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Abstract

An assignment of positive integer weights to the edges of a simple
graph G is called irregular if the weighted degrees of the vertices are
all different. The irregularity strength, s(G), is the maximal weight,
minimized over all irregular assignments. In this paper we show, that
s(G) ≤ c1n/δ, for graphs with maximum degree ∆ ≤ n1/2 and min-
imum degree δ, and s(G) ≤ c2(log n)n/δ, for graphs with ∆ > n1/2,
where c1 and c2 are explicit constants. To prove the result, we are
using a combination of deterministic and probabilistic techniques.
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1 Introduction:

Perhaps the second oldest ”fact” in graph theory is that in a simple graph,
two vertices must have the same degree. This fact no longer holds for multi-
graphs. By an irregular multigraph we mean one in which each vertex has
a different degree. Hence, a natural question would be: What is the least
number of edges we would need to add to a graph in order to convert a simple
graph into an irregular multigraph?

Another way to view this question is via an assignment of integer weights
to the edges of the graph. Given a simple graph G of order n, an assignment
f : E(G)→ {1, ..., w} = [w] of positive integers weights to the edges of G is
called irregular if the weighted degrees, f(v) =

∑
u∈N(v) f(uv) of the vertices

are all different. The irregularity strength, s(G), is the maximal weight w,
minimized over all irregular weight assignments, and is set to ∞ if no such
assignment is possible. Clearly, s(G) < ∞ if and only if G contains no
isolated edges and at most one isolated vertex.

The irregularity strength was introduced in [3] by Chartrand et al. . The
irregularity strength of regular graphs was considered by Faudree and Lehel
in [4]. They showed that if G is a d-regular graph of order n, d ≥ 2, then

s(G) ≤ dn/2e + 9, and they conjectured that s(G) =
⌈
n+d−1

d

⌉
+ c for some

constant c. This conjecture comes from the lower bound s(G) ≥
⌈
n+d−1

d

⌉
. For

general graphs with finite irregularity strength, Aigner and Triesch [1] showed
that s(G) ≤ n − 1 if G is connected and s(G) ≤ n + 1 otherwise. Nierhoff
[8] refined their method to show s(G) ≤ n − 1 holds for all graphs with
finite irregularity strength, except for K3. We will provide an improvement
of both the Faudree-Lehel bound and the Aigner-Triesch-Nierhoff bound in
this paper.

For a review of other results and open problems in this area we refer the
reader to a survey paper by Lehel [7].

In this paper all graphs are simple of order n. The degree of a vertex v
is denoted by dv or deg(v), we shall denote the minimum degree of G by δ
and the maximum degree by ∆. For terms not found here see [2] or [6]. Our
upper bounds on s(G) involve a function of n and δ or both δ and ∆, and
are stated in the next Theorem.
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Theorem 1 Let G be a graph with no isolated vertices or edges.

(a) If ∆ ≤ b(n/ lnn)1/4c, then s(G) ≤ 7n
(

1
δ

+ 1
∆

)
.

(b) If b(n/ lnn)1/4c+ 1 ≤ ∆ ≤ bn1/2c, then s(G) ≤ 60n/δ.

(c) If ∆ ≥ bn1/2c+ 1, δ ≥ d6 log ne then s(G) ≤ 336(log n)n/δ.

For regular graphs, we get the following Theorem with improved constants.

Theorem 2 Let G be a d-regular graph with no isolated vertices or edges.

(a) If d ≤ b(n/ lnn)1/4c, then s(G) ≤ 10n/d+ 1.

(b) If b(n/ lnn)1/4c+ 1 ≤ d ≤ bn1/2c, then s(G) ≤ 48n/d+ 1.

(c) If d ≥ bn1/2c+ 1, then s(G) ≤ 240(log n)n/d+ 1.

Observe that both (a) and (b) give bounds of the correct order of magnitude.
If ∆ ≥ dn1/2e + 1 and δ < b6 lnnc, Theorem 1 does not apply, but we can
still make the following statement:

Theorem 3 Let G be a graph with no isolated vertices or edges. If n is
sufficiently large, then s(G) ≤ 14n/δ1/2.

