
Otto-von-Guericke University Magdeburg
Faculty of Computer Science

Department for Simulation and Graphics

Diploma Thesis

Fundamental Permutation Group Algorithms for
Symmetry Computation

Author:

Thomas Rehn
January 12, 2010

Supervisors:

Prof. Dr. rer. nat. habil. Stefan Schirra
Otto-von-Guericke University Magdeburg

Faculty of Computer Science
Postfach 4120, D–39016 Magdeburg

Germany

Priv.-Doz. Dr. rer. nat. habil. Achill Schürmann
Institute of Applied Mathematics
Delft University of Technology

Mekelweg 4
2628 CD Delft
The Netherlands

Rehn, Thomas:
Fundamental Permutation Group Algorithms for Sym-
metry Computation
Diploma Thesis, Otto-von-Guericke University Magdeburg,
January 2010.

This document is licensed under a Creative Commons
Attribution-Share Alike 3.0 License:
http://creativecommons.org/licenses/by-sa/3.0

http://creativecommons.org/licenses/by-sa/3.0

Contents

List of Figures iii

List of Algorithms iv

1 Introduction 1

1.1 Motivation . 1

1.2 Permutations and notation . 2

2 Introduction to Bases and Strong Generating Sets 5

2.1 DeVnitions . 5

2.2 Elementary algorithms & data structures 7

2.2.1 Orbits and transversals . 7

2.2.2 Sifting . 10

2.3 BSGS construction with Schreier-Sims algorithm 11

2.4 Transversal revisited – shallow Schreier trees 14

2.5 Base change . 17

2.5.1 Deterministic base point transposition 17

2.5.2 Randomized base point transposition 18

2.5.3 Base change by conjugation . 21

2.5.4 Base change by construction – randomized BSGS construction . . 21

3 Backtrack Search 25

3.1 Classical backtracking . 26

3.1.1 Search tree . 27

3.1.2 Pruning the tree . 28

3.1.3 Double coset minimality . 30

3.1.4 Problem-dependent pruning . 31

3.1.5 Coset representative search . 35

3.2 Partition backtracking . 36

3.2.1 Introduction to partitions . 37

i

Contents

3.2.2 Search tree . 39

3.2.3 Constructing an R-base . 43

3.2.4 Pruning the tree . 45

3.2.5 Coset representative search . 47

4 Implementation 49

4.1 Low-level data structures . 49

4.1.1 Permutation . 49

4.1.2 Partition . 50

4.2 Experiments . 52

4.2.1 Data acquisition and setup . 53

4.2.2 BSGS construction . 53

4.2.3 Base change . 57

4.2.4 Subgroup search: setwise stabilizer 61

4.2.5 Subgroup search: group intersection 65

4.2.6 Summary . 67

5 Conclusion 69

5.1 Summary . 69

5.2 Outlook . 70

A PermLib 71

Nomenclature 73

References 74

Bibliography . 74

Software . 76

Index 77

ii

List of Figures

2.1 A Schreier tree for the orbit of 1 under action of G = 〈a, b〉 as in Example
2.6 . 8

2.2 Schreier vector encoding for Figure 2.1 with l0 = (), l1 = a−, l2 = b− . . . 9
2.3 Explicit transversal as vector for Figure 2.1 9
2.4 Asymptotic time and memory requirements for diUerent transversal im-

plementations . 15

3.1 Polyhedral cones . 25
3.2 Group with twelve elements split up into cosets by a search tree 27
3.3 Graph automorphism example . 36
3.4 Overview of P-reVnements for diUerent problems 48

4.1 Example intersection of a partition (. . . | 1 2 3 6 7 8 | . . .) with {2, 6, 7} . . 52
4.2 Base construction average times for primitive permutation groups 54
4.3 Base construction times for symmetric groups 56
4.4 Base construction times for polyhedral automorphism groups 56
4.5 Base change/transposition average times for selected primitive groups . . . 58
4.6 Base change average times for selected primitive groups 59
4.7 Base change average times for selected primitive groups and similar sets . 59
4.8 Base change times for polyhedral automorphism groups 60
4.9 Set stabilizer search average times for primitive groups 61
4.10 Set stabilizer search time depending on set size 62
4.11 Set stabilizer search average times with enhanced double coset pruning for

