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Abstract

In 1997, Ng and Schultz introduced the idea of cycle orderability. For a positive
integer k, a graph G is k-ordered if for every ordered sequence of k vertices, there is
a cycle that encounters the vertices of the sequence in the given order. If the cycle
is also a hamiltonian cycle, then G is said to be k-ordered hamiltonian. We give
minimum degree conditions and sum of degree conditions for nonadjacent vertices
that imply a balanced bipartite graph to be k-ordered hamiltonian. For example,
let G be a balanced bipartite graph on 2n vertices, n sufficiently large. We show
that for any positive integer k, if the minimum degree of G is at least (2n+k—1)/4,
then G is k-ordered hamiltonian.

1 Introduction

Over the years, hamiltonian graphs have been widely studied. A variety of related proper-
ties have also been considered. Some of the properties are weaker, for example traceability
in graphs, while others are stronger, for example hamiltonian connectedness. Recently a
new strong hamiltonian property was introduced in [3].

We say a graph G on n vertices, n > 3, is k-ordered for an integer k, 1 < k < n, if
for every sequence S = (x1, s, ..., zx) of k distinct vertices in G there exists a cycle that
contains all the vertices of S in the designated order. A graph is k-ordered hamiltonian if
for every sequence S of k vertices there exists a hamiltonian cycle which encounters the
vertices in S in the designated order. We will always let S = (x1, s, ..., %) denote the
ordered k-set. If we say a cycle C' contains S, we mean C' contains S in the designated
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order under some orientation. The neighborhood of a vertex v will be denoted by N(v),
the degree of v by d(v), the degree of v to a subgraph H by dg(v), and the minimum
degree of a graph G by 6(G). A graph on n vertices is said to be k-linked if n > 2k and
for every set {x1,..., 2k, y1,...,yr} of 2k distinct vertices there are vertex disjoint paths
Py, ..., P, such that P; joins x; to y; for all i € {1,...,k}. Clearly, a k-linked graph is
also k-ordered.

In the process of finding bounds implying a graph to be k-ordered hamiltonian, Ng
and Schultz [3] showed the following:

Proposition 1. [3] Let G be a hamiltonian graph on n vertices, n > 3. If G is k-ordered,
3 <k <mn, then G is (k — 1)-connected.

Theorem 2. [3] Let G be a graph of order n > 3 and let k be an integer with 3 < k < n.

If
dx)+d(y) >n+2k—6

for every pair x,y of nonadjacent vertices of G, then G is k-ordered hamiltonian.

Faudree et al.[4] improved the last bound as follows.

Theorem 3. [}/ Let G be a graph of sufficiently large order n. Let k > 3. If

ndtk=3 i k is odd
2(G) = { nh-2 if k is even
2 )

then G is k-ordered hamiltonian.

Theorem 4. [/] Let G be a graph of sufficiently large order n. Let k > 3. If for any two
nonadjacent vertices x and vy,

3k—9
d(x) +d(y) >n+ 5

then G is k-ordered hamiltonian.

Theorem 5. [}/ Let k be an integer, k > 2. Let G be a (k + 1)-connected graph of

sufficiently large order n. If
n—+k

2
for all pairs of distinct vertices x,y € V(G), then G is k-ordered hamiltonian.

[N (z) UN(y)| =

Much like results for hamiltonicity, smaller bounds are possible if we restrict G' to be
a balanced bipartite graph. In fact, we get the following results:

Theorem 6. Let G(A U B, E) be a balanced bipartite graph of order 2n > 618. Let
3< k<355 If0(G) > 4k — 1 and for any two nonadjacent vertices v € A and y € B,
d(z) 4+ d(y) > n+ 52, then G is k-ordered hamiltonian.
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The bound on the degree sum is sharp, as will be shown later with an example. The
upper bound on k comes out of the proof, the correct bound should be a lot larger and
possibly as large as n/4.

Corollary 7. Let G be a balanced bipartite graph of order 2n > 618. Let 3 < k < 155. If

2 —1
5((;)2%

then G is k-ordered hamiltonian.

Theorem 8. Let G(AUB, E) be a balanced bipartite graph of order 2n > 618. Let3 < k <
min{ 153, 4} If for any two nonadjacent verticesx € A andy € B, d(x)+d(y) > n+k—2,
then G is k-ordered hamiltonian.

