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Abstract

A rainbow matching in an edge-colored graph is a matching in which all the edges
have distinct colors. Wang asked if there is a function f(δ) such that a properly edge-
colored graph G with minimum degree δ and order at least f(δ) must have a rainbow
matching of size δ. We answer this question in the affirmative; f(δ) = 6.5δ suffices.
Furthermore, the proof provides a O(δ(G)|V (G)|2)-time algorithm that generates such
a matching.
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1 Introduction

All graphs under consideration in this paper are simple, and we let δ(G) and ∆(G) denote the

minimum and maximum degree of a graph G, respectively. A rainbow subgraph in an edge-

colored graph is a subgraph in which all edges have distinct colors. Rainbow matchings are of

particular interest given their connection to transversals of Latin squares: each Latin square

can be converted to a properly edge-colored complete bipartite graph, and a transversal of

the Latin square is a perfect rainbow matching in the graph. Ryser’s conjecture [2] that

every Latin square of odd order has a transversal can be seen as the beginning of the study

of rainbow matchings. Stein [5] later conjectured that every Latin square of order n has

a transversal of size n − 1; equivalently every properly edge-colored Kn,n has a rainbow
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matching of size n − 1. The connection between Latin transversals and rainbow matchings

in Kn,n has inspired additional interest in the study of rainbow matchings in triangle-free

graphs.

Several results have been attained for rainbow matchings in arbitrarily edge-colored

graphs. The color degree of a vertex v in an edge-colored graph G, written d̂(v), is the

number of different colors on edges incident to v. We let δ̂(G) denote the minimum color

degree among the vertices in G. Wang and Li [7] proved that every edge-colored graph G

contains a rainbow matching of size at least
⌈

5δ̂(G)−3
12

⌉

, and conjectured that
⌈

δ̂(G)/2
⌉

could

be guaranteed when δ̂(G) ≥ 4. LeSaulnier et al. [4] then proved that every edge-colored

graph G contains a rainbow matching of size
⌊

δ̂(G)/2
⌋

. Finally, Kostochka and Yancey [3]

proved the conjecture of Wang and Li in full, and also that triangle-free graphs have rainbow

matchings of size
⌈

2δ̂(G)
3

⌉

.

Since the edge-colored graphs generated by Latin squares are properly edge-colored, it is

of interest to consider rainbow matchings in properly edge-colored graphs. In this direction,

LeSaulnier et al. proved that a properly edge-colored graph G satisfying |V (G)| 6= δ(G) + 2

that is not K4 has a rainbow matching of size dδ(G)/2e. Wang then asked if there is a

function f such that a properly edge-colored graph G with minimum degree δ and order at

least f(δ) must contain a rainbow matching of size δ [6]. As a first step towards answering

this question, Wang showed that a graph G with order at least 8δ
5
has a rainbow matching

of size
⌊

3δ(G)
5

⌋

.

In this paper we answer Wang’s question from [6] in the affirmative.

Theorem 1. If G is a properly edge-colored graph satisfying |V (G)| > 13
2
δ − 23

2
+ 41

8δ
, then

G contains a rainbow matching of size δ(G).

If G is triangle-free, a smaller order suffices.

Theorem 2. If G is a triangle-free properly edge-colored graph satisfying |V (G)| > 49
8
δ −

21
2
+ 9

2δ
, then G contains a rainbow matching of size δ(G).

The proofs of Theorems 1 and 2 depend on the implementation of a greedy algorithm,

a significantly different approach than those found in [3], [4], [6], and [7]. This algorithm

generates a rainbow matching in a properly edge-colored graph G in O(δ(G)|V (G)|2)-time.

Since there are n × n Latin squares with no transversals (see [1]) when n is even, it is

clear that f(δ) > 2δ when δ is even. Furthermore, since maximum matchings in Kδ,n−δ have

only δ edges (provided n ≥ 2δ), there is no function for the order of G depending on δ(G)

that can guarantee a rainbow matching of size greater than δ.
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2 Proof of the Main Results

Proof of Theorem 1. We proceed by induction on δ(G). The result is trivial if δ(G) = 1. We

assume that G is a graph with minimum degree δ and order greater than 13
2
δ − 23

2
+ 41

8δ
.

Lemma 3. If G satisfies ∆(G) > 3δ − 3, then G has a rainbow matching of size δ.

Proof. Let v be a vertex of maximum degree in G. By induction, there is a rainbow matching

M of size δ − 1 in G − v. Since v is incident to at least 3δ − 2 edges with distinct colors,

there is an edge incident to v that is not incident to any edge in M and also has a color that

does not appear in M . Thus there is a rainbow matching of size δ in G.

