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Abstract

In this paper, we present several conditions for K 3-free graphs, which guarantee
the graph is subpancyclic. In particular, we show that every K 3-free graph with
minimum degree sum dy > 2v/3n + 1 — 4; every {K; 3, P;}-free graph with dg > 9;
every {K 3, Zs}-free graph with do > 9; and every K 3-free graph with maximum
degree A, diam(G) < % and do > 9 is subpancyclic.
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1 Introduction

If not specified otherwise, we will use notation from [1]. We consider finite sim-
ple graphs only. A graph on n vertices is called subpancyclic if it contains cycles
of every length [ with 3 <[ < ¢(G), where ¢(G) denotes the circumference of
G. If G is subpancyclic and hamiltonian, it is called pancyclic.

We will always denote the edge set of the graph G by F, and V will denote
its vertex set. For some graph H, a graph is said to be H-free, if it does not
contain an induced copy of H. The complete bipartite graph K 3 is also called
the claw. The graph Z4 is a triangle with a path of length four attached to
one of its vertices, the graph P; is the path on seven vertices.

The degree of a vertex v is denoted by d(v). We will write A(G) or (if no
confusion arises) A for the maximum degree in G, and §(G) or ¢ for the

minimum degree in G. By d5(G) or dy, we will denote the minimum of {d(u) +
d(v)ju,v € V,uv ¢ E}.
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Let C be a cycle in GG, and assign some orientation to C'. For two vertices
xz,y € V(C), the notation xCy will stand for the path from z to y along
C following the orientation of C. An xy-path P in G is called a shortening
path of C, if V(P)NV(C) = {x,y} and |P| < min{|zCy|, |yCz|}. An edge
xy ¢ E(C) with z,y € V(C) is called a chord of C.

We will start by proving the following Lemma.

Lemma 1 Let G be a claw-free graph with 55(G) > 9. Suppose, for some
m > 3, G has an m-cycle C, but no (m—1)-cycle. Then there is no shortening

path of C.
As we will see, Lemma 1 has several interesting consequences.

Theorem 2 Let G be a claw-free graph with mazimum degree A and §3(G) >
9. If diam(G) < &£, then G is subpancyclic.

Theorem 3 Let G be a claw-free graph with minimum degree § and §2(G) > 9.
If G is not a line graph, and diam(G) < 5%3, then G is subpancyclic.

Theorem 4 Let G be a {K 3, Zy}-free graph with 3 > 9. Then G is subpan-
cyclic. If G is 2-connected, then G is pancyclic.

Theorem 5 Let G be a {K 3, Pr}-free graph with 2 > 9. Then G is subpan-
cyclic.

Theorem 6 Let G be a claw-free graph onn > 5 vertices with 0o > 2+/3n + 1—
4. Then G s subpancyclic.

From Theorem 6 we obtain as a corollary the following Theorem of Trommel,
Veldman and Verschut [2]:

Theorem 7 Let G be a claw-free graph on n > 5 wvertices. If the minimum
degree § is 6 > \/3n+ 1 —2, then G s subpancyclic.

In the proofs of Theorems 2-6, we will frequently use the following theorem
from Flandrin, Fournier and Germa [4], and its corollaries:

Theorem 8 Let G be a claw-free graph. Then the graph (N) induced by the
neighborhood N of any vertex x falls in one of three cases:

1. (N} is hamiltonian.

2. (N) consists of two complete subgraphs G1 and Gs, connected with some
edges, all of them having a common vertex in G.

3. (N) consists of two complete subgraphs with no edges in between.

Corollary 9 Let G be a claw-free graph with maximum degree A . Then G



contains cycles of length 1 for all | with 3 <1< [A/2] +1.
Proof: The proof is obvious. O

Corollary 10 Let G be a claw-free graph with minimum degree 0 . If G is not
a line graph, then G contains cycles of length | for all I with 3 <1 <4+ 1.

