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Abstract

We show that every hamiltonian claw-free graph with a ver-
tex x of degree d(x) ≥ 7 has a 2-factor consisting of exactly two
cycles.

1 Introduction

All graphs considered in this paper are simple and undirected. The
vertex set of a graph is V , and E is the edge set. For notation not
defined here we refer the reader to [1]. The neighborhood of a vertex v
is denoted by N(v), the degree of a vertex v is d(v) = |N(x)|. If X ⊆ V
is a set of vertices, G[X] stands for the subgraph on X induced by G.
The complete bipartite graph K1,3 is also called the claw, and a graph
is said to be claw-free if it does not contain any induced copies of K1,3.

In the paper, C will always be a hamiltonian cycle with some orien-
tation. For a vertex v ∈ V , let v+, v++, v3+, etc. denote the successors
of v on C, and let v−, v−−, v3−, etc. denote the predecessors of v. The
notation uCv stands for the u− v path given by C and its orientation,
uC−v will be the u − v path following C in reversed direction. Let
U := {v ∈ V | v−v+ 6∈ E}. We will call a 2-factor consisting of exactly
two cycles a 2C-factor.

Hamiltonicity of graphs has been studied widely, and lately a lot
of the conditions that imply a graph to be hamiltonian were shown
to be sufficient to also guarantee the existence of a wide range of 2-
factors. But what can we say when we assume hamiltonicity as one of
the properties of the graph? What kind of conditions will yield what
kind of 2-factors?
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Consider the following family G of graphs: Let G(V,E) be a graph.
Then G belongs to G if

1. For some k ≥ 5, V is the disjoint union of vertex sets V1, V2, V3, . . . Vk
with (let Vk+1 = V1):

(a) |Vi| ≥ 1 for all 1 ≤ i ≤ k,

(b) |Vi| = 1 for at least five different indices,

(c) |Vi|+ |Vi+1| ≤ 4 for all 1 ≤ i ≤ k.

2. E = {uv | u, v ∈ Vi ∪ Vi+1 for some 1 ≤ i ≤ k}.

It is easy to observe that every graph in G is hamiltonian, but
no graph in G contains a 2C-factor. Further note that G contains
graphs with minimum degree δ(G) = 4, maximum degree ∆(G) = 6
and average degree d̄(G) > 5− ε for every ε > 0. Consider for instance
the graph G ∈ G with |V1| = |V3| = |V5| = |V7| = |V9| = 1, |V2| = |V4| =
|V6| = |V8| = 3 and |V10| = |V11| = . . . = |Vk| = 2.

No hamiltonian graphs with average degree d̄(G) ≥ 5 which do not
contain a 2C-factor are known. On the other hand, the best known
bound for the minimum degree forcing the existence of a 2C-factor is
the following theorem by Gould and Jacobson.

Theorem 1. [3] Let G be a hamiltonian graph on n ≥ 8 vertices with
minimum degree δ(G) ≥ 5n/12. Then G contains a 2C-factor.

There are no nontrivial bounds for the maximum degree in this
setting of general graphs, as the graph obtained from joining an (n−1)-
cycle with a single vertex is hamiltonian with maximum degree n− 1,
but has no 2C-factor.

But, for the special class of claw-free graphs, we get the following
sharp result.

Theorem 2. Let G be a hamiltonian claw-free graph containing a ver-
tex x with degree d(x) ≥ 7. Then G has a 2-factor consisting of exactly
two cycles.

2 Proof

We will start with the following lemma.
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Lemma 3. Suppose G is a hamiltonian graph on at least 8 vertices
that has no 2C-factor. If u, v ∈ U and uv ∈ E, then |uCv| ≤ 4 or
|vCu| ≤ 4.

Proof: Let us first suppose that |uCv| ≥ 6 and |vCu| ≥ 6 (see
Figure 1). Since G is claw-free and v ∈ U , either uv+ ∈ E or uv− ∈ E.
Say, uv+ ∈ E (2). Now vu+ /∈ E (3), otherwise a 2C-factor can easily
be constructed. By claw-freeness, vu− ∈ E (4). Next, u−v+ /∈ E (5)
to prevent a 2C-factor, thus v+u+, v−u− ∈ E (6,7) to prevent claws in
v, u, respectively. Now, v++u+ /∈ E (8), otherwise C1 = vuv+v, C2 =
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Figure 1: |vCu| ≥ 6

u+Cv−u−C̄v++u+ is a 2C-factor. By claw-freeness, vv++ ∈ E (9).
Again, v−u+ /∈ E (10), thus v++v− ∈ E (11). By a symmetric argu-
ment, u−−u, u−−u+ ∈ E (12,13). Now, v++v−− /∈ E (14), otherwise
C1 = v+vv−u−uv+, C2 = u+Cv−−v++Cu−−u+ is a 2C-factor. Claw-
freeness at v− forces v−−u− ∈ E (16) as v++u− (15) would yield a
2C-factor. Now, v3+v− /∈ E (17), otherwise C1 = vv+v++v, C2 =
v−v3+Cv− is a 2C-factor. To avoid a claw at v++ (v+v− /∈ E), v3+v+ ∈
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E (18). But now, C1 = vv−v++v, C2 = v+uCv−−u−C̄v3+v+ is a 2C-
factor, a contradiction. Note that the above argument only requires
|vCu| ≥ 6 as it works even if v3+ = u−−.

