Extremal Graphs for Intersecting Cliques
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Abstract

For any two positive integers n > r > 1, the well-known Turdn Theorem states that
there exists a least positive integer ex(n, K,) such that every graph with n vertices
and ex(n, K,) + 1 edges contains a subgraph isomorphic to K,. We determine the
minimum number of edges sufficient for the existence of k cliques with r vertices
each intersecting in exactly one common vertex.
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1 Introduction

With integers n > r > 1, we let T, , denote the Turdn graph, i.e., the complete
r-partite graph on n vertices where each partite set has either |n/r| or [n/r]
vertices and the edge set consists of all pairs joining distinct parts. The number
of edges in T),, is denoted by ex(n, K1), where K, represents the complete
graph on r vertices.

For a graph G and a vertex z € V(G), the neighborhood of x in G is denoted
by Ng(z) = {y € V(G) : zy € E(G)}, or when clear, simply N(z), and let
Ng(x) = V(G)—Ng(z). The degree of x in G, denoted by dg(x), or d(z), is the

* Corresponding Author
Email address: fpfende@mathcs.emory.edu (Florian Pfender).
1 Supported by NSF grant No. DMS-0070059
2 Supported by NNSF of China and the innovation funds of Institute of Systems
Science, AMSS, CAS

Preprint submitted to Journal of Combinatorial Theory Ser. B 29 January 2003



size of Ng(z). We use 0(G) and A(G) to denote the minimum and maximum
degrees, respectively, in G. The order of G is often denoted by |G| = |V(G)].
For a subset X C V(G), let G[X] denote the subgraph of G induced by X. A
matching in G is a set of edges from E(G), no two of which share a common
vertex, and the matching number of G, denoted by v(G), is the maximum
number of edges in a matching in G.

Suppose that we are given some fixed graph H. What is the maximum number,
ex(n, H), of edges in a graph G on n vertices that does not contain a copy
of H as a subgraph (often said to forbid H)? A graph G on n vertices with
ex(n, H) edges and without a copy of H is called an extremal graph for H.
For n > |V (H)|, adding one more edge to any one of the extremal graphs will
produce a copy of H.

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly
one common vertex is called a k-fan and denoted by Fj. For each k, the
chromatic number of Fj is three, and so by the Erd&s-Stone theorem [4],
ex(n,Fy) = (1 4 o(1))n?/4. The following result is due to Erdds, Fiiredi,
Gould, and Gunderson [3].

Theorem 1 For every k > 1, and for every n > 50k%, if a graph G on n
vertices has more than

w (B ek ks odd
k? — 2k if k is even

edges, then G contains a copy of a k-fan. Further, the number of edges is best
possible.

A graph on (r — 1)k + 1 vertices consisting of k cliques each with r vertices,
which intersect in exactly one common vertex, is called a K,-fan and denoted
by Fj .. The purpose of this article is to generalize Theorem 1, when k and r
are fixed and n is large, as follows.

Theorem 2 For every k > 1 and r > 2, and for every n > 16k3r®, if a graph
G on n vertices has more than
k> —k if kis odd,

ex(n, K,) + ,
k* — 3k if k is even

edges, then G contains a copy of an Fy ,.-fan. Further, the number of edges is
best possible.

Note that the number ex(n,K,) = |E(T,,-1)|. To show the lower bound
for ex(n, Fy,) we present the following graph, G, ;. For odd k (where n >



(2k —1)(r — 1) + 1) G,k is constructed by taking a Turan graph 7, ,_; and
embedding two vertex disjoint copies of Kj in one partite set. For even k
(where now n > (2k — 2)(r — 1) + 1) G, 1, is constructed by taking a Turan
graph T),,_; and embedding a graph with 2k — 1 vertices, k* — (3/2)k edges
with maximum degree k — 1 in one partite set.

2 Lemmas

In this section we give preparatory lemmas for the proof of the main theorem.

Define f(v,A) = max{|E(G)| : v(G) < v,A(G) < A}. Chvatal and Hanson
[2] proved the following theorem.