The last bound is sharp, as the following graph G shows:

Let the vertex set V := A; U Ay U By U By U Bs, with |Ay| = |By| = k/2, |Bs| = k — 1,
|As| = n — k/2, |Bs| = n — 3k/2+ 1. Let the edge set consist of all edges between A;
and B; minus a k-cycle, all edges between A; and Bs, and all edges between A; and the
B; for i € {1,2,3}. Then G has minimum degree §(G) = 3k/2 — 3, minimal degree sum
n+k—3, and G is not k-ordered, as there is no cycle containing the vertices of A; U By in
the same order as the cycle whose edges were removed between A; and B;. This example
further suggests the following conjecture, strengthening Theorem 6 to a sharp result:

Conjecture 9. Let G(AU B, E) be a balanced bipartite graph of order 2n. Let k > 3. If
§(G) > 22 — 2 and for any two nonadjacent vertices x € A and y € B, d(z) + d(y) >
n+ %, then G 1is k-ordered hamiltonian.

In some of the proofs the following theorem of Bollobds and Thomason[l] comes in
handy.

Theorem 10. [1] Every 22k-connected graph is k-linked.

2 Proofs

In this section we will prove Theorem 6 and Theorem 8.

From now on, A and B will always be the partite sets of the balanced bipartite graph
G, and for a subgraph H C G, H* := HN A and H? := H N B will be its corresponding
parts.

The following result and its corollary, which give sufficient conditions for k-ordered to
imply k-ordered hamiltonian, will make the proofs easier.

Theorem 11. Let k > 3 and let G(AU B, E) be a balanced bipartite, k-ordered graph of
order 2n. If for every pair of nonadjacent vertices x € A and y € B
kE—1
d(z) +d(y) = n+ 5

then G is k-ordered hamiltonian.
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Proof: Let S = {x1,z9, - - ,x;} be an ordered subset of the vertices of G. Let C
be a cycle of maximum order 2¢ containing all vertices of S in appropriate order. Let
L := G —C. Notice that L is balanced bipartite, since C'is. Let [ := |L|/2 = |L#| = |L?].

Claim 1. FEither L s connected or L consists of the union of two complete balanced
bipartite graphs.

To prove the claim, it suffices to show that dy(u) + dr(v) > [ for all nonadjacent pairs
w € LA v € LB. Suppose the contrary, that is, there are two such vertices u,v with
dp(u) + dr(v) < 1. Since d(u) + d(v) > n+ (k — 1)/2, it follows that dc(u) + do(v) >
¢+ (k+1)/2. There are no common neighbors of u and v on C, hence there are at least
k + 1 edges on C' with both endvertices adjacent to {u,v}. Fix a direction on C. Say
there are r edges on C directed from a wu-neighbor to a v-neighbor, and ¢ edges from a
v-neighbor to a u-neighbor. Without loss of generality, let » > ¢. On C', between any two
of the r > (k + 1)/2 edges of that type, there have to be at least two vertices of S, else
C' could be enlarged (see Figure 1). Thus |S| > k + 1, a contradiction, which proves the
claim. &

Xi

Figure 1:

In particular, the claim shows that there are no isolated vertices in L and that all of
L’s components are balanced.

Suppose | > 1. Let L; be a component of L, Ly := L — Ly, Iy := |L1|/2, and
ly == |Ls|/2. The k vertices of S split the cycle C' into k intervals: [xy,zs], [z2, 23], ..,
[k, z1]. Assume there are vertices x,y € L; (x = y is possible) with distinct neighbors in
one of the intervals of C' determined by S, say [z;, z;11]. Let z; and z5 be the immediate
successor and predecessor on C' to the neighbors of x and y respectively according to the
orientation of C'. Observe that we can choose z and y and their neighbors in C' such that
none of the vertices on the interval [z1, 25] have neighbors in L;. We can also assume
that 2y # 2o, otherwise z = y by the maximality of C', and bypassing z; through x would
lead to a cycle of the same order, but the new outside component L; — z would not be
balanced, a contradiction to claim 1. Let z be either z, or its immediate predecessor such
that z; and z are from different parts. Since x and y are in the same component of L,
there is an x,y-path through L. Let ¢ be either y or its immediate predecessor on the
path such that x and gy are from different parts. If = y, let y¥ be any neighbor of = in
L. Let R be the path on C' from z; to z9 and r := |R|. Since C' is maximal, the z, g-path
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can’t be inserted, and since neither x nor y have neighbors on R,