To prove the lemma suppose that either |uCv| = 5 or |vCu| = 5,
we may assume by symmetry |uCv| = 5 (see Figure 2). Note, that
here u++ = v−−. If uv+ ∈ E (1), the argument from above will give
the contradiction, as |vCu| > 5. Hence, uv−, vu+ ∈ E (2,3), and,
following an argument symmetric to the one used above, v−u−, v+u+ ∈
E (4,5). Now uu++, uv+ /∈ E (6,7), so u++v+ ∈ E (8) to avoid a claw
at u+. But now, C1 = uvu+u,C2 = u−v−u++v+Cu− is a 2C-factor, a
contradiction.
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Figure 2: |vCu| = 5

Lemma 4. Suppose G is a hamiltonian graph on at least 8 vertices
that has no 2C-factor. If u, v ∈ U , uv ∈ E, and |uCv| ≤ |vCu|, then
G[uCv] is complete.

Proof: By Lemma 3, we know that |uCv| ≤ 4. If |uCv| ≤ 3,
there is nothing to prove, so assume that |uCv| = 4. If G[uCv] is
not complete, then uv+, vu− ∈ E to avoid claws and a 2C-factor.
As u−v+ ∈ E would yield a 2C-factor, u−v−, u+v+ ∈ E to avoid
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claws. If one of the edges uv− and uu−− exists, a 2C-factor is ap-
parent. To avoid a claw centered at u−, u−−v− ∈ E is forced. But
now, C1 = uu−vu, C2 = u−−v−u+v+Cu−− is a 2C-factor, a contradic-
tion.

Proof of Theorem 2: Suppose again, for the sake of contradiction,
that G contains no 2C-factor. Faudree et al. [2] showed that the 2-color
Ramsey number for a triangle and a K4 − e (the graph on 4 vertices
with 5 edges) is

r(K3, K4 − e) = 7.

As d(x) ≥ 7, we know that G[N(x)] contains either an independent
set of size 3 or a K4 − e. The independent set would yield a claw,
therefore G[N(x)] contains a K4 − e, say x1, x2, x3, x4 ∈ N(x) and
x1x2,x1x3,x1x4,x2x3, x2x4 ∈ E.

Depending on the location of the five vertices x, x1, x2, x3, x4 on C,
we will consider seven cases. Note that G[x, x1, x2, x3, x4] is either a
K5 − e or a K5.

Case 1. Suppose that the five vertices are consecutive on C, i.e. there
is a v ∈ V , such that {x, x1, x2, x3, x4} = {v−−, v−, v, v+, v++}.

If v−−v++, v−v+ ∈ E, then C1 = vv+v−v, C2 = v++Cv−−v++ is a
2C-factor. Thus, one of the two edges is missing.

Suppose first that v−v+ 6∈ E. If v3−v− ∈ E, then C1 = vv−−v+v, C2 =
v++Cv3−v−v++ is a 2C-factor. Thus, v3−v− 6∈ E, and similarly v3+v+ 6∈
E. But this implies that v−−, v++ ∈ U , a contradiction with Lemma 3.

Thus, we may assume that v−−v++ 6∈ E, in fact we may assume
that x3 = v++, x4 = v−−. Note that xx−4 6∈ E, otherwise C1 =
x4x1x2x4, C2 = xx3Cx

−
4 x is a 2C-factor. Similarly, x1x

−
4 ,x2x

−
4 ,xx+

3 ,
x1x

+
3 ,x2x

+
3 6∈ E, and therefore x3, x4 ∈ U . As d(x) ≥ 7, x has at least 3

neighbors other than x1, x2, x3, x4, say y1, y2, y3 ∈ N(x) appear in this
order on C. To avoid the claw G[x, x3, x4, y2], at least one of the edges
x3y2, x4y2 has to exist, we may assume that x3y2 ∈ E.

Suppose that y2 ∈ U . As G[y2Cx3] is not complete, G[x3Cy2] is
complete by Lemma 4 (and |x3Cy2| = 4). This yields the 2C-factor
C1 = x1x2x3x1, C2 = xy1x

+
3 y2Cx4x, a contradiction. Thus, y−2 y

+
2 ∈ E.

If x2y2 ∈ E, then C1 = xx2y2x,C2 = x1x3Cy
−
2 y

+
2 Cx4x1 is a 2C-factor,

thus x2y2 6∈ E. To avoid the claw G[x3, x
+
3 , x2, y2], we have x+

3 y2 ∈ E.
This yields the 2C-factor C1 = x1x2x3x1, C2 = xy2x

+
3 y
−
2 y

+
2 Cx4x, the

contradiction finishing the case.
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Figure 3: Case 1

Case 2. Suppose four of the vertices x, x1, x2, x3, x4 appear consecu-
tively on C.