To explain the main technique used to prove all results let us define

mg = max
X⊆V (G)

{|X| : g(v) = g(u) for all v, u ∈ X},

where g is defined as a weight assignment, i.e., g : E(G) → {1, 2, . . . , w} =
[w], for some integer w. In the deterministic part of our proof (see Lemma 4)
we show that s(G) ≤ 3(w+1)mg. Next, we use probabilistic tools to establish
bounds on mg. Here the idea is to assign weights to edges from the set {1, 2}
or {1, 2, 3}, and show that for such weightings, there exist assignments with
mg of the order n/δ or n log n/δ (see Lemmas 7, 8 and 9).
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2 Deterministic Lemmas

The next two Lemmas will be fundamental to our results. Their proofs follow
below.

Lemma 4 Let G be a graph without isolated vertices or isolated edges. Let
g : E(G) → [w] be a weight assignment. Then there exists an irregular
assignment f : E(G)→ {2mg, . . . , (3w + 1)mg}.

Lemma 5 Let G be a d-regular graph without isolated vertices or isolated
edges. Let g : E(G) → [w] be a weight assignment. Then there exists an
irregular assignment f : E(G)→ [(3w − 1)mg + 1].

We begin with a lemma needed to prove Lemma 4. We will call a tree with
at most one vertex of degree greater than two, and k vertices of degree one,
a generalized k-star.

Lemma 6 Let G be a graph without isolated vertices or isolated edges. Then
G has a factor consisting of generalized stars of order at least three.

Proof: Let T be a spanning tree of a component of G. Note that |V (T )| ≥ 3
by our hypothesis. We show that T can be broken into disjoint general-
ized stars that together span V (T ). Then repeating this argument on each
component produces the result.

To do this we induct on |U |, where U = {u ∈ V (T )|degT (u) ≥ 3}. If
|U | ≤ 1 we are done, as T is itself a generalized star. Now assume the
result holds on any tree T with |U | = l ≥ 1 and suppose T is a tree with
|U | = l + 1. Now root T at u ∈ U and select any vertex v ∈ U, v 6= u, such
that the distance in T between u and v is maximum over all vertices of U .
Let Tv be the subtree of T rooted at v and consider T ′ = T \ Tv. This tree
has |U | = l and by the induction hypothesis, we can find generalized stars in
T ′ that span V (T ′). Further, the tree Tv is, by our choice of v, a generalized
star of order at least three. This star, together with the collection of stars
that spans T ′, spans T , completing the proof.

Proof of Lemma 4. Denote the weight class of a vertex v ∈ V (G) as

Cv = {u ∈ V (G) : g(u) = g(v)}.
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Define a new weight function f̂ : E → [3mgw] by f̂(e) = 3mgg(e). Note that
the weight classes are unchanged under this function. Let S be a generalized
star factor of G, guaranteed by Lemma 6. We select one generalized star
S from S. Let u be a vertex of maximum degree in S and suppose that S
consists of t paths rooted at u. Let u1, u2, . . . , ut be the neighbors of u in
S. Consider the first branch (path) of S, say v1, v2, . . . , vr, where v1 = u1

and r ≥ 2 (if such a branch of S exists). Now begin with the last edge
vrvr−1. We change the weight of this edge as follows. Put f(vrvr−1) =
f̂(vrvr−1)+x, where x is selected from the set L = {0,−1, . . . ,−(mg−1)} in
such a way that f(vr), its new weighted degree, is different from the current
weighted degrees of any vertex from Cvr \ {vr}. Since |Cvr | ≤ mg, it is
always possible to select an appropriate x. We now repeat this process to
the edges vr−1vr−2, vr−2vr−3, . . . v2v1, thus making f(vr−1), f(vr−2), . . . , f(v2)
unique also. To complete the first phase, repeat the procedure on the paths
emanating from u2, u3, . . . , ut, in this order.

