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Abstract

We show that line graphs G = L(H ) with 02(G) > 7 contain cycles of all lengths k, 2rad(H) +
1 < k < ¢(G). This implies that every line graph of such a graph with 2rad(H) > A(H) is
subpancyclic, improving a recent result of Xiong and Li. The bound on o5 (G) is best possible.

1 Introduction

All graphs considered here are simple. For all terms not defined here we refer the reader to [1]. We
denote the neighborhood of a vertex set X C V(&) in a graph G by Ng(X) or N(X). The degree of
avertex inv € V(G) is dg(v) = d(v) = |[Ng(v)|. The maximum degree of G is A(G), the minimum
degree §(G). Let 02(G) := min{d(z) + d(y) | z,y € V(G) A zy ¢ E(G)}. The number of vertices in
G is denoted by |G|, the number of edges by ||G/||. The cycle with k edges is called C*, and every cycle
is given a direction. For a cycle C and two vertices v, w € V(C'), vCw denotes the v — w path following
C in the direction of C, v and v~ are the successor and the predecessor of v on C'. For a tree T' and
two vertices v, w € V(C'), vTw denotes the v — w path following T'.

The distance between two vertices v, w € G is dg(v,w) = d(v,w). The diameter of a graph G is
diam(G) = max,,, d(v,w), and the radius is rad(G) = min, max,, d(v, w). A subgraph H C G is
distance preserving if dr (v, w) = dg (v, w) for all v, w € V(H). A shortening path of a subgraph H is
av — w path P such that V(H) NV (P) = {v,w} and dp(v,w) < dg(v,w), i.e., a witness to the fact
that H is not distance preserving.

We write L(G) for the line graph of G. The complete bipartite graph K 3 is called a claw, and a
graph is said to be claw-free if it does not contain a claw as an induced subgraph. All line graphs are
claw-free.

A graph G is subpancyclic if it contains cycles of all lengths 3 < k < ¢(G), where ¢(G) is the
circumference of G, i.e. the length of the longest cycle in G.

Gould and Pfender [2] showed the following lemma about claw-free graphs.

Lemma 1. Let G be a claw-free graph with oo(G) > 9. Suppose, for some m > 3, G has an m-cycle
C, but no (m — 1)-cycle. Then C'is distance preserving.

This yields as an immediate consequence the following corollary.

Corollary 2. Let G be a claw-free graph with o2(G) > 9 and circumference c¢(G). Then for every k
with 2 diam(G) + 1 < k < ¢(G), G contains C*.

For line graphs, we strengthen Lemma 1 as follows.



Lemma 3. Let G be a line graph with o2(G) > 7. Suppose, for some m > 3, G has an m-cycle C, but
no (m — 1)-cycle. Then C' is distance preserving.

Xiong and Li [3] prove the following theorem.

Theorem 4. Let H be a graph and G = L(H) its line graph with §(G) > 6, and rad(H) < #. Then
G is subpancyclic.

We will prove the following.

Theorem 5. Let H be a graph and G = L(H) its line graph with oo(G) > 7. Then G contains cycles
of all lengths k, 2rad(H) + 1 < k < ¢(G).

Since G = L(H) trivially contains cycles of all lengths 3 < k < A(H ), we can improve Theorem 4.

Corollary 6. Let H be a graph and G = L(H) its line graph with o2(G) > 7, and rad(H) < %H).
Then G is subpancyclic.

_ i : A(H)
Corollary 7. Let H be a graph and G = L(H) its line graph with 6(G) > 4, and rad(H) < =5,
Then G is subpancyclic.

2 Proof of Lemma 3

The lemma can be proved very similarly to Lemma 1. Here is a sketch of the proof.

Let H and G be as in the statement of the lemma, and let C' be an m-cycle in GG. Suppose first that C'
has a shortening path of length at most two. Pick four vertices s1, t1, S2, t2 such that there are shortening
paths P; of length at most two between s; and ¢;, sf ¢ sa_;Cto_1 and the s;Ct; are minimal according
to these conditions. Let K; be the set of vertices on st’t; which are not incident to a chord of C'. By
symmetry, we may assume that either | K| < |K3| (in which case note that all but at most two vertices
in Ko have degree at least 4), or |K| = |K2| and min,eg, d(v) > 4. Let C" = t1Cs;Pit1. Then
|C’] < m — 1. Now we can extend C’ one vertex at a time by inserting the vertices of V(s Ct7) \ K.
Then, we can insert all neighbors outside C” of vertices in K. Note that every such neighbor has at most
two adjacent vertices on s3 Ct, , so |[N(K3) \ C| > %Zung (d(v) —2) > |K1| — 1. Thus, we can
insert vertices until we have a C™ L,

On the other hand, if there is no shortening path of length at most 2, we can construct from C' and a
shortening path P a cycle C’ with |C’| < m — 1 and |C' N C| > 2, which we can again extend one by
one through vertices in N (C’ N C) \ V(P) until we have a C™~!. This contradiction shows that there is
no shortening path of C'in (G, and thus C'is distance preserving. O

3 Proof of Theorem 5

For the sake of contradiction, suppose that H and G = L(H ) are graphs as in the statement, and suppose
that for some m > 2rad(H) + 1, G contains a C™ but no C™~!. The cases that m € {4,5} (and
thus rad(H) = 1) are easy to rule out, so we may assume that m > 6. By Lemma 3, this cycle is
distance preserving, so its line graph original in H is an induced cycle C on m vertices which is distance
preserving as well.

