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Abstract

Bollobds and Thomason showed that every 22k-connected graph is k-linked. Their result
used a dense graph minor. In this paper we investigate the ties between small graph minors
and linkages. In particular, we show that a 6-connected graph with a Kj minor is 3-linked.
Further, we show that a 7-connected graph with a Ky minor is (2, 5)-linked. Finally, we show
that a graph of order n and size at least 7n — 29 contains a Ky ~ minor.

1 Introduction

All graphs considered in this paper are simple graphs, that is, finite graphs without multiple edges
or loops. For any graph G, we will use |G| and ||G|| to denote the number of vertices and the
number of edges of G, respectively. Let H be a connected subgraph of a graph G, then let G/H
denote the graph obtained by contracting all vertices of H to a vertex and let G[H| = G|V (H)]
denote the subgraph induced by the vertex set of H in G. In this paper, K,, always stands for the
complete graph with n vertices, K denotes a subgraph of K, with exactly one edge deleted, and
K, % denotes a subgraph of K,, with exactly i(> 2) edges deleted. When i = 2, we sometimes use
K~ for K2

Let s1, s2, ..., sk be k positive integers. A graph G is said to be (s1,S2,. .., sk)-linked if it
has at least Zle s; vertices and for any k disjoint vertex sets Si, So, ..., Sp with |[S;| = s;, G
contains vertex-disjoint connected subgraphs Fj, Fb, ..., Fy such that S; C V(F;). The case
$1 = 89 = -+ = s = 2 has been studied extensively. A (2,2, ...,2)-linked graph is called k-linked,
that is, for any 2k distinct vertices x1, y1, 2, Y2, - .., Tk, and y there exist k vertex-disjoint paths
Py, Py, ..., P, such that P; joins x; and y;, 1 <14 < k.

A graph H is a minor of a graph G if H can be obtained from G by deleting edges and/or
vertices and contracting edges. An H-minor of G is a minor isomorphic to H. A subdivision of a
graph is obtained by replacing some of its edges by paths so that the paths are pairwise internally
disjoint. Clearly, if G contains a subdivision of H then G has H as a minor, but the converse is
not necessarily true.
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Linkages, subdivisions and minors have been related in a number of results. For example,
Larman and Mani [12] and Jung [5] noticed that if x(G) > 2k and if G contains a subdivision
of Ksj then G is k-linked. Mader [15] showed that a graph contains a subdivision of Ky if its
connectivity is sufficiently large. Robertson and Seymour [16] showed that the observation of
Larman and Mani and of Jung remains true under the very much weaker condition that G has
K3, as a minor. Instead of considering K3;, minors, Bollobds and Thomason [1] considered graphs
containing a dense graph as a minor. Using this idea they showed that every 22k-connected graph
is k-linked, thus confirming the long standing belief that linear connectivity would suffice.

Jung [10] showed that every 4-connected non-planar graph is 2-linked. Thomassen [20] and
Seymour [18] gave a characterization of graphs which are not 2-linked. Our main purpose is to
develop more ties between small graph minors and graph linkages. To do so, we study graphs
containing dense minors on 9 vertices. In particular, the following results are obtained.

Theorem 1.1 If a 6-connected graph G has Ky as a minor, then G is 3-linked.

Yu [22] completely characterized graphs G which do not contain two vertex-disjoint connected
subgraphs F; and F» such that Sy C V(F}) and Se C V(F») for two disjoint vertex sets S; and Sy
with [S1| = 2 and |S2| = 3. Consequently, he proved that every 8-connected graph is (2, 3)-linked.
We will prove the following theorem.

Theorem 1.2 If a 7-connected graph G has Ky as a minor, then G is (2,5)-linked.

Note that in [2], we consider several additional questions of this type. Finally, we show the
following.

Theorem 1.3 If G is a graph on n > 9 vertices with at least Tn — 29 edges, then G has Ky~ as a
Minor.

We do not feel Theorem 1.3 is best possible. Hence, we make the following conjecture.

Conjecture 1.4 If G is a graph on n vertices with at least 6n — 20 edges, then G has Kq~ as a
minor.

In addition, we make these related conjectures.

Conjecture 1.5 If G is a graph on n vertices with at least 13an47 edges, then G has Ky as a
minor.

Conjecture 1.6 If G is a graph on n vertices with at least Tn — 27 edges, then G has Kg as a
minor with finitely exceptions.

Conjecture 1.7 If G is a 6-connected graph with Kg = as a minor, then G is 3-linked.

Very recently a proof of Conjecture 1.6 was announced by Thomas, et. al [19].
Finally, we note another long standing conjecture.

Conjecture 1.8 FEvery 8-connected graph graph is 3-linked.

We will give proofs of Theorems 1.1 and 1.2 in Section 2 and of Theorem 1.3 in Section 3.