It remains to adjust the weights of the star centered at u. So, we change
the weights of the edges uu1, uu2, . . . , uut−1, one by one, starting at uu1. Let
f(uui) = f̂(uui) + yi, where yi is chosen from the set L′ = {−mg,−(mg −
1), . . . ,mg − 1,mg}, in such a way that f(ui), i = 1, 2, . . . , t − 1, the new
weighted degree of ui, is different from the current weighted degrees of any
vertex from Cui \ {ui} and, additionally, such that

∑i
k=1 yi belongs to the set

(L ∪ {−mg}) \ {f(utv) − f̂(utv)}, where v is the second vertex of the path
starting in ut (if no such vertex v exists, use instead (L∪{−mg})\{0}). Now
we are left with uut. Observe that u and ut have different weighted degrees
at this time. Now let f(uut) = f̂(uut) + x, where x ∈ L′ \ {−mg}, such that
both f(u) and f(ut) are unique in their respective classes. This is possible,
since there are 2mg options, and Cu and Cut can only block 2(mg − 1) of
these. Finally, repeat the process for all remaining stars S ∈ S.

Now for every weight class Cu, all vertices have different weighted degrees
under f . The weighted degrees were altered from f̂ by total values from the
range {−2mg +1, . . . ,mg}, the different classes were at least 3mg apart from

each other under f̂ , so f is an irregular assignment to the set {2mg, 2mg +
1, . . . , 3mgw +mg}.

Proof of Lemma 5. Use Lemma 4 to get an irregular weight assignment
f ′ : E(G) → {2mg, 2mg + 1, . . . , 3mgw + mg}. Now define f : E(G) →
[(3w − 1)mg + 1] by f(e) = f ′(e) − 2mg + 1. This assignment is irregular,
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since the weighted degree of every vertex is reduced by d(2mg − 1).

3 Probabilistic Lemmas

The following two lemmas will be used to get bounds on the irregularity
strength of graphs with maximal degree ∆ ≤ n1/2. Again, the proofs follow
below.

Lemma 7 Let G be a graph. If ∆ ≤ (n/ lnn)1/4, then ∃g : E(G) → {1, 2}
such that mg ≤ n

δ
+ n

∆
.

Lemma 8 Let G be a graph. If ∆ ≤ n1/2, then ∃g : E(G)→ {1, 2, 3} such
that mg ≤ 6n/δ.

The next lemma is used for graphs with ∆ > n1/2.

Lemma 9 Let G be a graph. If n ≥ 10 and δ ≥ 10 log n, then ∃g : E(G)→
{1, 2} such that mg ≤ 48(log n)n/δ.

Finally, we state the lemma which provides bounds on mg, without any
restrictions on vertex degrees of a graph G, but for sufficiently large n only.

Lemma 10 Let G be a graph. If n is sufficiently large, then ∃g : E(G) →
{1, 2} such that mg ≤ 2n/δ1/2.

Since the proofs of both Lemma 7 and Lemma 9 use the same model of as-
signing weights to the edges, at random, we will present their proof together.

Proof of Lemmas 7 and 9.
Let Xv, v ∈ V be independent random variables with uniform distibution
over the interval [0, 1], and then for e = uv ∈ E, let

g(e) =

{
2 if Xu +Xv ≥ 1

1 if Xu +Xv < 1
.

For the non-negative integer y ∈ {0, 1, . . . , dv},

Pr(g(v) = dv + y) =
∫ 1

x=0

(
dv
y

)
xy(1− x)dv−ydx =

1

dv + 1
≤ 1

δ + 1
.

(1)
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It follows for every y with δ ≤ y ≤ 2∆ and Zy = |{v ∈ V : g(v) = y}| that

E(Zy) ≤
n

δ + 1
. (2)

To prove Lemma 7, we assume that G is a graph with maximum degree
∆ ≤ (n/ log n)1/4.

We apply the Hoeffding-Azuma inequality, see e.g. Janson,  Luczak and
Ruciński [6]. Changing the value of an Xv can only change the value of Zy
by at most ∆ + 1. It follows that for t > 0,

Pr(Zy ≥ E(Zy) + t) ≤ exp

{
− t2

2n(∆ + 1)2

}
. (3)

Putting t = n
∆+1

and using (2) we see that

Pr(Zy ≥ E(Zy) + t) <
1

2∆
,

and thus
Pr(∃y : Zy ≥

n

δ
+
n

∆
) < 1,

and Lemma 7 follows.