2c—r—+1

d(z) +d(y) <2l + 5

Further, the 2, z-path can’t be inserted anywhere on C'— R, else C' could be enlarged by
inserting it and going through L instead (or in the case x = y we would get a same length
cycle with unbalanced outside components). Since z; and z have no neighbors in Ly, we
get
2c—r+1
d(z) +d(z) <2l +7r+ —
Hence

d(z) +d(@) + d(z1) + d(z) <2y + 20, +2c+1=2n+1,
which contradicts (with & > 3) that

and b1
d(y) +d(z1) >n+ ——

Thus, there is no interval [z;, x;,1] with two independent edges to L;. By Proposition 1,
G is (k — 1)-connected, thus all but possibly one of the segments (x;, ;1) have exactly
one vertex with a neighbor in L.

Since |N¢(Ly)| < k, we assume without loss of generality that |[No(LP)| < k/2. Let
x € LB and let |[Ng(x)| = d < k/2. Thus, for every v € C that is not adjacent to L; the
degree sum condition implies:

d(v) Zn—l—g—(ll—l—d) :c+l2+(ﬁ—d—1).
2 2 2
On the other hand, we know d(v) < ¢+ ls — 1. Thus, d > 2. Now we have shown that
Ny, (C) includes vertices from both Li! and LE. So, without loss of generality, assume L,
has neighbors y and z in (z7...x9) and (x5 ...x3) respectively and such that y and z are
in different partite sets.

Let y, z be the unique vertices in (x1,x2) and (x9, z3) respectively, which have neigh-
bors in L;. Since the successors of y and z are from different parts and not adjacent
to L1, they must be adjacent to each other. But now C' can be extended, which is a
contradiction.

This proves that L has to be empty. Therefore C' is hamiltonian. O

An immediate Corollary to Theorem 11 is the following:

Corollary 12. Let k > 3 and let G be a k-ordered balanced bipartite graph of order 2n.
If 6(G) > 2+ %1 then G is k-ordered hamiltonian.
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To see that these bounds are sharp, consider the following graph G(A U B, E):

AI:A1UA2,B:231UBQ,

n k-1
A= 13- |+ 5 -

|Ag| = |Ba| = n — |A4],

with

and
E :={abla € A;,b € B} U{abla € A,b € By}.

For n sufficiently large, GG is obviously a k-connected, k-ordered, and balanced bipartite
graph. The minimum degree is 6(G) = d(v) = |A;| for any vertex v € By U Ay, thus the
minimum degree condition is just missed. But G is not k-ordered hamiltonian, for if we
consider S = {xy, z9, ..., 21}, {1, 23,...} C Ay, {22, 24,...} C By. Let C be a cycle that
picks up S in the designated order. Then C'N (A; U Bs) consists of at least |k/2] paths,
all of which start and end in A;. Therefore |C' N Ay| > |C'N By| + (k —1)/2. If C was
hamiltonian, it would follow that |A;| > |Bs| + (k — 1)/2, which is not true.
The following easy lemmas will be useful.

Lemma 13. Let G be a graph, let k > 1 be an integer and let v € V(G) with d(v) > 2k—1
for some k. If G — v is k-linked, then G is k-linked.

Proof: This is an easy exercise. O

Lemma 14. Let G be a 2k-connected graph with a k-linked subgraph H C G. Then G is
k-linked.

Proof: Let S :={z1,..., 2k, 41,...,yx} be a set of 2k vertices in G, not necessarily
disjoint from H. Since G is 2k-connected, there are 2k disjoint paths from S to H, in-
cluding the possibility of one-vertex paths. Since H is k-linked, those paths can be joined
in a way that k£ paths arise which connect x; with y; for 1 <7 < k. O

Lemma 15. Let k > 1. Let G(AU B, E) be a bipartite graph with d(v) > @ + 3% for all
v e A, and d(w) > 2k for allw € B. Then G is k-linked.

