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Abstract. Let m ∶= ∣E(G)∣ sufficiently large and s ∶= ⌈m−1
3

⌉. We
show that unless the maximum degree ∆ > 2s, there is a weight-
ing ŵ ∶ E ∪ V → {0,1, . . . , s} so that ŵ(uv) + ŵ(u) + ŵ(v) ≠

ŵ(u′v′) + ŵ(u′) + ŵ(v′) whenever uv ≠ u′v′ (such a weighting is
called total edge irregular). This validates a conjecture by Ivančo
and Jendrol’ for large graphs, extending a result by Brandt, Mǐskuf
and Rautenbach.

1. Introduction

Let G = (V,E) be a graph. In [1], Bac̆a, Jendrol’, Miller and Ryan
define the notion of an edge irregular total s-weighting as a weighting

ŵ ∶ E ∪ V → {1,2, . . . , s}

so that

ŵ(uv) + ŵ(u) + ŵ(v) ≠ ŵ(u′v′) + ŵ(u′) + ŵ(v′)
whenever uv ≠ u′v′ are two different edges of G. They also define the
total edge irregularity strength as the minimum s for which there exists
such a weighting, denoted by tes(G). If we denote by ∆ the maximum
degree of G and by m the number of edges they note that

tes(G) ≥ max{m + 2

3
,
∆ + 1

2
} .

After some more study of tes(G), Ivanc̆o and Jendrol’ conjecture in [6]
that this natural lower bound is sharp for all graphs other than the
complete graph on 5 vertices (which has tes(K5) = 5), i.e.,

Conjecture 1 (Ivanc̆o and Jendrol’ [6]). For every graph G with ∣E(G)∣ =
m and maximum degree ∆ which is different from K5,

tes(G) = max{⌈m + 2

3
⌉ , ⌈∆ + 1

2
⌉} .

Key words and phrases. total graph labeling, irregularity strength.
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Conjecture 1 has been verified for trees in [6], for complete graphs
and complete bipartite graphs by Jendrol’, Mĭskuf and Soták in [7],
and for graphs with a bound on ∆ by Brandt, Mĭskuf and Rautenbach
in [2] and [3]:

Theorem 2 (Brandt et.al [2] and [3]). For every graph G with ∣E(G)∣ =
m and maximum degree ∆, where ⌈∆+1

2
⌉ ≥ m+2

3 or ∆ ≤ m
111000 ,

tes(G) = max{⌈m + 2

3
⌉ , ⌈∆ + 1

2
⌉} .

In this paper, we show the conjecture for all sufficiently large graphs.

Theorem 3. Let G be a graph with m ∶= ∣E(G)∣ ≥ 7×1010 and maximum
degree ∆. Then

tes(G) = max{⌈m + 2

3
⌉ , ⌈∆ + 1

2
⌉} .

The proof of this Theorem will be presented in Section 3. With a
similar proof, presented in Section 4, we can improve on Theorem 2 as
follows.

Theorem 4. Let G be a graph with m ∶= ∣E(G)∣, and ∆(G) ≤ m
4350 .

Then tes(G) = ⌈m+2
3

⌉ .

For notation not defined here, we refer the reader to Diestel’s book [5].
In particular, ifX and Y are subsets of the vertex set of a graphG and if
E′ ⊆ E is a subset of its edges, we write G[X] for the induced subgraph
of G on X, and we write short E′(X) for the edge set E′ ∩E(G[X]),
and E′(X,Y ) for all edges in E′ from X to Y .

2. Preliminary Results

By Theorem 2, we only have to consider the case ⌈∆+1
2

⌉ < m+2
3 . With-

out loss of generality we may assume in the following that m − 1 is
divisible by 3, as otherwise we may just add one or two edges (and
possibly vertices) and consider the larger graph, only increasing the
difficulty of the assignment.

Let s ∶= m−1
3 and w ∶ V → {0,1, . . . , s} be a vertex weighting. For

e = xy we set w(e) ∶= w(x) + w(y). We call w well guarded if for all
0 ≤ i ≤ 2s,

i + 1 ≤ ∣{e ∈ E ∣ w(e) ≤ i}∣ ≤ i + s + 1.