We now prove Lemma 9. We use the Markov inequality for t, k > 0 and
any event E , to obtain

Pr(Zy > t | E) ≤
E
((

Zy
k

)
| E
)

(
t
k

) . (4)

But

E

((
Zy
k

)
| E
)

=
∑
|S|=k

Pr(g(v) = y, v ∈ S | E). (5)

Now fix S = {v1, v2, . . . , vk} in (5). For v ∈ S let NS(v) = N(v) \ S,
and let µ(v) = |NS(v)|. Note that dv − µ(v) ≤ k − 1. For v ∈ S let
ξ1 < ξ2 < · · · < ξdv be the values of Xu, u ∈ N(v), sorted in increasing order
and let η1 < η2 < · · · < ηµ(v) be the values of Xu, u ∈ NS(v), also sorted in
increasing order.
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Note that, in general, if ξ1 < ξ2 < · · · < ξs is the sequence of order statistic
from the uniform distribution over [0, 1], then ξi has the same distribution
as (Y1 + Y2 + · · ·+ Yi)/(Y1 + Y2 + · · ·+ Ys+1) where Y1, Y2, . . . , Ys+1 is a se-
quence of independent random variables, each having exponential distribu-
tion with mean one, see for example Ross, Theorem 2.3.1 [9].

To prove the lemma we need to show the following general statement.

Lemma 11 Let Y1, Y2, . . . , Ys be a sequence of independent random vari-
ables, each having exponential distribution with mean one. Then for any real
a > 0, 0 < b < 1 we have

Pr(Y1 + . . .+ Ys ≥ (1 + a)s)) ≤ ((1 + a)e−a)s

Pr(Y1 + . . .+ Ys ≤ (1− b)s)) ≤ ((1− b)eb)s.

Proof:

Pr(Y1 + . . .+ Ys ≥ t) ≤ Pr(eλ(Y1+···+Ys−t) ≥ 1)

≤ e−λtE(eλ(Y1+···+Ys))

=
e−λt

(1− λ)s
,

provided λ ∈ (0, 1).

So putting t = (1 + a)s, we see that

Pr(Y1 + . . .+ Ys ≥ (1 + a)s) ≤
(
e−λ(1+a)

1− λ

)s
= ((1 + a)e−a)s

on putting λ = a/(1 + a).

A similar argument shows that

Pr(Y1 + . . .+ Ys ≤ (1− b)s) ≤ ((1− b)eb)s,

completing the proof of Lemma 11.

Let k = blog nc and

E = (Θ < (16 log n)/δ),

where
Θ = max

v∈V
Θv, and Θv = max

0≤i≤dv−2k+1
ξi+2k − ξi .

Here, by default, we take ξ0 = 0 and ξdv+1 = 1.
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Now, observe that g(v) = y implies

1−Xv ∈ [ξ2dv−y, ξ2dv−y+1] ⊂ [η2dv−y−k+1, η2dv−y+1] ⊆ [ξ2dv−y−k+1, ξ2dv−y+k].

In the above formula, we take ξj = ηj = 0 for j ≤ 0, and ξdv+j = ηµ(v)+j = 1
for j ≥ 1.

Applying Lemma 11 to the order statistics defining Θ, we see that

Pr(¬E) = Pr

(
∃v ∈ V : Θv ≥

16 log n

δ

)

≤ nPr

(
∃0 ≤ i ≤ ∆− 2k + 1 :

Yi + · · ·+ Yi+2k−1

Y1 + · · ·+ Yδ+1

≥ 16 log n

δ

)
≤ nPr(Y1 + · · ·+ Yδ+1 ≤ δ/2) + n2Pr(Y1 + · · ·+ Y2k ≥ 8k)

≤ n(e1/2/2)δ+1 + n2(4e−3)2k

≤ 1/10. (6)

Further,

Pr(g(v) = y, v ∈ S | E) ≤ Pr(1−Xvi ∈ [η2dvi−y−k+1, η2dvi−y+1], i = 1, 2, . . . , k | E)

≤ 2Pr(1−Xvi ∈ [η2dvi−y−k+1, η2dvi−y−k+1 + 16 logn
δ

], i = 1, 2, . . . , k)

≤ 2

(
16 log n

δ

)k
.

