
CLAW-FREE 3-CONNECTED P11-FREE
GRAPHS ARE HAMILTONIAN
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Abstract. We show that every 3-connected claw-free graph which
contains no induced copy of P11 is hamiltonian. Since there ex-
ist non-hamiltonian 3-connected claw-free graphs without induced
copies of P12 this result is, in a way, best possible.

1. Statement of the main result

A graph G is {H1, H2, . . . Hk}-free if G contains no induced sub-
graphs isomorphic to any of the graphs Hi, i = 1, 2, . . . , k. A graph
without induced copies of K1,3 is called claw-free, and a graph contain-
ing no copies of K3 is triangle-free.

Broersma and Veldman [3] showed the following theorem. (Here and
below Pk denotes the path on k vertices.)

Theorem 1. If G is a 2-connected {K1,3, P6}-free graph, then G is
hamiltonian.

Bedrossian [1] characterized all pairs of forbidden subgraphs X, Y ,
such that every 2-connected {X, Y }-free graph is hamiltonian. Later,
Faudree and Gould [6] extended that list under the extra condition
that the graph has at least ten vertices.

In the above results, it is natural to consider 2-connected graphs, as
this is a neccessary condition for hamiltonicity. In this paper we study
3-connected graphs instead to see what kind of results we can achieve
with this extra condition. We show the following result analogous to
Theorem 1.

Theorem 2. Every 3-connected {K1,3, P11}-free graph is hamiltonian.

This extends a result from Brousek et al. [5], who showed as a
corollary of a result about 2-connected claw-free graphs that every 3-
connected {K1,3, P7}-free graph is hamiltonian.

1991 Mathematics Subject Classification. 05C45.
Key words and phrases. Hamilton cycle, claw-free graphs, forbidden subgraphs.

1



2 TOMASZ  LUCZAK AND FLORIAN PFENDER

Furthermore, in the last section of the paper, we give an example
of an infinite family of non-hamiltonian 3-connected {K1,3, P12}-free
graphs.

2. Closure, cycle closure and line graphs

We start with some definitions and notation (for terminology not
defined here we refer the reader to [2]). For a graph G which contains
at least one cycle the circumference of G, denoted by c(G), is the length
of a longest cycle contained in G. We denote the neighborhood of a set
of vertices X ⊆ V (G) in a graph G by N(X). Similarly, the closed
neighborhood of a set of vertices X ⊆ V (G) is N [X] = X ∪ N(X).
We write L(G) for the line graph of G. A graph G is essentially k-
edge-connected if the deletion of less than k edges leaves at most one
component with more than one vertex. In this paper by circuit we
mean a closed trail, possibly of length zero. A circuit C is dominating
if every edge in G is incident to at least one vertex of C.

The closure cl(G) of a graph G is the minimal (K4 − e)-free graph
containing G as a spanning subgraph. This notion was introduced by
Ryjáček [10], who also characterized basic properties of the closure
operation.

Theorem 3. Let G be a claw-free graph. Then:

(i) cl(G) is uniquely determined by G,
(ii) there is a (unique) triangle-free graph H such that cl(G) =

L(H),
(iii) c(cl(G)) = c(G),
(iv) G is hamiltonian if and only if cl(G) is hamiltonian.

A claw-free graph G is closed, if cl(G) = G. By (ii), all closed graphs
consist of a collection of maximal cliques, each two of which share at
most one vertex. A class P of graphs is called stable under cl, if G ∈ P
implies cl(G) ∈ P for every claw-free graph G. Brousek et al. [5] showed
the following theorem.

Theorem 4. The class of {K1,3, P`}-free graphs is stable under cl for
any ` ≥ 3.

Broersma and Ryjáček [4] expanded on the closure operation and
introduced the cycle closure of a claw-free graph G, clC(G), as follows.