primitive groups . 63
4.12 Set stabilizer search times for polyhedral automorphism groups 64
4.13 Set stabilizer search times for symmetric groups 64
4.14 Intersection search times for primitive groups 65
4.15 Number of nodes visited during intersection search for primitive groups . . 66
4.16 Intersection search times for primitive groups 66

iii

List of Algorithms

2.1 Orbit . 7
2.2 Orbit and Schreier tree . 9
2.3 Sifting . 10
2.4 Schreier-Sims BSGS construction . 13
2.5 Orbit and shallow Schreier tree . 16
2.6 Base change with transpositions . 18
2.7 Base point transposition – deterministic version 19
2.8 Base point transposition – randomized version 20
2.9 Base change with conjugation and transpositions 22
2.10 Randomized Schreier-Sims BSGS construction 23
3.1 Depth-Vrst traversal of the search tree of a group 28
3.2 Backtrack subgroup search with elementary pruning 29
3.3 Subgroup search with elementary double coset pruning 32
3.4 Set stabilizer search with elementary double coset pruning 34
3.5 Set stabilizer search setup . 35
3.6 Recover group element from given (partial) base image 41
3.7 Partition backtrack subgroup search with very basic pruning 42
3.8 R-base construction for a set stabilization problem 45
3.9 Partition backtrack subgroup search with elementary pruning 46

iv

1 Introduction

1.1 Motivation

Over the last 40 years powerful algorithmic methods have been developed for many prob-
lems in algebra. Along with others, the so called computational group theory that deals
with algorithms for problems of group theory has grown to a mature tool (cf. [CH92]).
With more and more practical algorithms getting available and ever-growing computer
power, the usage of group theory has reached into many areas of mathematics and other
natural sciences. The book [Ker99], for instance, provides a very good overview of the
applicability of group theory to combinatorial objects from many applications.

From highly successful single-purpose applications like graph theory (cf. [McK81] and
the software [nauty]) more general methods have evolved for the computation with sym-
metries or auto- and isomorphisms. These are applicable to matrices, codes, designs,
graphs and groups alike [Leo84, BL85, Leo91, McK98, Bri00]. Other areas have proVted
from this progress and are able to handle or exploit symmetries in their problems, which
helps to extend the realm of practically solvable problems and instances. Just to name
a few of these applications, [Jun03] examines symmetry of petri-nets. [KÖ06] describe
methods to classify codes and designs isomorphism-free. [Mar09] shows in his survey
the impact of symmetry to integer programming. [BSS09] enumerate vertices and rays of
polyhedra up to the immanent symmetry of the geometric object. Mathematically, this
symmetry computation part translates into computations with and search in permutation
groups.

All these examples have in common that they use diUerent tools to handle the ba-
sic symmetry part of their real computational task. Either they implement permutation
group algorithms in own code for this fundamental recurring problem or use well-tested
group theoretic software like the open-source algebra system GAP [GAP] or the commer-
cial Magma [Magma]. These software packages, however, lack proper and simple APIs to
be used from C or C++, still the language of choice in many projects, and cause huge
dependencies. There also exists an open source C implementation for such permutation
group problems by Leon from 1991 [Leo91], but it is designed as a pure stand-alone pro-
gram and not as callable library. Moreover, it has too many memory leaks and errors to
be used as such. Since 2008 there also have been eUorts of the open source Sage project
[Sage] to provide implementations of automorphism and permutation group algorithms
as part of their package (cf. [Mila, Milb]). To date only the former part is complete.

There are many excellent books available that cover group algorithms, for example
[But91], [Ser03] and [HEO05], but these rather aim at more sophisticated Velds of compu-
tational group theory and do not go into implementation details, which may be of interest
for practitioners from other areas. This is especially true for the allegedly fast partition
backtrack methods of Leon, which most books cover, if at all, only in a very abstract way,

1

1 Introduction

hiding the diXculties an implementation may face. This thesis presents the very basic
techniques to solve the group theoretic part of common problems in symmetry computa-
tions along with an implementation of all algorithms as a C++ library, christened PermLib.
We begin in Chapter 2 with a look at fundamental data structures and algorithms to

work with permutation groups. Because permutation groups usually consist of a huge
number of elements they are not given as a complete set of permutations, but only a
few generating elements are known, from which all other elements can be derived. This
already causes problems with the simple task of group membership testing. We will look
at a data structure called base and strong generating set which allows a representation of
a group such that this and other very basic problems can be solved eXciently.
Having learned about suitable structures to store permutation groups, in Chapter 3 we

will deal with searching for speciVc subgroups or elements in a permutation group. There-
fore we will analyze two diUerent general purpose backtracking algorithms. As an example
we will study the special cases of set stabilizers and group intersections.
In Chapter 4 we will look at speciVc implementation details and the results of experi-

ments with the PermLib. There we will see the algorithms’ and implementation’s limits,
potential and potential pitfalls, some of which have to the best of the author’s knowledge
not been extensively discussed in public. Chapter 5 provides a summary of our Vndings as
well as an outlook into possible future work.

