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Abstract. For a fixed (multi)graph H, a graph G is H-linked if any injection
f : V (H) → V (G) can be extended to an H-subdivision in G. The notion of an
H-linked graph encompasses several familiar graph classes, including k-linked, k-
ordered and k-connected graphs. In this paper, we give two sharp Ore-type degree
sum conditions that assure a graph G is H-linked for arbitrary H. These results ex-
tend and refine several previous results on H-linked, k-linked and k-ordered graphs.

All graphs in this paper are finite. For notation not defined here we refer the
reader to [1]. If X ⊆ V (G) is a vertex set, we will often just write X for the induced
subgraph G[X] if the context is clear. Given an integer-valued graph parameter p
and a graph property P , the p-threshold for P is the minimum k = k(n) such that
any graph G of order n with p(G) ≥ k has property P . We will frequently consider
p-thresholds restricted to specific graph classes, such as sufficiently large graphs, or
graphs with a prescribed number of edges.

Let δ(G) and ∆(G) denote the minimum and maximum degree of G, respectively,
and let σ2(G) denote the minimum degree sum of nonadjacent vertices in G. Through-
out the paper, we will often refer to σ2 conditions as Ore-type conditions in light of
Ore’s classical theorem on hamiltonian graphs. We will also let ni(G) be the number
of vertices of degree i in G.

A graph G is k-linked if for any ordered subset of 2k vertices S = {s1, t1, . . . , sk, tk}
there exist disjoint paths P1, . . . , Pk such that for each i, Pi is an si− ti path. We will
refer to this collection of paths as an S-linkage in G. We also say that G is k-ordered
if for any list of k vertices v1, . . . , vk in G, there exists a cycle that visits these vertices
in the given order.

For a fixed graph H, a graph G is H-linked if any injection f : V (H)→ V (G) can
be extended to an H-subdivision in G. We refer to the injection f as an H-linkage
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2 Ore Conditions for H-Linked Graphs

problem (in G). The notion of an H-linked graph generalizes those of k-linked, k-
ordered and k-connected graphs, as G is kK2-linked if and only if G is k-linked, G
is Ck-linked if and only if G is k-ordered and G is k-connected if and only if G is
K1,k-linked.

1. Degree Conditions for H-Linked Graphs

Kawarabayashi, Kostochka and Yu [8] determined sharp minimum degree and de-
gree sum conditions for a graph G of order at least 2k to be k-linked.

Theorem 1. Let G be a graph on n ≥ 2k vertices. If

δ(G) ≥


n+2k−3

2
, if n ≥ 4k − 1

n+5k−5
3

, if 3k ≤ n ≤ 4k − 2

n− 1, if 2k ≤ n ≤ 3k − 1

or

σ2(G) ≥


n+ 2k − 3, if n ≥ 4k − 1
2(n+5k)

3
− 3, if 3k ≤ n ≤ 4k − 2

2n− 3, if 2k ≤ n ≤ 3k − 1

then G is k-linked. These bounds are best possible.

For sufficiently large graphs, the relevant portion of these conditions were obtained
independently in [6]. Sharp minimum degree and degree sum conditions for k-ordered
graphs were determined in [2] and [9], respectively.

Theorem 2. Let G be a graph of order n and k ≥ 2 be an integer. If

(a) n ≥ 11k − 3 and δ(G) ≥
⌈

n
2

⌉
+
⌊

k
2

⌋
− 1, or

(b) n ≥ 53k2 and σ2(G) ≥ n+
⌈

3k−9
2

⌉
,

then G is k-ordered.

Turning our attention the the broader class of H-linked graphs, minimum degree
conditions that assure a graph G is H-linked for arbitrary connected H were first given
in [3] and [10]. These were subsequently strengthened in [5] to include arbitrary
multigraphs H, thereby extending Theorem 1. Similar conditions concerned with
finding (strong) H-immersions in a graph G appear in [4]. In order to discuss these
results, we must first introduce a useful parameter.

For a (multi-)graph H, let

b(H) = max
A∪B∪C=V (H)

V (H)6=C

|E(A,B)|+ |C|.