Let G be a closed claw-free graph and let C be an induced cycle of
length k. We say that the cycle C is eligible in G if 4 ≤ k ≤ 6 and if the
k-cycle L−1(C) in H = L−1(G) contains at least k − 3 nonconsecutive
vertices of degree two in H.
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For an eligible cycle C in G set BC = {uv | u, v ∈ NG[C], uv 6∈
E(G)}. The graph G′

C with vertex set V (G′
C) = V (G) and edge set

E(G′
C) = E(G) ∪BC is called the C-completion of G at C.

Definition 1. Let G be a claw-free graph. We say that a graph H is a
cycle closure of G, denoted H = clC(G), if there is a sequence of graphs
G1, . . . , Gt such that

(i) G1 = cl(G),
(ii) Gi+1 = cl((Gi)

′
C) for some eligible cycle C in Gi, i = 1, . . . , t−

1,
(iii) Gt = H contains no eligible cycles.

For the cycle closure, the following is true.

Theorem 5. [4] Let G be a claw-free graph. Then

(i) clC(G) is well defined (i.e. uniquely determined),
(ii) c(G) = c(clC(G)).

We will start by showing the following theorem about the cycle clo-
sure.

Theorem 6. The class of {K1,3, P`}-free graphs is stable under clC for
any ` ≥ 3.

Proof. By Theorems 4 and 5, it is sufficient to show that G′
C is P`-free

for every {K1,3, P`}-free graph G, and any eligible cycle C.
Suppose, to the contrary, that G′

C contains an induced P`, P =
x1x2 . . . x`. Since G is P`-free and E(G′

C) = E(G)∪BC , E(P ) contains
at least one edge of BC . Since G′

C [N [C]] is complete, E(P ) contains
at most two vertices in N [C]. Thus, E(P ) contains exactly one edge
e ∈ BC , say e = xixi+1, and V (P )∩N [C] = {xi, xi+1}. Take a shortest
path R in G from xi to xi+1 using only vertices from V (C) as internal
vertices to create a path P ′ = x1 . . . xiRxi+1 . . . x`. As V (P ) ∩N [C] =
{xi, xi+1}, P ′ is induced, contradicting the fact that G is P`-free. This
proves the theorem. �

Let G be a 3-connected claw-free graph closed under clC . Let L−1(G)
be the unique line graph original, i.e. the unique graph whose line graph
is identical with G, guaranteed by Theorem 3(ii). Similarly, let F be a
claw-free graph closed under clC .

The following are well known facts about line graphs:

Fact 7. If G is a line graph, the following are true:

(i) G is k-connected if and only if L−1(G) is essentially k-edge-
connected.
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(ii) [8] G is hamiltonian if and only if L−1(G) has a dominating
circuit.

(iii) F is an induced subgraph of G if and only if L−1(F ) is a (not
necessarily induced) subgraph of L−1(G).

Let L̄(G) be the graph obtained from L−1(G) after deleting all ver-
tices of degree one and after replacing all vertices of degree two by
edges between their two neighbors. Let M = M(L̄(G)) ⊆ V (L̄(G))
be the set of vertices which were neighbors of vertices of degree less
or equal two in L−1(G). From Fact 7, we get the following statements
about L̄(G).

Fact 8. The following are true:

(i) L̄(G) is well defined.
(ii) L̄(G) is triangle-free.
(iii) L̄(G) is 3-edge-connected.
(iv) G is hamiltonian if and only if L̄(G) has a dominating circuit

covering all vertices in M.

Proof. By Fact 7(i), L−1(G) is essentially 3-edge-connected, therefore
the vertices of degree less than 3 form an independent set in L−1(G),
and the graph L̄(G) resulting from their deletion/replacement contains
no vertices of degree less than three. Furthermore, there are no trian-
gles or multiple edges in L̄(G) as G is closed under clC , and L−1(G)
thus contains no induced k-cycles with at least k− 3 vertices of degree
two, where 3 ≤ k ≤ 6. This establishes (i) and (ii).