We define G + H be the graph with vertex set V(G) UV (H) and edge set E(G)U E(H), where
G and H are two vertex disjoint graphs. We define 2G = G + G’ where G’ is isomorphic to G
and V(G')NV(G) = 0. Let G be a graph and A be a subset of V(G). To avoid cumbersome
notation, at times we simply use A to denote the subgraph induced by A, that is G[A], provided
no confusion will arise.



2 Linkages

In this section we will prove Theorem 1.1 and Theorem 1.2. We will use inductive arguments
showing slightly stronger statements of each result. We will need the following definitions.

Definition 2.1 Let S, A, B C V(G) be sets of vertices in a graph G. Let £ = |ANB|. If S C A,
V = AUB, and there are no edges between A\ B and B\ A, then we call (A, B) an S-cut of size {.

Definition 2.2 Let H be a minor of a connected graph G. Let C1,Cs, ... ,Cg| be a partition of
V(G), such that each G[C}] is connected, and contraction of the C; yields H. Let S C V(G). An
S-cut (A, B) of G is called an SH-cut if C; C B\ A for some 1 <1i < |H]|.

2.1 Proof of Theorem 1.1

Now we are ready to give the first of our slightly stronger statements.

Theorem 2.1 Let G be a graph, and let S = {x1,22,y1,Y2,21,22} C V(G) be a set of 6 vertices.
Let G* be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a
partition C1,Ca, ... ,Cqy of V(G), such that each G*[C;] is connected, and contraction of the C; in
G* yields H = Ky . Further suppose that G* has no SH_cut of size smaller than 6. Then there are
three vertex disjoint paths in G connecting (x1,x2), (y1,y2), and (21, 22), respectively.

Proof: Suppose the statement is false, and G is a counterexample with the minimum number of
edges. Let S, C1,Cs,...Cy be as in the theorem, and suppose the desired linkage can not be found.
As G is minimal, we know that G[S] contains no edges.

Claim 2.1.1 The subgraphs G[C;] contain no edges.

Suppose to the contrary that for some i, G[C;] contains an edge. Without loss of generality we
may assume that uwv € E(C1), and since G[S] is empty, v ¢ S. As G is minimal, there has to be
an SH-cut (A, B) of size 6 with u,v € AN B, otherwise the contraction of uv would yield a smaller
counterexample.

A simple count shows that at least four of the nine C; sets contain no vertices of AN B. By
symmetry we may assume that C; N AN B #Q for 1 <i <k, and C;NANB = for i > k, where
k is an integer with 1 < k < 5. As § C A, and G*[C}] is connected, we know that C; C B\ A or
C; C A\ B for each i > k. By the definition of SH _cuts we know that C; C B \ A for at least one
i > k, hence it is in fact true that C; C B\ A for all i > k, otherwise the C; would not contract to
a Kg in G*.

Since there is no SH-cut of size less than 6 in G*, there does not exist a cut of size less than 6
in A separating S and AN B. By Menger’s Theorem, there are 6 vertex disjoint paths from S to
AN B in G[A]. Label the vertices of S = AN B with z/, 25, ¥, v5, 21, 25 according to the starting
vertices in S of these paths. Let C/ = C; N B for 1 < i < 9. The graph G[B] satisfies all the
conditions of the statement, and G[B] is smaller than G as there is at least one vertex in S\ B
(note that v € 5).

By the minimality of G, we can find three vertex disjoint paths in G[B] connecting (2}, z}),
(y1,v5), and (21, z5), respectively. This, together with the six paths in G[A], produces three vertex
disjoint paths in G connecting (x1,z2), (y1,y2), and (21, 22), respectively, a contradiction. This
shows that the G[C};] contain no edges. O



Note that this implies that for each 1 <i <9, C; C S or |C;| = 1. Therefore, 9 < |V(G)| < 14.
We will finish the proof by an analysis broken into cases according to |V(G)|. We may always
assume that |C;| > |Cj] for 1 <i < j <09.

Case 2.1.1 Suppose |V (G)| = 9.
Note that in this case |C;| =1 for all 1 <i <9. Let V(G) \ S = {v1,v2,v3}. Since

{m1v1m2, y1v2y2, 210322} and  {z1v2T2, Y1V3Y2, 21122}

are edge disjoint, one of them is the desired set of vertex-disjoint paths, a contradiction.
Case 2.1.2 Suppose |V (G)| = 10.

In this case |C1| = 2. Let V(G) \ S = {v1, v2, v3,v4}.

First suppose that C; = {x1, 22} (the cases C1 = {y1,y2} and Cy = {z1, 22} are analogous).
There exists a matching from Cj into V(G)\S, otherwise there is an S¥-cut smaller than 6. We may
assume that {z1v1,zove} is such a matching. If vivy € E, then one of {zjvivaz2, y1v3Y2, 210422}
and {z1v1v2x2, Y1V4Y2, 21v322} is the desired set of vertex-disjoint paths, a contradiction. Thus, we
may assume that vivy ¢ E. As G* contracts to a Ky, v has a neighbor in (', hence we may
assume that xjvs € E(G). But now {xv3v922, y101Yy2, 210422} is the desired set of vertex-disjoint
paths, a contradiction.