As every graph G has a bipartite subgraph with at least half of the edges in G,
b(H) ≥ |E(H)|/2. When H is connected, it is straightforward to see that we may
choose C to be empty in any optimal partition, so that b(H) is equal to the maximum
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number of edges in a bipartite subgraph of H. As was noted in [4] and [5], when H
is disconnected, b(H) depends not only on the maximum size of a bipartite subgraph
of H, but also on the number of components of H without even cycles.

The following result of Gould, Kostochka and Yu gives the δ-threshold for H-
linkedness and also represents the current best bound on the necessary order of the
target graph G.

Theorem 3. Let H be a (multi-)graph with c(H) components that do not contain
even cycles and G be a graph of order n ≥ 9.5(|E(H)|+ c(H) + 1). If

δ(G) ≥ 1
2
(n+ b(H)− 2),

then G is H-linked. This result is sharp.

Kostochka and Yu [11] gave Ore-type conditions, dependent on k, implying that a
graph G is H-linked for every graph H with k edges.

Theorem 4. Let G be a graph of order n and let H be a simple graph with k edges
and minimum degree at least two. If

σ2(G) ≥



⌈
n+ 3k−9

2

⌉
n > 2.5k − 5.5⌈

n+ 3k−8
2

⌉
2k ≤ n ≤ 2.5k − 5.5

2n− 3 k ≤ n ≤ 2.5k − 1,

then G is H-linked.

In light of Theorem 2, one interesting consequence of Theorem 4 is that amongst
those graphs H with k edges, Ck has the largest σ2-threshold for H-linkedness when
n is sufficiently large.

The goal of this paper is to refine Theorem 4 by giving sharp Ore-type conditions
that assure a graph G is H-linked for an arbitrarily chosen H. We note here that the
σ2-threshold for H-linkedness is not, in general, twice the minimum degree given in
Theorem 3, as Theorem 2 demonstrates that this is not the case for H = Ck when n
is sufficiently large. Our first result demonstrates that twice the minimum degree in
Theorem 3 does suffice if we add only a mild minimum degree condition to G.

Theorem 5. Let H be a multigraph and G be a graph with |G| ≥ 20|E(H)|+n0(H).
If

δ(G) ≥ 4|E(H)|+ n0(H), and

σ2(G) ≥ |G|+ b(H)− 2,

then G is H-linked. This result is sharp.
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We also utilize Theorem 5 to give a sharp σ2 bound that, without any additional
minimum degree condition, assures a graph G is H-linked for any simple graph H.
Let

a(H) = max
A∪B=V (H)

(|E(A,B)|+ |B| −∆B(A)) .

Theorem 6. Let H be a simple graph and G be a graph of order n > 20|E(H)|. If

σ2(G) ≥ n+ a(H)− 2,

then G is H-linked. This result is sharp.

Observe that for arbitrary H, a(H) ≥ b(H). To see this, suppose that V (H) =
A ∪B ∪ C with e(A,B) + |C| = b(H). Then, if we let B∗ = B ∪ C, it follows that

a(H) ≥ e(A,B∗) + |B∗| −∆B∗(A) ≥ e(A,B) + |C| = b(H).

There are a number of graphs H, including Ck, for which a(H) > b(H). As such,
Theorem 6 demonstrates that there are many choices of H for which the σ2-threshold
for H-linkedness is more than twice the δ-threshold.

2. Preliminary Lemmas

A version of the following Lemma originally appears in [12], pertaining to directed
graphs. The proof for undirected graphs is analogous and, hence, omitted.

Lemma 7. Let G be a graph, k ≥ 1 and v ∈ V (G) with d(v) ≥ 2k − 1. If G − v is
k-linked, then G is k-linked.

Thomas and Wollan [14] used the following to prove that every 10m-connected
graph is m-linked, which represents the current best bound on connectivity sufficient
to assure linkedness.

Theorem 8. Let m ≥ 2 and G be a 2m-connected graph. If |E(G)| ≥ 5m|G|, then
G is m-linked.