Proof: Observe that G is a line graph if the neighborhoods of all vertices are
in the third class of Theorem 8. Therefore, there is a vertex z with (N(x))
in the first or second class of Theorem 8. In either case, (N(z)) is traceable,
implying (N (z) U {z}) is pancyclic. O

2 Proof of Lemma 1

Suppose instead P is a shortest shortening path. We will distinguish two cases.

Case 1 Suppose P is a chord (P = zy).

Pick two chords ujus and vy, such that uy,us € xCy,v1,v9 € yCx, where
both chords are minimal in the sense that there is no other chord uv with
u,v € u1Cug or u,v € v1Cvy. This does not exclude the possibility of one or
both of these chords being identical with xy.

Let K :={v e V(C)|3u € V(C) : wv is a chord}, L := V(C) — K. If there is
a shortening path of C' with length exactly two with both its endvertices in
u1Cug (v1Cv3), pick such a shortening path s;sess (f1tats), such that s1C's3
(t1C't3) is as short as possible, else set s1 = s = uy, 83 = ug (t1 = to = vy, t3 =
’Ug).

Let ay,as, . ..,a, be the vertices of s{Cs; N L (in order), let by, by, ..., b be
the vertices of t; Ct; N L. Without loss of generality, by symmetry we may
assume that [ > r. Further, if [ = r we may assume that d(b;) > 5 for all
1 < i <[ (since they belong to L, there are no edges between the a; and the
b;, s0 02(G) > 9 guarantees the statement).

Now we will construct a cycle C" C (C'Usy) with m —r —1 < |C'] <m — 1,
which we will then extend to a C),_; to get a contradiction.

Start with the cycle s15953C's;. Note that ¢ = |s15253Cs1| < m — 1. If ¢ >
m — 7 — 1, this cycle is the desired C”. Otherwise, s C's; N K # () and we can
pick a vertex u € s Cs; N K. Then v has an edge to some vertex v € s3Cs7 .
There can’t be an edge v~ v™, else there is a C,,,_1. There is no claw centered at
v,80 vTu € E or v u € E. Therefore u can be inserted in the cycle between v



and one of its neighbors to extend the cycle. If two vertices u, w € s{Cs3 NK
share the same neighbors v,v™ € sfCsy, then all of uCw (or wCu) can be
inserted between v and vt to extend the cycle. Thus, any number of vertices
in s{Cs; N K can be inserted (we don’t have control about the number of
vertices of s{Cs; N L inserted in the process). With this process, we insert
m—r—1—c vertices out of s7 C's3 N K. The resulting cycle C” is of the desired
length, since at most r vertices out of L were inserted.

To extend C', consider by, by, b7, ..., bsps1—2 - Since t;Ct3 is the shortest such
segment possible, these vertices have pairwise disjoint neighborhoods. Further,
none of them is a neighbor of s,, else there is a claw at s,. By Theorem 8, C’
can be extended through the neighborhoods of these vertices by any number
of vertices up to d(b;) — 2 for each b;,i =1,4,... .

If [ = r, then d(b;) > 5, so this extends C’ by up to 3[l/3] > r vertices,
resulting in a C),,_1.

If 3 <r <l letd:=min{4,d(b),d(bs),...}. Then C" is extendable by
S d(bres) — 2) = d — 2+ ([1/3] = 1)(7T — d) > 3[1/3] — 1 vertices,
yielding a C),,_1.

If 1 <r<1l=3, consider b; and b3. One of them has degree at least 5, so we
can extend by up to 3 vertices, which is again enough.

If r = 1,1 = 2, the only problem would be if d(b;) = d(by) = 2, else we could
extend by one, which is enough. But then, d(a;) > 7, and by a symmetric
argument we can find a cycle C” C (C U ty) which includes aj aja;f, and
m — 3 < |C”| < m — 1. This cycle can now be extended around a; to a Cy,_.

Finally, if » = 0, C” is already a C,,_;. This contradiction concludes the
argument, hence C' has no chords.

Case 2 Suppose P has length > 2 (P = zyz129 ... 2z, with x = 29,y = 2).