1.2 Permutations and notation

A fundamental object that we will work with all the time are permutations. Permutations
are bijections from a set Ω to itself. This set could be vertices or facets of a polyhedron,
vertices of a graph, variables in an equation system and many other things, but we identify
Ω without loss of generality with the set of numbers {1, . . . , n}, n := |Ω|. There are two
diUerent ways to specify the bijection of a permutation. The Vrst way is to give the image
of each ω ∈ Ω explicitly, the so called image form. In this thesis we will use the second
way, that is cycle notation: a cycle is a sequence ω1, ω2, . . . , ωk such that
• ω2 is the image of ω1,

• ω3 is the image of ω2,

• . . .

• ωk is the image of ωk−1 and

• ω1 is the image of ωk.
We can write a permutation as a sequence of disjoint cycles, which is called cycle form.

Example 1.1. Consider Ω = {1, 2, 3, 4, 5, 6} and the permutation g with the following
image:

1 2 3 4 5 6
2 3 1 4 6 5

where the Vrst row lists all elements of Ω and the second row their images under g. We
observe that g has three disjoint cycles (1 2 3), (4) and (5 6). We omit the cycle of length
1 and write g = (1 2 3)(5 6), or equivalently g = (5 6)(1 2 3), because for disjoint cycles
order does not matter.

2

1.2 Permutations and notation

As we use cycle notation for permutations, we write () for the identity permutation.
Permutations on the same set with the concatenation operation build a group. Because
the notation of this concatenation resembles a multiplicative operation we usually say
that permutations are multiplied. The interested reader may Vnd in [But91, Ch. 2] more
examples of permutations and also a very good introduction to groups, which is not given
here. In the following we will establish notation for groups that we use throughout this
thesis.
If a group G is Vnitely generated by some elements g1, . . . , gk we write G =
〈g1, . . . , gk〉. For two groups G,H we denote with G ≤ H that G is a subgroup of H .
The number of elements in G is called order of G and we denote it by |G|. Furthermore,
we stick to Knuth [Knu91] for his compact notation of group inverses, so g− shall be the
inverse element of g.
As for this thesis we are especially interested in symmetries within a Vnite set of objects,

we always consider a permutation group G ≤ Sym(Ω) acting on a Vnite set Ω, where G
is a subgroup of the group Sym(Ω) of all permutations of Ω. We call the minimal size |Ω|
such that G is properly deVned the degree of G. Of course we can always trivially extend
G ≤ Sym(Ω) to a subgroup of some Sym(Ω′) where Ω′ ⊃ Ω. Lowercase Greek letters
will denote elements of Ω and we use lower- and uppercase Latin letters for elements and
subgroups of the group Sym(Ω).
We write αg for the action of g ∈ G on α ∈ Ω and this action will be left-associative,

i.e. αgh = (αg)h. The orbit of α under G is the set of images αG := {αg : g ∈ G}.

Example 1.2. Consider Ω = {1, . . . , 6} and G = 〈a, b〉 generated by a = (1 4 5)(2 3 6),
b = (2 3 1 6), denoted in cycle form. Then we have b− = (2 6 1 3), 1a = 4, 1ba = 6a = 2
and orbits 1〈b〉 = {1, 2, 3, 6} and 1G = Ω.

Let H,K ≤ G be subgroups of G and g ∈ G. Then we deVne the right coset Hg :=
{hg : h ∈ H} and analogously the left coset gH := {gh : h ∈ H}. The double coset
HgK is given by HgK := {hgk : h ∈ H, k ∈ K}. As becomes immediately clear from
the deVnition, two cosets Hg1, Hg2 are either the same or disjoint. Because every g ∈ G
is in one coset, G is partitioned by its cosets. Thus it makes sense to deVne a right (left)
transversal U ⊆ G for G modulo H as a set containing exactly one representative of
every H-right (left) coset of G, including the identity () ∈ U .
For every subgroup H we can deVne the index |G : H| of H in G as the number of

right (or equivalently: left) cosets of H in G. With this notation at hand we can remind
ourselves of Lagrange’s Theorem.