Corollary 9. Let m ≥ 2 and G be a 2m-connected graph of order n. If σ2(G) ≥ n
and n ≥ 20m, then G is m-linked.

We close with the following straightforward fact and a useful, but equally straight-
forward, lemma.

Fact 10. Let G be a graph and H a (multi-)graph with |E(H)| = m and n0(H) = 0.
If G is m-linked, then G is H-linked.

Lemma 11. Let H be a multigraph, and let G be an edge maximal non-H-linked
graph. Then for every m ≥ |E(H)| and X ⊆ V (G) with |X| ≥ 2m:

G[X] is m-linked ⇐⇒ G[X] is complete.
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3. Proofs of Theorems 5 and 6

We are now ready to prove our main results.

Proof of Theorem 5. Sharpness is established by the following example, which is iden-
tical to the sharpness example for Theorem 3. Let A∪B ∪C be a partition of V (H)
such that |E(A,B)|+ |C| = b(H). Create G by first adding |E(A,B)| − 1 vertices to
C to obtain C∗, and then adding vertices to A and B to create sets A∗ and B∗, each

of size n−|C∗|
2

. The edges of G are all possible edges in (A∗ ∪C∗) and (B∗ ∪C∗). It is
straightforward to see that G is not H-linked, as there is not a sufficient number of
edges to create paths representing the edges in E(A,B).

For the proof of the main statement of the Theorem, we will in fact show a slightly
stronger statement as follows.

Claim 1. Let H be a multigraph and G be a graph with |G| ≥ 20|E(H)| + n0(H),
and let V (H) ⊆ V (G). If

δ(G) ≥ 4|E(H)|+ n0(H), and

d(x) + d(y) ≥ |G|+ b(H)− 2, whenever x, y ∈ V (G) \ V (H) and xy /∈ E(G),

then there is an H-linkage in G.

Let n = |G| and m = |E(H)|. Note that the statement is trivial for m ≤ 1, so we
may also assume that m ≥ 2.

For the sake of contradiction, we assume that there is no H-linkage in G, and
furthermore that Claim 1 is true for every proper subgraph H ′ ( H. Further, assume
that G is edge maximal without an H-linkage.

If v ∈ V (H) is isolated in H, then solving the H-linkage problem in G is equivalent
to solving the associated (H − v)-linkage problem in G− v. As G− v satisfies all of
the conditions in Claim 1 (note that b(H−v) = b(H)−1), this yields a contradiction,
so H does not contain any isolated vertices.

If G is 2m-connected, we are done by Corollary 9, so we may assume that there is
a minimal cut set Z in G with |Z| ≤ 2m− 1. The degree conditions on G imply that
G−Z has exactly two components, call them X and Y and we assume, without loss
of generality, that |X| ≤ |Y |. Let x ∈ X and y ∈ Y , then

n+ b(H)− 2 ≤ d(x) + d(y) ≤ |X|+ |Y |+ 2|Z| − 2 ≤ n+ |Z| − 2,

so
δX(X) + δY (Y ) ≥ |X|+ |Y | − |Z|+ b(H)− 2.

Therefore,

δX(X) ≥ max{|X| − |Z|+ b(H)− 1, δ(G)− |Z|} ≥ |X| − 3
2
m.

We now wish to show that both X and Y are m-linked. If |X| ≥ 5m, then

δX(X) ≥ 7|X|
2

, so X is m-linked by Theorem 1. Suppose, then, that |X| < 5m, so
2(|X| + |Z|) < |G| and X is complete by the degree sum condition. Since |X| ≥
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δ(G) + 1 − |Z| ≥ 2m + 2, the fact that X is complete implies that X is m-linked.
Analogously, we also conclude that Y is m-linked.

Let z ∈ Z, and suppose there are vertices x ∈ X and y ∈ Y such that xz, yz /∈
E(G). Then

n+ |Z|+ 2d(z) ≥ d(x) + 2d(z) + d(y) ≥ 2n+m− 4,

so

d(z) ≥ 1
2
(n+m− |Z| − 4) ≥ 1

2
(n−m− 4) > 6m.