Assume, that P is chosen such that k& = |zCy| is minimal. Observe, that
k>1—1 (else k =1 —1, and a Cy,_; is easily found). Let vy = y,v; =
Yy, Um ki1 = x. Since k is minimal, 27z, ¢ FE. Since C is chordless,
2t v, € E. Thus v,,_rz; € E to prevent a claw at x. A symmetric argument
shows that v12,_1 € E. Now m — k > k, else k would not have been minimal.

Consider C" = zPyCz. We know that m —k+1+1 = |C'| < m — 2. We
will now extend C” to a C,,_1 to get the contradiction. None of the edges
v;izj,2 <1 <m—k—1,0 < j <[ exists, else let 7 be minimal, such that
for some 2 < i < m — k — 1, there is an edge v;z; (j > 1, else chord). To
prevent a claw at z;, z11v; € E is necessary. But now, consider the paths
P" = v;zj11Py and P" = v;2;Px. Both of them are shorter than P. Since P
is the shortest shortening path, P’ and P” can not be shortening paths, thus



1+l—j5=|P|>yCuv|=i+1,and j+2=|P"| > |v,Cx| =m —k —i+ 2.
But this implies that [ > m — k > k, a contradiction to P being a shortening
path.

Now, note that none of the neighborhoods of vy, vs, ..., v3x/3/-1 intersect, else
k was not minimal.

If & > 6, let d := min{4,d(vs),d(vs),...d(vsr/3-1)}. We can extend C’
around vy, vs, . . . » U3|k/3]—1 by up to Z%i()gj_l(d(vum) - 2) >d—2+ (U/?’J -
1)(7—d) > 3|k/3] — 1> k — 3 vertices to get a C,,_1, just like in the first
case.

Ifk=5|C"=m+1—4>m—2. As either d(vy) > 5 or d(v4) > 5, we can
extend around it by one vertex, and we have our contradiction.

Ifk<4 thnm-2>[|C">m—-k+Il+1>m—-44+2+1=m—1,a
contradiction. O

3 Proofs of the Theorems

Proof of Theorem 2: Suppose G is not subpancyclic. Then for some m, G
has a C,,, but no C,,_;. By Corollary 9 , m > %. But now the diameter
condition guarantees a shortening path, which is impossible by Lemma 1. O

Proof of Theorem 3: Suppose G is not subpancyclic. Then for some m, G
has a C,,, but no C,,_;. By Corollary 10 , m > ¢ + 3. But now the diameter
condition guarantees a shortening path, which is impossible by Lemma 1. O

Proof of Theorem 4: Suppose G is not subpancyclic. Then for some m, G
has a C,,, but no C,,_1. By Corollary 9 , m > 6. By Lemma 1, C' := C,, has
no chords. By the degree condition, there is a vertex v € V(C) with d(v) > 5.

If m = 6, the neighborhood of v is split into two complete subgraphs, not
connected by edges. Else there was a 5-cycle in N(v) Uv by Theorem 8 (take a
Py in N(v), and connect both its ends with v). Without loss of generality, let
xz,y € N(w)NN(v") (soxv™,yv~ ¢ E,zy € E). Observe that zo™ yvt™ ¢ E,
else there is a H-cycle. Further  and y can not be adjacent to any other vertex
of C', else there is a shortening path of C', which is not possible by Lemma 1.
Now yxvtCv~ form a Zj, a contradiction.

If m > 7, there exist z € V—-V(C),y € V(C), such that z € (N(y)NN(yT))—
N(y™*). But then zyyTCy°" form a Z; (Again, 2 can not be adjacent to any
of y3*, y**y5T else there was a shortening path of C).



If G is 2-connected, then it is hamiltonian by a result of Brousek, Ryjacek and
Favaron [3], thus G is pancyclic. O

Proof of Theorem 5: Suppose G is not subpancyclic. Then for some m, G
has a C,,, but no C,,_;. By Corollary 9 , m > 6. By Lemma 1, C' := (), has
no chords.