From (4) and (5) we obtain

Pr(∃y : Zy > t | E) ≤ 2n

(
t

k

)−1(
n

k

)(
16 log n

δ

)k
.

Putting t = 48(log n)nδ−1 together with (6) establishes

Pr(∃y : Zy > t) ≤ Pr(∃y : Zy > t | E) + Pr(¬E) < 1,

proving Lemma 9.
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Proof of Lemma 8. For every vertex v independently assign a number Wv

from {0, . . . , dv} uniformly at random. Now pick a random subset N ⊆ N(v)
of size Wv, and for every u ∈ N , set vu = 1, and for every u ∈ N(v) \N , set
vu = 0.

Let g : E → [3] as follows: For uv ∈ E, let g(uv) = 1 + vu + uv. For a
vertex v, let g(v) =

∑
u∈N(v) g(uv). For some integer y with δ ≤ y ≤ 3∆, let

Zy = |{v ∈ V : g(v) = y}|. Then

E(Zy) ≤
n

δ
, (7)

since

Pr(g(v) = y) = Pr(Wv = y − d−
∑

u∈N(v)

uv) ≤
1

dv + 1
.

By the symmetry of the construction we know that ∀x ∈ V, v, u ∈ N(x):

Pr(xv = 1) = 1/2,

Pr(xv = xu = 1) = Pr(xv = xu = 0) = 1/3,

Pr(xv = 1, xu = 0) = Pr(xv = 0, xu = 1) = 1/6. (8)

To use Chebyshev’s inequality, we have to bound the variance of Zy:

Var(Zy) =
∑
v∈V

∑
u∈V

(Pr(g(v) = g(u) = y)−Pr(g(v) = y)Pr(g(u) = y)).

Fix a v ∈ V , and consider

Sv =
∑
u∈V

(Pr(g(v) = g(u) = y)−Pr(g(v) = y)Pr(g(u) = y)).

Divide V into three classes V1, V2, V3, and consider the partial sums

Si =
∑
u∈Vi

(Pr(g(v) = g(u) = y)−Pr(g(v) = y)Pr(g(u) = y)).

Class 1: V1 = {v}.

S1 ≤ Pr(g(v) = y) ≤ 1

dv
≤ ∆

δ2
. (9)
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Class 2: V2 = N(v).

S2 ≤ dvPr(g(v) = g(u) = y)

≤ dvPr

Wv = y − dv −
∑

x∈N(v)

xv | g(u) = y

Pr

Wu = y − du −
∑

x∈N(u)

xu


≤ dv

2

(dv + 1)

1

(du + 1)
<

2

du
≤ 2∆

δ2
. (10)

Class 3: V3 = V \ ({v} ∪N(v)).

Let u ∈ V3, and let c = |N(v) ∩N(u)|. For the sake of the analysis, pick
a random subset A from {x ∈ N(u) ∩ N(v) : xu = xv}, by choosing each
vertex with probability 1/2. So, using (8), for every vertex x ∈ N(u)∩N(v),

Pr(xu = xv = 1 ∧ x ∈ A) = Pr(xu = xv = 1 ∧ x 6∈ A) =

Pr(xu = xv = 0 ∧ x ∈ A) = Pr(xu = xv = 0 ∧ x 6∈ A) =

Pr(xu = 0 ∧ xv = 1) = Pr(xu = 1 ∧ xv = 0) = 1/6,

and
Pr(x ∈ A) = 1/3.

Let A ⊆ N(u) ∩N(v), and let a = |A|.
Then, for every vertex x ∈ N(u) ∩N(v),

Pr(xu = xv = 1 | A = A ∧ x 6∈ A) =
Pr(xu = xv = 1 ∧ A = A | x 6∈ A)

Pr(A = A | x 6∈ A)
=

(1/6)(1/3)a(2/3)c−a−1

(1/3)a(2/3)c−a
=

1

4
.

By symmetry, we get

Pr(xu = xv = 0 | A = A) = Pr(xu = 0, xv = 1 | A = A) =

Pr(xu = 1, xv = 0 | A = A) = 1/4.

