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Abstract

We show that line graphsG = L(H) with σ2(G) ≥ 7 contain cycles of all lengths k, 2 rad(H)+
1 ≤ k ≤ c(G). This implies that every line graph of such a graph with 2 rad(H) ≥ ∆(H) is
subpancyclic, improving a recent result of Xiong and Li. The bound on σ2(G) is best possible.

1 Introduction

All graphs considered here are simple. For all terms not defined here we refer the reader to [1]. We
denote the neighborhood of a vertex set X ⊆ V (G) in a graph G by NG(X) or N(X). The degree of
a vertex in v ∈ V (G) is dG(v) = d(v) = |NG(v)|. The maximum degree of G is ∆(G), the minimum
degree δ(G). Let σ2(G) := min{d(x) + d(y) | x, y ∈ V (G) ∧ xy /∈ E(G)}. The number of vertices in
G is denoted by |G|, the number of edges by ‖G‖. The cycle with k edges is called Ck, and every cycle
is given a direction. For a cycle C and two vertices v, w ∈ V (C), vCw denotes the v−w path following
C in the direction of C, v+ and v− are the successor and the predecessor of v on C. For a tree T and
two vertices v, w ∈ V (C), vTw denotes the v − w path following T .

The distance between two vertices v, w ∈ G is dG(v, w) = d(v, w). The diameter of a graph G is
diam(G) = maxv,w d(v, w), and the radius is rad(G) = minv maxw d(v, w). A subgraph H ⊆ G is
distance preserving if dH(v, w) = dG(v, w) for all v, w ∈ V (H). A shortening path of a subgraph H is
a v − w path P such that V (H) ∩ V (P ) = {v, w} and dP (v, w) < dH(v, w), i.e., a witness to the fact
that H is not distance preserving.

We write L(G) for the line graph of G. The complete bipartite graph K1,3 is called a claw, and a
graph is said to be claw-free if it does not contain a claw as an induced subgraph. All line graphs are
claw-free.

A graph G is subpancyclic if it contains cycles of all lengths 3 ≤ k ≤ c(G), where c(G) is the
circumference of G, i.e. the length of the longest cycle in G.

Gould and Pfender [2] showed the following lemma about claw-free graphs.

Lemma 1. Let G be a claw-free graph with σ2(G) ≥ 9. Suppose, for some m > 3, G has an m-cycle
C, but no (m− 1)-cycle. Then C is distance preserving.

This yields as an immediate consequence the following corollary.

Corollary 2. Let G be a claw-free graph with σ2(G) ≥ 9 and circumference c(G). Then for every k
with 2 diam(G) + 1 ≤ k ≤ c(G), G contains Ck.

For line graphs, we strengthen Lemma 1 as follows.

1



Lemma 3. Let G be a line graph with σ2(G) ≥ 7. Suppose, for some m > 3, G has an m-cycle C, but
no (m− 1)-cycle. Then C is distance preserving.

Xiong and Li [3] prove the following theorem.

Theorem 4. Let H be a graph and G = L(H) its line graph with δ(G) ≥ 6, and rad(H) ≤ ∆(H)
2 . Then

G is subpancyclic.

We will prove the following.

Theorem 5. Let H be a graph and G = L(H) its line graph with σ2(G) ≥ 7. Then G contains cycles
of all lengths k, 2 rad(H) + 1 ≤ k ≤ c(G).

SinceG = L(H) trivially contains cycles of all lengths 3 ≤ k ≤ ∆(H), we can improve Theorem 4.

Corollary 6. Let H be a graph and G = L(H) its line graph with σ2(G) ≥ 7, and rad(H) ≤ ∆(H)
2 .

Then G is subpancyclic.

Corollary 7. Let H be a graph and G = L(H) its line graph with δ(G) ≥ 4, and rad(H) ≤ ∆(H)
2 .

Then G is subpancyclic.

2 Proof of Lemma 3

The lemma can be proved very similarly to Lemma 1. Here is a sketch of the proof.
Let H and G be as in the statement of the lemma, and let C be an m-cycle in G. Suppose first that C

has a shortening path of length at most two. Pick four vertices s1, t1, s2, t2 such that there are shortening
paths Pi of length at most two between si and ti, s+

i /∈ s2−iCt2−1 and the siCti are minimal according
to these conditions. Let Ki be the set of vertices on s+

i Ct
−
i which are not incident to a chord of C. By

symmetry, we may assume that either |K1| < |K2| (in which case note that all but at most two vertices
in K2 have degree at least 4), or |K1| = |K2| and minv∈K2 d(v) ≥ 4. Let C ′ = t1Cs1P1t1. Then
|C ′| ≤ m− 1. Now we can extend C ′ one vertex at a time by inserting the vertices of V (s+

1 Ct
−
1 ) \K1.

Then, we can insert all neighbors outside C ′ of vertices in K2. Note that every such neighbor has at most
two adjacent vertices on s+

2 Ct
−
2 , so |N(K2) \ C| ≥ 1

2

∑
v∈K2

(d(v) − 2) ≥ |K1| − 1. Thus, we can
insert vertices until we have a Cm−1.

On the other hand, if there is no shortening path of length at most 2, we can construct from C and a
shortening path P a cycle C ′ with |C ′| ≤ m− 1 and |C ′ ∩ C| ≥ m

2 , which we can again extend one by
one through vertices in N(C ′ ∩C) \ V (P ) until we have a Cm−1. This contradiction shows that there is
no shortening path of C in G, and thus C is distance preserving.