Now suppose that C1 = {z1,y1}, (again the other cases are handled by a similar argument).
There exists a matching from C; into V(G) \ S. We may assume that {z1v1,y1v2} is such a
matching. At most one of the edges in {z1v129,y1v2y2, 21322} is missing, but then this edge can
be replaced by a path of length 2 through v4 to produce the desired set of vertex disjoint paths, a
contradiction completing this case.

Case 2.1.3 Suppose |V (G)| = 11.

Let V(G) \ S = {v1,va,v3, 04, v5}.

First suppose that |C1| = 3. We may assume that z1,y1 € C1. Now G*[x1,y1, v1, V2, U3, Vg, V5]
is a K7 or a K., and therefore 3-linked. We can find a matching from {x9,ys, 21,22} into
{va, v3,v4,v5}, otherwise there is an SH_cut smaller than 6. Without loss of generality suppose
the matching is xove, yov3, 2104, 22v5. We can now connect the paths in the necessary manner
inside of G*[x1,y1,v1, v2, U3, V4, V5], since this graph is 3-linked. Note that the edge z1y; is not used
in this path system, so this is in fact a path system in GG, a contradiction.

Now suppose that |C1| = |Co| = 2. If x1,y1 € C1 U Cy, the same argument as above applies.
By symmetry we may assume that C1 U Cy = {y1,y2,21,22}. If zjup ¢ E for some 1 < j < 2
and some 1 < k < 5, say z1v; ¢ E, then G[xo,v1,va,v3,v4,05] is a Kg and thus 3-linked, and
a very similar argument can be used to find the paths. Thus, we may assume that zjv, € F
for 1 <j<2and 1<k <5 There is a matching from {y1, 2, 21, 22} into {vy,ve,v3,v4,v5},
say y1v1,Yave, 2103, 2204 € E. If vivg,vsvy € E, then {x1v529, y1v102y2, 21030422} is the desired
set of vertex disjoint paths, a contradiction. Hence, we may assume that vivo ¢ E. As G*
contracts to a Ky , vs is adjacent to both Cy and Co. If vsy; € E (and similarly if vsye € E), then
{z1v122, Yy1U5V2Y2, 21V3V422 } is the desired set of vertex disjoint paths. Hence, vs21,v520 € E. But
then {xjv4za, y1v1V3V2y2, 210522} are the desired paths and this contradiction completes this case.

Case 2.1.4 Suppose |V (G)| = 12.



Let V(G) \ S = {v1,v2,v3,v4,v5,06}. Suppose that C3 C S. If |C1] > 3, then |C3] = 1 and
G[Cs U {v1,v2,v3,v4,v5,06}] is a K7 or a K- and the same argument as in Case 2.1.3 applies.
Hence, we may assume that |C1| = |Cs| = |C3| = 2.

There is a matching from S into V(G) \ S, say {x1v1,x2v2, Y103, Y204, 2105, 220} is such a
matching. One of the edges vive, v3v4, U5vg is missing, otherwise the three paths are easy to find.
This implies that every v; has at least three neighbors in S, one in each of C7, Cy and Cs. Further,
each vertex in S has at least two neighbors in V/(G) \ S, otherwise G is not minimal.

Suppose that zov; € E. Then, similar to our earlier arguments, either {xjvix2, y1v3V4Y2,
2105U2v622} Or {T1v1T2, Y1U3V2VLY2, Z1V5Ve22} is the desired path system, a contradiction. By
similar arguments we may conclude that xivs, y1v4, yovs, 21vg, 2005 € E.

Suppose that zjvs,xovs € E. If yyv1 € E or yjvo € E, a path system can easily be found.
Thus, yvs € E or yyvg € E, by symmetry we may assume yjv5 € E. If zyv; € E, then
{z1v322, Y105V4Y2, 21010622} IS a path system, a contradiction. Similarly, zjve ¢ E. As v; and
vo have at least three neighbors in S, we have ysv1,yovo, 2o0v1, 20v9 € E. If zyv4 € FE, then
{z1v322, Y1V5V1Y2, 21040622} is a path system, a contradiction. Thus, zjv4 ¢ E, and zjv3 € FE
as z1 has at least two neighbors in V(G) \ S. If z1v4 € E, then {xjv4v022, y105v1Y2, 21030622} is a
path system, a contradiction. Thus, x1v4 € E, and similarly xovy € E. But now the only possible
neighbors of v4 in S are y2 and 29, a contradiction establishing that xz1v3 and xovs can not both be
edges.

By symmetrical arguments, we can establish that N(z1) N N(z2) = N(y1) N N(y2) = N(z1)N
N(z2) = 0. Therefore, every v; has exactly three neighbors in S.

By symmetry, we may assume that vivy € E and N(v1) = {z1,y1,21}. If z1v3 € E, then
{z1v3v229, Yy1v1V4Y2, 21V5V622} is a path system, a contradiction. Thus, z1v3 ¢ E and hence zovs €
E.

