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Abstract

In this paper, we present several conditions for K1,3-free graphs, which guarantee
the graph is subpancyclic. In particular, we show that every K1,3-free graph with
minimum degree sum δ2 > 2

√
3n+ 1 − 4; every {K1,3, P7}-free graph with δ2 ≥ 9;

every {K1,3, Z4}-free graph with δ2 ≥ 9; and every K1,3-free graph with maximum
degree ∆, diam(G) < ∆+6

4 and δ2 ≥ 9 is subpancyclic.
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1 Introduction

If not specified otherwise, we will use notation from [1]. We consider finite sim-
ple graphs only. A graph on n vertices is called subpancyclic if it contains cycles
of every length l with 3 ≤ l ≤ c(G), where c(G) denotes the circumference of
G. If G is subpancyclic and hamiltonian, it is called pancyclic.

We will always denote the edge set of the graph G by E, and V will denote
its vertex set. For some graph H, a graph is said to be H-free, if it does not
contain an induced copy of H. The complete bipartite graph K1,3 is also called
the claw. The graph Z4 is a triangle with a path of length four attached to
one of its vertices, the graph P7 is the path on seven vertices.

The degree of a vertex v is denoted by d(v). We will write ∆(G) or (if no
confusion arises) ∆ for the maximum degree in G, and δ(G) or δ for the
minimum degree in G. By δ2(G) or δ2, we will denote the minimum of {d(u)+
d(v)|u, v ∈ V, uv /∈ E}.
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Let C be a cycle in G, and assign some orientation to C. For two vertices
x, y ∈ V (C), the notation xCy will stand for the path from x to y along
C following the orientation of C. An xy-path P in G is called a shortening
path of C, if V (P ) ∩ V (C) = {x, y} and |P | < min{|xCy|, |yCx|}. An edge
xy /∈ E(C) with x, y ∈ V (C) is called a chord of C.

We will start by proving the following Lemma.

Lemma 1 Let G be a claw-free graph with δ2(G) ≥ 9. Suppose, for some
m > 3, G has an m-cycle C, but no (m−1)-cycle. Then there is no shortening
path of C.

As we will see, Lemma 1 has several interesting consequences.

Theorem 2 Let G be a claw-free graph with maximum degree ∆ and δ2(G) ≥
9. If diam(G) < ∆+6

4
, then G is subpancyclic.

Theorem 3 Let G be a claw-free graph with minimum degree δ and δ2(G) ≥ 9.
If G is not a line graph, and diam(G) < δ+3

2
, then G is subpancyclic.

Theorem 4 Let G be a {K1,3, Z4}-free graph with δ2 ≥ 9. Then G is subpan-
cyclic. If G is 2-connected, then G is pancyclic.

Theorem 5 Let G be a {K1,3, P7}-free graph with δ2 ≥ 9. Then G is subpan-
cyclic.

Theorem 6 Let G be a claw-free graph on n ≥ 5 vertices with δ2 > 2
√

3n+ 1−
4. Then G is subpancyclic.

From Theorem 6 we obtain as a corollary the following Theorem of Trommel,
Veldman and Verschut [2]:

Theorem 7 Let G be a claw-free graph on n ≥ 5 vertices. If the minimum
degree δ is δ >

√
3n+ 1− 2, then G is subpancyclic.

In the proofs of Theorems 2-6, we will frequently use the following theorem
from Flandrin, Fournier and Germa [4], and its corollaries:

Theorem 8 Let G be a claw-free graph. Then the graph 〈N〉 induced by the
neighborhood N of any vertex x falls in one of three cases:
1. 〈N〉 is hamiltonian.
2. 〈N〉 consists of two complete subgraphs G1 and G2, connected with some
edges, all of them having a common vertex in G1.
3. 〈N〉 consists of two complete subgraphs with no edges in between.

Corollary 9 Let G be a claw-free graph with maximum degree ∆ . Then G
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contains cycles of length l for all l with 3 ≤ l ≤ d∆/2e+ 1.