Theorem 1.3 (Lagrange’s Theorem). LetG be a Vnite group andH a subgroup ofG. Then
|G| = |G : H| · |H|.

Proof. As we have already seen G can be partitioned into its cosets moduloH . Let U be a
transversal for G modulo H . Then we have

|G| =
∑
u∈U

|Hu|. (1.1)

Furthermore, for every cosetHa and g ∈ G we have |Ha| = |Hag|. So it holds especially
that |Ha| = |Ha(a−b)| = |Hb|. It follows that every summand in (1.1) is of the same size,
resulting in |G| = |U | · |H()| = |G : H| · |H|.

3

1 Introduction

An immediate consequence of this proof is the following corollary.

Corollary 1.4. Let G and H as above and U a transversal for G modulo H . Every g ∈ G
can uniquely be written as g = uh where u ∈ U and h ∈ H .

Example 1.5. Let Ω = {1, 2, 3, 4} and G = S4 = 〈(1 2), (2 3), (3 4)〉 the symmetric
group of four elements. Then H := 〈(1 2), (2 3)〉 ≤ G is a subgroup of G. There are
|G : H| = |G|

|H| = 24
6

= 4 right cosets of H in G: the right cosets H(), H(3 4), H(2 4) and
H(1 4), corresponding to the four possible images of the remaining point 4. Thus the four
elements U := {(), (3 4), (2 4), (1 4)} form a transversal of G modulo H .

The stabilizer Gα of α in G is deVned as the set Gα := {g ∈ G : αg = α} and forms
a subgroup of G. In the same manner we can deVne the pointwise stabilizer of a tuple
(α1, . . . , αk) as G(α1,...,αk) := {g ∈ G : ∀1 ≤ i ≤ k : αgi = αi} and the stabilizer of
a set {α1, . . . , αk} as G{α1,...,αk} := {g ∈ G : ∀1 ≤ i ≤ k : ∃j : αgi = αj}. Note
the diUerence in notation between pointwise stabilizer G(α1,...,αk) and setwise stabilizer
G{α1,...,αk}.

Example 1.6. Let again Ω = {1, 2, 3, 4} and G = S4 = 〈(1 2), (2 3), (3 4)〉. Then G1 =
〈(2 3), (3 4)〉, G(1,2) = 〈(3 4)〉 and G{1,2} = 〈(1 2), (3 4)〉.

4

2 Introduction to Bases and Strong
Generating Sets

To work with permutation groups we need a suitable structure to represent them on
the computer. Usually we are given a group G ≤ Sym(Ω) by a list of generators
S = {s1, s2, . . . , sk} with G = 〈S〉. If we want to search for group elements with speciVc
properties as in Chapter 3 we are confronted with a problem: We know that each element
is a product of elements of S but we have no eXcient means to systematically enumerate
all elements of G, for example for an exhaustive search. The reverse problem also exists:
given some x ∈ Sym(Ω), we cannot decide whether x ∈ G. This is a real obstacle for
systematic search approaches.

In 1970 Sims introduced the concept of a base for computations with permutation groups
to overcome these diXculties (cf. [Sim70, Sim71a]). Similarly to a base in vector spaces
group elements have a unique representation relative to it. Such a base also allows easy
group membership testing, in this context usually called “sifting”.

First we will look at the fundamental concepts of bases. Before we see how to set up a
base and the related strong generating sets for a permutation group we have to examine
diUerent ways to store orbits and transversals and to solve the group membership problem
using bases. After the base construction with the Schreier-Sims algorithm we will look at
two other tools for the eXcient use of bases: an improved algorithm to compute transver-
sals and base change algorithms. Again similarly to vector spaces, one certain base is
more comfortable in some contexts to work with than another, so we will see how we can
transform a base without re-constructing it from scratch.

2.1 DeVnitions

DeVnition 2.1. Let G be a Vnite permutation group acting on the set {1, . . . , n}. We call
a sequence of elements B := (β1, β2, . . . , βm) a base for G if the only element of G to Vx
B pointwise is the identity.