Thus, given x 6∈ A and A = A, the events (xv = 1) and (xu = 1) are
independent. For x ∈ A, we get

Pr(xu = xv = 1 | A = A∧x ∈ A) = Pr(xu = xv = 0 | A = A∧x ∈ A) = 1/2.
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We introduce the following notation:

PA = Pr(g(v) = g(w) = y | A = A)−Pr(g(v) = y | A = A)Pr(g(w) = y | A = A)

= Pr(g(v) = g(w) = y | A = A)−Pr(g(v) = y)Pr(g(w) = y),

since Pr(g(v) = y) is independent from the choice of A. In particular,

P∅ = Pr(g(v) = g(w) = y | A = ∅)−Pr(g(v) = y)Pr(g(w) = y) = 0.
(11)

For A 6= ∅, pick any x ∈ A. We want to bound the difference PA−PA\x. Let

bv = dv +
∑

z∈N(v)\x
zv , bu = du +

∑
z∈N(u)\x

zu.

Now consider the difference between PA and PA\x, given that bv = l and
bu = r, and denote it by

P l,r
A − P l,r

A\x =

= Pr(g(v) = g(w) = y | A = A ∧ bv = l ∧ bu = r)

− Pr(g(v) = g(w) = y | A = A \ x ∧ bv = l ∧ bu = r)

= [Pr(xu = xv = 1 | A = A)−Pr(xu = xv = 1 | A = A \ x)]

×Pr(Wv = y − l − 1)Pr(Wu = y − r − 1)

+ [Pr(xu = xv = 0 | A = A)−Pr(xu = xv = 0 | A = A \ x)]

×Pr(Wv = y − l)Pr(Wu = y − r)
+ [Pr(xu = 1 ∧ xv = 0 | A = A)−Pr(xu = 1 ∧ xv = 0 | A = A \ x)]

×Pr(Wv = y − l)Pr(Wu = y − r − 1)

+ [Pr(xu = 0 ∧ xv = 1 | A = A)−Pr(xu = 0 ∧ xv = 1 | A = A \ x)]

×Pr(Wv = y − l − 1)Pr(Wu = y − r)
= 1

4
[Pr(Wv = y − l − 1)Pr(Wu = y − r − 1) + Pr(Wv = y − l)Pr(Wu = y − r)
−Pr(Wv = y − l)Pr(Wu = y − r − 1)−Pr(Wv = y − l − 1)Pr(Wu = y − r)].

Therefore,

P l,r
A −P

l,r
A\x =



1/[4(dv + 1)(du + 1)] if (r = y − du − 1 ∧ l = y − dv − 1)
or (r = y ∧ l = y),

−1/[4(dv + 1)(du + 1)] if (r = y − du − 1 ∧ l = y)
or (r = y ∧ l = y − dv − 1),

0 otherwise.
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Thus, summing over all possible values of l, r and
t = |{z ∈ A \ x : zu = zv = 1}|,

PA − PA\x ≤
≤ 1/[4(dv + 1)(du + 1)]

×[Pr(bu = y − du − 1 ∧ bv = y − dv − 1) + Pr(bu = y ∧ bv = y)]

≤ 1/[4(dv + 1)(du + 1)]

×
[
a−1∑
t=0

(
a− 1

t

)
2−a+1

(
du − a

y − 2du − 1− t

)(
dv − a

y − 2dv − 1− t

)
2−du−dv+2a

+
a−1∑
t=0

(
a− 1

t

)
2−a+1

(
du − a

y − du − t

)(
dv − a

y − dv − t

)
2−du−dv+2a

]

≤ 1

(dv + 1)(du + 1)

(
du − a

(du − a)/2

)(
dv − a

(dv − a)/2

)
2−du−dv+a

a−1∑
t=0

(
a− 1

t

)
.

Suppose first that 1 ≤ a ≤ δ/3. Then,

PA − PA\x ≤
2−dv−du+2a−1

(dv + 1)(du + 1)

(
2dv−a+1

(dv − a)1/2

)(
2du−a+1

(du − a)1/2

)
=

2

(dv + 1)(du + 1)(dv − a)1/2(du − a)1/2
≤ 3

dvδ2
.

