar arguments we can produce contradictions for 11 ≤ b ≤ 13, completing the proof of

this claim. 2

Since H does not contain K−−
8 as a minor, ||H|| ≤ 5n − 15. We define the discharge θ =

5h− 14− ||H||.

Claim 3.1.6

θ ≤
{

4 if h = 10, 11, 12 and
5 if h = 13

,

Further, the second equality holds only when all except one vertex in H have degree 7 and the
exception has degree 8.

Proof: Since the minimum degree of H is at least 7, we have that 5h − 14 − θ ≥ ||H|| ≥ d7h/2e.
It is readily seen that Claim 3.1.6 holds by solving the inequality. 2

Let N [v] = N(v)∪{v} and C1, C2, . . . , Cm be the components of G−N [v] and Bi = N(Ci)∩N(v)
for each i = 1, 2, . . . , m. Note that Bi = Bj may happen for different i and j.

Let u ∈ N(v) such that dH(u) = 7. Let H∗ = G[V (H) ∪ {v}]− u. Then, |H∗| = h and

||H∗|| ≥ 7h/2− 7 + h = 9h/2− 7.

Using the fact h ≤ 13, we see that ||H∗|| ≥ 5h − 14, which implies that H∗ contains K−−
8 as a

minor. Note, every vertex of H∗ is either adjacent to u or to one of the Ci since d(v) is minimum
degree of G. Now, since G does not have K−−

9 as a minor, the following claim holds.

Claim 3.1.7 m ≥ 2.

Claim 3.1.8 There exists an i, 1 ≤ i ≤ m such that γ′2(Bi) < θ.

Proof: Suppose, to the contrary, that γ′2(Bi) ≥ θ for all i. We now show that there exists a vertex
x ∈ B1 and a vertex y ∈ B2 such that |NB1

(x) ∪NB2
(y)| ≥ θ. Let xi and yi be two vertices in Bi

such that {xi, yi} dominates at leat θ edges in Bi for i = 1, 2. Then

|NBi
(xi) ∪NBi

(yi)| ≥ θ,

and without loss of generality assume dBi
(xi) ≥ dBi

(yi). We may further assume that dB1
(x1) ≥

dB2
(x2). If dB1

(x1) > θ/2 or x1x2 6∈ E(B1) or x1x2 6∈ E(B2), then x = x1 and y = x2 are a pair of
desired vertices. Thus,

dB1
(x1) = dB2

(x2) = θ/2,

which give that
dB1

(y1) = dB2
(y2) = θ/2.

In particular, we have that either θ = 2 or θ = 4 since θ ≤ 5. Further, we have x1x2 ∈
E(B1 ∩B2). Similarly, we have that x1y2, y1x2, and y1y2 ∈ E(B1 ∩B2). Thus, θ = 4 and

NB2
(y1) = NB1

(y1).

Hence, x = x1 and y = y1 are a pair of desired vertices.
Now contracting Ci to xi for each i = 1, 2, we get a new subgraph H1 such that |H1| = |N(v)|

and ||H1|| ≥ 5|H1| − 14 since ||H|| ≥ 5h− 14− θ. Thus, H1 has K−−
8 as a minor. This minor along

with v shows that G has K−−
9 as a minor, a contradiction. 2

Combining Claims 3.1.6 and 3.1.8, we have the following: 4 ≤ γ′2(Bi) < θ for some i. Thus,
θ = 5 and then by Claim 3.1.6 we obtain the following.
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Claim 3.1.9 h = d(v) = 13 and ||H|| = (5h− 14)− 5. In particular, all vertices of H have degree
7 except one which has degree 8.

Using Claim 3.1.5, we see that γ′3(Bi) ≥ 5. If m ≥ 3, using an argument similar to before it is
straightforward to show that there are vertices xi ∈ Bi such that

|NB1
(x1) ∪NB2

(x2) ∪NB3
(x3)| ≥ 5.