The following fact is immediate as well guarded weightings are easily
extended to total edge irregular weightings and vice versa:
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Fact 5. A graph G has a total edge irregular weighting ŵ ∶ E ∪ V →
{1,2, . . . , s + 1} if and only if G has a well guarded weighting w ∶ V →
{0,1, . . . , s}.

Thus, we can restrict ourselves to vertex weightings in our quest
for total edge irregular weightings. We will call an edge set E′ ⊆ E a
guarding set, if for all 0 ≤ i ≤ 2s,

i + 1 ≤ ∣{e ∈ E′ ∣ w(e) ≤ i}∣ ≤ i + s + 1 − ∣E ∖E′∣.

Clearly, w is well guarded if and only if a guarding set exists. The next
lemma describes a set up where we can find a guarding set determinis-
tically. In the proof of Theorem 3, we will encounter this set up several
times.

Lemma 6. Let V (G) = A1 ⊍ A2 ⊍ C be a partition of the vertices of
a graph G with 3s + 1 = m = ∣E(G)∣, let E′ = E(G) ∖ E(C), and let
∆i ∶= maxv∈C ∣E(Ai, v)∣ for i ∈ {1,2}. If

(a) ∣E(A1)∣ ≤ ∣E′∣ − 2s −∆1,
(b) ∣E(A2)∣ ≤ ∣E′∣ − 2s −∆2,
(c) ∣E(A1, V )∣ ≤ ∣E′∣ − s + 1 −∆2,
(d) ∣E(A2, V )∣ ≤ ∣E′∣ − s + 1 −∆1,
(e) ∆2 + s

∣E(A1,C)∣−∆1
∆1 ≤ s − ∣E ∖E′∣.

then there exists a weighting such that E′ is a guarding set.

Proof. Let C = {x1, x2, . . . x∣C∣}, where the exact order will be deter-
mined later. Let C ′ = C − x∣C∣. Let

w(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for v ∈ A1,

s, for v ∈ A2,

⌈ s⋅∣E(A1,{x1,...,xi−1})∣
∣E(A1,C′)∣ ⌉ , for v = xi ∈ C.

Then for 0 ≤ i < s, we have

∣E(A1)∣ + ⌊i ⋅ ∣E(A1,C
′)∣

s ⌋ + 1

≤ ∣{e ∈ E′ ∣ w(e) ≤ i}∣
≤ ∣E(A1)∣ + i ⋅ ∣E(A1,C

′)∣
s +∆1,

and therefore

i + 1 ≤(d) ∣{e ∈ E′ ∣ w(e) ≤ i}∣ ≤(a),(c) i + 1 + s − ∣E ∖E′∣,

regardless of the order of the vertices in C.
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For s ≤ i ≤ 2s, we can now find a suitable ordering of C greedily
to show the lemma. Pick x∣C∣ first, so that ∣E(A2, x∣C∣)∣ is minimized
under the condition that

∣E(A2)∣ + ∣E(A2, x∣C∣)∣ ≥ ∆2.

Now choose the other xj, starting with an arbitrary x1, such that for
every j,

s +w(xj) ≤ ∣E(A1, V )∣ + ∣E(A2,{x1, . . . , xj−1})∣
≤ 2s + 1 − ∣E ∖E′∣ +w(xj) −∆2. (1)

This is always possible, as this inequality is true for x1 (by (a) and (c))
and x∣C∣ (by (b)), and at no point in the process there can be remaining
x,x′ ∈ C such that setting xj = x violates the lower inequality, and
setting xj = x′ violates the upper inequality by (e). As

∣{e ∈ E′ ∣ w(e) ≤ i}∣ = ∣E(A1, V )∣ + ∣E(A2,{x1, . . . , xj})∣,
for j ≤ ∣C ∣ maximized such that w(xj) ≤ i − s, this shows that E′ is a
guarding set. �

3. Proof of Theorem 3

Let ε = 2.7 × 10−5, and define the set of large degree vertices

B ∶= {v ∈ V ∣ d(v) > εm}.
Then m ≥ ∣B∣εm − ∣B∣

2

2 , and therefore ∣E(B)∣ < ∣B∣
2

2 < 0.01m.
Let V ′ = V ∖B and m′ = ∣E ∖E(B)∣ > 0.99m. Further, we partition

B into B0 and BS as follows: Order the vertices in B by degree from
large to small, and assign them in order to the set with fewer edges
to V ′. Let e0 ∶= 1

m′ ∣E(B0, V ′)∣ and eS ∶= 1
m′ ∣E(BS, V ′)∣. Observe the

following fact.