Clearly, L̄(G) is essentially 3-edge-connected, since L−1(G) is essen-
tially 3-edge-connected, and each edge cut in L̄(G) induces an edge cut
of the same size in L−1(G). Again, there are no vertices of degree less
than three in L̄(G), so this implies (iii).

Finally, it is easy to see that every dominating circuit in L−1(G)
induces a dominating circuit covering all vertices in M in L̄(G) and
vice versa, together with Fact 7(ii) this establishes (iv). �

Fact 9. If G is P`-free for some ` ≥ 3 and G is non-hamiltonian,
then L̄(G) contains none of the following as a (not necessarily induced)
subgraph:

(i) P`+1,
(ii) P` = x1x2 . . . x` with x1 ∈M,
(iii) P`−1 = x1x2 . . . x`−1 with x1, x`−1 ∈M.

Proof. If L̄(G) contains a P`+1 or a P` = x1x2 . . . x` with x1 ∈M, then
L−1(G) contains a P`+1, which contradicts the fact that G is P`-free by
Fact 7(iii).
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Thus, assume that L̄(G) contains a path P`−1 = x1x2 . . . x`−1 with
x1, x`−1 ∈ M. Let v be a vertex in NL−1(G)(x1) with d(v) ≤ 2,
and let u be a vertex in NL−1(G)(x`−1) with d(u) ≤ 2. If u 6= v,
then the path in L−1(G) which corresponds to vx1x2 . . . x`−1u con-
tains a path of length ` + 1, which, again, is not possible. Therefore,
u = v, d(u) = 2 and x1x2 . . . x`−1x1 is a cycle in L̄(G). As G is not
hamiltonian, x1x2 . . . x`−1x1 is not a dominating circuit covering M
in L̄(G) by Fact 8(iv). Thus, there is another vertex y ∈ V (L̄(G)),
connected to some xk. Now the path in L−1(G) corresponding to
yxk . . . x`−1ux1 . . . xk−1 contains a path of length ` + 1, the final con-
tradiction. �

Thus, Theorem 2 will follow from Fact 9 and the following lemma.

Lemma 10. Let G be a triangle-free 3-edge-connected graph and let
M ⊆ V (G) be a subset of its vertices. Then G contains one of the
following:

(i) a dominating circuit containing all vertices in M,
(ii) P12,
(iii) P11 = v1v2 . . . v11 with v1 ∈M,
(iv) P10 = v1v2 . . . v10 with v1, v10 ∈M.

3. Graphs without long paths

In this section we prove Lemma 10. Our argument includes an ele-
mentary but laborious analysis of cases, so we start with stating a few
simple facts we shall repeatedly use in this part of the paper.

Fact 11. Let P = v1v2 . . . v` be a longest path in a connected graph G.

(i) N(v1) ⊆ V (P ). Moreover, v` /∈ N(v1) unless P is a hamilton-
ian path.

(ii) If some vi, 2 ≤ i ≤ ` − 2, has a neighbor outside V (P ), then
vi+1 /∈ N(v1).

(iii) If w /∈ V (G) \ V (P ) is adjacent to v2 and vj for some 2 ≤ i <
j ≤ `− 1, then vj−1 /∈ N(v1).

Proof. It is easy to check that if any of the conditions (i)–(iii) fails,
then G contains a path longer than P . �

Fact 12. Let P = v1 . . . v` be a longest path in a 2-connected, 3-edge-
connected, triangle-free graph G, and let H denote the graph induced
in G by V (G) \ V (P ).

(i) If ` ≤ 10, then V (G) \ V (P ) is an independent set.
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(ii) If ` = 11, then all components of H which contain more than
one vertex are stars, with vertices z, y1, . . . , yk, such that the
neighborhood of each of vertices yi, i = 1, 2, . . . , k, consists of
z, v4, and v8.