Theorem 3 For everyv > 1 and A > 1,

fv,A) =vA+ L%J Lﬁj < VA + .

We will frequently use the following special case proved by Abbott et al. [1].

k> —k if k is odd,

f(k— Lk—1)=
k2 — %k if k is even.

The extremal graphs are exactly those we embedded into T, ,_; in the previous
section to obtain the extremal Fj ,-free graph G, ,.

Let a be a positive integer and let X and Y be two disjoint vertex sets of
V(G). We say that X dominates Y with a-deficiency if dy(x) > |Y| — a for

each x € X. Let Vi, V4, ..., V,, be disjoint subsets of V(G). We say that
{Vi, Vo, ..., Vi } is a-deficiency complete if V; dominates V; with deficiency a
for every pair ¢ # j with 7,57 =1,2, ..., m.

The following lemma will be used very heavily in our proof of the main The-
orem.

Lemma 2.1 Let a be a positive integer. Let G be a graph and let {X;, Xo,
.y Xm} be an a-deficiency complete partition of V(G) with |X;| > ma + 2t
for each i. Suppose that Cy, Cs, ..., Cy aret cliques of G with the properties:

(1) |C; N X;| <2 for each pairi and j,
(2) |C; N X;| =2 for at most one j for each i.

Then, there exist t cliques D1, Do, ..., D, satisfying:



(1) C; C D; for each i,

(2) Dy —Cy, Dy — Cs, ..., Dy — Cy are mutually disjoint,

(3) For each i we have that |D; N X;| = 1 for all j except possibly one at
which |D; N X;| = |C; N X;| = 2.

Proof: We need to show that, if C; N X; = 0, there exists a vertex v; €
X; — Ui, Cy such that v; is adjacent to all vertices in C;. Iteration of this
argument will then provide the statement. Without loss of generality, we may
assume that 1 = 5 = 1.

Since dx, (v) > | X1| — a for each v € Cf,

| ﬂ Nx,(v)] > |X1]| — |Cila > ma + 2t — ma > 2t.
veCy

By our assumptions, we have that |(U_, C;)NX1| < 2(¢t—1), thus Nyee, Nx, (v)—
¥ ,C; # (. Lemma 2.1 now follows. O

Lemma 2.2 Let G be a graph and Y, Ys, ..., Y,, be m vertex disjoint subsets
of V(G) and Yy C V(G) — U, Y; such that |Y;| > (i — 1)a + k for each
t=1, ..., m. If Y; dominates Y; with a-deficiency for every i =1,2,...,m,
7=0,1,...,m, and i # j, then, there are k vertex disjoint cliques Cy, Cy, ...,
Cy, satisfying |C;| = m and |C;NY;| =1 for each i and j > 1. Furthermore, if

|Yo| > ma + k, then there are k vertex disjoint cliques Dy, Do, ..., Dy with
the property that |D;| = m+1 and |D;NY;| =1 for each i =1, ..., k and
7=0,1,..., m.

Proof: Let y11,Y1.2, - - -, Y1, be k arbitrary vertices in Y;. Since |N(y1 ;) NYa| >
|Ya| — a > k, there are k vertices ya1,Y2.2, ..., Y2 in Y2 such that y; 0, € E
foralli =1, ..., k. Since |N(y1,) N N(y2,;) NYs| > |Y3] — 2a > k, there are k
vertices ys 1, Y32, - -, Ysk i Y3 such that ys; € N(y1;) N N(yo,) for all i =1,
2, ..., k. Continuing in the same fashion, we see that Lemma 2.2 follows. O

The case k£ = 1 of the main theorem is Turan’s theorem, the case of r = 2 is
trivial, and the case of r = 3 is Theorem 1. We assume that k& > 2 and r > 4.
The aim of this section it to prove the following lemma.