Fact 7. If v ∈ B0, then e0 − eS ≤ 1
m′d(v).

We will divide the proof into four cases. For the first three, we
assume that e0 ≥ eS.

Case 1. e0 ≥ 0.52 and ∣B0∣ = 1.

Let v1 be the vertex in B0, then d(v1) = ∆ ∶= ∆(G) > 0.51m, and
let H = G[V ∖ v1]. Note that in this case, we may assume that V =
{v1} ∪N(v1) (so ∣V (H)∣ = ∆ and ∣E(H)∣ = m − ∆). Otherwise, as H
does not have enough edges to be connected, a vertex u ∈ V (H)∖N(v1)
has distance at least 3 in G to a vertex v in another component of H.
We can identify these two vertices and proceed with the smaller graph
G′, where ∣E(G′)∣ = ∣E(G)∣ and tes(G′) ≥ tes(G).
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Claim 1.1. There exists X ′ ⊆ V ′ with

∣X ′∣ = ⌊2
3(2∣V (H)∣ − ∣E(H)∣)⌋ and ∣E(X ′)∣ ≤ 1

2 ∣X ′∣.

Let X ′ ⊆ V ′ with ∣X ′∣ = ⌊2
3(2∣V (H)∣ − ∣E(H)∣)⌋ and ∣E(X ′)∣ minimal,

and let Y ′ = V ′ ∖ X ′. If ∣E(X ′)∣ > 1
2 ∣X ′∣, then ∣E(y,X ′)∣ ≥ 2 for all

y ∈ Y ′, as otherwise we could reduce ∣E(X ′)∣ by a vertex switch. Thus,

∣E(H)∣ ≥ ∣E(X ′)∣ + ∣E(X ′, Y ′)∣ + ∣E(B,V )∣ −∆

> 1

2
∣X ′∣ + 2∣Y ′∣ + 1

2(∣B∣ − 1)εm

≥ 2∣V (H)∣ − 3

2
∣X ′∣ ≥ ∣E(H)∣,

a contradiction showing the claim.

Claim 1.2. There exists X ⊆ V ′ with ∣X ∣ ≥ s+1 and ∣E(X)∣ ≤ 2s−∆+1.

Use Claim 1.1 to find a vertex set X ′ ⊆ V ′. Successively delete
vertices of maximum degree in X ′ until we have a vertex set X ⊆ X ′

with ∣X ∣ = s + 1. Then either ∣E(X)∣ = 0 or

∣E(X)∣ ≤ ∣E(X ′)∣ − (∣X ′∣ − ∣X ∣)
≤ ∣X ∣ − ⌈1

2 ∣X ′∣⌉ ≤ s + 1 − 1
3(2∣V (H)∣ − ∣E(H)∣) + 1

2

≤ s + 1 − (∆ − s − 1
3) + 1

2 = 2s −∆ + 11
6 ,

showing the claim.
Now choose X according to Claim 1.2, maximizing ∣X ∣, and let Y ∶=

V (H) ∖X. We want to use Lemma 6 to show that E′ = E ∖E(X) is
a guarding set: Let A1 = {v1}, A2 = Y and C = X. Then ∆1 = 1 and
∆2 ≤ εm. Conditions (a), (d) and (e) are easily verified.

If (c) fails, say ∣E(A2)∣ + ∣E(A2,C)∣ = s − 1 + ∆2 − γ, note that X
contains at least ∣X ∣ − s + γ vertices with no neighbors in Y . If (b)
holds, we can use these vertices first in the proof of Lemma 6 until (1)
is satisfied, and see that E′ is a guarding set.