Proof: The proof is obvious. 2

Corollary 10 Let G be a claw-free graph with minimum degree δ . If G is not
a line graph, then G contains cycles of length l for all l with 3 ≤ l ≤ δ + 1.

Proof: Observe that G is a line graph if the neighborhoods of all vertices are
in the third class of Theorem 8. Therefore, there is a vertex x with 〈N(x)〉
in the first or second class of Theorem 8. In either case, 〈N(x)〉 is traceable,
implying 〈N(x) ∪ {x}〉 is pancyclic. 2

2 Proof of Lemma 1

Suppose instead P is a shortest shortening path. We will distinguish two cases.

Case 1 Suppose P is a chord (P = xy).

Pick two chords u1u2 and v1v2, such that u1, u2 ∈ xCy, v1, v2 ∈ yCx, where
both chords are minimal in the sense that there is no other chord uv with
u, v ∈ u1Cu2 or u, v ∈ v1Cv2. This does not exclude the possibility of one or
both of these chords being identical with xy.

Let K := {v ∈ V (C)|∃u ∈ V (C) : uv is a chord}, L := V (C)−K. If there is
a shortening path of C with length exactly two with both its endvertices in
u1Cu2 (v1Cv2), pick such a shortening path s1s2s3 (t1t2t3), such that s1Cs3

(t1Ct3) is as short as possible, else set s1 = s2 = u1, s3 = u2 (t1 = t2 = v1, t3 =
v2).

Let a1, a2, . . . , ar be the vertices of s+
1 Cs

−
3 ∩ L (in order), let b1, b2, . . . , bl be

the vertices of t+1 Ct
−
3 ∩ L. Without loss of generality, by symmetry we may

assume that l ≥ r. Further, if l = r we may assume that d(bi) ≥ 5 for all
1 ≤ i ≤ l (since they belong to L, there are no edges between the ai and the
bj, so δ2(G) ≥ 9 guarantees the statement).

Now we will construct a cycle C ′ ⊂ 〈C ∪ s2〉 with m− r − 1 ≤ |C ′| ≤ m− 1,
which we will then extend to a Cm−1 to get a contradiction.

Start with the cycle s1s2s3Cs1. Note that c = |s1s2s3Cs1| ≤ m − 1. If c ≥
m− r− 1, this cycle is the desired C ′. Otherwise, s+

1 Cs
−
3 ∩K 6= ∅ and we can

pick a vertex u ∈ s+
1 Cs

−
3 ∩K. Then u has an edge to some vertex v ∈ s+

3 Cs
−
1 .

There can’t be an edge v−v+, else there is a Cm−1. There is no claw centered at
v, so v+u ∈ E or v−u ∈ E. Therefore u can be inserted in the cycle between v
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and one of its neighbors to extend the cycle. If two vertices u,w ∈ s+
1 Cs

−
3 ∩K

share the same neighbors v, v+ ∈ s+
3 Cs

−
1 , then all of uCw (or wCu) can be

inserted between v and v+ to extend the cycle. Thus, any number of vertices
in s+

1 Cs
−
3 ∩ K can be inserted (we don’t have control about the number of

vertices of s+
1 Cs

−
3 ∩ L inserted in the process). With this process, we insert

m−r−1−c vertices out of s+
1 Cs

−
3 ∩K. The resulting cycle C ′ is of the desired

length, since at most r vertices out of L were inserted.

To extend C ′, consider b1, b4, b7, . . . , b3dl/3e−2 . Since t1Ct3 is the shortest such
segment possible, these vertices have pairwise disjoint neighborhoods. Further,
none of them is a neighbor of s2, else there is a claw at s2. By Theorem 8, C ′

can be extended through the neighborhoods of these vertices by any number
of vertices up to d(bi)− 2 for each bi, i = 1, 4, . . . .
If l = r, then d(bi) ≥ 5, so this extends C ′ by up to 3dl/3e ≥ r vertices,
resulting in a Cm−1.