For a base B we denote by G[i] := G(β1,...,βi−1) the pointwise stabilizer of the i− 1 Vrst
base elements (β1, . . . , βi−1) which form a subgroup chain, the stabilizer chain:

G = G[1] ≥ G[2] ≥ · · · ≥ G[m] ≥ G[m+1] = 〈()〉. (2.1)

If every G[i+1] is a proper subgroup of G[i] we call the base B nonredundant.

The cosets of G[i] modulo G[i+1] are closely related to the orbits βG
[i]

i . For two cosets
G[i+1]a = G[i+1]b with a, b ∈ G[i] we have a = hb for h ∈ G[i+1] and thus βai =
βhbi = βbi because h stabilizes βi. Also the reverse direction holds: From βai = βbi we can

5

2 Introduction to Bases and Strong Generating Sets

immediately conclude that the two cosets G[i+1]a, G[i+1]b are the same. So we can build
a transversal for G[i] modulo G[i+1], which contains one representative for every coset, by
looking at elements generating the orbit ∆(i) := βG

[i]

i . For every β ∈ ∆(i) let uβ ∈ G[i] be
an element that maps βi to β, i. e. β

uβ
i = β. Then it follows from our considerations that

U (i) := {uβ : β ∈ ∆(i)} is a (right) transversal for G[i] modulo G[i+1]. We call ∆(i) the
i-th fundamental orbit.

Example 2.2. Let Ω = {1, 2, 3, 4} andG = S4 the symmetric group of four elements. The
sequence (4, 3) is not a base because the permutation (1 2) stabilizes the tuple pointwise.
If we add 2 to the list we get a base (4, 3, 2) because the image of 3 = 4− 1 points already
determines a permutation: (4, 3, 2)g = (4, 3, 2) implies g = ().
The stabilizer chain consists of

G[1] = G = S4

G[2] = G(4) = 〈(1 2), (2 3)〉 ∼= S3

G[3] = G(4,3) = 〈(1 2)〉 ∼= S2

G[4] = G(4,3,2) = 〈()〉

and we see that the base (4, 3, 2) is nonredundant.

For ∆(2) = βG
[2]

2 we obtain ∆(2) = 3S3 = {1, 2, 3}. We can build a transversal U (2)

from the elements u1 = (3 1), u2 = (3 2) and u3 = (). Note that for constructing a
transversal we have some degrees of freedom. We could, for instance, also choose u1 =
(1 2 3) because still 3u1 = 1. In Section 2.2.1 we will look at algorithms for orbit and
transversal construction in detail.

Back in our general setting, we can repeatedly apply Corollary 1.4 of Lagrange’s The-
orem on page 4 to the stabilizer chain (2.1) and obtain that every g ∈ G can uniquely be
decomposed into

g = umum−1 · · ·u2u1, for some ui ∈ U (i), (2.2)

where U (i) are transversals as introduced above. This especially means that we can read
the group order from the transversal sizes

|G| =
m∏
i=1

|G[i] : G[i+1]| =
m∏
i=1

|U (i)|. (2.3)

For a nonredundant base we can thus also bound the base size by 2|B| ≤ |G| ≤ n|B|

because 1 < |G[i] : G[i+1]| = |U (i)| = |∆(i)| ≤ n. With log denoting the logarithm to
base 2, this is equivalent to

log |G|
log n

≤ |B| ≤ log |G|.

So far we do not know how to compute G[i] and the related orbits and transversals ∆(i)

and U (i). An important concept to facilitate this is a strong generating set.

DeVnition 2.3. Let S be a generating set for a Vnite permutation group G with base B.
The set S is a strong generating set (SGS) for G relative to B if it contains generators for
all G[i], that is

G[i] = 〈S ∩G[i]〉, for 1 ≤ i ≤ m+ 1. (2.4)

For brevity, we call a pair B, S of a strong generating set S relative to a base B a BSGS.

6

2.2 Elementary algorithms & data structures

Example 2.4. Let Ω = {1, 2, 3, 4} and G = S4. The set {(1 2), (2 3), (3 4)} obviously is a
strong generating set relative to the base B := (4, 3, 2) because it contains generators for
all subgroups of the stabilizer chain (cf. Example 2.2). The set T := {(1 2 3 4), (3 4)} also
generatesG, but it is not a strong generating set relative toB: For every t ∈ T it holds that
βt1 = 4t 6= 4 = β1, so T ∩G[2] is empty. Hence 〈T ∩G[2]〉 = 〈()〉 6= G[2] = 〈(1 2), (2 3)〉
violates the deVning equality of a strong generating set (2.4).
Bases may also consist of only a single element. Consider Ω = {1, . . . , n} and the cyclic

group G = Cn := 〈(1 2 3 . . . n)〉. Then Bi := (i) is a base for each i ∈ Ω because every
permutation in Cn except the identity moves every point of Ω. Thus {(1 2 . . . n)} trivially
is a strong generating set relative to every base Bi.