Proof. Suppose there exists a vertex z lying at distance two from P .
Then, since G is 2-connected, there are two vertex-disjoint paths which
join z with two different vertices of P , each of length at least two.
Hence, for some k ≥ 3 and 2 ≤ i < j ≤ ` − 1, there exists a path
P ′ = viw1 . . . wkvj such that w1, . . . , wk /∈ V (P ). Note that i ≥ 3,
since otherwise the path wkwk−1 . . . w1vivi+1 . . . v` is longer than P .
Similarly, j ≤ ` − 3. But then the path v1 . . . viw1 . . . wkvj . . . v` is
longer than P unless k = 3 and ` = 11. Hence, if a vertex z lies at
distance two from P , then ` = 11 and all paths from z to P have length
two and join z with one of the vertices v4, v8. All other vertices are
within distance one from P .

Let F be a component of H. If it contains a vertex which lies at
distance two from P , then, as we have just proved, it must be a star
of the type described above. Thus, let us assume that all vertices of
F have at least one neighbor on P . Note also that F cannot contain
a cycle. Indeed, since G is triangle-free, such a cycle would have at
least four vertices; this would imply that two different vertices of P are
connected by an “external” path P ′ of length at least five, which, as
we have seen above, is impossible. Thus, since the minimum degree of
G is three, at least two vertices of F , say, x and y, have at least two
neighbors each on P . Furthermore, if x and y are not adjacent, one
can argue as above that F must be a star of the type described in (ii),
so we may assume that xy is an edge of G. Let W denote the set of the
vertices of P which are adjacent to one of the vertices x and y. Since
G is triangle-free the neighborhoods of x and y are disjoint, and so
|W | ≥ 4. Note also that no two vertices of W are consecutive vertices
of P , and neighbors of x and y must lie at distance at least three on P ,
since this will lead to a longer path. Thus, at least one of the vertices
v2 and v`−1 must belong to W , say, v2 is adjacent to x. But then the
path yxv2v3 . . . v` is longer than P , contradicting the choice of P . �

We call a graph G super-eulerian if it contains a circuit which goes
through every vertex of G, i.e., if it has a spanning Eulerian subgraph.
The following two facts are easy consequences of the above definition.

Fact 13. Let G be a complete bipartite graph with bipartition (V1, V2),
where |V1| = 3 and |V2| = k. Then, if k ≥ 2, G contains a circuit
which covers all vertices of V2. Moreover, if k ≥ 3, then for every two



CLAW-FREE 3-CONNECTED P11-FREE GRAPHS 7

different vertices v, v′ ∈ V1 there is a trail in G which starts at v, ends
in v′, and covers every vertex of G. �

Fact 14. Let H1, . . . Hm be edge-disjoint subgraphs of a graph G, and
let F denote the graph with vertices H1, . . . , Hm in which two vertices
Hi, Hj are adjacent if and only if V (Hi) ∩ V (Hj) 6= ∅. If each Hi,
i = 1, . . . ,m, is super-eulerian, V (G) =

⋃
i V (Hi), and F is connected,

then G is super-eulerian.
In particular, if each block of a connected graph G is super-eulerian,

then G is super-eulerian as well. �

We shall also use the following result of Favaron and Fraisse [7],
which is a consequence of the nine-point theorem by Holton et al. [9].

Lemma 15. If a graph G is 3-edge-connected, then for every nine
vertices of G there is a circuit going through all these vertices.

In particular, each 3-edge-connected graph on at most nine vertices
is super-eulerian.

Before we prove Lemma 10 we show the following lemma.

Lemma 16. Every triangle-free 3-edge-connected graph which does not
contain a P10 as a subgraph is super-eulerian.

Proof. Let G be a triangle-free 3-edge-connected graph without a P10.
From Fact 14 and Lemma 15 it follows that we may assume that G
is a 2-connected graph on at least ten vertices. Let P = v1 . . . v`,
` ≤ 9, denote a longest path in G. Fact 12 implies that all vertices
x ∈ V (G) \ V (P ) have at least three neighbors on P . Note that since
G has at least ten vertices the set V (G) \ V (P ) is non-empty.