Proof: Let S := {x1,...,2k,v1,...,Yr} be a set of 2k vertices in G. Pick a set
S'i=A{xy, .. 2y, YL C A as follows: If o; € A set o = ;. Otherwise let 2} be a
neighbor of z; not in S. Similarly pick the y/. It is possible to pick 2k different vertices
for S’ since d(w) > 2k for all w € B.

Now find disjoint paths of length 2 between z; and ¥} avoiding all the other vertices
of S for 1 < i < k. This is possible since |N(x}) N N(y})| > d(x}) +d(y}) — |B| > 3k. O

Proof of Theorem 6: By Theorem 11, it suffices to show that G is k-ordered.
Let K be a minimal cutset. If |K| > 22k, then G is k-linked by Theorem 10. Therefore
it is k-ordered. Assume now that |K| < 22k. We have to deal with two cases.
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Case 1. There is an isolated vertez v € G — K.

Since |K| = |N(v)| > §(G) > 4k — 1, G is 2k-connected, thus by Lemma 14 it suffices
to find a k-linked subgraph. Without loss of generality, let v € B. Let R = G — K — v.
Then d(w) > n — 22k for all w € R%. So there are at least (n — 22k)? edges in R,
resulting in less than 23k vertices u € RP with dgr(u) < 2k. Let H be the subgraph
of R induced by R4 and the vertices of R? with dg(u) > 2k. For w € R*, we have

di(w) > n — 45k > 22 4 % gince n > 100k. By Lemma 15, H is k-linked.
Case 2. There are no isolated vertices in G — K.

First, observe that G — K has exactly two components. Otherwise, for the three
components C, Cy, C3 choose vertices v; € O w; € CB,1 < i < 3.
Then we can bound their degree sum as follows:

(ICi] + [K]) + ([Cof + [K]) + (IC5] + | KT)

(d(v1) + d(wy)) + (d(vz) + d(w2)) + (d(vs) + d(ws3))

Z<))c(i(v1> pl d)(wz>> (d(v2) + d(ws)) + (d(vs) + d(w1))
n —+ %1 ,

2n + 2| K|

AVAN I AVARRY,

a contradiction.
Call the two components L and R. Without loss of generality, let |R| > |L| and
|LA| > |LB|. Let v e LY we LP x € Ry € RP. Then

LA+ [RA] + |K4) = [L7] + |[RP| + |[KP] = n,

k
ILP| + |RA| + |K| > d(w) +d(z) > n + —5

k
[LA]+ [RP| + K| > d(o) +d(y) >+~

Thus, the inequalities above imply the parts of the components are of similar size:

kE—1
LA - |27 < K - T,
E—1
IRA] = |RP) < K] - T,
k—1
IRP) — || < KA - 2=
Further, we get the following bounds for the degrees inside the components:
dr(y) = n+ 5 —d(v) — |K7|
> n+ it — ILBI—IKBI—IKAI
= RY = (KA -5,
dp(z) = |R%| = (K" - 5),
d(w) > |[LP] = (|K*| - ‘),
d(v) > L4 = (IKP| = *53).
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Claim 1. R is k-linked.

By symmetry of the argument, we may assume that |R®| > |R4|, thus

P L B
-2 2 -2 4
Now,
A B
drly) = |RP|— (KA =43 > B I || 4 i
A A
e
S L R I
2 2
Further,
dn(e) > [RY] — (K% = =) > [RP| = K]+ * = > 2k
Hence, the conditions of Lemma 15 are satisfied for R, and R is k-linked. &

If |K| > 2k, then G is k-linked by Lemma 14 and we are done. So assume from now
on |K| < 2k.

Claim 2. L is k-linked.
If |L| > n — 2k, the proof is similar to the last case:

k—1 |LB| n—2k k—1 |LB| 3k
> |TA| _ |KB B K—L & 9r
dp(v) > |L?| — |[K”| + 5 > 5 + 1 2k + 5 > 5 + 5

and
k—1

dp(w) = |1 = (|KP| - ) > L] = |K| > 2k.

Applying Lemma 15 to L gives the result.