Having a BSGS, we know generators for each G[i] of the stabilizer chain. Hence we can
eXciently compute the transversals U (i) used in (2.2), which gives us a powerful instru-
ment to deal with permutation groups in practice. In the following section we will see
how to actually compute orbits and transversals and see a Vrst important application of a
BSGS: group membership testing.

2.2 Elementary algorithms & data structures

2.2.1 Orbits and transversals

Before we start with transversals we examine a straightforward algorithm, Algorithm 2.1,
to compute the orbit αG of a point α under action of G. To see that it works correctly
we Vrst observe that we only add βs to the orbit ∆ if β has previously been in ∆. So by
induction we have ∆ ⊆ αG. On the other hand, induction on the length t of an element
g = s1 · · · st in terms of generators si ∈ S shows that every αg is added to ∆, showing
also the reverse inclusion ∆ ⊇ αG.
From a complexity point of view, the algorithm runs in O(|S| · |αG|) time if we can test

membership in ∆ in O(1) time. If we, as usual, identify Ω with the set {1, . . . , n}, storing
orbit membership in an array or bitset will satisfy this assumption.

Input: G = 〈S〉 permutation group acting on Ω, α ∈ Ω
Output: αG

∆← {α}1

for β ∈ ∆, s ∈ S do2

if βs /∈ ∆ then3

∆← ∆ ∪ {βs}4

end5

end6

return ∆7

Algorithm 2.1: Orbit

Often we require not only the orbit αG but also a transversal ofGmodGα. That means,
we would like to have an element uβ for each β ∈ αG with β = αuβ . For handling these
transversals we have two alternatives: computing and storing them explicitly or using a
so called Schreier tree.

7

2 Introduction to Bases and Strong Generating Sets

DeVnition 2.5. Let S ⊆ Sym(Ω) be a generating set for G and L ⊆ G be a suitable
label set. A labeled, directed tree with vertex set V = αG, edge set E and edge label set
L ⊆ Sym(Ω) such that
• for every β ∈ V there is a unique path from β to α.

• for every edge
−−→
β1 β2 ∈ E there exists l ∈ L with βl1 = β2 and

−−→
β1 β2 has label l

is called a Schreier tree for αG.

Example 2.6. Consider a = (1 2 5), b = (1 4)(3 5) and G = 〈a, b〉. Figure 2.1 shows a
Schreier tree for 1G with label set S− = 〈a−, b−〉.

1

2

5

3

b−

a−

a−

4

b−

Figure 2.1: A Schreier tree for the orbit of 1 under action of G = 〈a, b〉 as in Example 2.6

With a Schreier tree we can compute the desired transversal elements uβ by following
the path from β to α and multiplying the edge labels along the way. We can modify
Algorithm 2.1 to construct a Schreier tree. We just have to keep track of the occurring
pairs (β, βs), that may be used as edges of a Schreier tree. Algorithm 2.2 contains this
modiVcation to construct a Schreier tree with label set L = S− := {s− ∈ S}. Note that
we use S− as label set because we construct the tree based on S starting at the root, but
all edges are directed towards the root, the other way round.
A disadvantage of a tree constructed in this way is that it is not balanced and has a

worst-case height of n. For example, Schreier trees for orbits of elements under action of
a cyclic group will degenerate into lists. In Section 2.4 we will take a look at a balanced
alternative with worst-case height O(log |G|), which can be established by choice of a
better label set.
A suitable representation of Schreier trees on the computer are so called Schreier vec-

tors. Without loss of generality let Ω = {1, . . . , n} and L = {l1, . . . , lk} be a label set. A
Schreier vector is an array of length n that has in its i-th cell either

• j if the pair
−→
i ilj is an edge of the Schreier tree, or

• the value 0 if i = α, or

• a special marker if i /∈ αG.
Figure 2.2 gives a Schreier vector encoding for the tree in Figure 2.1.
By storing the transversal only as pointers to the label set, we need O(|L| · n + |αG|)

memory. Here the second summand stems from storing a pointer to the outgoing edge