Since G is triangle-free, and v1, v` have no neighbors outside P
(Fact 11(i)), we must have ` ≥ 7. Let us first consider the case ` = 7, 8.
Let x ∈ V (G)\V (P ) and vi, vj, vk, 2 ≤ i < i+1 < j < j+1 < k ≤ `−1
be neighbors of x on P . It is easy to check using Fact 11 that then the
only three neighbors of v1 on P are v2, vj and vk, and v` can be adjacent
only to vi, vj and v`−1. Consequently, all vertices in V (G)\V (P ) must
have the same neighborhood vi, vj and vk. Since |V (G)\V (P )| ≥ 2, G
contains a circuit K which covers all vertices of V (G) \ V (P ) and uses
no edges joining two vertices of P (see Fact 13 above). Note also that
the circuit K ′ = v1v2 . . . v`vjv1 contains all vertices of P . Combining
K and K ′ we get a circuit which goes through all vertices of G, and so
G is super-eulerian.

Now suppose that ` = 9. Then we split all vertices of V (G) \ V (P )
into two sets, S1 and S2. The set S1 consists of all the vertices which
are adjacent to at least one of the “odd” vertices v3, v5, v7, while
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S2 = V (G)\ (V (P )∪S1). It is easy to verify that for any vertex x ∈ S1

which has neighbors vi, vj, vk, i < j < k, v1 is adjacent to vk, v9 must
be adjacent to vi, and at least one of the vertices v1 and v9 is adjacent
to vj. If x ∈ S2, then we claim only that v1 is adjacent to at least two
of the vertices v4, v6 and v8, and at least two of the vertices v2, v4, v6

are neighbors of v`. Note however, that the above observation implies
that one of the sets S1, S2 is empty. Hence, let us consider the two
following cases.

Case 1. S2 = ∅.
As we have already observed each x ∈ S1 determines uniquely if v1

is adjacent to v7 or v8, and if v9 is adjacent to v2 or v3. Thus, there are
two vertices vi, vk ∈ V (P ) such that for every x ∈ S1, vi is adjacent to
x and v9, while vk is a neighbor of both x and v1.

Consider first the case that |S1| = |V (G) \ V (P )| is odd. Then,
we can cover all but one element of S1, say x, by a circuit K which
contains no edges with both ends in V (P ) (Fact 13). Combining K
with v1v2 . . . v9vixvjv1 proves that G is super-eulerian (Fact 14).

If |S1| is even, then again we apply Fact 13 to find a circuit which
contains all but two, say x, x′, vertices of S1, and uses only edges
incident to S1. Now it is enough to find a circuit K on vertices V (P )∪
{x, x′}. Assume that x has neighbors vi, vj and vk, i < j < k, and vj

is adjacent to, say, v1. Then K = v1 . . . v9vix
′vkxvjv1.

Case 2. S1 = ∅.
As before our aim is to show that one can cover all vertices of G by

a number of edge-disjoint circuits (note that each circuit must contain
at least two vertices from V (P )).

Let us partition S2 into sets S ′
2 and S ′′

2 , where S ′
2 consists of all

vertices which are adjacent to both vertices v4 and v6, while S ′′
2 = S\S ′

2.
We show first that for every x ∈ S2 there exists a circuit with vertex
set V (P ) ∪ {x}. Let us consider two subcases.

Case 2a. x ∈ S ′
2.

One can verify using Fact 11 that there are two neighbors v′, v′′ ∈
V (P ) of x such that v1 is adjacent to v′ and v9 is adjacent to v′′. Hence
v1v2 . . . v9v

′′xv′v1 is a circuit we are looking for.

Case 2b. x ∈ S ′′
2 .

Let us assume that x is adjacent to v2, v4 and v8 (the symmetric case
in which x is adjacent to v2, v6 and v8 can be dealt with in a similar
way). If there are two neighbors v′ and v′′ of x such that v1 is adjacent
to v′ and v9 is adjacent to v′′ we can proceed as in the previous case.