Thus, for every z ∈ Z, we have dX(z) ≥ 2m or dY (z) ≥ 2m. Let

B :={v ∈ V (G) : dY (v) ≥ 2m− 1}, and

A :=V (G) \B.

Then, A ⊇ X and B ⊇ Y are m-linked by Lemma 7, and therefore complete by
Lemma 11. Let AH , BH be the partition of V (H) induced by this partition of V (G).

Choose ab ∈ E(H), let H ′ = H − ab and let F ⊆ G be a solution of the H ′-
linkage problem of minimum order. In particular, this implies that |F ∩A| ≤ 2m and
|F ∩B| ≤ 2m, so A\F 6= ∅ and B \F 6= ∅. Since A and B are complete, we conclude
that a ∈ A and b ∈ B, and in particular, E(H) = EH(A,B). By the minimality of F
we have |EF (A,B)| = |EH′(A,B)| = |E(H)| − 1.

Let v ∈ A \ F and w ∈ B \ F . If vw ∈ E(G), then we can extend F to a solution
of the H-linkage problem using the path avwb, so we conclude that vw /∈ E(G).
Similarly, if there exists an x ∈ (N(v) ∩N(w)) \ F , we can extend F to a solution of
the H-linkage problem using avxwb, so N(v) ∩N(w) ⊆ F .

It is our goal to show that |N(v) ∩ N(w)| ≤ |EF (A,B)|. Consider first xy ∈
E(F ) \E(H) with x ∈ A and y ∈ B. If x ∈ N(w) and y ∈ N(v), then we can replace
xy by xw and vy in F and solve the H-linkage problem, using one of the new edges
instead of xy and the other to connect a and b. So |N(v)∩N(w)∩ {x, y}| ≤ 1 for all
xy ∈ EF (A,B) \ E(H).

Now, let xy ∈ E(F ) ∩ E(H) with x ∈ A and y ∈ B. If {x, y} = {a, b} (so that a
and b are joined by at least two edges in H), then by the same argument as above,
|N(v) ∩ N(w) ∩ {x, y}| ≤ 1. If, instead {x, y} 6= {a, b}, then there is another edge
x′y′ ∈ E(F ) with x′ ∈ A and y′ ∈ B that lies on an x− y path in F . Now, if x = x′

(or, nearly identically, if y = y′) then as above, |N(v) ∩ N(w) ∩ {x, y′}| ≤ 1, and so
|N(v)∩N(w)∩{x, y, x′, y′}| ≤ 2. Also, if x 6= x′, y 6= y′, and vy, x′w ∈ E(G), then we
can replace x′y′ by vy in F and use x′w to connect a and b. Similarly, we can’t have
x 6= x′, y 6= y′ and both of xw, vy′ ∈ E(G), so again, |N(v)∩N(w)∩{x, y, x′, y′}| ≤ 2.

We therefore conclude that |N(v) ∩N(w)| ≤ |EF (A,B)|. This yields a contradic-
tion, as then

a(H) ≤ |N(v) ∩N(w)| ≤ |EF (A,B)| = |E(H)| − 1 ≤ a(H)− 1.

�
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Proof of Theorem 6. Sharpness follows from the following example. Starting from a
partition A ∪ B of V (H) with (|E(A,B)|+ |B| −∆B(A)) = a(H), add a set C of
|E(A,B)| − 1 vertices. Blow up B to B∗ by adding n− |A| − |B| − |C| vertices to B
and then add all edges in A∪C, B∗∪C, and all edges between A and B except for the
edges in H. This graph is not H-linked, as there is not a sufficient number of vertices
in C to create paths representing the edges in E(A,B), and has σ2 = n+ a(H)− 3.

As in the proof of Theorem 5, we may assume that n0(H) = 0 as isolated vertices
in H contribute 2 to |G|+ a(H) and at most 2 to σ2(G).

For the sake of contradiction, we assume that G is not H-linked, and furthermore
that G is edge maximal with this property. Let m = |E(H)| and n = |G|.