8

2.2 Elementary algorithms & data structures

Input: G = 〈S〉 permutation group acting on Ω, α ∈ Ω
Output: αG, labeled edge set E for Schreier tree with label set S− := {s− ∈ S}
∆← {α}1

E ← ∅2

for β ∈ ∆, s ∈ S do3

if βs /∈ ∆ then4

∆← ∆ ∪ {βs}5

add edge
−−→
βs β with label s− to E6

end7

end8

return ∆, E9

Algorithm 2.2: Orbit and Schreier tree

array index 1 2 3 4 5
cell content 0 1 2 2 1

Figure 2.2: Schreier vector encoding for Figure 2.1 with l0 = (), l1 = a−, l2 = b−

label for each orbit element except the root. The Vrst summand including the size of
the label set |L| usually does not play a role. It is very common to use L = S− and
it makes sense for implementations to store the often required inverses S− along with
the group generators S anyway. Because the resulting tree has a possible height of n
computing a transversal element may take n multiplications of permutations acting on n
points, resulting in a worst-case Ω(n2) time requirement. Constructing the transversal
works in O(|αG|) time, so constructing orbit and transversal together take O(|S||αG|)
time.

An alternative to Schreier trees is storing the transversal elements explicitly in an array.
For every β := αs1···st that we have computed we store in the β-th cell the whole product
s1 · · · st, or for performance reasons straight its inverse s−t · · · s−1 . This saves us the edge
multiplications when we need a speciVc transversal element, but costs extra memory be-
cause there possibly are a lot of permutations to store. Moreover, multiplications already
occur during the construction phase, which makes the setup slower. The explicit variant
consumes O(|αG| · n) memory and is constructed in O(|αG||S|n) time together with the
orbit. The advantage ofO(1) transversal access may be well worth the additional memory
and slower construction time. For larger n the memory and construction time require-
ments may become a serious impediment. Figure 2.3 continues Example 2.6 and shows an
explicit transversal.

array index 1 2 3 4 5
cell content () a− = (1 5 2) b−a−a− = (1 4 2 5 3) b− = (1 4)(3 5) a−a− = (1 2 5)

Figure 2.3: Explicit transversal as vector for Figure 2.1

9

2 Introduction to Bases and Strong Generating Sets

2.2.2 Sifting

Given a BSGS for a group, we can eXciently test for membership by a procedure called
sifting. If and only if g ∈ G we can Vnd the decomposition (2.2), g = umum−1 · · ·u1,
into transversal elements ui ∈ U (i). To Vnd the decomposition we try to Vnd successively
ui ∈ U (i), 1 ≤ i ≤ m such that

Bg = Bumum−1···u1 . (2.5)

Here we write Bg for the component-wise acting of g ∈ G on (β1, . . . , βm) as a tuple:
Bg = (βg1 , . . . , β

g
m). If we succeed in Vnding ui such that (2.5) holds and the equality

g = umum−1 · · ·u1 is true then clearly g ∈ G. On the other hand, if we do not Vnd
the ui or g 6= umum−1 · · ·u1 then g cannot be in G because elements of G are uniquely
determined by the image of the base points, as proven by the following lemma.

Lemma 2.7. Let G ≤ Sym(Ω) with a base B := (β1, . . . , βm). Then for every g, h ∈ G
we have Bg = Bh if and only if g = h.

Proof. Bg = Bh is equivalent to Bgh− = B. By deVnition of a base, the only element to
Vx B pointwise is the identity, so we must have gh− = ().

We can Vnd the factors ui as follows: As u2, . . . , um ∈ Gβ1 , they Vx β1. Thus the
image of β1 under umum−1 · · ·u1 is uniquely determined by u1, so we look for u1 ∈ U (1)

such that βg1 = βu1
1 . After we have Vxed u1 we proceed to the image of β2, which is

determined by u2u1. Thus we look for u2 ∈ U (2) such that βgu
−
1

2 = βu2
2 . We continue in

this manner until we have found um ∈ U (m) such that β
gu−1 u

−
2 ···u

−
m−1

m = βumm , or cannot Vnd
a suitable uj ∈ U (j) before. The product h := gu−1 u

−
2 · · ·u−j up to the index 0 ≤ j ≤ m

of the last properly found factor uj is called the siftee of g. We say g sifts through if the
factorization succeeds, i. e. j = m and h = (), and hence g ∈ G. Algorithm 2.3 gives a
formal description of this process.

