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Abstract

We show that every hamiltonian claw-free graph with a ver-
tex x of degree d(x) > 7 has a 2-factor consisting of exactly two
cycles.

1 Introduction

All graphs considered in this paper are simple and undirected. The
vertex set of a graph is V, and F is the edge set. For notation not
defined here we refer the reader to [1]. The neighborhood of a vertex v
is denoted by N(v), the degree of a vertex v is d(v) = [N(x)|. f X CV
is a set of vertices, G[X] stands for the subgraph on X induced by G.
The complete bipartite graph K 3 is also called the claw, and a graph
is said to be claw-free if it does not contain any induced copies of K 3.

In the paper, C' will always be a hamiltonian cycle with some orien-
tation. For a vertex v € V, let v™, v*T, v3F, etc. denote the successors
of von C, and let v, v™, v3~, etc. denote the predecessors of v. The
notation uC'v stands for the u — v path given by C' and its orientation,
uC~v will be the u — v path following C' in reversed direction. Let
U:={veV|v vt ¢ FE} We will call a 2-factor consisting of exactly
two cycles a 2C-factor.

Hamiltonicity of graphs has been studied widely, and lately a lot
of the conditions that imply a graph to be hamiltonian were shown
to be sufficient to also guarantee the existence of a wide range of 2-
factors. But what can we say when we assume hamiltonicity as one of
the properties of the graph?” What kind of conditions will yield what
kind of 2-factors?
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Consider the following family G of graphs: Let G(V, E) be a graph.
Then G belongs to G if

1. For some k£ > 5, V is the disjoint union of vertex sets Vi, V5, V3, ...V}
with (let Vi = V1):

(a) |[Vi| > 1forall 1 <i<Kk,
(b) |Vi| =1 for at least five different indices,
(€) Vil + |Viga| <4 foralll <i<k.

2. E={uv|u,veV;UVy for some 1 <i <k}

It is easy to observe that every graph in G is hamiltonian, but
no graph in ¢ contains a 2C-factor. Further note that G contains
graphs with minimum degree 6(G) = 4, maximum degree A(G) = 6
and average degree d(G) > 5 — ¢ for every € > 0. Consider for instance
the graph G € G with [V1] = [V5| = |V5| = [V7] = [Vo| = 1, [V3| = |V4| =
Vel = Vs = 3 and |Viol = [Vir| = ... = |Vel = 2.

No hamiltonian graphs with average degree d(G) > 5 which do not
contain a 2C-factor are known. On the other hand, the best known
bound for the minimum degree forcing the existence of a 2C-factor is
the following theorem by Gould and Jacobson.

Theorem 1. [3] Let G be a hamiltonian graph on n > 8 vertices with
minimum degree §(G) > 5n/12. Then G contains a 2C-factor.

There are no nontrivial bounds for the maximum degree in this
setting of general graphs, as the graph obtained from joining an (n—1)-
cycle with a single vertex is hamiltonian with maximum degree n — 1,
but has no 2C-factor.

But, for the special class of claw-free graphs, we get the following
sharp result.

Theorem 2. Let G be a hamiltonian claw-free graph containing a ver-
tex x with degree d(x) > 7. Then G has a 2-factor consisting of exactly
two cycles.

2 Proof

We will start with the following lemma.



Lemma 3. Suppose G is a hamiltonian graph on at least 8 vertices
that has no 2C-factor. If u,v € U and wv € E, then [uCv| < 4 or
lvCu| < 4.

Proof: Let us first suppose that |[uCv| > 6 and |[vCu| > 6 (see
Figure 1). Since G is claw-free and v € U, either uv™ € E or wv™ € E.
Say, wwt € E (2). Now vu™ ¢ E (3), otherwise a 2C-factor can easily
be constructed. By claw-freeness, vu~ € E (4). Next, u"v" ¢ E (5)
to prevent a 2C-factor, thus vtu™, v~ u~ € E (6,7) to prevent claws in
v, u, respectively. Now, vtTu™ ¢ E (8), otherwise C; = vuvtv, Cy =

Figure 1: [vCu| > 6

utCv~u~Cvttut is a 20C-factor. By claw-freeness, vo™* € E (9).
Again, v-u™ ¢ E (10), thus v*tv~ € F (11). By a symmetric argu-
ment, v~ "u,u”"ut € E (12,13). Now, vtTv™" ¢ E (14), otherwise
Ci = vtovu uwwt,Cy = utCv v ™ Cu ~ut is a 2C-factor. Claw-
freeness at v~ forces v™"u~ € E (16) as v™Tu~ (15) would yield a
2C-factor. Now, v¥*v~ ¢ FE (17), otherwise C; = vvTv™v,Cy =
v 3T Cv™ is a 2C-factor. To avoid a claw at v (vTo™ ¢ E), v3ToT €



E (18). But now, C; = vv~vt+u,Cy = vtuCv —u~Cov*tot is a 2C-
factor, a contradiction. Note that the above argument only requires
lvCu| > 6 as it works even if v3T = u ™.