If 3 ≤ r < l, let d := min{4, d(b1), d(b4), . . .}. Then C ′ is extendable by∑dl/3e−1
i=0 (d(b1+3i) − 2) ≥ d − 2 + (dl/3e − 1)(7 − d) ≥ 3dl/3e − 1 vertices,

yielding a Cm−1.

If 1 ≤ r < l = 3, consider b1 and b3. One of them has degree at least 5, so we
can extend by up to 3 vertices, which is again enough.

If r = 1, l = 2, the only problem would be if d(b1) = d(b2) = 2, else we could
extend by one, which is enough. But then, d(a1) ≥ 7, and by a symmetric
argument we can find a cycle C ′′ ⊂ 〈C ∪ t2〉 which includes a−1 a1a

+
1 , and

m− 3 ≤ |C ′′| ≤ m− 1. This cycle can now be extended around a1 to a Cm−1.

Finally, if r = 0, C ′ is already a Cm−1. This contradiction concludes the
argument, hence C has no chords.

Case 2 Suppose P has length ≥ 2 (P = z0z1z2 . . . zl, with x = z0, y = zl).

Assume, that P is chosen such that k = |xCy| is minimal. Observe, that
k > l − 1 (else k = l − 1, and a Cm−1 is easily found). Let v0 = y, v1 =
y+, . . . , vm−k+1 = x. Since k is minimal, x+z1 /∈ E. Since C is chordless,
x+vm−k /∈ E. Thus vm−kz1 ∈ E to prevent a claw at x. A symmetric argument
shows that v1zl−1 ∈ E. Now m− k ≥ k, else k would not have been minimal.

Consider C ′ = xPyCx. We know that m − k + l + 1 = |C ′| ≤ m − 2. We
will now extend C ′ to a Cm−1 to get the contradiction. None of the edges
vizj, 2 ≤ i ≤ m − k − 1, 0 ≤ j ≤ l exists, else let j be minimal, such that
for some 2 ≤ i ≤ m − k − 1, there is an edge vizj (j ≥ 1, else chord). To
prevent a claw at zj, zj+1vi ∈ E is necessary. But now, consider the paths
P ′ = vizj+1Py and P ′′ = vizjPx. Both of them are shorter than P . Since P
is the shortest shortening path, P ′ and P ′′ can not be shortening paths, thus
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1 + l − j = |P ′| ≥ |yCvi| = i+ 1, and j + 2 = |P ′′| ≥ |viCx| = m− k − i+ 2.
But this implies that l ≥ m− k ≥ k, a contradiction to P being a shortening
path.

Now, note that none of the neighborhoods of v2, v5, . . . , v3bk/3c−1 intersect, else
k was not minimal.

If k ≥ 6, let d := min{4, d(v2), d(v5), . . . d(v3bk/3c−1)}. We can extend C ′

around v2, v5, . . . , v3bk/3c−1 by up to
∑bk/3c−1
i=0 (d(v2+3i)− 2) ≥ d− 2 + (bl/3c −

1)(7 − d) ≥ 3bk/3c − 1 ≥ k − 3 vertices to get a Cm−1, just like in the first
case.

If k = 5, |C ′| = m + l − 4 ≥ m− 2. As either d(v2) ≥ 5 or d(v4) ≥ 5, we can
extend around it by one vertex, and we have our contradiction.

If k ≤ 4, then m − 2 ≥ |C ′| ≥ m − k + l + 1 ≥ m − 4 + 2 + 1 = m − 1, a
contradiction. 2

3 Proofs of the Theorems

Proof of Theorem 2: Suppose G is not subpancyclic. Then for some m, G
has a Cm, but no Cm−1. By Corollary 9 , m ≥ ∆+6

2
. But now the diameter

condition guarantees a shortening path, which is impossible by Lemma 1 . 2

Proof of Theorem 3: Suppose G is not subpancyclic. Then for some m, G
has a Cm, but no Cm−1. By Corollary 10 , m ≥ δ + 3. But now the diameter
condition guarantees a shortening path, which is impossible by Lemma 1 . 2

Proof of Theorem 4: Suppose G is not subpancyclic. Then for some m, G
has a Cm, but no Cm−1. By Corollary 9 , m ≥ 6. By Lemma 1, C := Cm has
no chords. By the degree condition, there is a vertex v ∈ V (C) with d(v) ≥ 5.