Let v be the vertex out of {x, x1, x2, x3, x4} which is not a prede-
cessor or a successor of one of the other four vertices in the K5 − e. If
v 6∈ U , then consider the cycle C ′ = v+Cv−v+, and extend it through
v by inserting v between two consecutive vertices in {x, x1, x2, x3, x4}.
We can apply Case 1 to this situation to get a contradiction. Thus,
v ∈ U .

Let u ∈ V such that {u−−, u−, u, u+} ∪ {v} = {x, x1, x2, x3, x4}.
As G[x, x1, x2, x3, x4] is a K5 or a K5 − e, at least one of u−v and uv
is an edge, by symmetry we may assume uv ∈ E. To avoid the claw
G[v, u, v−, v+], one of uv− and uv+ is an edge.

If uv+ ∈ E, then u+v 6∈ E to avoid a 2C-factor. Then u−v ∈ E
and one of u−v− and u−v+ is an edge. Either one of these two edges
produces a 2C-factor, a contradiction.

On the other hand, if uv− ∈ E, then u−v 6∈ E to avoid a 2C-
factor. But this implies u−−v, u−u+ ∈ E, and C1 = uu−u+Cv−u,C2 =
vu−−Cv is a 2C-factor, the contradiction finishing the case.

Case 3. Suppose there are two vertices u, v ∈ V such that
{x, x1, x2, x3, x4} = {u−, u, u+, v, v+}.

In this case, a 2C-factor is easy to find. Depending on which of
the 10 edges is missing, either C1 = v+Cu−v+, C2 = uCvu or C1 =
v+Cuv+, C2 = u+Cvu+ will do.

Case 4. Suppose there are three vertices u, v, w ∈ V such that
{x, x1, x2, x3, x4} = {u−, u, u+, v, w}.
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By symmetry we may assume that u−v, uv, u+v ∈ E. If v−v+ ∈ E,
we can find a different hamiltonian cycle and apply Case 2. Thus,
v ∈ U . To avoid the claw G[v, u, v−, v+], one of the edges uv−, uv+ has
to exist. But either one produces a 2C-factor, a contradiction.

Case 5. Suppose there are three vertices u, v, w ∈ V such that
{x, x1, x2, x3, x4} = {u, u+, v, v+, w}.

By symmetry we may assume that u, v, w appear on C in this order.
If both uv+, u+v ∈ E, a 2C-factor is immediate, so one of these two
edges is missing. This implies that all other 8 possible edges within
{u, u+, v, v+, w} exist. Further, w ∈ U , otherwise we can find a differ-
ent hamiltonian cycle and apply Case 3. If vw+ ∈ E, a 2C-factor is
immediate, thus vw− ∈ E to avoid a claw centered at w. This yields
the 2C-factor C1 = wCuw,C2 = v+Cw−vC−u+w+, a contradiction.

Case 6. Suppose there are four vertices u, v, w, y ∈ V such that
{x, x1, x2, x3, x4} = {u, u+, v, w, y}.

By symmetry we may assume that u, v, w, y appear on C in this
order. Suppose that vy ∈ E. By Lemma 3, at most one of v, y is in U ,
say y 6∈ U . If v ∈ U , then v−y ∈ E or v+y ∈ E to avoid a claw. But
now we can reduce the case to Case 5. On the other hand, if v 6∈ U
we can find a different hamiltonian cycle by inserting v or y between u
and u+, depending on which of the edges is missing. Applying Case 4
to this situation gives a contradiction. Therefore, vy 6∈ E and all other
9 possible edges inside {u, u+, v, w, y} exist.

If any of v, w, y is not in U , then we can reduce this case to Case 4
by inserting this vertex between u and u+. Thus, we may assume that
v, w, y ∈ U . Again by Lemma 3, u−u+, uu++ ∈ E, as |wCu|, |u+Cw| ≥
5. To avoid a claw at v, one of uv−, uv+ is an edge. If uv+ ∈ E,
then C1 = u+Cvu+, C2 = uv+Cu is a 2C-factor. If uv− ∈ E, then
C1 = uu++Cv−u,C2 = u+vCu−u+ is a 2C-factor, the contradiction
finishing this case.

Case 7. Suppose none of the vertices
{u1, u2, u3, u4, u5} = {x, x1, x2, x3, x4} are consecutive on C.

We may assume that u1, u2, u3, u4, u5 appear on C in this order.
If none of the five vertices are in U , a 2C-factor is easy to find. By
symmetry, we may assume that u3 ∈ U . At least one of the edges
u3u5, u1u3 exists, we may assume u3u5 ∈ E. By Lemma 3, u5 6∈ U . To
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avoid a claw, one of the edges u−3 u5, u
+
3 u5 has to exist. In either case

we can pick a different hamiltonian cycle and reduce the argument to
Case 6. This finishes the proof of the theorem.
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