If y1vy € E, then {z1v1v3T9, Y1204y, 21V5V622 } is a path system, a contradiction. Thus, yjvy &
F and hence yav5 € E.

If zovy € E, then {xjvivsze,y1vsv2ys, 21050622} is a path system, a contradiction. Thus,
xovy € E and hence ziv4 € E.

If yovs € E, then {xjv4vaz2, y1v305Y2, 21010622} i a path system, a contradiction. Thus,
yovs ¢ E and hence yjvs € E. But now, {zjvqvsza, y1vsv2y2, 21010622} is a path system, the
final contradiction finishing the case |V (G)| = 12.

Case 2.1.5 Suppose |V (G)| > 12.

Let V(G)\ S 2 {v1,v2,v3,v4,05,06,v7}. Then Glv1,v2,v3,v4,05,v6,v7] is a K7 or a K7, and
therefore 3-linked. The path system can easily be found, establishing this last case and completing
the proof of the theorem. O

2.2 Proof of Theorem 1.2

Again, we will prove a slightly stronger statement.

Theorem 2.2 Let G be a graph, and let S = {x1,x2,Y1,Y2,Y3, Y4, Y5} C V(G) be a set of T vertices.
Let G* be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a
partition C1,Cy, ... ,Cy of V(G), such that each G*[C;] is connected, and contraction of the C; in
G* yields H = K . Further suppose that G* has no S -cut of size smaller than 7. Then there are
two vertex disjoint connected subgraphs in G containing {x1,x2} and {y1,y2,ys,y4,ys}, respectively.



Proof: Suppose the statement is false and G is a counterexample with the minimum number of
edges. Let S,C1,C5,...Cy be as in the theorem, and suppose the desired subgraphs can not be
found. As G is minimal, we know that G[S] contains no edges.

Claim 2.2.1 The subgraphs G[C;] contain no edges.

Suppose the result fails to hold. Without loss of generality we may assume that uwv € E(C1),
and v € S. As G is minimal, there has to be an S”-cut (A, B) of size 7 with u,v € AN B, otherwise
the contraction of uv would yield a smaller counterexample.

A simple count shows that at least three of the nine C; sets contain no vertices of AN B. By
symmetry we may assume that C;NANB # 0 for 1 <i<k,and C;NANB = for i > k, where
k is an integer with 1 < k < 6. As S C A, and G*[C}] is connected, we know that C; C B\ A or
C; C A\ B for each i > k. Since C; C B\ A for at least one i > k, it is in fact true that C; C B\ A
for all ¢ > k, otherwise the C; would not contract to a Kq in G*.

Since there is no S¥-cut of size less than 7 in G*, there are 7 vertex disjoint paths from S
to AN B in G[A]. Label the vertices of S = AN B with i, 25, ¥], v5, ¥4, ¥4, y5 according to the
starting vertices of these paths. Let C] = C;N B for 1 < i < 9. The graph G[B] satisfies all the
conditions of the statement, and G[B] is smaller than G as there is at least one vertex in S\ B
(note that v &€ S).

By the minimality of G, we can find two vertex disjoint connected subgraphs in G[B] containing
{2, 24} and {y, vh, y5, vy, v}, respectively. This, together with the seven paths in G[A], produces
the desired subgraphs in G, a contradiction, completing the claim. O

Note that this implies that for each 1 <i <9, C; C S or |C;| = 1. Therefore, 9 < |[V(G)| < 15
and we can assume that |V (C;)| > [V(Cj)| for 1 < i < 5 < 9. We will finish the proof by an
analysis broken up into cases according to |V (G)|.

Case 2.2.1 Suppose |V (G)| = 9.

Note that in this case |C;| = 1 for all 1 < i < 9. Let V(G)\ S = {vi,v2}. Then one of
Glz1, 22, v1], G[Y1, Y2, Y3, Y4, Y5, v2] and Glr1, z2, v2], Gly1,Y2, Y3, Y4, Ys, v1] is the desired set of con-
nected subgraphs, a contradiction.

For all other cases note that every vertex in S has at least two neighbors in V(G) \ S. Suppose
the contrary, say y; has at most one neighbor in V(G) \ S. If y; has no neighbors in V(G) \ S,
then (A = S,B = V(G) \ {y1}) is an S-cut of size 6. On the other hand, if y; has exactly one
neighbor in V(G) \ S, say y1v1 € E, then C; \ {y1} # 0 for all 1 < i <9 since |V(G) \ S| > 3, and
G — y1 with y] = v; would be a smaller example, contradicting the minimality of E(G).

Case 2.2.2 Suppose |V (G)| = 10.

Now |C1]| = 2. Let V(G)\ S = {v1,v2,v3}. We know that N(z1) N N(z2) NV (G)\ S # 0, since
IN(z1) N V(G)\ S| > 2 and |N(z2) NV (G) \ S| > 2. We may assume that xzjvy,x9v1 € E. Every
y; is connected to at least one of vy and vs. All we need to show in order to find a contradiction
is that G[y1,v2, Y3, Y4, Y5, V2, v3] is connected. If vovg € E, this is clear. Otherwise, observe that
|Ci| =1 for 2 < ¢ <9, and thus there is a y; with y;jvs,y;v3 € E.