Lemma 4. If G has a color class containing at least 2δ − 1 edges, then G has a rainbow

matching of size δ.

Proof. Let C be a color class with at least 2δ − 1 edges. By induction, there is a rainbow

matching M of size δ−1 in G−C. There are 2δ−2 vertices covered by the edges in M , thus

one of the edges in C has no endpoint covered by M , and the matching can be extended.

The proof of Theorem 1 relies on the implementation of a greedy algorithm. We begin

by preprocessing the graph so that each edge is incident to at least one vertex with degree

δ. To achieve this, we order the edges in G and process them in order. If both endpoints of

an edge have degree greater than δ when it is processed, delete that edge. In the resulting

graph, every edge is incident to a vertex with degree δ. Furthermore, by Lemma 3 we may

assume that ∆(G) ≤ 3δ − 3; thus the degree sum of the endpoints of any edge is bounded

above by 4δ − 3. After preprocessing, we begin the greedy algorithm.

In the ith step of the algorithm, a smallest color class is chosen (without loss of generality,

color i), and then an edge ei of color i is chosen such that the degree sum of the endpoints

is minimum. All the remaining edges of color i and all edges incident with an endpoint of ei

are deleted. The algorithm terminates when there are no edges in the graph.

We assume that the algorithm fails to produce a matching of size δ in G; suppose that

the rainbow matching M generated by the algorithm has size k. We let R denote the set of

vertices that are not covered by M .

Let ci denote the size of the smallest color class at step i. Since at most two edges of

color i + 1 are deleted in step i (one at each endpoint of ei), we observe that ci+1 + 2 ≥ ci.

Otherwise, at step i color class i + 1 has fewer edges. Let step h be the last step in the

algorithm in which a color class that does not appear in M is completely removed from G.
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It then follows that ch ≤ 2, and in general ci ≤ 2(h − i + 1) for i ∈ [h]. Let fi denote the

number of edges of color i deleted in step i with both endpoints in R. Since fi < ci, we have

fi ≤ 2(h− i) + 1 for i ∈ [h]. Note that after step h, there are exactly k− h colors remaining

in G. By Lemma 4, color classes contain at most 2δ − 2 edges, and therefore the last k − h

steps remove at most (k − h)(2δ − 2) edges. Furthermore, for i > h, the degree sum of the

endpoints of ei is at most 2(δ − 1).

For i ∈ [h], let xi and yi be the endpoints of ei, and let di(v) denote the degree of

a vertex v at the beginning of step i. Let µi = max{0, di(xi) + di(yi) − 2δ}; note that

2δ ≤ 2δ + µi ≤ 4δ − 3. Thus, at step i, at most 2δ + µi + fi − 1 edges are removed from the

graph. Since the algorithm removes every edge from the graph, we conclude that

|E(G)| ≤ (k − h)(2δ − 2) +

h
∑

i=1

(2δ + µi + fi − 1). (1)

We now compute a lower bound for the number of edges in G. Since the degree sum of

the endpoints of ei in G is at least 2δ + µi, we immediately obtain the following inequality:

nδ +
∑

i∈[h] µi

2
≤ |E(G)|.

If fi > 0 and µi > 0, then there is an edge with color i having both endpoints in R. Since

this edge was not chosen in step i by the algorithm, the degree sum of its endpoints is at

least 2δ+µi, and one of its endpoints has degree at least δ+µi. For each value of i satisfying

fi > 0, we wish to choose a representative vertex in R with degree at least δ+µi. Since there

are fi edges with color i with both endpoints in R, there are fi possible representatives for

color i. Since a vertex in R with high degree may be the representative for multiple colors,

we wish to select the largest system of distinct representatives.

Suppose that the largest system of distinct representatives has size t, and let T be the

set of indices of the colors that have representatives. For each color i ∈ T there is a distinct

vertex in R with degree at least δ+µi. Thus we may increase the edge count of G as follows:

nδ +
∑

i∈[h] µi +
∑

i∈T µi

2
≤ |E(G)|. (2)

We let {f ↓
i } denote the sequence {fi}i∈[h] sorted in nonincreasing order. Since fi ≤ 2(h−

i)+1, we conclude that f ↓
i ≤ 2(h−i)+1. Because there is no system of distinct representatives

of size t + 1, the sequence {f ↓
i } cannot majorize the sequence {t + 1, t, t− 1, . . . , 1}. Hence

there is a smallest value p ∈ [t+ 1] such that f ↓
p ≤ t+ 1− p. Therefore, the maximum value
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of
∑h

i=1 f
↓
i is bounded by the sum of the sequence {2h− 1, 2h− 3, . . . , 2(h− p) + 3, t+ 1−

p, . . . , t+ 1− p}. Summing we attain
∑

i∈[h]

fi ≤ (p− 1)(2h− p+ 1) + (h− p + 1)(t+ 1− p).