Since G contains no C™ !, we know that G contains no induced C* for %(m —1)<k<m-1,as
each such cycle could easily be extended to a C™~1 Thus, H contains no C* with %(m— 1) <k<m-1
(the line graph operation bijectively maps cycles in H to induced cycles of the same length in G).

Let S be the graph obtained from H through a single subdivision of every edge. Then 2rad(H) <
rad(S) < 2rad(H) + 1 and S contains no C* with 3(m — 1) < k < 2m — 2. Note that all cycles
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in S have even length. Let Z be the 2m-cycle in S obtained from C. Choose z € V(S) such that
max,cy(z) d(z,v) is minimal, and therefore at most rad(S). Let 7' be a minimal tree in S such that
dzur(z,v) = d(z,v) forall v € V(Z). Since Z is distance preserving, T intersects Z exactly in the
leaves of T'. Let {v1, ..., v} = V(T)NV(Z) be the leaves of T in the order they appear on Z. For ease
of notation, let vpy1 = v;. Let P; = v;T'z.

Now consider the cycles Z; j = v; Zv;Tv;. We have || Z; ;41| < 2rad(S) < 2m—2, since otherwise
there would be a vertex v on v; Zv;41 with dzur(z,v) > rad(S). Therefore, we get || Z; i11]] < %(m —
1), as S contains no C* with %(m —1) <k <2m — 2. As Z is distance preserving, this implies that
JoiZvis1 ]| < 31 Zigsall < 2(m — 1),

Let us pick 4, j € {1,...¢} such that

1. there is a vertex u € v; Zvj, such that d(u, z) = max,cy () d(2,v),

2. |lviZvj|| < 3(m —1),
3. || Zij| < 3(m — 1), and
4. ||v;Zvj|| is maximal under these conditions.

Without loss of generality we may assume that 1 < ¢ < j < ¢, and that ||P; N Z; ;|| < ||[P; N Z;].
Consider Z; 1. If || Z; j41]] < 2m—2, then in fact again || Z; j11|| < %(m—l), [viZvj | < 3(m—1),
and we get a contradiction to the maximality of ||v; Zv;||. Thus, || Z; j1] > 2m.

If Z; j+1 contains no edges of E(FP;) \ E(F;), then

1Zi g1 ll < NZigll + 1 Zj 1]l = 2AB(P) \ E(P)] < N Zjgall + 1 Zigl| = F11Zigll < 2m =2,

a contradiction. Thus, Z; ;1 contains edges of E(P;) \ E(F;).

Let u; € V(v;Zvj) such that ||u1Zv;Piz|| = |uw1ZvjPjz|| and up € V(vjZvji1) such that
|luoZvjPjz|| = ||uaZvjs1Pj412|. Then ||u1 ZvjPjz|| > d(u, z) > ||uaZvjPjz||, and therefore ||uy Zv;|| >
|lug Zv;||. But now

1Zij+1ll = NZijll + 125411l — 21 Zi; 0 Zj jall
= NZigl+ 1125410l = 2G11Z; s ll — lluaZvy]])
= |[|Zijl + 2[luaZvj|
< 1 Zijll + 2w Zos|| < 1 Zigll + 311 Zig < 2m-—2.

This contradiction concludes the proof of the Theorem. O

4 Sharpness

Consider the following graph H; (see Figure 4) with G; = L(H;) demonstrating that the condition
02(G) > 7 is best possible in Lemma 3 and Theorem 5. For k > 3, start with two copies of C?% and
identify them at one vertex. At every vertex at even distance from the vertex with degree 4, attach a star
K1 4 by identifying one of its leaves with the vertex, resulting in a graph H.

Then Gy = L(H;) has minimum degree §(G1) = 3 (and 02(G1) = 6), contains a C** and no C*
for 3k +2 < ¢ < 4k — 1. But, the C** has chords and is thus not distance preserving, showing that the
bound on o is best possible for Lemma 3. The radius of Hy is k + 1 < rad(H) < k + 2, concluding
that the bound on o5 is best possible for Theorem 5 as well.

To see that the bound on the radius in Theorem 5 is best possible, start with a complete graph K4,
and subdivide the three edges incident to some vertex v k-times each for some k£ > 2. Add three pendant
edges to every vertex of degree 2 to get a graph Ho, and let G, = L(Hz). We have ¢(G2) = 8k + 7,
§(Ga) = 4, rad(Hz) = k + 1, and G5 contains no C?++2,



Figure 1: The graph H; for k = 3
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