Case 2.2.3 Suppose |V (G)| = 11.



Let V(G)\ S = {v1,v2,v3,v4}. If N(z1) N N(z2) N V(G)\ S # 0, say xiv1,z0v1 € E, then
G[x1,x2,v1] and Gly1, Y2, Y3, Y4, Y5, V2, V3, v4] are connected subgraphs. Thus, suppose that N(z1)N
N(z2) NV(G)\ S = 0, say N(z1) = {v1,v2} and N(x2) = {vs,v4}. Note that this implies that
neither 1 nor zo is in a C; by itself, so at least three of the y; have at least three neighbors in
V(G)\ S, at least two of the y; are connected to all four vertices in V/(G) \ S.

By symmetry we may assume that vjvs, vivg, vov3 € E (potentially vovy ¢ E). As there are
at most two vertices in {y1,y2, Y3, Y4, ys} with less than three neighbors in V(G) \ S, we can pick
1 < j < k < 4 such that Gz, 2, v;,vg] is connected, and such that every y; has a neighbor in
{v1,v2,v3,v4} \ {vj,vx}. But now G[V(G) \ {z1,22,vj,vx}] is connected, a contradiction.

Case 2.2.4 Suppose n = |V(G)| > 12.

Let V(G)\ S = {v1,v2,v3,... ,05—7}. If N(z1) N N(x2) # 0, say x1v1,x2v1 € E, then G[x1, x2, v1]
and Gly1,Y2,Y3, Y4, Y5, V2, V3, ... ,Up_7] are connected subgraphs. Thus, suppose that N(z1) N

Suppose that |[N(z1)| = |[N(z2)| = 2, say N(x1) = {v1,v2} and N(x2) = {vs3,v4}. By symmetry
we may assume that vivs, vivg,vov3 € E (potentially vovy ¢ E). If every y; has a neighbor in
{v1,v2,v3,... ,0n_7} \ {v1,v3}, then G[z1,x9,v1,vs] and G[y1, Y2, Y3, Y4, Y5, V2, V4, V5, . . . ,Up_7] are
connected subgraphs. Therefore, there is an y; with N(y;) = {v1,vs}, say ¢ = 1. Similarly, we
may assume that N(y2) = {v1,v4} and N(y3) = {ve,v3}. But now (A = S U {v1,va,v3,v4}, B =
{ya,y5,v1, 02, ... ,vn_7}) is an SH-cut of size 6, a contradiction.

Now suppose that |N(z1) U N(z2)| > 5, say N(z1) 2 {v1,v2} and N(z2) D {vs,vs4,v5}. By
symmetry we may assume that vivs, vivy, v1vs5, vovs, v2v4 € E (potentially vovs ¢ F). By similar
arguments as above, N(y1) = {v1,v3}, N(y2) = {v1,v4}, N(y3) = {v1,v5}, N(ys) = {v2,v3}, and
N(ys) = {ve,v4}. Further, we actually have N(z1) = {v1,v2} and N(z2) = {vs,v4,v5}.

If k£ = 12, then four of the C; consist of vertices in S, and hence |N(u)| > 4 for some u € S, a
contradiction. If & > 12, then (A = S U {v1, v, v3,v4,v5}, B = {v1,v2,... ,v,_7}) is an SH¥-cut of
size 5, a contradiction, completing the proof. O

3 Graph Size and Minors

The center piece of studying graph minors is the following conjecture due to Hadwiger [4].
Conjecture 3.1 For all k > 1, every k-chromatic graph has a K minor.

For k =1,2,3, it is easy to prove, and for k = 4, Hadwiger [4] and Dirac [3] proved it indepen-
dently. In 1937, Wagner [21] proved that the case k = 5 is equivalent to the Four Color Theorem.
Robertson, Seymour, and Thomas [17] proved that a minimal counterexample to the case k = 6 is
a graph G which has a vertex v such that G — v is planar. Hence, the case k = 6 of Hadwiger’s
conjecture holds. For k = 7, Kawarabayashi and Toft [11] proved that any 7-chromatic graph has
either K7 or K44 as a minor. Jakobsen [6] proved that every 7-chromatic graph has a K7~ as a
minor.

To study extremal graphs, for any positive integer k, let g(k) be the least value such that every
graph on n vertices and g(k)n edges contains Kj, as a minor. Mader [15] showed that g(k) existed
and was at most 2873, In fact, Mader [14] proved that g(k) < 8kloga(k) and that g(k) = k — 2 for
k < 7. Jorgensen [9] proved that every graph G with ||G|| > 6|G| — 20 has Kg as a minor or G is
a special graph. We will prove Theorem 1.3 in this section. We first state the following related
results.