If |L| < n — 2k, L is complete bipartite from the degree sum condition. Further,
|LA| > |LP| > d(v) — |K?| > 2k from the minimum degree condition, hence L is k-linked.
&

Let S := {x1,x9,...,2} be aset in V(G). We want to find a cycle passing through S
in the prescribed order. Note that the minimum degree condition forces |R| > |L| > |K]|.
Assume |K| = k(G) = k+t where t > —1. Using the fact that K is a minimal cut set, by
Hall’s Theorem (see for instance [2]) there is a matching of K into L and respectively K
into R, which together produce k + t pairwise disjoint Ps’s. Of all such matchings, pick
one on either side with the fewest intersections with the set S.

Observe that a vertex s € K? is either adjacent to every vertex of L4 or d(s) > n/4.
Otherwise there would be a vertex v € L4 not connected to s, and d(v) + d(s) < |LP| +
|KB| +n/4 <n/2—k+ 2k + n/4, a contradiction. A similar argument shows that the
analog statement is true for s € K4, since |L4| and |L?| differ by less than |K| < 2k.
Hence, each vertex s € K has large degree to at least one of L or R, in fact large enough
that either (L U {s}) or (RU{s}) is k-linked.
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Assign every vertex of K one by one to either L or R such that the new subgraphs L
and R are still k-linked, applying Lemma 13 repeatedly. Left over from the Py’s is now
one matching with k + t edges between L and R. We call an edge of this matching a
double if both its endvertices are in S and a single if exactly one endvertex is in .S. If an
edge is disjoint from S, we call it free.

We claim that the number of doubles is at most ¢ if £ is even and at most t+1 if k is odd.
Let 4 (and respectively 74) be the number of doubles which are edges between L* and
K% (respectively between R and KP). Define [ and r? similarly. Note that this means
d =14 +18 414 +rPB is the number of doubles. Let ve LA —S,we LB —S z € RA -8
and y € RP — S such that none of those vertices are on an edge of the matching (this is
possible since |LA| — |KB| > 2k, |LP| — |K#| > 2k from the minimum degree condition).
Then

—1
2n+2[kT-‘ <d(v) +dw)+d(z)+dy) <2n+k+t—1" =17 —r =P

If d > t+1 for k even or t + 2 for k odd, we obtain a contradiction to the above inequality.

Let ¢ be the number of elements of S that are not vertices on any of the k + ¢ edges of
the matching. Then ¢ + d + ¢ of the edges are free. We are now prepared to construct the
cycle containing the set {z1, s, -+, 2} by constructing a set of disjoint x;, z;,1-paths,
using that L and R are k-linked. Note that in constructing each z;, z;,-path, using a free
edge is only necessary if (1) x; is not on a single and (2) z; and x;,1 are on different sides.
If k£ is even, these two conditions can occur at most 2d + ¢ times. If £ is odd, these two
conditions can occur at most 2d — 1 + ¢ times (because of the parity, condition 2 cannot
occur for every vertex). But neither ever exceeds t + d + ¢, the number of free edges.
Hence, we may form a cycle containing the elements of S in the appropriate order. O

Proof of Theorem 8: By Theorem 11 it suffices to show that G is k-ordered.
If the minimum degree §(G) > 4k — 1, then we are done by Theorem 6. Thus, suppose
that s € A is a vertex with d(s) < 4k — 1. Let R be the induced subgraph of G on the

following vertex set:
RP ={veB:sv¢E},

RY :={w € A:dps > 2k}.

The degree sum condition guarantees d(v) > n — 3k for all v € RP. Further, |RP| =
n—d(s) > n—4k+2. It is easy to see that |R| > n — 4k and that all the conditions for
Lemma 15 are satisfied. Hence, R is k-linked.

Let H be the biggest k-linked subgraph of G. If G = H, we are done. Otherwise, let
L:=G—H. Thesize of Lis |L| = 2n — |H| < 2n — |R| < 8k. Observe that no vertex
v € L has dg(v) > 2k —2, otherwise V(H)U{v} would induce a bigger k-linked subgraph
by Lemma 13. Hence, no vertex in L has degree greater than 10k, and therefore, L is
complete bipartite.

Define

o = min{{dg(v)|v € L*} U {2k}},
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B :=min{{dy(v)|v € LP} U {2k}}.