Finally, assume that (b) fails, i.e.,

∣E(Y )∣ > ∣E′∣ − 2s −∆2 ≥ ∣E′∣ − 2s − εm.
As every vertex in Y ∖B has at least one neighbor in X by the maxi-
mality of ∣X ∣, we have

∣Y ∣ ≤ ∣E′∣ −∆ − ∣E(Y )∣ + ∣B∣ < 2s −∆ + εm + 2
ε ≤ 2s −∆ + 3εm.

Let Y1 ∶= {y ∈ Y ∶ d(y) ≥ 0.01s}. Then 0.48m ≥ 0.01s∣Y1∣ − 0.5∣Y1∣2, so
∣Y1∣ ≤ 160 and ∣E(Y1)∣ < 0.02s as s > 106. Let Y2 = Y ∖ Y1. Then more
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than s − ∣E(X,Y )∣ − ∣E(Y1)∣ > 0.47s > 2s − ∆ edges in E(X ∪ Y ) are
incident to Y2, so we can greedily find some Y3 ⊆ Y2 with

2s −∆ ≤ ∣E(Y3,X ∪ Y )∣ < 2s −∆ + 0.01s.

Let a ∶= ∣E(Y3)∣, and b ∶= ∣E(Y3,X ∪ Y )∣ − a.
Let X = {x0, . . . , x∣X ∣−1} with ∣E(Y,xi)∣ ≤ ∣E(Y,xj)∣ for i ≤ j and let

w(v1) = 0, w(v) = s − c ∶= min{s − b, ⌈∆/2⌉} for v ∈ Y3, w(v) = s for
v ∈ Y ∖ Y3, and w(xi) = min{s, i}. We claim that E′ is a guarding set
for w, settling Case 1.

For 0 ≤ i ≤ s − 1, we have

i + 1 ≤ ∣{e ∈ E′ ∣ w(e) ≤ i}∣ ≤ i + 1 + ∣Y3∣
< i + 1 + 2s −∆ < i − s +∆ = i + s + 1 − ∣E ∖E′∣.

For i = 2s, we have

2s + 1 < {e ∈ E′ ∣ w(e) ≤ 2s}∣ = ∣E′∣ = 3s + 1 − ∣E ∖E′∣.

For s ≤ i ≤ 2s − 1, consider first the lower bound. We have

∣{e ∈ E′ ∣ w(e) ≤ i}∣ ≥
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆, for s ≤ i < 2s − 2c,

∆ + a, for 2s − 2c ≤ i < 2s − c,
∆ + a + b, for 2s − c ≤ i < 2s,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≥ s + i + 1.

For the sake of analysis of the upper bound, define another weighting
w′, where w′(v) = s for v ∈ Y3 and w′ = w on all other vertices. Then
for s ≤ i < 2s,

∆ ≤ ∣{e ∈ E′ ∣ w′(e) ≤ i}∣ ≤ max{∆, i + s − ∣X ∣ − 1}
≤ max{∆, i + 3s − 2∆ − 2} < max{∆, i − 0.06s}

since ∣{e ∈ E′ ∣ w′(e) ≤ i}∣ is maximized if maxx∈X ∣E(x,Y )∣ = 1.
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Any edge e ∈ E(X ∪ Y ) with w′(e) < 2s has weight w(e) ≥ w′(e) − c.
Therefore, we have

∣{e ∈ E′ ∣ w(e) ≤ i}∣

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣{e ∈ E′ ∣ w′(e) ≤ i + c}∣, for s ≤ i < 2s − 2c,

∣{e ∈ E′ ∣ w′(e) ≤ i + c}∣ + a, for 2s − 2c ≤ i < 2s − c,
∣{e ∈ E′ ∣ w′(e) ≤ 2s − 1}∣ + a + b, for 2s − c ≤ i < 2s,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max{∆, i − 0.06s}, for s ≤ i < 2s − 2c,

max{∆, i − 0.06s} + a, for 2s − 2c ≤ i < 2s − c,
max{∆, i − 0.06s} + a + b, for 2s − c ≤ i < 2s,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆, for s ≤ i < 2s − 2c,

max{∆, i − 0.06s} + a, for 2s − 2c ≤ i < 2s − c,
max{∆, i − 0.06s} + a + b, for 2s − c ≤ i < 2s,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≤ ∆ + i − s = s + i + 1 − ∣E ∖E′∣.