If m = 6, the neighborhood of v is split into two complete subgraphs, not
connected by edges. Else there was a 5-cycle in N(v)∪v by Theorem 8 (take a
P4 in N(v), and connect both its ends with v). Without loss of generality, let
x, y ∈ N(v)∩N(v+) (so xv−, yv− /∈ E, xy ∈ E). Observe that xv++, yv++ /∈ E,
else there is a 5-cycle. Further x and y can not be adjacent to any other vertex
of C, else there is a shortening path of C, which is not possible by Lemma 1.
Now yxv+Cv− form a Z4, a contradiction.

If m ≥ 7, there exist z ∈ V −V (C), y ∈ V (C), such that z ∈ (N(y)∩N(y+))−
N(y++). But then zyy+Cy5+ form a Z4 (Again, z can not be adjacent to any
of y3+, y4+y5+, else there was a shortening path of C).
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If G is 2-connected, then it is hamiltonian by a result of Brousek, Ryjáček and
Favaron [3], thus G is pancyclic. 2

Proof of Theorem 5: Suppose G is not subpancyclic. Then for some m, G
has a Cm, but no Cm−1. By Corollary 9 , m ≥ 6. By Lemma 1, C := Cm has
no chords.

If m = 6, let v ∈ V (C) be the vertex on C with the largest degree. The degree
condition guarantees d(v) ≥ 5. By Theorem 8, the neighborhood of v is split
into two complete subgraphs of size at most 3, not connected by edges, else
there is a C5 in N(v)∪v. Hence, |N(v)∩N(v−)|, |N(v)∩N(v+)| ∈ {1, 2}, with
one of them being 1 only in the case that d(v) = 5. Let x ∈ N(v)∩N(v+), y ∈
N(v) ∩N(v−). Clearly xy /∈ E or a C5 is immediate. Now neither of the two
edges xv++, yv−− can exist by the following argument: If |N(v)∩N(v+)| = 2,
then xv++ completes a 5-cycle. If |N(v) ∩ N(v+)| = 1, then d(v) = 5, and
therefore d(z) ≥ 4 for all z ∈ V (C) (a z with a smaller degree would guarantee
a vertex of degree ≥ 6 in the chordless C, contradicting d(v)’s maximality).
In particular d(v+) ≥ 4. Let x′ ∈ N(v+) − {v, v++, x}. Then x′v++ ∈ E to
prevent a claw at v+. If xv++ ∈ E, then xv++x′v+vx is a C5. Hence, in either
case xv++ /∈ E. The argument against yv−− ∈ E is symmetric.

Further, x, y can not have any other adjacencies on C, else a shortening path of
C exists, a contradiction to Lemma 1. Now xv+Cv−y is a P7, a contradiction.

If m = 7, observe that there are at most two vertices on C with degree ≤ 4.
Thus there is a vertex v ∈ V (C) with d(v), d(v+), d(v−) ≥ 5. By Theorem 8,
the neighborhood of v is split into two complete subgraphs, not connected by
edges, else there is a C6 in N(v)∪v. Without loss of generality, let x, y ∈ N(v)∩
N(v+). Then xv++ /∈ E, else there is a C6 in v+∪N(v+), using v, v+, v++, x, y
and one other neighbor of v+. Further, x has no other neighbors on C, else a
shortening path of C exists. But now xv+Cv− is a P7, a contradiction.

If m ≥ 8, vCv6+ forms a P7 for any v ∈ V (C), a contradiction.