Contracting Ci to xi for i = 1, 2, 3 again produces a K−−
8 minor in H, a contradiction. Thus we

obtain the following.

Claim 3.1.10 m = 2.

Since every vertex of N(v) has a neighbor outside N [v], we have that B1 ∪B2 = N(v). Let B∗
i

be a minimal v-saturated cut with B∗
i ⊆ Bi for each i = 1, 2. Without loss of generality assume

that γ′2(B1) = 4 < θ = 5. By Claim 3.1.5, we have that 7 ≤ |B∗
i | ≤ 8 and B∗

i is a 2-regular graph.

Claim 3.1.11 γ′2(B2) = 4.

Proof: Suppose to the contrary that γ′2(B2) ≥ 5. Then there exists x2 ∈ B2 such that dB2
(x2) ≥ 3.

Since B∗
1 is 2-regular, there exists x1 ∈ B1 such that x1x2 /∈ E(B1). Now contracting C1 to x1

and C2 to x2 we again gain at least 5 edges. Then, as before, K−−
8 would be a minor of H, a

contradiction completing the proof of the claim. 2

Claim 3.1.12 |B∗
1 ∩B∗

2 | = 1, |B∗
1 | = |B∗

2 | = 7, B∗
1 = B1 and B∗

2 = B2.

Proof: Since |B∗
1 | ≥ 7 and |B∗

2 | ≥ 7 and |B∗
1 ∪ B∗

2 | ≤ 13, we have that |B∗
1 ∩ B∗

2 | ≥ 1. Suppose
|B∗

1 ∩B∗
2 | ≥ 2. Since all vertices in H have degree 7 except one which has degree 8, there is a vertex

x ∈ B∗
1 ∩ B∗

2 such that dH(x) = 7. Then dH(x) = 5 as h = 13. Without loss of generality assume
dB1

(x) ≥ 3. Since B∗
2 is 2-regular and |B∗

2 | ≥ 7, let y ∈ B∗
2 such that y is not adjacent to x in B2.

As before, contracting C1 to x and C2 to y leads to a contradiction.
The statement of |B∗

1 | = |B∗
2 | = 7 directly follows from the fact that |B∗

1 ∩ B∗
2 | = 1. Further,

B∗
1 ∪B∗

2 = N(v). Let w be the vertex in B∗
1 ∩B∗

2 . Since B∗
2 is 2-regular, B∗

2 is 4-regular of order 7,
hence hamiltonian. Therefore, B∗

2 − w is connected. Thus, N(C1) ∩ (B∗
2 − w) = ∅, for otherwise

G − (B∗
1 ∪ v) is connected, a contradiction to the fact B∗

1 is a v-saturated set. Thus, B∗
1 = B1.

Similarly, B∗
2 = B2. 2

Let x1 ∈ B1−B2. Since x1 is adjacent to 4 vertices in B1, then |N(x1)∩ (B2−{w})| = 3. Let
y1 ∈ B2 − {w} such that x1y1 ∈ E. Then, since dH(x1) = 7, we have that

|N(x1) ∩ (B2 − {y1, w})| ≤ 2.

Similarly, |N(y1)∩(B1−{x1, w})| ≤ 2. Thus, |NH(x1)∩NH(y1)−{w}| ≤ 4, and so |N(x1)∩N(y1)∩
N [v]| ≤ 6. Since m = 2, N(x1) ∩ N(y1) ∩ (G − N [v]) = ∅. Thus, |N(x1) ∩ N(y1)| ≤ 6. Now, as
in the proof of Claim 3.1.1, G \ x1y1 would contain a K−−

9 minor, a contradiction, completing the
proof. 2

Finally, we note the a similar proof technique can be used to show that a graph of order n ≥ 9
with size at least 9n − 45 contains a K9 minor. Despite the fact this is not near the conjectured
value, when combined with Theorem 1.1 it implies that 18-connected graphs are 3-linked.
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