CLAW-FREE 3-CONNECTED P11-FREE GRAPHS 9

Thus, assume that it is not the case. Then both vertices v1 and v9 are
adjacent to both v4 and v6. Hence v1v6v7v8xv2 . . . v6v9v4v1 is a circuit
we are looking for.

Now suppose |S2| = |V (G)\V (P )| ≥ 2. Each two vertices x, y, from
S2 share at least two neighbors, hence, they lie on a cycle of length four.
Consequently, if |S2| is odd, then we can cover all but one vertex (say,
x) of S2 by edge-disjoint cycles and combine them with a circuit with
vertex set V (P )∪ {x} to show that G is super-eulerian. An analogous
argument can be used to prove that G is super-eulerian if |S2| is even
and the vertices v1 and v9 have a common neighbor on P . Thus, let
us assume that |S2| ≥ 2 is even and the vertices v1 and v9 share no
neighbors. We cover all but two, say x1, x2, vertices of S2 by edge-
disjoint cycles of length four. Then it is easy to see that among the
vertices v2, v4, v6 and v8 we find three, say v′, v′′, and v′′′, such that for
some α ∈ {1, 2}, v′ is adjacent to both v1 and xα, v′′ is adjacent to both
x1 and x2, and v′′′ is adjacent to both x3−α and v9. Then, the circuit
v1v2 . . . v9v

′′′x3−αv′′xαv′v1 covers all vertices from V (P )∪ {x1, x2}, and
so G is super-eulerian. �

Proof of Lemma 10. Let G be a 3-edge-connected graph such that the
vertex set of G is partitioned into two classes: the set M (the major
vertices) and the set V (G) \ M (the minor vertices). Let ` be the
number of vertices in a longest path in G and let P = v1 . . . v` denote a
longest path for which the set {v1, v`} contains the maximum number
of major vertices. We show that if either

• ` ≤ 10 and at least one of the vertices v1, v` is minor,

or

• ` = 11 and both vertices v1, v` are minor,

then there exists a dominating circuit K which contains all major ver-
tices of G.

Note that we may assume that G is 2-connected (Fact 14) and ` ≥ 10
(Lemma 16).

Case 1. ` = 10 and at least one of the vertices v1, v10, say v1, is
minor.

Note first that Lemma 15 implies that there is a circuit K covering
the vertices {v2, . . . , v9}. Since it follows from Fact 11(i) and Fact 12
that the set V (G) \ {v2, . . . , v10} is independent, either V (G) \V (K) is
an independent set which consists of minor vertices and we are done,
or the set S of all major vertices in V (G) \ V (P ) is non-empty. Since
the minimum degree of G is three, each vertex x ∈ S is adjacent to
at least three vertices on P . Note however, that x is not adjacent to
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v2 since otherwise the path xv2v3 . . . v10 has the same length but more
major ends than P . Furthermore, if vi is a neighbor of x, not only
vi+1 is not adjacent to v1 (see Fact 11(iii)) but vi+2 is not a neigh-
bor of v1 either. Indeed, in this case P can be replaced by a path
xvivi−1 . . . v1vi+2vi+3 . . . v10 which starts at the major vertex x. Finally,
if x is adjacent to v`−1 = v9, then v2 cannot be a neighbor of v` = v10,
since otherwise the path v10v2v3 . . . v9x has one more major end than P .

There are ten possible ways of choosing three neighbors of x among
the vertices v3, v4, . . . , v9 in such a way that none of them are consec-
utive. However, using Fact 11 and the observations mentioned above,
one can check by a direct inspection that in seven of these cases con-
necting the vertex v1 with two vertices in {v4, . . . , v9} immediately leads
either to a longer path, or to a path of the same length as P but with
more major ends. The three remaining cases are as follows:

• x is adjacent to v3, v7 and v9. This forces v1 to be adjacent to
v7 and v9, while v10 is adjacent to v3 and v7.

• x is adjacent to v4, v6 and v9. Then v1 is adjacent to v4 and
v9, while v4 and v6 are neighbors of v10.