3 Proof of Theorem 5

For the sake of contradiction, suppose thatH andG = L(H) are graphs as in the statement, and suppose
that for some m > 2 rad(H) + 1, G contains a Cm but no Cm−1. The cases that m ∈ {4, 5} (and
thus rad(H) = 1) are easy to rule out, so we may assume that m ≥ 6. By Lemma 3, this cycle is
distance preserving, so its line graph original in H is an induced cycle C on m vertices which is distance
preserving as well.

Since G contains no Cm−1, we know that G contains no induced Ck for 2
3(m− 1) ≤ k ≤ m− 1, as

each such cycle could easily be extended to aCm−1. Thus,H contains noCk with 2
3(m−1) ≤ k ≤ m−1

(the line graph operation bijectively maps cycles in H to induced cycles of the same length in G).
Let S be the graph obtained from H through a single subdivision of every edge. Then 2 rad(H) ≤

rad(S) ≤ 2 rad(H) + 1 and S contains no Ck with 4
3(m − 1) ≤ k ≤ 2m − 2. Note that all cycles
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in S have even length. Let Z be the 2m-cycle in S obtained from C. Choose z ∈ V (S) such that
maxv∈V (Z) d(z, v) is minimal, and therefore at most rad(S). Let T be a minimal tree in S such that
dZ∪T (z, v) = d(z, v) for all v ∈ V (Z). Since Z is distance preserving, T intersects Z exactly in the
leaves of T . Let {v1, . . . , v`} = V (T )∩V (Z) be the leaves of T in the order they appear on Z. For ease
of notation, let v`+1 = v1. Let Pi = viTz.

Now consider the cycles Zi,j = viZvjTvi. We have ‖Zi,i+1‖ ≤ 2 rad(S) ≤ 2m−2, since otherwise
there would be a vertex v on viZvi+1 with dZ∪T (z, v) > rad(S). Therefore, we get ‖Zi,i+1‖ < 4

3(m−
1), as S contains no Ck with 4

3(m − 1) ≤ k ≤ 2m − 2. As Z is distance preserving, this implies that
‖viZvi+1‖ ≤ 1

2‖Zi,i+1‖ < 2
3(m− 1).

Let us pick i, j ∈ {1, . . . `} such that

1. there is a vertex u ∈ viZvj , such that d(u, z) = maxv∈V (C) d(z, v),

2. ‖viZvj‖ < 2
3(m− 1),

3. ‖Zi,j‖ < 4
3(m− 1), and

4. ‖viZvj‖ is maximal under these conditions.

Without loss of generality we may assume that 1 ≤ i < j ≤ `, and that ‖Pi ∩ Zi,j‖ ≤ ‖Pj ∩ Zi,j‖.
Consider Zi,j+1. If ‖Zi,j+1‖ ≤ 2m−2, then in fact again ‖Zi,j+1‖ < 4

3(m−1), ‖viZvj+1‖ < 2
3(m−1),

and we get a contradiction to the maximality of ‖viZvj‖. Thus, ‖Zi,j+1‖ ≥ 2m.
If Zi,j+1 contains no edges of E(Pj) \ E(Pi), then

‖Zi,j+1‖ ≤ ‖Zi,j‖+ ‖Zj,j+1‖ − 2|E(Pj) \ E(Pi)| ≤ ‖Zj,j+1‖+ ‖Zi,j‖ − 2
4‖Zi,j‖ < 2m− 2,

a contradiction. Thus, Zi,j+1 contains edges of E(Pj) \ E(Pi).
Let u1 ∈ V (viZvj) such that ‖u1ZviPiz‖ = ‖u1ZvjPjz‖ and u2 ∈ V (vjZvj+1) such that

‖u2ZvjPjz‖ = ‖u2Zvj+1Pj+1z‖. Then ‖u1ZvjPjz‖ ≥ d(u, z) ≥ ‖u2ZvjPjz‖, and therefore ‖u1Zvj‖ ≥
‖u2Zvj‖. But now

‖Zi,j+1‖ = ‖Zi,j‖+ ‖Zj,j+1‖ − 2‖Zi,j ∩ Zj,j+1‖
= ‖Zi,j‖+ ‖Zj,j+1‖ − 2(1

2‖Zj,j+1‖ − ‖u2Zvj‖)
= ‖Zi,j‖+ 2‖u2Zvj‖
≤ ‖Zi,j‖+ 2‖u1Zvj‖ ≤ ‖Zi,j‖+ 2

4‖Zi,j‖ < 2m− 2.

This contradiction concludes the proof of the Theorem.

4 Sharpness

Consider the following graph H1 (see Figure 4) with G1 = L(H1) demonstrating that the condition
σ2(G) ≥ 7 is best possible in Lemma 3 and Theorem 5. For k ≥ 3, start with two copies of C2k and
identify them at one vertex. At every vertex at even distance from the vertex with degree 4, attach a star
K1,4 by identifying one of its leaves with the vertex, resulting in a graph H1.

Then G1 = L(H1) has minimum degree δ(G1) = 3 (and σ2(G1) = 6), contains a C4k and no C`

for 3k + 2 ≤ ` ≤ 4k − 1. But, the C4k has chords and is thus not distance preserving, showing that the
bound on σ2 is best possible for Lemma 3. The radius of H1 is k + 1 ≤ rad(H) ≤ k + 2, concluding
that the bound on σ2 is best possible for Theorem 5 as well.

To see that the bound on the radius in Theorem 5 is best possible, start with a complete graph K4,
and subdivide the three edges incident to some vertex v k-times each for some k ≥ 2. Add three pendant
edges to every vertex of degree 2 to get a graph H2, and let G2 = L(H2). We have c(G2) = 8k + 7,
δ(G2) = 4, rad(H2) = k + 1, and G2 contains no C2k+2.
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Figure 1: The graph H1 for k = 3
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