Over p, this value is maximized when p = t+1, yielding
∑

i∈[h] fi ≤ t(2h−t). Since h ≤ δ−1,

we then have
∑

i∈[h] fi ≤ 2(δ − 1)t− t2.

We now combine bounds (1) and (2):

nδ +
∑

i∈[h] µi +
∑

i∈T µi

2
≤ (k − h)(2δ − 2) +

h
∑

i=1

(2δ + µi + fi − 1).

Hence, since k ≤ δ − 1,

nδ

2
≤ (2δ − 1)(δ − 1) +

1

2

∑

[h]\T

µi +
∑

i∈[h]

fi

≤ (2δ − 1)(δ − 1) + (δ − 1− t)(δ − 3/2) + 2(δ − 1)t− t2

≤ 3δ2 −
11

2
δ +

5

2
+

(

δ −
1

2

)

t− t2.

This bound is maximized when t = (δ − 1
2
)/2. Thus

n ≤
13

2
δ −

23

2
+

41

8δ
,

contradicting our choice for the order of G.

Sketch of Proof of Theorem 2. When G is triangle-free, Lemma 3 can be improved. In par-

ticular, ∆(G) ≤ 2δ − 2 since there is at most one edge joining a vertex of maximum degree

to each edge in a matching of size δ − 1. Since ∆(G) is used to bound the value of µi in the

proof of Theorem 1, the same argument yields the following inequality:

nδ

2
≤ (2δ − 1)(δ − 1) +

1

2

∑

[h]\T

µi +
∑

i∈[h]

fi

≤ (2δ − 1)(δ − 1) +
1

2
(δ − 1− t)(δ − 2) + 2(δ − 1)t− t2

≤
5

2
δ2 −

9

2
δ + 2 +

(

3

2
δ − 1

)

t− t2.

This upper bound is maximized when t = (3
2
δ − 1)/2, yielding

n ≤
49

8
δ −

21

2
+

9

2δ
.
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3 Conclusion

The proof of Theorem 1 provides the framework of a O(δ(G)|V (G)|2)-time algorithm that

generates a rainbow matching of size δ(G) in a properly edge-colored graph G. Given such a

G, we create a sequence of graphs {Gi} as follows, letting G = G0, δ = δ(G), and n = |V (G)|.

First, determine δ(Gi), ∆(Gi), and the maximum size of a color class in Gi; this process takes

O(n2)-time. If ∆(Gi) ≤ 3δ(Gi)−3 and the maximum color class has at most 2δ(Gi)−2 edges,

then terminate the sequence and set Gi = G′. If ∆(Gi) > 3δ(Gi) − 3, then delete a vertex

v of maximum degree and then process the edges of Gi − v, iteratively deleting those with

two endpoints of degree at least δ(Gi); the resulting graph is Gi+1. If ∆(Gi) ≤ 3δ(Gi) − 3

but a maximum color class C has at least 2δ(Gi)− 1 edges, then delete C and then process

the edges of Gi − C, iteratively deleting those with two endpoints of degree at least δ(Gi);

the resulting graph is Gi+1. Note that δ(Gi+1) = δ(Gi)− 1. If this process generates Gδ, we

set G′ = Gδ and terminate. Generating the sequence {Gi} consists of at most δ steps, each

taking O(n2)-time.

Given that G′ = Gi, the algorithm from the proof of Theorem 1 takes O(δn2)-time to

generate a matching of size δ−i in G′. The preprocessing step and the process of determining

a smallest color class and choosing an edge in that class whose endpoints have minimum

degree sum both take O(n2)-time. This process is repeated at most δ times.

A matching of size δ− (i+1) in Gi+1 is easily extended in Gi to a matching of size δ− i

using the vertex of maximum degree or maximum color class. The process of extending the

matching takes O(δ)-time. Thus the total run-time of the algorithm generating the rainbow

matching of size δ in G is O(δn2).

It is worth noting that the analysis of the greedy algorithm used in the proof of Theorem 1

could be improved. In particular, the bound ci+1 ≥ ci − 2 is sharp only if at step i there are

an equal number of edges of color i and i+ 1 and both endpoints of ei are incident to edges

with color i + 1. However, since one of the endpoints of ei has degree at most δ, at most

δ− 1 color classes can lose two edges in step i. Since the maximum size of a color class in G

is at most 2δ− 2, if G has order at least 6δ, then there are at least 3δ/2 color classes. Thus,

for small values of i, the bound ci ≤ 2(k− i+1) can likely be improved. However, we doubt

that such analysis of this algorithm can be improved to yield a bound on |V (G)| better than

6δ.
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