To see the last inequality, note that it is enough to check it for i ∈
{s,2s − 2c,2s − c}. For i = 1, the inequality is trivially true. For
i = 2s − 2c, we have

∆ + a < 2.01s − b < min{2∆ − 1.01s − b,2∆ − s}
≤ min{∆ + s − 2b,2∆ − s} ≤ ∆ + i − s.

For i = 2s − c, we have

∆ + a + b < 2.01s < min{2∆ − 1.01s, ⌈3
2∆⌉}

≤ min{∆ + s − b, ⌈3
2∆⌉} = ∆ + i − s,

and

i−0.06s+a+ b = 1.94s− c+a+ b < 3.95s−∆− c ≤ ∆+s− c = ∆+ i−s.
This shows that E′ is a guarding set, establishing Case 1.

Case 2. e0 ≥ 0.52 and ∣B0∣ = 2.

Let B0 = {v2, v3} and v1 ∈ BS with d(v1) = ∆(G). Let H = G[V ∖
{v1, v2, v3}]. Let di ∶= ∣E(vi, V (H))∣ for 1 ≤ i ≤ 3, and we may assume
that d1 ≥ d2 ≥ d3. Note that d2 + d3 > 0.51m. Then ∣H ∣ ≥ d1, and
∣E(H)∣ ≤m − d1 − d2 − d3 < 0.24m.

Claim 2.1. There is a set X ′ ⊆ V ′ such that

∣E(X ′,{v2, v3})∣ ≥ min{d2 + d3 − ∣B∣, 4
3(d1 + 2d2 + 2d3 −m) − 2},

and ∣E(X ′)∣ ≤ 0.25∣E(X ′,{v2, v3})∣.
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Let X ′ ⊆ V ′ ∩ (N(v2),N(v3)) with

min{d2 + d3 − ∣B∣, 4
3(d1 + 2d2 + 2d3 −m − 2)} ≤ ∣E(X ′,{v2, v3})∣

< 4
3(d(v1) + 2d(v2) + 2d(v3) −m),

such that ∣E(X ′)∣ is minimal. Let Y ′ = V ′∖X ′. If ∣E(X ′)∣ > 0.25∣E(X ′,{v2, v3})∣,
then ∣E(y,X ′)∣ ≥ ∣E(y,{v2, v3})∣ for all y ∈ Y ′, as otherwise we could
reduce ∣E(X ′)∣ by a vertex switch. Thus,

m − d1 − d2 − d3 ≥ ∣E(H)∣ ≥ ∣E(X ′)∣ + ∣E(X ′, Y ′)∣ + 1
2(∣B∣ − 3)εm

> 0.25∣E(X ′,{v2, v3})∣ + ∣E(Y ′,{v2, v3})∣ + 1
2(∣B∣ − 3)εm

≥ d2 + d3 − 0.75∣E(X ′,{v2, v3})∣
>m − d1 − d2 − d3

a contradiction showing the claim.

Claim 2.2. There is a set X ⊆ V ′ such that ∣E(X,{v2, v3})∣ ≥ s + 2,
and

∣E(X)∣ ≤ max{0.5s− 1
4(d2 +d3 − ∣B∣) +1.5,1.5s− 1

3(d1 +2d2 +2d3)+2.5}.

Start with a set X ′ from Claim 2.1, and succesively delete ver-

tices maximizing ∣E(v,X)∣
∣E(v,{v2,v3})∣ until ∣E(X,{v2, v3})∣ ≤ s + 3. Then either

∣E(X)∣ = 0 or

∣E(X)∣ ≤ ∣E(X ′)∣ − 0.5(∣E(X ′,{v2, v3})∣ − s − 3)
≤ −0.25∣E(X ′,{v2, v3})∣ + 0.5(s + 3)

≤ 0.5s + 1.5 −min{1
4(d2 + d3 − ∣B∣), 1

3(d1 + 2d2 + 2d3 −m − 2)}
≤ max{0.5s − 1

4(d2 + d3 − ∣B∣) + 1.5,1.5s − 1
3(d1 + 2d2 + 2d3) + 2.5},

showing the claim.
We want to apply Lemma 6 to this situation with A1 = {v2, v3},