Hence, G is subpancyclic. 2

Proof of Theorem 6: Suppose G is not subpancyclic. Then for some m, G
has a Cm, but no Cm−1. By Corollary 9 , m ≥ ∆/2 + 3 ≥ δ2/4 + 3.

Case 1 Suppose n < 12.

Note that the degree sum condition implies the following bounds on δ2:

n ∈ {6, 7, 8} ⇒ δ2 ≥ n− 1,

n ∈ {9, 10} ⇒ δ2 ≥ n− 2,

n = 11 ⇒ δ2 ≥ n− 3.
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Consider all the possible values for m. Since n ≥ 5, m ≥ ∆
2

+3 >
√

3n+1
2

+3 ≥ 5.
Say, C = Cm = v1 . . . vmv1.

If m = 6, then the only chords C could have are of the form vivi+3. But then
claw-freeness forces either vivi+2 or vivi+4, which leads to a C5. So C has no
chords.

For n ≤ 8, there are at least

6∑
i=1

(d(vi)− 2) ≥ 3δ2 − 12 ≥ 3(n− 1)− 12 = 3n− 15

edges from C to V −C, but at most 3(n− 6) = 3n− 18 edges from V −C to
C, since no vertex in V −C can have more then three neighbors on C without
producing a C5. Thus, n ≥ 9.

For 9 ≤ n ≤ 10, the same count shows that there are exactly 3n − 18 edges
from C to V − C, hence every vertex of V − C has exactly three neighbors
on C. To avoid a claw and a C5, all three have to be in a row. If two of
the vertices u,w ∈ V − C are adjacent, a C5 can easily be found. But now
d(u) + d(w) = 6 < δ2, a contradiction.

For n = 11, there are at least 3δ2 − 12 ≥ 12 edges from C to V − C, so out
of the five vertices in V − C, at least two vertices u,w ∈ V − C have three
neighbors on the cycle, and two more vertices x, y ∈ V − C have at least two
neighbors on the cycle. If any of the edges uw, ux, uy, wx, wy exists, a C5 can
easily be found. Since δ2 ≥ 8, both u and w must be adjacent to the remaining
vertex z. But now again, a C5 can be found.

If m = 7, the only possible chords are of the form viv(i+3)mod7. To avoid claws,
all chords of this form have to exist if one exists. But now v1v2v5v6v7v4v1 is a
C6. Therefore, C has no chords. This yields immediately n ≥ 8. Observe, that
for n < 12, the degree sum condition ensures that δ2 ≥ n − 3. Now a similar
count as in the last case gives at least

7∑
i=1

(d(vi)− 2) ≥ 7

2
δ2 − 14 ≥ 7

2
(n− 3)− 14 = 3n− 21 +

n− 7

2

edges going out of C, with at most 3(n− 7) going in, a contradiction.

If m = 8 and C has a chord, then C has exactly the chords (after a cyclic
renumbering of the vertices) v1v5, v1v6, v2v5, v2v6. If any of those are missing,
there is a claw, if there are any more than those, there is a C7. But now the
degree sum condition forces v3 or v8 to have a neighbor outside the cycle, say
v3x ∈ E. To avoid a claw, v2x ∈ E or v4x ∈ E. But this again yields a C7. So
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C has no chords, and a similar count as before yields

8∑
i=1

(d(vi)− 2) ≥ 4δ2 − 16 ≥ 4(n− 3)− 16 = 4n− 28 > 3(n− 8),

a contradiction.

If m = 9, a similar count shows the existence of chords. But if there is a chord,
claw-freeness forces the appearance of a K4 of the form vivi+1vi+4vi+5 inside
〈C〉, say at v1v2v5v6.

Now v8 has no neighbors outside C: Suppose x ∈ V −C, xv8 ∈ E. To prevent a
claw at v8, x has to be adjacent to v7 or v9. But then the 7-cycle C ′ = v2v5Cv2

can be extended to a C8 through x.