If m =6, let v € V(C) be the vertex on C with the largest degree. The degree
condition guarantees d(v) > 5. By Theorem 8, the neighborhood of v is split
into two complete subgraphs of size at most 3, not connected by edges, else
there is a C5 in N(v)Uw. Hence, |[N(v)NN(v7)|, |N(v)NN(vT)| € {1, 2}, with
one of them being 1 only in the case that d(v) = 5. Let z € N(v)NN(v"),y €
N(v) N N(v™). Clearly zy ¢ E or a Cy is immediate. Now neither of the two
edges zv™t yv™ can exist by the following argument: If |N(v) N N(v")| = 2,
then zv™" completes a 5-cycle. If |[N(v) N N(v")| = 1, then d(v) = 5, and
therefore d(z) > 4 for all z € V(C) (a z with a smaller degree would guarantee
a vertex of degree > 6 in the chordless C', contradicting d(v)’s maximality).
In particular d(vt) > 4. Let 2’ € N(v") — {v,v*", z}. Then 2v™+ € FE to
prevent a claw at v*. If zo™" € E, then zvtta'vtox is a Cs. Hence, in either
case xvTt ¢ F. The argument against yv~~ € E is symmetric.

Further, z, y can not have any other adjacencies on C| else a shortening path of
C' exists, a contradiction to Lemma 1. Now zv™Cv ™y is a P, a contradiction.

If m = 7, observe that there are at most two vertices on C' with degree < 4.
Thus there is a vertex v € V(C') with d(v),d(v"),d(v™) > 5. By Theorem 8,
the neighborhood of v is split into two complete subgraphs, not connected by
edges, else there is a Cg in N (v)Uv. Without loss of generality, let z,y € N(v)N
N(vT). Then zvtt ¢ E. else there is a Cg in v UN (v™), using v, v, 0™t 2,y
and one other neighbor of v™. Further, z has no other neighbors on C, else a
shortening path of C' exists. But now zv™Cv™ is a Pr, a contradiction.

If m > 8, vCv°" forms a P; for any v € V(C), a contradiction.
Hence, G is subpancyclic. O

Proof of Theorem 6: Suppose G is not subpancyclic. Then for some m, G
has a C,,, but no C,,,_1. By Corollary 9, m > A/2 +3 > §,/4 + 3.

Case 1 Suppose n < 12.

Note that the degree sum condition implies the following bounds on ds:
n€{6,7,8} = 0y >n—1,
n€{9,10} = 0, >n—2,

n=11 = 0y > n — 3.



Consider all the possible values for m. Since n > 5, m > %—1-3 > —V?’ZH +3 > 5.
Say, C' = C,, = vy ... 0,v;.

If m = 6, then the only chords C' could have are of the form v;v; 3. But then
claw-freeness forces either v;v;19 or v;v;44, which leads to a Cs. So C' has no
chords.

For n < 8, there are at least

6
D (d(v;) —2) > 36, —12>3(n—1)—12=3n—15

i=1

edges from C' to V — C, but at most 3(n — 6) = 3n — 18 edges from V — C to
C, since no vertex in V' — C' can have more then three neighbors on C' without
producing a Cs. Thus, n > 9.

For 9 < n < 10, the same count shows that there are exactly 3n — 18 edges
from C' to V — C, hence every vertex of V' — (' has exactly three neighbors
on C. To avoid a claw and a Cj, all three have to be in a row. If two of
the vertices u,w € V — C are adjacent, a C5 can easily be found. But now
d(u) + d(w) = 6 < 62, a contradiction.

For n = 11, there are at least 35 — 12 > 12 edges from C to V — C, so out
of the five vertices in V' — (', at least two vertices u,w € V — C have three
neighbors on the cycle, and two more vertices x,y € V — C have at least two
neighbors on the cycle. If any of the edges uw, uz, uy, wz, wy exists, a C5 can
easily be found. Since d > 8, both u and w must be adjacent to the remaining
vertex z. But now again, a C5 can be found.