Lemma 2.3 Let G be an extremal graph for Fy, on n vertices with n >
4k*r*, and with minimum degree § > (%)n — k. Then there exists a partition
V(G) = VoUWNU. . .UV, o, so that V; # 0 for alli =0, ..., r—2 and for every
x €V;, the following hold:

Y v(GVi]) <k =1 and A(GVY]) <k —1; (1)
J#



dap;) () + %:V(G[N(x) nVil) <k -1 (2)

Proof: Since G plus any edge contains a copy of Fj, ., G contains k edge disjoint
cliques Dy, Ds, ..., Dy sharing one vertex vy with |D;| =r —1 and |D;| =7
for all j > 2. Let V/(Dy) = {vo,v1,...,v,—2}. Denote the graph induced by

¥  D; by D. Clearly, |D| = k(r — 1). For each i = 0,... ,7 — 2, we define
Xi =Njz N(v;) = V(D). Since G does not contain Fj, as a subgraph,

X;NX; =0 fori#j.

Since the minimum degree §(G) > =2n — k,

|&uvwﬂzrf

[ (r —2)k.

Thus,

n

|XA2;%T—(r—mk—k@—1%: -~ k(2r - 3). (3)

r —

For each i > 1, if there is an edge uv € E(G[X;]), replacing v; by the edge uv
in D we obtain a copy of Fj,,, a contradiction. Thus,

E(G[X;]) =0, foreachi=1,2, ..., r—2.

For every z; € X; and i # 0, since d(z;) > =2n — k, dx,(z;) = 0, and
| Xi| > %5 — k(2r — 3), then

[No—x, ()| = (n — d(2:)) — [ X

S(rﬁ1+k)_<rﬁl_k(zr_3)>

=2k(r —1).
Thus,
da-x,(zi) > |G — Xi| — 2k(r — 1),
for each x € X; where i =1,2,...,r — 2. In particular, we have that

dx, () 2 [X;| = 2k(r = 1) (4)

for each z € X;, i.e., X; dominates X; with 2k(r — 1)-deficiency, where i =
1,2, .7 —2,§=0,1,....,7 —2and j #i.

Claim 4 Letxy, xs, ..., x,_o be r—2 vertices such that x; € X; for eachi =1,
..., 7=2. Then, for any Yy C X with |Yy| > 2k(r—1)%> > 2k(r—1)(r—2) +k,



we have the following inequality

r—2

i=1

Proof: By (4), dx,(z;) > |Xo| — 2k(r — 1), and so
r—2

| () N(z:) N Xo| > [Xo| —2k(r — 1)(r — 2).

=1

Claim 4 follows. O

Let X denote the set of all vertices of X, of degree at least 2k(r — 1)? in Xj.

Claim 5 |X;| < 2k(r —1)(r — 2).

Proof: Suppose, to the contrary, | X§| > 2k(r — 1)(r — 2). For each i, let
Xo=A{z e X{ | dx,(x) > |Xi]/(2k(r — 1) + 1)}

By (4), dx,(z;) > | Xo|—2k(r—1) for every z; € X , thus N(S) 2 X for every
S C X¢ with |S| = 2k(r — 1) + 1, which implies that | X}| > | X§| — 2k(r — 1).

Therefore,
r—2

| Xol > [ X5] = 2k(r — 1)(r —2) > 1.

i=1
There is an zp € X such that |N(zo) N X;| > |Xi|/(2k(r — 1) + 1) for each
i=1,2,..., 7 —2. Recall that by (3) we have |X;| > n/(r — 1) — k(2r — 3)
for each i =1, ..., r — 2. Since n > 4k?r*, the following inequality holds.

INx,(zo)| > | Xil/(2k(r — 1) + 1) > 2k(r — 1)(r — 2) + k.

Applying Lemma 2.2 with Y5 = N(z9) N Xo, Y1 = N(zo) N X1, ..., Y, o =
N(zo)NX,_2, and a = 2k(r—1), we obtain k vertex disjoint cliques Cy, Cs, .. .,
C of sizes r — 1 in N(xg). Then, a copy of Fj, is found, a contradiction. O

Let Zy = Xo — Xj and Z;, = X, foreach i =1, 2, ..., r — 2. By Claim 5 and

(3), we have that
r—2

|V — U Xi| <k(@2r—3)(r—1).
Thus, =
vV — TL_JQ Zi| < k@2r =3)(r — 1)+ 2k(r — 1)(r — 2) < 4k(r — 1)*.