• x is adjacent to v4, v7 and v9. Then v4 and v7 are neighbors of
v1, while v10 is adjacent to v4 and v7.

Furthermore, in all the cases, the degree of both v1 and v10 is three.
Thus, since in each of the above cases v1 has a different neighborhood,
all vertices of S must have the same neighbors on P .

Suppose that |S| ≥ 2. Then, Fact 13 implies the existence of a
circuit K which uses only edges incident to S and covers all vertices
of S. Moreover, v1 and v10 have a common neighbor v′ ∈ V (P ), so all
vertices of P lie at the circuit K ′ = v1 . . . v10v

′v1. Combining K and
K ′ we obtain a dominating circuit which contains all major vertices of
G.

Now suppose that S = {x}. Then, from the description of the three
cases we deal with, we infer that x has two different neighbors on P ,
say v′ and v′′, such that v′ is adjacent to v1, while v′′ is a neighbor of
v10. Hence the circuit v1 . . . v10v

′′xv′v1 contains all major vertices of G
and, since it contains all vertices of P , is dominating in G.

Case 2. ` = 11 and both vertices v1, v11, are minor.

It follows from Lemma 15 that G contains a circuit K which goes
through all the vertices v2, . . . , v10. Observe that without loss of gen-
erality we may assume that K contains all vertices of G which belong
to non-trivial components of the graph H induced by V (G) \ V (P ).
Indeed, it is enough to note that a graph induced by such a component
and the vertices v4 and v8 contains both a spanning circuit as well as
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a spanning trail which starts at v4 and ends at v8 (Fact 14), which
is easy to see with Fact 12(ii) (with the notation from Fact 12(ii),
v4y1zy2v4y3v8y4v4 . . . and v4y1zy2v8y3v4y4v8 . . . would be a spanning
trail and a spanning circuit, respectively). Thus, the set S of all major
vertices of G which have at least three neighbors on P must be non-
empty; otherwise K would be a dominating circuit which contains all
major vertices.

Similarly as in the previous case one needs to examine all possible
neighborhoods of x ∈ S, but now we can make use of the fact that both
v1 and v11 are minor so, for instance, no vertex from S is adjacent to v10.
It turns out that inspecting all possible candidates for neighbors of v1

and v11 one can eliminate all but one case and infer that all vertices
x ∈ S must be adjacent to v3, v6 and v9. This, in turn, forces v1 to be
adjacent to v6 and v9, and v11 to have v4 and v6 as its neighbors. But
then the argument identical to that given in Case 1 shows that there
exists in G a dominating circuit K which contains all major vertices.
This completes the proof of Case 2 and Lemma 10. �

4. A non-hamiltonian 3-connected
P12-free claw-free graph

We conclude the paper by giving an example of a graph F which is
claw-free and contains no induced copy of P12, yet it is not hamiltonian,
which shows that Theorem 2 is, in a way, best possible.

Let H be the graph obtained from the Petersen graph by attaching
a pendant edge to each of its vertices. Let F = L(H).

Fact 17. The graph F is claw-free, 3-connected and non-hamiltonian.
Moreover, it contains no induced copy of P12.

Proof. Clearly, F is claw-free like every line graph. Furthermore, F is
3-connected since H is essentially 3-edge-connected. As the Petersen
graph is 3-regular, a dominating circuit of H would be in fact a domi-
nating cycle. Since the Petersen graph is non-hamiltonian, such a cycle
can not exist, and thus, F is non-hamiltonian by Fact 7(ii).

Moreover, H does not contain P13 as a subgraph, and therefore, F
contains no induced copy of P12 by Fact 7(iii). �

Finally we remark that in the construction of H one can add more
pendant edges to each of the ten vertices of the Petersen graph without
making the graph F = L(H) hamiltonian or creating any induced
K1,3 or P12’s in F . Therefore, there are non-hamiltonian 3-connected
{K1,3, P12}-free graphs on n vertices for every n ≥ 25.
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