Since L is small, there are vertices x € H4,y € H? with N(z)UN (y) C H. If L* = 0),
then o = 2k, and if L? = 0, then 3 = 2k. Either way, we get a + 3 > 2k.
Now assume that LA # () and L? # (. Let v € L* such that dg(v) = . Then

n+k—2<dw)+dy) <dw)+|H =dv) +n— L.
Thus, d(v) > |LA| + k — 2, and
LB+ a=dw) > LA+ k—2.
Analogously, let w € L? with dy(w) = 3, then
n+k—2<dw)+dx) <dw)+ |HP| = dw)+n— |LP],
and thus d(w) > |L?| + k — 2 and
LA + 6 = d(w) > |LP| + k- 2.

Therefore,
a+ [ 2>2k—4.

Let S := {xy,29,...,21} be a set in V(G). From now on, all the indices are modulo
k. To build the cycle, we need to find paths from x; to x;; for all 1 <17 < k.

If x; and x;,1 are neighbors, just use the connecting edge as path. Now, for all other
x; € L we find two neighbors y; and z; not in S. If z; and z;4; have a common neighbor
v which is not already used, set z; = y;11 = v. Afterwards, we can find distinct y; and z;
by the following count: Suppose z; € L?, so we need to find y;, z; € N(x;) — U;, where

Ui = N(2:) N {2,052 ¢ i = 31 > 1} U {2, g}

For every z; € LA, [i—j| > 1, there can be at most two vertices in U;. For x; € L4, |i—j| =
1, there can be at most one vertex in U;. For x; € B,|i — j| > 1, there can be at most
one vertex in U;. Hence,

|Uz| S 2|LA N S — {$i_1,$i7$i+1}| + 2 + |B N S — {$i_1,$i7$i+1}| S |LA| + k’ — 4,

and since d(z;) > |L?| + k — 2, we can pick y; and z;.

Try to choose as few y;, z; out of L as possible (i.e. pick as many as possible in H).
Now for all y;, z;, where y; # z;_1,2; # y;+1, choose vertices y,, zi € H as follows: If
y; € H, let y. =y, if z; € H, let z] = z;. Otherwise, let y. be a neighbor of y; in H, and
let 2} be a neighbor of z; in H, which is not already used. We need to check if there is a
vertex in N(y;) N H available.

Let O; = (N(x;) UN(y;)) N H. We know that

|O:| = dp(x;) +du(y;) > a+ 3> 2k — 4.
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For every j ¢ {i — 1,i,i + 1}, [O; N {z;,5;, 2,9}, 2} < 2, and for j = i+ 1, |O; N
{7,959} < 1. This is a total count of at most 2k — 5, at least one is left over for y;.
Observe that y, ¢ N(z;), otherwise we would have chosen it to be y;, so in fact ¥} € N(y;).
A similar count shows the availability of a vertex for 2}, with one possible exception: The
one vertex left over could be y,. This is only a problem if the count for y, gave us exactly
one available vertex, otherwise we can just pick a different y;. But now we can switch the
vertices y; and z;, and choose y; from {41, yi+1, .1} (one of those is in N(z;) U N(y;),
since the count of used vertices gave exactly 2k —5), and choose z. from {z;_1,v;—1,9_,}.

For all z; € H, set y; = 2] = ;. Since H is k-linked, we can now find z;,y;, ;-paths
inside H for all needed indices to complete the cycle. O]

3 Further Results

We also looked at the following closely related property:

Definition 1. We say a graph G is k-ordered connected if for every sequence S =
(1, T2, ..., xx) of k distinct vertices in G, there exists a path from x1 to zy that con-
tains all the vertices of S in the given order. A graph is k-ordered hamiltonian connected
if there is always a hamiltonian path from x1 to x, which encounters S in the designated
order.

Along the lines of the proofs in [4], you can show the following theorems for this
property:

Theorem 16. Let G be a graph of sufficiently large order n. Let k > 3. If

k—3
5(G) > P22

2
then G is k-ordered hamiltonian connected.

Theorem 17. Let G be a graph of sufficiently large order n. Let k > 3. If for any two
nonadjacent vertices x and y, d(z) + d(y) > n+ 2558 then G is k-ordered hamiltonian
connected.

The proofs do not give any new insights, so we will not present them here.
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