Further, the following inequality holds.

| Zo| > n/(r —1) —k(2r —3) —2k(r —1)(r —2) =n/(r — 1) — k(2r* — 4r + 1).



Since §(G) > “=2n —k, the following inequalities hold for every zo € Zy (recall
that Zy = Xy — X and thus by the definition of X we have A(G[Zy]) <
2k(r — 1)?).

[Na—z,(20)| < (n = d(20)) = (1Z0] — A(G[Z0)))
(500 e e )
dkr(r —1).

IN

In particular, for each 2y € Zj, we have that for i > 0
dZi(ZO) 2 |Zl‘ — 4]§IT(7’ — 1)
That is, Zy dominates Z; with 4kr(r — 1)-deficiency.

Claim 6 For everyv € V—U_§ Z;, there exists a j = j(v) such that dz,(v) <
2k(r —1)*> + k < 2kr(r — 1). Further, such a j(v) is unique.

Proof: Suppose, to the contrary, there is a v € V — Ji_2 Z; such that dz;(v) >
2k(r—1) +kforevery j =0,1,...,r—2. Seta—Qk’(r—l) andm—r—l
then forall 0 < j <r —2

|Nz,(v)|=dz;(v) > ma+k, and
dZ]-(Zi>Z |Z]| —a for z; € Zi, 1> 0,1 7&]

Applying Lemma 2.2, we see that there are k vertex disjoint cliques of order
r — 1 whose vertex sets are in N(v), a contradiction.

To show the uniqueness of j(v), suppose there are two distinct j; and js such
that dz, (v) < 2k(r — 1) + k for both i = 1 and 2. Since n > 4k*r* >
4kr?(r — 1), we have that

d(v) <n —|Z;, U Z;,| +4k(r — 1)* + 2k
<n— [(% —ok(r — 1)2> 4 (& —k(2r - 3))] k(e — 1) + 2k

-2
= N ok(r— 1) 4 k(2 — 3) + dk(r — 1)? + 2k
r—l -1
r—2

—k

<r_1n ,

a contradiction. O

Adding each v € V—U/Z{ Z; to Zj(,), we obtain a partition of V = VoUVU. .. UV,_,.



Clearly, for each i =0, ..., r — 2,
Vil > |2 > —= = 2k(r— 1)* (5)

For each i and each v; € V;, since
r—2
AGVI) < AGIZ) + |V = U Zi| <2k(r —1)* + 4k(r — 1)%,

=0

we have that:

|Ne—v, (v:)| < (n — d(v;)) — ([Vi| = A(G[Vi]))
< (rfl +k> _ (rfl —2k:(r—1)2—6k(r—1)2>

=k +2k(r — 1) + 6k(r — 1)?
< 8kr?

In particular, we have that:

iy (1) = (V5] = Shr®. 0
We will show that Vg, Vi, ..., V,_o satisfy (1) and (2). Let a = 8kr?. Since
n > 4k*r* > 8kr*, for any j, we have that
vl > — - = 2(r = 1) 2 (r — Do+ 2%,
r —

Proof of (1). Suppose for some y € V;, |[N(y) N V;| > k, say the neighbors are
Y1, Y2, - -, Y in V;. By Lemma 2.1, there are k cliques Dy, Ds, ..., D such
that y,y; € D; and |D;| = r for each j. Further, D; N D, = {y} for all j # .
Thus, a copy of Fj, is found, a contradiction.