C = X for a maximal X, and A2 = V ∖ (A1 ∪ C). Conditions (a),
(d) and (e) are clearly satisfied. For condition (b) note that by the
maximality of ∣X ∣, every vertex in A2 ∖B has a neighbor in X, so in
particular, ∣E(A2,C)∣ ≥ d1 − ∣B∣ ≥ d1 − 2εm, and so

∣E(A1, V )∣ + ∣E(A2,C)∣ ≥ d1 + d2 + d3 − 2 − 2εm > 0.7m > 2s +∆2.
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If condition (c) holds, we are done by Lemma 6. Finally, if condition (c)
fails, we have

d2 + d3 ≥ ∣E(A1, V )∣
> ∣E′∣ − s + 1 −∆2

= 2s + 2 − ∣E(X)∣ −∆2

≥ min{1.49s + 1
4(d2 + d3),0.49s + 5

6(d2 + d3)},
and therefore

d2 + d3 > 1.98s, d1 + d2 + d3 > 2.97s, and d3 > 0.96s.

Now it is easy to construct a weighting with guarding setE({v1, v2, v3}, V ),
starting with w(v1) = 0, w(v2) = s and w(v3) = ⌈0.5s⌉.
Case 3. ∣B0∣ ≥ 3 and e0 + eS ≥ 0.86.

Since ∣B0∣ ≥ 3, we have eS ≥ 2
3e0. Thus, this case covers all remaining

situations with e0 ≥ 0.52. Let A1 = B0, A2 = BS, and C = V ∖(A1∪A2).
Then ∣E′∣ ≥ (e0+eS)m′ > 2.52s and ∆i < εm. All conditions of Lemma 6
apply but possibly (c). If (c) fails, we have

s − 1 +∆2 > ∣E(BS)∣ + ∣E(BS,C)∣ ≥ esm′ > 0.344m′ > s +∆2,

a contradiction finishing the case.
For the last case, we will drop the assumption of e0 ≥ eS to be able

to use symmetry in a different place.

Case 4. max{e0, eS} ≤ 0.52.

Let w(v) = 0 for v ∈ B0, w(v) = s for v ∈ BS, and determine w(v) for
all other vertices independently at random with

Pi ∶= P(w(v) = s i
20

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(19 − 30e0)β−1 i = 0

β−1 0 < i < 20

(19 − 30eS)β−1 i = 20

0 otherwise

,

where β = 57 − 30(e0 + eS) and i ∈ Z.
The set E′ = E ∖E(B) is guarding for the resulting weighting, if for

0 ≤ i ≤ 39,
i+1
20 s ≤ ∣{e ∈ E′ ∣ w(e) ≤ s i

20}∣ ≤ i
20s + s + 1 − ∣E(B)∣.

To show that E′ has a positive probability of being a guarding set, we
will use Azuma’s inequality. For this, let us first consider the expected
number of edges of the particular weights

Xi ∶= ∣{e ∈ E′ ∣ w(e) ≤ s i
20}∣
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and find values δi, δ̂i ∈ (0,0.01) such that for 0 ≤ i ≤ 39,

E(Xi) ≥
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i+1
20 s + δim′, if e0 ≥ eS,
i+1
20 s + δ̂im′, if e0 ≤ eS,
i+1
20 s + 0.2m′, if 20 ≤ i ≤ 39,

(2)

and

E(Xi) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i
20s + s + 1 − ∣E(B)∣ − δim′, if e0 ≥ eS,
i

20s + s + 1 − ∣E(B)∣ − δ̂im′, if e0 ≤ eS,
i

20s + s + 1 − ∣E(B)∣ − 0.2m′, if 0 ≤ i ≤ 19.

(3)

By symmetry (change the sets B0 and BS), we can set δi = δ̂39−i, so
we only have to treat the cases 0 ≤ i ≤ 19. For every edge uv ∈ E′, we
get

P(w(uv) = s i
20) = ∑PkPi−k = 2P0Pi + (i − 1)P 2

i .