If v8v3 ∈ E, then v3 is adjacent to either v7 or v9 to avoid a claw at v8. But then
again, C ′ can be extended through v3. The symmetric argument shows that
v8v4 /∈ E. Further, if v8v2 ∈ E, then v8v3 ∈ E to prevent a claw at v2, which
is not possible. The symmetric argument shows that v8v5 /∈ E. So d(v8) = 2.
But this implies that d(v3) ≥ n − 5. We know that v3 is not adjacent to v8,
v1 and v5. Further, v3 can not be adjacent to v9 without creating a claw at
v9. Thus, v3 is adjacent to all other vertices, in particular v3v6, v3v7 ∈ E. But
now, C ′ can be extended through v3, a contradiction.

If m ≥ 10, a chord is guaranteed, again. Consider a chord vivj, such that
|viCvj| is minimal. Now find a chord vrvs on vjCvi, such that there is no other
chord within vrCvs. Either all vertices in vrCvs or all vertices in ViCvj have
chords, since there is at most one vertex outside C, and all vertices with degree
at most 3 have to be pairwise adjacent. Say all vertices in vrCvs have chords.
Now, similar to the first case in the proof of Lemma 1, insert all but one of
vr+1Cvs−1 into vsCvrvs to construct a Cm−1.

Case 2 Suppose n ≥ 12 , m ≥ δ2/2 + 3.

By Lemma 1, C has no chords (n ≥ 12 guarantees δ2 ≥ 9). Thus there are

∑
v∈V (C)

(d(v)− 2) ≥ m(
δ2

2
− 2)

edges from C to G − C. On the other hand, every vertex in G − C can have
at most three neighbors on C, otherwise C has a shortening path, which is
impossible by Lemma 1. So

m(
δ2

2
− 2) ≤ 3(n−m),
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thus

3n ≥ m(
δ2

2
+ 1) ≥ (

δ2

2
+ 3)(

δ2

2
+ 1) > (

√
3n+ 1 + 1)(

√
3n+ 1− 1) = 3n,

a contradiction.

Case 3 Suppose n ≥ 12 , m < δ2/2 + 3.

Let d := dδ2/2e, so m ≤ d + 2. By Corollary 9, we know that m ≥ ∆/2 +
3 ≥ d/2 + 3, particularly m ≥ 6. By Lemma 1 , C has no chords. Let C =
v1v2 . . . vmv1. Since all vertices of degree < d have to be pairwise adjacent,
we may assume that d(vi) ≥ d for 3 ≤ i ≤ m. For i = 1, 2, . . . ,m − 1, let
Ni := N(vi) ∩N(vi+1), let Nm := N(vm) ∩N(v1). Since G is claw-free, every
vertex adjacent to C lies in someNi. Note, that if d(vi) ≥ d, thenNi−1∩Ni = ∅,
and Ni−1 and Ni induce complete subgraphs, otherwise, 〈N(vi)〉 is traceable
by Theorem 8, so we can find cycles of any length up to d(vi)+1 in 〈N(vi)∪vi〉,
in particular one of length m− 1.

Now we claim that there can not be any edges or 2-paths between Ni and Nj,
for 3 ≤ i < j ≤ m − 1. If j − i ≥ 4, an edge or 2-path leads to a shortening
path of C, a contradiction to Lemma 1. If j − i ≤ 3 and m ≥ 7, one can
easily find a cycle of length at most 6 through that edge or 2-path, vi+1 and
vj, which we can then extend to a Cm−1, using any number of vertices out of
N(vj). If m = 6, then j − i ≤ 2, and one can easily find a cycle of length at
most 5 through that edge or 2-path, vi+1 and vj, which we can then extend to
a C5, using any number of vertices out of N(vj).

Since all vertices of degree less than d have to be pairwise adjacent, we can
now guarantee, after possibly renumbering the vertices of C, that all such
vertices in H :=

⋃
Ni ∪ C must lie in Nm ∪N1 ∪N2 ∪ {v1, v2}.