Hence,

PA ≤
3a

dvδ2
≤ 3c

dvδ2
. (12)

Note that for all A,

Pr(g(v) = g(u) = y | A = A) ≤ 1

(dv + 1)(du + 1)
,

hence, for a > δ/3,

PA ≤ Pr(g(v) = g(u) = y | A = A) ≤ 3a

dvδ2
≤ 3c

dvδ2
. (13)

Therefore, combining (11), (12) and (13),

Pr(g(v) = g(u) = y)−Pr(g(v) = y)Pr(g(u) = y) ≤∑
A⊆N(u)∩N(v)

(3c/dvδ
2)Pr(A = A) =

3|N(v) ∩N(u)|
dvδ2

.

13



Now notice that
∑
u∈V |N(v) ∩ N(u)| counts the number of walks of length

two starting in v, thus
∑
u∈V |N(v) ∩N(u)| ≤ dv∆, and therefore

S3 ≤
∑
u∈V3

3|N(v) ∩N(u)|
dvδ2

≤ 3∆

δ2
. (14)

Altogether, we get from (9), (10) and (14),

Sv = S1 + S2 + S3 ≤
6∆

δ2
,

and thus,

Var(Zy) =
∑
v∈V

Sv ≤
6n∆

δ2
.

By Chebyshev’s inequality and (7) we get

Pr(Zy > 6n/δ) ≤ Var(Zy)

(5n/δ)2
<

1

3∆
,

and thus,
Pr(∃y : Zy > 6n/δ) < 1,

finishing the proof.

Proof of Lemma 10.
Choose g randomly from {1, 2}E. Observe that g(v) − dv has the binomial
distribution Bi(dv, 1/2). For a non-negative integer y let

Vy = {v : |y − 3

2
dv| ≤ (2dv log n)1/2}.

The Chernoff bounds for the tails of the binomial (see for example [6]) imply
that for any t > 0,

Pr(|g(v)− 3

2
dv| ≥ t) ≤ e−2t2/dv .

Hence,

Pr(g(v) = y) ≤ 1

n4
if v /∈ Vy. (15)

14



Now consider v ∈ Vy. Clearly,

Pr(g(v) = y) = 0 if dv < y/2. (16)

Case 1: y ≥ n1/4

If dv ≥ y/2 ≥ n1/4/2 then we can use Stirling’s inequality or apply Feller
[5], Chapter VII (2.7) to get

Pr(g(v) = y) =
1

2dv

(
dv

y − dv

)
≈
√

2

πdv
e−z

2/2, (17)

where z = 2(y − 3
2
dv)/d

1/2
v .

Let Zy = |{v : g(v) = y}|. It follows from (15), (16) and (17) that

E(Zy) ≤
|Vy|
δ1/2

. (18)

Let
Z1
y = |{v ∈ Vy : g(v) = y}| and Z2

y = |{v /∈ Vy : g(v) = y}|.
It follows from (15) that

Pr(Z2
y 6= 0) ≤ 1

n3
. (19)

Note also that v ∈ Vy implies that

y =
3

2
dv +O

(
(dvlog n)1/2

)
. (20)

Now for t > 0 and k = (log n)2 we use the Markov inequality to obtain

Pr(Z1
y > t) ≤

E
((

Z1
y

k

))
(
t
k

) . (21)

But

E

((
Z1
y

k

))
=

∑
S⊆Vy ,|S|=k

Pr(g(v) = y, v ∈ S)

=
∑

S⊆Vy ,|S|=k

∑
ξ∈{1,2}ES

Pr(g(v) = y, v ∈ S | g(ES) = ξ)Pr(g(ES) = ξ) (22)

15



where ES = {e ∈ E : e ⊆ S}.
Now fix S in (22). For v ∈ S let

Av = {e = uv ∈ E : u /∈ S} and Bv = {e = uv ∈ E : u ∈ S}.

Then, if |g(Bv)| denotes
∑
u∈Bv g(u),

Pr(g(v) = y | g(ES) = ξ) = Pr(|g(Av)| = y − |g(Bv)|) (23)

= 2−|Av |
(

|Av|
y − |g(Bv)| − |Av|

)
.