For uv ∈ E′(B0, V ), we get P(w(uv) = s i
20) = Pi, and for uv ∈ E′(BS, V ),

we get P(w(uv) = s i
20) = Pi−20 = 0. Thus,

1
m′E(Xi) =

i

∑
j=0

(e0Pj + (1 − e0 − eS)(2P0Pj + (j − 1)P 2
j ))

= e0(P0 + iP1) + (1 − e0 − eS)(P 2
0 + 2iP0P1 + i2−i

2 P 2
1 ).

Fixing i and taking the partial derivatives, your favorite computer
algebra program tells you that d

de0
E(Xi) = 0 if and only if

e0 = f1(eS) ∶= −
p0 + p1eS + p2e2

S

p3 + p4eS
,

and d
deS

E(Xi) = 0 if and only if

e0 = f2(eS) ∶=
p5 + p6eS −

√
p7 + p8eS + p9e2

S

p10

,

where the pj are polynomials in i (see Appendix B).
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Figure 1. Plots of f1 and f2 for i = 3 and i = 19
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We have f1 ≥ f2 and

( d
de0
, d
deS

)E(Xi) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(< 0,> 0), for e0 > f1(eS),
(> 0,> 0), for f2(eS) < e0 < f1(eS),
(> 0,< 0), for e0 < f2(eS).

We conclude that the minimum of E(Xi) in the considered area with
e0 ≤ eS occurs in (e0, eS) = (0,0.52) or on the line e0 = eS, and similarly,
the minimum of E(Xi) in the considered area with e0 ≥ eS occurs in
(e0, eS) = (0.52,0) or on the line e0 = eS. On this line, i.e., 0 ≤ e0 = eS ≤
0.43, the minimum is attained at

e0 = eS = {0.43, for 0 ≤ i ≤ 6,

0, for 7 ≤ i ≤ 19.

Similarly, the maximum on the line e0 = 0.86− eS is an upper bound
for the maximum in the considered area, and this maximum is attained
at

(e0, eS) = (361+19i
1350 , 800−19i

1350
) .

Computing the four values for each i with 0 ≤ i ≤ 19, we find that (see

Appendix A) we can choose δi and δ̂i as follows:

i 0 1 2 3 4 5 6 7 8 9

1000 δi 29 26 24 22 21 20 19 18 17 17
1000 δi+10 18 18 19 20 21 22 24 26 29 31

1000 δ̂i 72 71 70 66 61 56 51 46 42 38

1000 δ̂i+10 34 31 28 25 23 20 18 17 15 14

satisfying (2) and (3). For this, note that (see Appendix A)

E(Xi) ≤ i
20s + s − 0.22m′ < i

20s + s − ∣E(B)∣ − 0.2m′.

Now we are ready to use Azuma’s inequality (cf. [8]):

Theorem 8. (Azuma’s inequality) Let X be a random variable deter-
mined by n trials T1, . . . , Tn, such that for each j, and any two possible
sequences of outcomes t1, . . . , tj and t1, . . . , tj−1, t′j:

∣E(X ∣T1 = t1, . . . , Tj = tj) −E(X ∣T1 = t1, . . . , Tj = t′j)∣ ≤ cj,

then for all t̄, t > 0

P(X −E(X) ≥ t̄) + P(E(X) −X ≥ t) ≤ e−t̄2/(2∑ c2j) + e−t2/(2∑ c2j).
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In our application, Tj is the weight of the jth vertex in V ′, and
X = Xi. As the weight of one vertex in v ∈ V ′ changes the value (and
thus the expectation) of an Xi by at most d(v) ≤ εm, we have

P(Xi −E(Xi) ≥ 0.2m′) + P(E(Xi) −Xi ≥ tm′)
≤ e−(0.2m′)2/(2∑v∈V ′ d(v)2) + e−(tm′)2/(2∑v∈V ′ d(v)2)

≤ e−(0.2m′)2/(2εm∑v∈V ′ d(v)) + e−(tm′)2/(2εm∑v∈V ′ d(v))

≤ e−(0.04m′)(0.99m)/4εmm′ + e−(t2m′)(0.99m)/4εmm′

= e−0.0099/ε + e−0.99t2/4ε.