If m = 7, the only possible chords are of the form v;v(;43)modr. To avoid claws,
all chords of this form have to exist if one exists. But now v,vavsv6v70401 is a
Cg. Therefore, C' has no chords. This yields immediately n > 8. Observe, that
for n < 12, the degree sum condition ensures that do > n — 3. Now a similar
count as in the last case gives at least

7
Z(d(vi)—2)2;52—142;(n—3)—14:3n—21+

=1

n—"7T
2

edges going out of C, with at most 3(n — 7) going in, a contradiction.

If m = 8 and C has a chord, then C' has exactly the chords (after a cyclic
renumbering of the vertices) vyvs, v1vg, VaUs, V2vg. If any of those are missing,
there is a claw, if there are any more than those, there is a C;. But now the
degree sum condition forces vz or vg to have a neighbor outside the cycle, say
vsx € E. To avoid a claw, vox € E or vyx € E. But this again yields a C7. So



C has no chords, and a similar count as before yields

i(d(vi)—Z) > 405 — 16 > 4(n — 3) — 16 = 4n — 28 > 3(n — 8),

i=1
a contradiction.

If m = 9, a similar count shows the existence of chords. But if there is a chord,
claw-freeness forces the appearance of a K, of the form v;v;1v;14v; 15 inside
(C'), say at v1v905V.

Now vg has no neighbors outside C: Suppose z € V —C, zvg € E. To prevent a
claw at vg, 2 has to be adjacent to v; or ve. But then the 7-cycle C7 = vyv5Cvy
can be extended to a Cg through .

If vguz € E, then vs is adjacent to either v; or vg to avoid a claw at vg. But then
again, C’ can be extended through vs. The symmetric argument shows that
vgvy ¢ E. Further, if vgvy € E, then vgvg € E to prevent a claw at vy, which
is not possible. The symmetric argument shows that vgvs ¢ E. So d(vg) = 2.
But this implies that d(vs) > n — 5. We know that v3 is not adjacent to wvg,
v; and vs. Further, v3 can not be adjacent to vy without creating a claw at
vg. Thus, vz is adjacent to all other vertices, in particular vsvg, v3v; € E. But
now, C’ can be extended through vz, a contradiction.

If m > 10, a chord is guaranteed, again. Consider a chord v;v;, such that
|v;Cv;| is minimal. Now find a chord v,v5 on v;Cv;, such that there is no other
chord within v,Cv,. Either all vertices in v,Cv, or all vertices in V;C'v; have
chords, since there is at most one vertex outside C', and all vertices with degree
at most 3 have to be pairwise adjacent. Say all vertices in v,C'vs have chords.
Now, similar to the first case in the proof of Lemma 1, insert all but one of
Vr11Cvs_1 into vsCv,vs to construct a C,_q.

Case 2 Suppose n > 12 ,m > d2/2 + 3.

By Lemma 1, C' has no chords (n > 12 guarantees d > 9). Thus there are

veV(C)

edges from C' to G — C'. On the other hand, every vertex in G — C' can have
at most three neighbors on C', otherwise C' has a shortening path, which is
impossible by Lemma 1. So



thus

3n > m(% +1) > (@ +3)(% +1)>(V3n+1+1)(vV3n+1-1)=3n,

a contradiction.
Case 3 Suppose n > 12, m < d2/2 + 3.

Let d := [d2/2], so m < d + 2. By Corollary 9, we know that m > A/2 +
3 > d/2 + 3, particularly m > 6. By Lemma 1 , C' has no chords. Let C' =
V103 . . . Upv1. Since all vertices of degree < d have to be pairwise adjacent,
we may assume that d(v;)) > d for 3 < i < m. Fori =1,2,...,m — 1, let
N; := N(v;) N N(vi1), let Ny, := N(vy,) N N(vp). Since G is claw-free, every
vertex adjacent to C lies in some N;. Note, that if d(v;) > d, then N;_1NN; = 0,
and N;_; and N; induce complete subgraphs, otherwise, (N (v;)) is traceable
by Theorem 8, so we can find cycles of any length up to d(v;)+1 in (N (v;)Uv;),
in particular one of length m — 1.