Theorem 3.2 [14] For any k < 7, every graph with |G| > k wvertices and ||G|| > (k —2)n — (k —
1)(k—2)/2+ 1 contains Ky as a minor.

Theorem 3.3 [6] Every graph G with |G| > 7 and ||G|| > 4|G| — 8 contains K7?* as a minor.

Theorem 3.4 [8] Every graph G with |G| > 7 and ||G|| > (9|G| — 23)/2 contains K7 as a minor
or a special graph with 8 vertices.

Theorem 3.5 [7] Every graph G with |G| > 8 and ||G|| > 5|G| — 14 has Kg? as a minor.

Theorem 3.6 [9] Every graph G with |G| > 8 and ||G|| > 6|G| — 20 has Kg as a minor, unless G
belongs to a special class of graphs with ||G|| = 6|G| — 20 and |G| = 5m for some integer m > 2.

Let ¢ be a positive integer and H be a graph. For any A C V(H), let DE(A) denote the set of
edges dominated by A. Define

%(H):Afgnvaél){\DE(A)! LAl =t

Clearly, 71 (H) is the maximum degree of H. Let H denote the complement of H and define that
v (H) = v(H). Let v be a vertex and N(v) the neighborhood of v. A vertex set S C N(v) is
called a v-saturated cut if S U {v} is a cut of G. A v-saturated cut S is minimal if there is no

v-saturated cut which is a proper subset of S.

3.1 Proof of Theorem 1.3

We will proceed by induction on the order of G. For the base case of |G| = 9, we have that
|G|| > 7 x 9 — 29 = 34, which implies that G is a Ky .

Suppose that |G| = n > 9 and Theorem 1.3 is true for any graph of order less than n (but > 9).
Let § denote the minimum degree of G, v be a vertex of G such that d(v) = §, H = G[N(v)],
h =|H| = d(v), and §(H) be the minimum degree of H. Since G does not have Kq ~ as a minor,
no subgraph of G has K~ as a minor. In particular, G —v does not have Ky ~ as a minor. Thus,
|G — v|| < 7|G — v| — 29, which implies that 6 > 8. On the other hand, if 6 > 14, then it is
readily seen that |G — v|| > 7|G — v| — 14, thus G — v has Ky~ as a minor and hence, so does G,
a contradiction. Thus, we have that

8 <d(v) <13.

Claim 3.1.1 §(H) > 7 and hence, 6(G) > 9.

Proof: Suppose to the contrary, there is a vertex u € N(v) such that dg(u) = |N(u) N N(v)| < 6.
Then, G /uv, the graph obtained from G by contracting the edge uv, has |G| — 1 vertices and

|G /uv|| > ||G|| =7 > 7G| —29 — 7 =T7|G/zy| — 29.

By our induction hypothesis, G/uv has Ky~ as a minor, a contradiction. Since H is not Kg, the
fact that §(G) > 9 is clear. O

Claim 3.1.2 ||H|| < 5h — 15.

Proof: Suppose the claim failed, then by Theorem 3.5, H has Kg~ as a minor. Thus, G has K4 ~
as a minor since v is adjacent to every vertex of H. O



Claim 3.1.3 We have that h > 10. Further, equality holds only if G — N[v] is disconnected and
any neighbor of x and any neighbor of y are not in the same component for any two nonadjacent
vertices x, y € N(v).

Proof: By Claim 3.1.1, ||H|| > 7h/2. Combining it with Claim 3.1.2, we have that
Th/2 < 5h — 15,

and thus, h > 10. If there are two nonadjacent vertices x and y € N (v) such that both are adjacent
to the same component of G — N[v], contracting this component with vertex z, we see that the
resulting graph in H still cannot have K¢~ as a minor, or G would have K~ as a minor. Hence,
we have that

Th/2+1 < 5h — 15,

which implies that h > 11. O

Claim 3.1.4 Let B be a minimal v-saturated cut. Then,
||1B| < 6b— 24 — 29(B),
where b = |B|.

Proof: Since B U {v} is a cut of G, let G; and G2 be two induced subgraphs of G such that
V(G1)UV(Gs) = V(G) and V(G1) NV (G2) = BU{v}. By the minimality of B, we have that all
vertices of B are adjacent to every component in G — (B U {v}). Note that v may not have this

property. Let 21 be a vertex of B such that d@(xl) = 71(G[B]). Contracting a component of G

to 1, we obtained a graph G7. Clearly,
Gl =G| and |G}l = [|G1l| + 7 (B).
Since G does not have a Ky~ as a minor, G7 does not have a Ky~ as a minor. Thus,
IGil < 7G| — 30.

Thus, we have that
1G1]| < 7|G1| = 30 — 1(B).

Similarly, we can show that

|G| < 7|Ga| — 30 — 71(B).