Thus, as ε = 2.7 × 10−5,

P(inequality (2) or (3) fails for some i)

≤ 40e−0.0099/ε +
19

∑
i=0

(e−0.99δ2i /4ε + e−0.99δ̂2i /4ε) < 1.

Therefore, there is a choice of the Tj such that none of the Xi falls
out of the given range. This yields a well guarded vertex weighting. �

4. Graphs with small maximum degree

With the same methods as above we can improve on the bound in
Theorem 2 as stated in Theorem 4. Here we give only a proof sketch.

Proof. Let ε = 2.3×10−4 > 1
4350 . We proceed as in Case 4 of the proof of

Theorem 3 and note that we have B = ∅, e0 = eS = 0 and m =m′. This
yields with the same calculations as above, that we can choose δi = δ̂i
as follows:

i 0 1 2 3 4 5 6 7 8 9
1000 δi 94 89 84 80 76 72 69 66 63 60
1000 δi+10 58 56 55 53 52 52 51 51 52 52

satisfying (2) and (3). The same calculation as above involving Azuma’s
inequality yields the theorem. �
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Appendix A. Expected numbers of edges with certain
weights

Let e∗ = −361+18i+i2
20(152−36i+i2) and ē = 361+19i

1350 . For given (e0, eS), let Yi ∶=
1
m′ Xi. Then we calculate the following values for Yi − i+1

60×0.99 (and in
the last column for i+20

60 − Yi):

(e0, eS)
i (0,0.52) (0,0) (e∗, e∗) (0.43,0.43) (0.52,0) (ē,0.86 − ē)
0 0.0842642 0.0942761 0.0945847 0.0725870 0.0291077 0.221914
1 0.0780712 0.0891370 0.0894879 0.0712887 0.0267374 0.226687
2 0.0721583 0.0843057 0.0847193 0.0701341 0.0246472 0.230987
3 0.0665254 0.0797821 0.0803057 0.0691234 0.0228371 0.234814
4 0.0611725 0.0755664 0.0763530 0.0682565 0.0213070 0.238167
5 0.0560997 0.0716584 0.0741222 0.0675334 0.0200569 0.241046
6 0.0513070 0.0680582 0.0669080 0.0669542 0.0190869 0.243452
7 0.0467943 0.0647658 0.0644259 0.0665187 0.0183969 0.245385
8 0.0425617 0.0617812 0.0616330 0.0662271 0.0179871 0.246844
9 0.0386092 0.0591044 0.0590379 0.0660793 0.0178572 0.247830
10 0.0349366 0.0567354 0.0567098 0.0660753 0.0180074 0.248342
11 0.0315442 0.0546742 0.0546683 0.0662151 0.0184377 0.248381
12 0.0284318 0.0529207 0.0529207 0.0664988 0.0191480 0.247946
13 0.0255994 0.0514750 0.0514703 0.0669263 0.0201384 0.247038
14 0.0230471 0.0503372 0.0503181 0.0674976 0.0214088 0.245657
15 0.0207749 0.0495071 0.0494643 0.0682127 0.0229593 0.243802
16 0.0187827 0.0489848 0.0489084 0.0690716 0.0247898 0.241473
17 0.0170705 0.0487703 0.0486493 0.0700744 0.0269004 0.238671
18 0.0156384 0.0488635 0.0486852 0.0712209 0.0292910 0.235396
19 0.0144864 0.0492646 0.0490139 0.0725113 0.0319617 0.231647
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Appendix B. Polynomials used in Case 4 of the proof

p0(i) = 1444 + 39i + i2

p1(i) = 10 (−1558 − 45i + i2)
p2(i) = 600 (19 + i)
p3(i) = 10 (2660 − 147i + i2)
p4(i) = 600 (−35 + i)
p5(i) = 10 (1216 + 27i − i2)
p6(i) = 600 (19 + i)
p7(i) = 100 (2085136 + 111336i − 2663i2 − 78i3 + i4)
p8(i) = 12000 (−27436 − 2077i + 88i2 + i3)
p9(i) = 360000 (361 + 38i + i2)
p10(i) = 1200 (35 − i)