To prove the lemma suppose that either [uCv| = 5 or |[vCu| = 5,
we may assume by symmetry |[uCv| = 5 (see Figure 2). Note, that
here ut™ = v, If wvt € E (1), the argument from above will give
the contradiction, as [vCu| > 5. Hence, wv™,vu®™ € E (2,3), and,
following an argument symmetric to the one used above, v-u~,vtut €
E (4,5). Now wu™, uvt ¢ E (6,7), so umtot € E (8) to avoid a claw
at . But now, C = wvutu,Cy = v v uttotCu™ is a 2C-factor, a
contradiction. m

Figure 2: |[vCu| =5

Lemma 4. Suppose G is a hamiltonian graph on at least 8 vertices
that has no 2C-factor. If u,v € U, wv € E, and |[uCv| < [vCul|, then
GluCv] is complete.

Proof: By Lemma 3, we know that [uCv| < 4. If |uCv| < 3,
there is nothing to prove, so assume that |[uCv| = 4. If GluCv] is
not complete, then uv™,vu~ € E to avoid claws and a 2C-factor.
As uw vt € E would yield a 2C-factor, v v~ ,u"v™ € E to avoid
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claws. If one of the edges wv™ and wu™" exists, a 2C-factor is ap-
parent. To avoid a claw centered at u~, u~"v~ € FE is forced. But
now, C; = vu"vu,Cy = v~ v utvtCu~ " is a 2C-factor, a contradic-
tion. O]

Proof of Theorem 2: Suppose again, for the sake of contradiction,
that G contains no 2C-factor. Faudree et al. [2] showed that the 2-color
Ramsey number for a triangle and a K4 — e (the graph on 4 vertices
with 5 edges) is

T’(Kg, K4 - 6) =17.

As d(z) > 7, we know that G[N(z)| contains either an independent
set of size 3 or a Ky — e. The independent set would yield a claw,
therefore G[N(z)] contains a Ky — e, say x1,xq,23,24 € N(z) and
T129,T123,T124,T2T3, ToXy € F.

Depending on the location of the five vertices z, x1, x2, x3, 24 on C|

we will consider seven cases. Note that G[z,z1,xs, z3,14] i either a
Ky —ceora Ks.

Case 1. Suppose that the five vertices are consecutive on C', i.e. there
is av €V, such that {x,x1, e, 23,24} = {v~ ", v, 0,0 vt}

If v="vtT, 070" € E, then C} = vvTv 0,0y = v TCv~ v  is a
2C-factor. Thus, one of the two edges is missing.

Suppose first that v-v" € E. If v3~ v~ € E, then C; = vv~ v v, Cy =
vIrOv v vt T is a 2C-factor. Thus, v3~ v~ € E, and similarly v3 "ot ¢
E. But this implies that v=—, vt € U, a contradiction with Lemma 3.

Thus, we may assume that v~ 0™ € E, in fact we may assume
that 3 = v*+ x4 = v=~. Note that zx; ¢ E, otherwise C} =
4010224, Cy = zxsCr,x is a 2C-factor. Similarly, xlxz,xgx;xw}f,
1175 ,Toxy € E, and therefore 3,74 € U. As d(x) > 7, z has at least 3
neighbors other than xq, x9, x3, x4, say y1,y2,ys € N(x) appear in this
order on C. To avoid the claw G|z, 3, x4, y2], at least one of the edges
T3Y2, T4yo has to exist, we may assume that x3ys € F.

Suppose that yo € U. As G[y2Cx3) is not complete, G[z3Cys] is
complete by Lemma 4 (and |z3Cy,| = 4). This yields the 2C-factor
C) = myzow311, Co = xy174 y2Cxyx, a contradiction. Thus, y, yo € E.
If 29ys € E, then C) = zaoysr, Co = 1123CY5 yo Cyzy is a 2C-factor,
thus zays € E. To avoid the claw G|x3, 23, T2, ys], we have x5y, € E.
This yields the 2C-factor C = zixox311,Cy = mygzv;y;y;me, the
contradiction finishing the case.