Thus,
711G =29 < [[G]| = |Gl + ||Gz|| — |[B U {v}]]
< 7Gi] =30 = 1(B) + 7|G2| = 30 = n(B) — [|B]| - b
= 7(|G|+b+1)—60—2v,(B) - ||B|| - b
= 7|G|+6b—53 —2v{(B) — ||B]|.
Thus, Claim 3.1.4 follows. O



Claim 3.1.5 Let B be a minimal v-saturated cut. Then, b = |B| > 5 and v45(B) > 5, with the
exception that b = 7 or 8 and B is a 2-reqular graph. In any case, we have that v4(B) > 4 and
/

753(B) = 5.

Proof: The inequality b > 5 directly follows from Claim 3.1.4 since
0 < [|B| < 6b— 24 —2v{(B).

Note that v4(B) > 5 if ¥{(B) > 4 and || B|| > 5. By the fact that ||B|| + || B|| = b(b — 1)/2 and
Claim 3.1.4, we have that ||B|| > 5 if 7} (B) > 4. Thus, we assume that ] (B) < 3.

Suppose that v{(B) = 3 and 75(B) < 5. Let x be the vertex such that dgz(x) = 3. Then, the
maximum degree of B — x is at most 1. Thus,

1Bl <3+ (b—1)/2< (b+5)/2.

Applying that ~1(B) = 3 to Claim 3.1.4, we have that

IIB|| = b(b—1)/2 — ||B|| > b(b—1)/2 — (6b — 24 — 6) > —(b* — 13b + 60).

N

However, the equation
1
(b+5)/2 > 5(b2 — 13b + 60)

does not have a solution. Thus, v1(B) < 2.

Suppose that b = 5. 1In this case we have that ||B|| + ||B|| = 10 and ||B|| < 6 — 2v,(B) < 6.
Thus, ||B|| > 4, so 7;(B) > 2, which in turn implies that ||B|| < 2. But then, v4(B) > 5, proving
the claim in this case.

Suppose now that b = 6. Then we have that ||B|| + ||B|| = 15 and ||B|| < 12 — 2v{(B). Thus,
|B|| > 3 and so 44 (B) > 2. This in turn implies that ||B|| < 8. Now ||B|| > 7, which implies that
74 > 3, a contradiction.

Since G does not have Ky ~ as a minor, B does not contain K7 as a subgraph. Thus, 7|(B) > 1
forb>T7.

Now suppose that b = 7. Then we have that ||B|| + ||B|| = 21 and ||B|| < 18 — 2v}(B) < 16.
Thus, ||B|| > 5, so v{(B) > 2, which in turn implies that ||B|| < 14. Thus, ||B|| > 7. Since 7} < 2
and b =7, B is a 2-regular graph.

Suppose next that b = 8. Then ||B|| + ||B|| = 28 and ||B|| < 24 — 2v/(B) < 22, so that
|B|| > 6. Thus, 74 > 2, which in turn implies that ||B|| < 20. But since v{(B) <2 and b =8, B
is a 2-regular graph.

Now let Dy and Dj be two components of G — (B U {v}) such that Dy N N(v) # 0.

If B has K¢ as a minor, contracting D and Ds along with using v yields a Ky ~. Thus, we may
assume that B does not have Kg as a minor. Using Theorem 3.2 for the case k = 6, we have that

|| B|| < 4b— 10.
Suppose that b = 9. In this case we have that
|B]| <4-9—10 =26,

and so , ||B|| > 10. This however implies that v} (B) > 3, a contradiction.
Suppose that b = 10. Then
|B|| < 4-10 — 10 = 30.
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Thus, ||B|| > 15, which implies that 7] > 3, a contradiction.
By similar arguments we can produce contradictions for 11 < b < 13, completing the proof of
this claim. 0

Since H does not contain K¢~ as a minor, ||H|| < 5n — 15. We define the discharge § =
5h — 14 — ||H|).

Claim 3.1.6
4 ifh=10,11,12 and
< 9y 9
b= { 5 ifh=13 ’
Further, the second equality holds only when all except one vertex in H have degree 7 and the
exception has degree 8.

Proof: Since the minimum degree of H is at least 7, we have that 5h — 14 — 0 > ||H|| > [Th/2].

It is readily seen that Claim 3.1.6 holds by solving the inequality. O
Let N[v] = N(v)U{v} and Cy, Cy, ..., Cy, be the components of G—N[v] and B; = N(C;)NN (v)
for each ¢ =1, 2, ..., m. Note that B; = B; may happen for different i and j.

Let u € N(v) such that dg(u) = 7. Let H* = G[V(H) U {v}] — u. Then, |H*| = h and
|H*|| > Th/2 =T+ h=9h/2—-T.

Using the fact h < 13, we see that ||[H*|| > 5h — 14, which implies that H* contains Kg = as a
minor. Note, every vertex of H* is either adjacent to u or to one of the C; since d(v) is minimum
degree of G. Now, since G does not have Ky ~ as a minor, the following claim holds.

Claim 3.1.7 m > 2.
Claim 3.1.8 There exists an i, 1 <i < m such that v4(B;) < 6.