Next suppose that >, v(V;) > k. Let y121, Y222, ..., Y2 be a k-matching
with the property that y; and z; are in the same V; for some ¢ # ¢. Now, since
n > 4k%r* > 16k%r3,

) (N ()N, ()] > Vi =2k (8kr2) > (

j=1

n

i 2k(r — 1)2)—16k2r2 > 1.
Therefore, there exists a vertex y € V;, such that Ule{yj,zj} C N(y). By
Lemma 2.1, there are k cliques Dy, D», ..., Dy such that y,y;,z; € D; and
|D;| = r for each j. Further, D; N D, = {y} for all j # ¢. Thus, a copy of Fj,
is found, a contradiction. O

Proof of (2). Let v € V; have neighbors z1, 3, ..., ¥, in V; and neighbors v,
21, Y2, 225 - -, Y, and 2z, in V =V where, for each j =1, ..., ¢, y; and z; in the



same V; for some ¢ # i and y;z; € E(G). By (1), both s and ¢ are less than
k. Suppose for the moment that s + ¢ > k. Consider k of the cliques {v,x1},
v xgt, {v,yn, 1) oo, {v, s, 2} Applying Lemma 2.1 again, we obtain
k cliques D1, Ds, ..., Dy which induce a copy of Fj ,, a contradiction, which
completes the proof of Lemma 2.3. O

3 Proof of the Main Lemma

The following lemma was obtained in [3].

Lemma 3.1 Let H be a graph and b a nonnegative integer such that b <
A(H)—2, and let v =v(H), A = A(H). Then

> min{dy(z),b} <v(b+ A). (7)

z€V(H)

Let G be a graph with a partition of the vertices into » — 1 non-empty parts
V(G) = VouU. ..UV, .
Let G; = G[V;] for each i =0, 1, ..., r — 2, and define
Ger = (V(G), {viv; v € Vi,v; € Vi # 5}),

where "cr” denotes ”crossing”. For each i € {0,1,...,7 — 2,¢cr} let di(x) =
dg,(z) and v; = v(G;). We generalized Lemma 6.2. in [3] to the following
lemma.

Lemma 3.2 Suppose G is partitioned as above so that (1) and (2) are satis-
fied. If G is Fy, ,.-free, then

0<i<j<r—2

Proof: Observe that G, is an (r — 1)-partite graph, and > o<;cj<,—2 |Vil|V;| —
|E(Ger)| is the number of edges missing from the complete (r — 1)-partite
graph. By (1) and the definition of f, we see that |E(G;)| < f(k — 1,k — 1),
so the left hand side of (8) is bounded above by (r — 1) f(k — 1,k —1). Delete
vertices of G so that the left hand side of (8) is maximal, let G be minimal in
this case.

We now claim that for each i =0, ..., r — 2 and every z € V;,

di(z) = (|V = Vi| = der(2)) > 0. (9)



In fact, if for some = € V;, d;(x) — (|V — Vi| — de(x)) < 0 holds, then
|E(Gi—x)|+>_ |B(G))|- (Z Vi—zllVil+ > [VilIVil = |E(Ger — fl?)\)
JF J# i£j<lFi

:2|E<Gj)’_( > |V}||‘/€’_‘E(Gcr)|)_<di(x)_|v_‘/i‘+dcr(x))

0<j<l<r—2

> §\E<Gj>| - ( Sl - 1E<Gcr>\) |

0<j<t<r—2
contradicting the minimality of G. Hence (9) holds.

We also claim that for each ¢ =0, ..., r — 2,

di(x) — (|V = Vi| = der(2)) Sk—l_%:yj' (10)

To see (10), we need only observe that,

di(x) = (|V = Vi| = der(2))
<k—1=% [W(GIN@) Vi) + [V = d;(x)] Dby (2)

JF
S k—1 —ZV]',
JFi

where the last inequality holds since any matching in G has at most |V;|—d;(z)
edges with one or both endpoints outside N(x) N V;. This proves (10).

We can also assume that for each i =0, 1, ..., r—2

1<y v <k-2, (11)
J#i

by the following arguments. If 37,;, v; = 0, then G is empty for every j # i,
and in this case by (1),
|E(Gi)| — (Z Vil Vel = E(Gcr)|) <|E(Gy)| < flk—1,k—1);
j<t

thus (8) holds trivially, verifying the lemma. If 3, ., v; = k — 1, then by (9)
and (10), we would have

0 <di(x) = (V= Vi| = der(2)) <0,

a contradiction.