Our next claim is, that for two vertices x, y ∈ Ni, 3 ≤ i ≤ m − 1, their
neighborhoods intersect as follows: N(x)∩N(y) = Ni∪{vi, vi+1}−{x, y}. We
already established that it is at least of that size, since 〈Ni〉 is complete. But
it can not be bigger; for suppose, there is a z ∈ (N(x)∩N(y))−H. Then, z is
not adjacent to vi . Therefore, the neighborhood of x is traceable by Theorem
8, and since d(x) ≥ d, we can find a Cm−1 in 〈N(x) ∪ x〉.

Let Mi := {z ∈ V − H : zx ∈ E for some x ∈ Ni}. Since |Ni| ≤ m − 4 for
all 3 ≤ i ≤ m− 1 (else you can find a Cm−1 in 〈Ni ∪ {xi, xi+1}〉, since 〈Ni〉 is
complete), and the degree of vertices in Ni is at least d, every x ∈ Ni has at
least d−m+ 3 neighbors outside Ni∪{xi, xi+1}. Thus, |Mi| ≥ (d−m+ 3)|Ni|
for 3 ≤ i ≤ m − 1. Further, the Mi are disjoint, otherwise there would be
2-paths between the Ni.
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But now we see that

n ≥ |C|+ |Nm ∪N1 ∪N2|+
∑m−1
i=3 |Ni ∪Mi|

≥ |C|+ |Nm ∪N1 ∪N2|+
∑m−1
i=3 (d−m+ 4)|Ni|

≥∗ m+
(d(vm)−2)+(d(v1)−2)+(d(v3)−2)+(d−m+4)

∑m−1

i=4
(d(vi)−2)

2

≥ d
2

+ 3 + d−2+δ2−4+(d−m+4)(m−4)(d−2)
2

≥∗∗ 4d−1+(2d−4)(d−2)
2

> d2 − 2d+ 3

> n,

where ≥∗ results from a count that counts every vertex in the Ni at most
twice, and ≥∗∗ comes from the fact, that for d ≥ 2,

min
d/2+3≤m≤d+2

((d−m+ 4)(m− 4)) = 2d− 4,

and δ2 ≥ 2d− 1. This contradiction concludes the proof. 2

4 Sharpness

In this section we demonstrate the sharpness of some of the results.

The following family of graphs (see also figure 1) demonstrates the sharpness
of the bound on δ2 in Lemma 1. Let k ≥ 4, and let H1, . . . , H2k be 2k disjoint
copies of K5, and uivi an edge of Hi(i = 1, . . . , 2k). Now the graph Fk is
obtained from

⋃2k
i=1 Hi−uivi by adding the edges v1u2, v2u3, . . . , v2k−1u2k, v2ku1

and the edges u1vk, u1uk+1, u2kvk, u2kvk+1. We have δ2(Fk) = 8, and there is a
C6k with chords, but no Cp for 5k + 2 < p < 6k.

The graph G in figure 2 shows that in Theorem 5 P7-free can not be replaced
by P8-free. This graph is {K1,3, P8}-free with δ2 = 10, and G contains a C8

but no C7.

The degree bounds in Theorem 6 and Theorem 7 are sharp. Consider the
following family of graphs from [2] :

For any integer p ≥ 2, we define the graph Gp as follows. Let H1, . . . , Hp be
p disjoint copies of K3p−2, and uivi an edge of Hi(i = 1, . . . , p). Now Gp is
obtained from

⋃p
i=1 Hi − uivi by adding the edges v1u2, v2u3, . . . , vp−1up, vpu1.

The graphGp is both hamiltonian and claw-free. Furthermore, we have δ(Gp) =
3p − 3 and |V (Gp)| = p(3p − 2), implying that δ(Gp) =

√
3n+ 1 − 2. It is

10



obvious that Gp does not contain C3p−1 and hence Gp is not (sub)pancyclic.
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