Proof: Suppose, to the contrary, that +4(B;) > 6 for all i. We now show that there exists a vertex
z € By and a vertex y € By such that [Ng-(z) U Ng;(y)| > 0. Let z; and y; be two vertices in B;
such that {z;,y;} dominates at leat # edges in B; for i = 1,2. Then

|Ng; (i) U Ng(vi)| = 6,

and without loss of generality assume dp-(2;) > dp(y;). We may further assume that dg—(z1) >
dB—2(m2). If dB—l(xl) > 0/2 or w129 € E(By) or m112 € E(Bs), then x = 1 and y = x5 are a pair of
desired vertices. Thus,
which give that
dg(y1) = dg;(y2) = 6/2.
In particular, we have that either 8 = 2 or 8 = 4 since 8§ < 5. Further, we have xizy €
E(B; N By). Similarly, we have that z1ys, y172, and y192 € E(B1 N Bs). Thus, § = 4 and

Ng;(y1) = Ng- (1)

Hence, x = z1 and y = y; are a pair of desired vertices.

Now contracting C; to x; for each i = 1, 2, we get a new subgraph H; such that |H;| = |N(v)|
and ||H1|| > 5|H1| — 14 since ||H|| > 5h — 14 — 6. Thus, H; has Kg = as a minor. This minor along
with v shows that G has Ky~ as a minor, a contradiction. O

Combining Claims 3.1.6 and 3.1.8, we have the following: 4 < ~44(B;) < 6 for some i. Thus,
f = 5 and then by Claim 3.1.6 we obtain the following.
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Claim 3.1.9 h =d(v) = 13 and ||H|| = (bh—14) — 5. In particular, all vertices of H have degree
7 except one which has degree 8.

Using Claim 3.1.5, we see that v5(B;) > 5. If m > 3, using an argument similar to before it is
straightforward to show that there are vertices z; € B; such that

| Ng(21) U Ng; (02) U N (3)| = 5.

Contracting C; to z; for ¢ = 1,2, 3 again produces a Kg ~ minor in H, a contradiction. Thus we
obtain the following.

Claim 3.1.10 m = 2.

Since every vertex of N(v) has a neighbor outside N[v], we have that By U By = N(v). Let B
be a minimal v-saturated cut with B C B; for each ¢ = 1, 2. Without loss of generality assume
that v4(B1) = 4 < § = 5. By Claim 3.1.5, we have that 7 < |B}| < 8 and Bj is a 2-regular graph.

Claim 3.1.11 ~}(B3) = 4.

Proof: Suppose to the contrary that 75(B2) > 5. Then there exists 22 € By such that dg_(z2) > 3.
Since Bf is 2-regular, there exists x1 € B; such that z129 ¢ E(B;). Now contracting C to z;
and Cy to xo we again gain at least 5 edges. Then, as before, Kg~ would be a minor of H, a
contradiction completing the proof of the claim. O

Claim 3.1.12 |B; N B;| =1, |B}| = |B}| = 7, Bf = B, and B = B,.

Proof: Since |Bf| > 7 and |B3| > 7 and |Bf U B;| < 13, we have that |Bf N B;| > 1. Suppose
|Bf N B;| > 2. Since all vertices in H have degree 7 except one which has degree 8, there is a vertex
x € BY N B3 such that dy(xz) = 7. Then di(x) =5 as h = 13. Without loss of generality assume
dg(x) > 3. Since Bj is 2-regular and |B3| > 7, let y € Bj such that y is not adjacent to z in Bs.
As before, contracting C7 to x and Cs to y leads to a contradiction.

The statement of |Bf| = |B3| = 7 directly follows from the fact that |Bj N B;| = 1. Further,
B} UBj = N(v). Let w be the vertex in Bf N Bj. Since Bj is 2-regular, B} is 4-regular of order 7,
hence hamiltonian. Therefore, B — w is connected. Thus, N(Cy) N (Bs — w) = (), for otherwise
G — (Bj Uv) is connected, a contradiction to the fact B} is a v-saturated set. Thus, B} = Bj.
Similarly, B5 = Bs. O

Let 1 € By — By. Since z; is adjacent to 4 vertices in By, then |N(z1) N (B2 —{w})| = 3. Let
y1 € By — {w} such that x;y; € E. Then, since dg(x1) = 7, we have that

|N(21) N (B2 — {y1,w})| < 2.

Similarly, [N (y1)N(B1—{z1,w})| < 2. Thus, |[Ng(x1)NNg(y1) —{w}| <4, and so |[N(z1)NN(y1)N
Nv]] £6. Since m =2, N(x1) N N(y1) N (G — N[v]) = 0. Thus, |[N(z1) N N(y1)] < 6. Now, as
in the proof of Claim 3.1.1, G \ z1y; would contain a Ky ~ minor, a contradiction, completing the
proof. O

Finally, we note the a similar proof technique can be used to show that a graph of order n > 9
with size at least 9n — 45 contains a K9 minor. Despite the fact this is not near the conjectured
value, when combined with Theorem 1.1 it implies that 18-connected graphs are 3-linked.
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