Figure 3: Case 1

Case 2. Suppose four of the vertices x,x1,x9,x3, T4 appear consecu-
tively on C'.

Let v be the vertex out of {z, 1, xe, 23,4} which is not a prede-
cessor or a successor of one of the other four vertices in the K5 —e. If
v € U, then consider the cycle C' = vTCv~v™, and extend it through
v by inserting v between two consecutive vertices in {x, z1, 9, T3, 4}.
We can apply Case 1 to this situation to get a contradiction. Thus,
vel.

Let u € V such that {u™",u",u,ut} U{v} = {x, 21,22, 23,24}
As Gz, 21,29, 13,24] is & K5 or a K5 — e, at least one of u~v and uwv
is an edge, by symmetry we may assume uv € E. To avoid the claw
Glv,u, v, v"], one of wv™ and uv™ is an edge.

If ww™ € E, then utv € E to avoid a 2C-factor. Then u v € E
and one of w~v~ and u~v™ is an edge. Either one of these two edges
produces a 2C-factor, a contradiction.

On the other hand, if wv~ € E, then v v € E to avoid a 2C-
factor. But this implies v~ v,u"u" € E, and C} = uu " utCv~u,Cy =
vu~~Cwv is a 2C-factor, the contradiction finishing the case.

Case 3. Suppose there are two vertices u,v € V' such that
{.f, X1,T2,T3, 1'4} - {uiv u, U+, v, U+}'

In this case, a 2C-factor is easy to find. Depending on which of
the 10 edges is missing, either C; = vtCu v, Cy = uCvu or C) =
vFCuv™, Oy = utCou™ will do.

Case 4. Suppose there are three vertices u,v,w € V' such that
{CE, X1,T2,T3, :U4} = {U_, u, U+, v, w}
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By symmetry we may assume that v v,uv,utv € E. If v-0v" € E,
we can find a different hamiltonian cycle and apply Case 2. Thus,
v € U. To avoid the claw G[v,u,v™,v*], one of the edges uv™, uv™ has
to exist. But either one produces a 2C-factor, a contradiction.

Case 5. Suppose there are three vertices u,v,w € V such that
{'T7 X1,T2, T3, 1'4} = {u7 U,+, v, U+7 UJ}

By symmetry we may assume that u, v, w appear on C'in this order.
If both uwv™,utv € E, a 2C-factor is immediate, so one of these two
edges is missing. This implies that all other 8 possible edges within
{u,u*,v,0", w} exist. Further, w € U, otherwise we can find a differ-
ent hamiltonian cycle and apply Case 3. If vw™ € E, a 2C-factor is
immediate, thus vw™ € E to avoid a claw centered at w. This yields
the 2C-factor C = wCuw,Cy = v Cw vC~uTw™, a contradiction.

Case 6. Suppose there are four vertices u,v,w,y € V such that
{x, 21,29, 23,24} = {u,ut,v,w, y}.

By symmetry we may assume that u,v,w,y appear on C' in this
order. Suppose that vy € F. By Lemma 3, at most one of v,y is in U,
say y ¢ U. If v € U, then v"y € E or vty € E to avoid a claw. But
now we can reduce the case to Case 5. On the other hand, if v ¢ U
we can find a different hamiltonian cycle by inserting v or y between u
and u*, depending on which of the edges is missing. Applying Case 4
to this situation gives a contradiction. Therefore, vy ¢ F and all other
9 possible edges inside {u,ut, v, w,y} exist.

If any of v, w,y is not in U, then we can reduce this case to Case 4
by inserting this vertex between u and u*. Thus, we may assume that
v,w,y € U. Again by Lemma 3, u” v, uvu™ € E, as |[wCul, |u™Cw| >
5. To avoid a claw at v, one of wv™,uv™ is an edge. If wv™ € E,
then C; = utCout,Cy = wvtCu is a 2C-factor. If wv~ € E, then
Cy = wuttCvu,Cy = uTvCu ut is a 2C-factor, the contradiction
finishing this case.

Case 7. Suppose none of the vertices
{ug, ug, uz, uyg, us} = {x, x1, 29, 3,24} are consecutive on C.

We may assume that wy, us, us, ug, us appear on C' in this order.
If none of the five vertices are in U, a 2C-factor is easy to find. By
symmetry, we may assume that us € U. At least one of the edges
uzus, U1 Uz exists, we may assume ugus € E. By Lemma 3, us € U. To
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avoid a claw, one of the edges uz us, ujus has to exist. In either case
we can pick a different hamiltonian cycle and reduce the argument to
Case 6. This finishes the proof of the theorem. O
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