Therefore,

Pr(|g(Av)| = y − |g(Bv)|)
Pr(g(v) = y)

= 2|Bv |

(
|Av |

y−|g(Bv)|−|Av |

)
(

dv
y−dv

)
= 2|Bv |

|Av|(|Av| − 1) · · · (2|Av|+ |g(Bv)| − y + 1)

1× 2× · · · × (y − |g(Bv)| − |Av|)
· 1× 2× · · · × (y − dv)
dv(dv − 1) · · · (2dv − y + 1)

.

(24)

Now we use

|Av|+ |Bv| = dv and |Bv| ≤ |g(Bv)| ≤ 2|Bv| ≤ 2k

and (20) to verify that

1× 2× · · · × (y − dv)
1× 2× · · · × (y − |g(Bv)| − |Av|)

=

(y − dv)(y − dv − 1) · · · (y − |g(Bv)| − |Av|+ 1) =(
1

2
dv

)|g(Bv)|−|Bv |
1 +O

k ( log n

dv

)1/2
 (25)

and

|Av|(|Av| − 1) · · · (2|Av|+ |g(|Bv|)− y + 1)

dv(dv − 1) · · · (2dv − y + 1)
=

(2dv − y)(2dv − y − 1) · · · (2|Av|+ |g(Bv)| − y + 1)

dv(dv − 1) · · · (|Av|+ 1)
=

d|Bv |−|g(Bv)|
v × 2|g(Bv)|−2|Bv |

1 +O

k ( log n

dv

)1/2
 . (26)
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Plugging (25) and (26) into (24) we see that

Pr(|g(Av)| = y − |g(Bv)|)
Pr(g(v) = y)

= 1 +O

k ( log n

dv

)1/2
 .

So from (22) and (23) we see that

E

((
Z1
y

k

))
≤

∑
S⊆Vy ,|S|=k

∑
ξ∈{1,2}ES

∏
v∈S

1 +O

k ( log n

dv

)1/2
Pr(g(v) = y)

Pr(g(ES) = ξ)

≤
(

1 +O

(
k2 (log n)1/2

n1/8

)) ∑
S⊆Vy ,|S|=k

∏
v∈S

Pr(g(v) = y)

≤ (1 + o(1))
1

k!

 ∑
S⊆Vy ,|S|=k

Pr(g(v) = y)

k

= (1 + o(1))
E(Z1

y )k

k!
.

So (18), (21) imply

Pr
(
Z1
y > 2

n

δ1/2

)
≤ (1 + o(1))

E(Z1
y )k

(2n/δ1/2)k
≤ (1 + o(1))2−k

and then together with (19) we get

Pr
(
∃y : Zy > 2

n

δ1/2

)
≤ 2n((1 + o(1))2−k + n−3) = o(1). (27)

Case 2: y ≤ n1/4.

Assume that Vy 6= ∅. We apply the Hoeffding-Azuma inequality. Chang-
ing the value of g on a single edge can only change the value of Z1

y by at
most 2. Also, Z1

y is determined by the outcome of at most∑
v∈Vy

dv ≤ |Vy|(y + (log n)2)
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random choices. It follows that for t > 0,

Pr(Z1
y ≥ E(Z1

y ) + t) ≤ exp

{
− t2

2|Vy|(y + (log n)2)

}
. (28)

Putting t = n/δ1/2 and observing that Vy 6= ∅ implies δ ≤ n1/4 and yδ ≤ n1/2,
and applying (18), (19), (28), we see that

Pr
(
Z1
y > 2

n

δ1/2

)
≤ e−n

1/2/3. (29)

The lemma follows from (19), (27) and (29).

4 Proofs of Theorems

We are now able to prove the Theorems.

Proof of Theorem 1. Let ∆ ≤ n1/2. By Lemma 8, there exists a weight
assignment g : E → [w] with mg ≤ 6n/δ and w = 3. Now by Lemma 4,
s(G) ≤ 3mgw+mg ≤ 60n/δ, proving (b). Similar arguments, using Lemma 7
and Lemma 9 in place of Lemma 8, provide part (a) and (c).

Proof of Theorem 2. The proof is similar to the proof of Theorem 1, just
use Lemma 5 in place of Lemma 4.

Proof of Theorem 3. The proof is similar to the proof of Theorem 1, just
use Lemma 4 and Lemma 10.
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