10



We may further suppose that
2<vy;foreachi=0,...,7r—2. (12)

To the Contrary, without loss of generality, assume that vy < 1, then (11)
implies that >0-7v; <k — 1. As

r—2
Zf Vl? < f(ZVZ7 )
=0

always holds, we get that -2 |E(Gy)| < f(k — 1,k — 1) and (8) follows.

Now apply Lemma 3.1 for the graph G; (i =0, ..., r—1) with A =k -1
andb=k—1-3,,,v; <A -2 (by (12)). Using (10) and (7) we get

(Z V3] — dcr(xN
j#i

<Zm1n{ —1—2%}

zeV; j#i

<y (Q(k —1) - Zyj) . (13)

> [dl(x) —

z€eV;

JFi
The left side in (13) equals

21B(Gi)|+ DBV, Vi)l = 3 [VillVjl,

i J#i
so adding these r — 1 sums (for i =0, ..., r — 2) gives
2|E(G |—QZ|E i) +2|E(Ger)|
1=0
r—2
=2 (2B@G) + X IEWVL V) = X VillVil | + 23 ViVl
i=0 i#j i i<j
r—2

[e=]

<3y (2(/<;— 1) —Zuj) +2 |VillVj]

1= j#i 1<j

:2[/{:2—2k+1—(k—1—yo) (/{Z—l—ZVj) - > Vng]

5>0 0§ 440
+2) |VillVj).

i<j

This yields |[E(G)| < k* — 2k + X,; |Vil|V;] (by ( ) k—1-1v > 1 and
k—1—3,,v; > 1), and since f(k — 1,k — 1) > k* — 2k, this implies (8),

11



finishing the proof of Lemma 3.2. O

4 Proof of The Theorem

We can summarize Lemma 3.2 and Lemma 2.3 as follows.

Lemma 4.1 Suppose that G is an Fy,-free graph on n vertices with n >
4k*r*, and with minimum degree 6 > =2n — k, then |E(G)| < ex(n, K,) +
flk—1,k—1).

Proof: We can assume that G has the maximum number of edges under the
conditions of Lemma 4.1 and apply Lemma 2.3 to get a decomposition of G
into Go, G1, ..., G,_o, G... The graph G, consists of the edges between V;
and Vj for all distinct pairs ¢ and j. Lemma 3.2 implies that

B(G)| = Z B(G)| + |E(Gur)
< VIV + £k =Lk = 1)

<ex(n K, + f(k—1,k—1),

and we are done. O

Since ex(n, K,) —ex(n — 1, K,) = lT_2nJ, we see that the following lemma

r—1
holds.

Lemma 4.2 Let G be a graph of order n, let k be an integer and ¢ some
constant independent from n. If |[E(G)| > ex(n, K,) + ¢ and d(z) < "=2n — k,
then |E(G — x)| > ex(n — 1, K,) + c+ k.

Proof of Theorem 2. Suppose that n > 16k3r®, and that G is an Fj, ,-free graph
on n vertices. We need to show that G has at most ex(n, K,) + f(k— 1,k —1)
edges. Suppose, to the contrary, that |[E(G)| > ex(n, K,)+ f(k—1,k—1). By

Lemma 4.1, there exists a vertex x = x,, with degree dg(z,) < ::?n — k.

Denote G by G*, and let G* ! = G" — x,,. By Lemma 4.2,
E(G" Y| >ex(n—1,K)+ f(k—1,k—1)+ k.

If there exists a vertex z,_; € V(G ') with degree dgn-1(x,-1) < ==3(n —
1) — k, then delete it to obtain G"2 = G"™! — x,,_;. Continue this process
as long as §(G") < %@ — k, and after n — £ steps we get a subgraph G* with
6(G") > =20 — k. Note that

00 —1)/2 > |E(GY)| > ex(t, K,) + k(n — 0) + f(k — 1,k — 1) > k(n — 0).

12



We have that ¢ > vkn > 4k*r*, a contradiction to Lemma 4.1. O

5 Remark

To avoid tedious calculations, we did not attempt to lower the bound n >
16k3r® in the proof, although we strongly believe the bound can be lowered
substantially.
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