If δ(G) ≥ 4m, we are done by Theorem 5 (as b(H) ≤ a(H)), so there is a vertex v
with d(v) < 4m. Let Y := V (G) \N [v]. Then |Y | > 16m and

δY (Y ) > |Y | − 4m > 1
2
|Y |+m,

and therefore Y is m-linked by Theorem 1. Let B ⊇ Y be maximal such that B is
m-linked, and A := V (G) \ B ⊆ N [v]. If A = ∅, we are done so we assume that
A 6= ∅. By Lemma 7 no vertex in A has 2m neighbors in B, so ∆G(A) < 6m and
therefore A is complete by the degree sum condition. We now continue in a manner
similar to the proof of Theorem 5.

We may assume that G is H ′-linked for every proper subgraph H ′ ( H, as otherwise
we could continue with a minimal subgraph H ′ of H for which G is not H ′-linked and
observe that a(H ′) ≤ a(H). Let AH ∪ BH be the partition of V (H) induced by A
and B. Note that B is complete by Lemma 11. If there is an edge e ∈ E(H)∩E(G),
we can extend any solution of the (H − e)-linkage problem trivially to a solution of
the H-linkage problem, so we conclude that E(H) ∩ E(G) = ∅, and in particular,
E(H) = EH(A,B).

Let a ∈ AH maximize |EH(a,B)|, and let ab ∈ E(H). Let H ′ = H − ab and let
F ⊆ G be a solution of the H ′-linkage problem of minimum order, so in particular
|EF (A,B)| = |E(H ′)|.

Let w ∈ B \F . If aw ∈ E(G), then we can extend F to a solution of the H-linkage
problem using the path awb, so we conclude that aw /∈ E(G). Similarly, if there exists
an x ∈ (N(a) ∩N(w)) \ F , we can extend F to a solution of the H-linkage problem
using axwb, so N(a) ∩N(w) ⊆ F . Now let xy ∈ E(F ) with x ∈ A and y ∈ B \ BH .
If x ∈ N(w) and y ∈ N(a), then we can replace xy by xw and ay in F and solve
the H-linkage problem. Thus, all edges xy ∈ E(F ) with {x, y} ⊂ N(a) ∩N(w) have
y ∈ BH \NH(a). But this yields a contradiction, as then

a(H) ≤ |N(a) ∩N(w)| ≤ |E(F )|+ |BH \NH(a)|
= |E(H)| − 1 + |BH | −∆BH (AH) ≤ a(H)− 1.

�
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We note here that Theorem 6 does not extend to arbitrary multigraphs H. To
see this, let k ≥ 6, r = 2(k − 1), and let H be the disjoint union of a star having
center c and leaves `1, . . . , `r with an edge uv of multiplicity k. As defined above,
a(H) = 3k − 1 (let B consist of u and all of the `i). However, consider the following
example. Let A = {c, u, v} be a triangle and X be a clique of order n− 3 containing
disjoint subsets L,Xu and Xv of X with |Xv| = r, |Xu| = r − 1 and L = {`1, . . . , `r}.

Construct G from A and X by adding all edges from u to Xu ∪ L, v to Xv ∪ L
and c to Xu ∪Xv and note that σ2(G) = n+ (4k − 4)− 2 > n+ a(H)− 2. If we let
the vertex labels in G define an H-linkage problem ρ, then we require at least one
vertex from Xu ∪ Xv to construct the r desired paths from c to L and at least two
vertices from Xu ∪ Xv to construct each of the remaining k − 1 paths from u to v.
This is a total of at least 2k− 4 additional vertices, which exceeds the 2k− 5 vertices
in Xu ∪Xv. Hence G is not H-linked.

Theorems 5 and 6 also allow us to obtain a number of interesting results on k-linked
and k-ordered graphs as corollaries. In particular, we obtain the degree conditions for
sufficiently large k-linked, k-ordered and H-linked graphs found in Theorems 2, 3 and
4, respectively. In most cases, our bounds on |G| are reasonable, but slightly larger
than those in the original theorems due to the more general nature of our results.
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