Now we claim that there can not be any edges or 2-paths between N; and N,
for3<i<j<m-—1.1f j —i >4, an edge or 2-path leads to a shortening
path of C, a contradiction to Lemma 1. If j —¢ < 3 and m > 7, one can
easily find a cycle of length at most 6 through that edge or 2-path, v;,; and
vj, which we can then extend to a C,,_1, using any number of vertices out of
N(v;). If m =6, then j —¢ < 2, and one can easily find a cycle of length at
most 5 through that edge or 2-path, v;1; and v;, which we can then extend to
a C5, using any number of vertices out of N(v;).

Since all vertices of degree less than d have to be pairwise adjacent, we can
now guarantee, after possibly renumbering the vertices of C, that all such
vertices in H := {JN; U C must lie in N, U Ny U Ny U {v1,vs}.

Our next claim is, that for two vertices z,y € N;,;3 < i < m — 1, their
neighborhoods intersect as follows: N(z) YN (y) = N;U{v;,vi41} —{z,y}. We
already established that it is at least of that size, since (N;) is complete. But
it can not be bigger; for suppose, there is a z € (N(z) N N(y)) — H. Then, z is
not adjacent to v; . Therefore, the neighborhood of x is traceable by Theorem
8, and since d(z) > d, we can find a C,,_; in (N(x)Ux).

Let M; :=={2 €V — H : zz € E for some z € N,;}. Since |N;| < m — 4 for
all 3 <i<m —1 (else you can find a Cp,—q in (N; U{z;, z;41}), since (N;) is
complete), and the degree of vertices in N; is at least d, every x € N; has at
least d —m + 3 neighbors outside N; U{x;, x;41}. Thus, |M;| > (d—m+3)| Ny
for 3 <1 < m — 1. Further, the M; are disjoint, otherwise there would be
2-paths between the N;.



But now we see that

> |C|+ |Nim U N U Ns| + S5 (d — m+ 4)| V|
>* m+ (d(vm)—2)+(d(v1)—2)+(d(v3)—22)+(d—m+4) S d(vi)-2)
g+ 3+ d72+5274+(d77;1+4)(m74)(d72)

Sox 4d—1+(2d—4)(d—2)
= 2

v

> d>—2d+3

> n,

where >* results from a count that counts every vertex in the N; at most
twice, and >** comes from the fact, that for d > 2,

d/2+?{21¢£1gd+2((d —m+4)(m—4)) =2d—4,

and 0o > 2d — 1. This contradiction concludes the proof. O

4 Sharpness

In this section we demonstrate the sharpness of some of the results.

The following family of graphs (see also figure 1) demonstrates the sharpness
of the bound on ¢, in Lemma 1. Let k£ > 4, and let Hy,..., Ho be 2k disjoint
copies of K5, and w;v; an edge of H;(i = 1,...,2k). Now the graph Fj is
obtained from U?ﬁl H;—wu,;v; by adding the edges viug, vous, . . ., Vo _1Usk, Vopl
and the edges ujvg, Uity y1, Usk Uk, Uk Vkr1. We have do(F)) = 8, and there is a
Ce, with chords, but no C,, for 5k 4+ 2 < p < 6k.

The graph G in figure 2 shows that in Theorem 5 P;-free can not be replaced
by Ps-free. This graph is {K; 3, Ps}-free with do = 10, and G contains a Cy
but no C5.

The degree bounds in Theorem 6 and Theorem 7 are sharp. Consider the
following family of graphs from [2] :

For any integer p > 2, we define the graph G, as follows. Let Hy,..., H, be
p disjoint copies of K3, o, and u,v; an edge of H;(i = 1,...,p). Now G, is
obtained from J!_; H; — u;v; by adding the edges viug, vous, . . . s Up—1Up, Upl1 .
The graph G, is both hamiltonian and claw-free. Furthermore, we have §(G,) =

3p — 3 and |V(G,)| = p(3p — 2), implying that §(G,) = v3n+1—2. It is

10



obvious that G, does not contain C3,_ and hence G, is not (sub)pancyclic.
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Fig. 1. Graph F}

Fig. 2. Graph G
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