Input: B = (β1, . . . , βm) base, ∆ basic orbits, U transversal system for a
permutation group acting on Ω, g ∈ Sym(Ω)

Output: siftee h ∈ Sym(Ω), sift index i

h← g1

for i = 1 tom do2

β ← βhi3

if β /∈ ∆(i) then4

return h, i− 15

end6

Vnd uβ ∈ U (i) with βuβi = β7

h← hu−β8

end9

return h,m10

Algorithm 2.3: Sifting

With this fast group membership testing we have almost all ingredients together to look
at our Vrst BSGS construction algorithm.

10

2.3 BSGS construction with Schreier-Sims algorithm

2.3 BSGS construction with Schreier-Sims algorithm

In his paper [Sim70] from 1970 Sims devised a straightforward algorithm to construct a
BSGS based on a lemma of Schreier (Lemma 2.8 below). In this section we analyze a
variant of this Schreier-Sims algorithm due to [Ser03, Sec. 4.2]. We shall need the following
two observations for our analysis. The Vrst lemma presents a way to compute generators
of a stabilizer. The second lemma gives us a criterion by which we can verify if a given
generator set is a strong generating set.

Lemma 2.8 (Schreier generators). Let G = 〈X〉 ≤ Sym(Ω) and α ∈ Ω. Let U be a
transversal for G modulo Gα and uβ ∈ U be the transversal element mapping α to β.
Then

Gα = 〈{uβxu−βx : β ∈ αG, x ∈ X}〉 (2.6)

We call these generators Schreier generators for Gα.

Proof. It suXces to show that every element h ∈ Gα is generated by T := {uβxu−βx :

β ∈ αG, x ∈ X} because 〈T 〉 ≤ Gα by deVnition of T . So let h = x1 · · ·xk ∈ Gα with
xi ∈ X arbitrary. We now apply a sequence of transformations until h can easily be seen
to be of the form h = t1 · · · tk, ti ∈ T . Our intermediate elements hj will be of the form

hj = t1 · · · tjuγj+1
xj+1xj+2 · · ·xk

We start with h0 := x1 · · ·xk = uαx1 · · ·xk. Given hj , we set tj+1 := uγj+1
xj+1u

−
γ
xj+1
j+1

and γj+2 := γ
xj+1

j+1 , ensuring hj+1 = hj = h. We can iterate this process until we reach
hk = t1t2 · · · tkuγk+1

. Because hk = h ∈ Gα and (t1t2 · · · tk) ∈ 〈T 〉 ≤ Gα we must
have uγk+1

∈ U ∩ Gα. Since U is a transversal modulo Gα the element uγk+1
must be

the identity. Thus we have h in the desired form h = t1t2 · · · tk, showing the inclusion
Gα ≤ 〈T 〉, hence Gα = 〈T 〉.

Lemma 2.9. Let B := {β1, β2, . . . , βm} ⊆ Ω and G ≤ Sym(Ω). For 1 ≤ j ≤ m + 1
deVne G[j] := G(β1,...,βj−1) as before and let Sj ⊆ G[j] with 〈Sj〉 ≥ 〈Sj+1〉. If 〈S1〉 = G,
Sm+1 = ∅, and for 1 ≤ j ≤ m

〈Sj〉βj = 〈Sj+1〉 (2.7)

holds then B is a base for G and S :=
⋃
j≤m Sj is a strong generating set for G relative to

B.

Proof. We use induction on |Ω|. For |Ω| = 1 we have only () as group generator and
nothing more to proof. So let Ω be of arbitrary size n and be the statement of the lemma
true for |Ω| ≤ n − 1. According to DeVnition 2.3 of an SGS we have to verify that
G[i] = 〈S ∩ G[i]〉 holds for 2 ≤ i ≤ n. We Vrst look at the case i = 2. We obtain from
(2.7), with j = 1, and S2 ⊆ G[2] that

Gβ1 = 〈S2〉 = 〈S2 ∩G[2]〉 ≤ 〈S ∩Gβ1〉 ≤ Gβ1 (2.8)

Because the left-most and right-most terms are equal all inner relations are likewise ful-
Vlled with equality. Hence (2.4) holds for i = 2.

11

2 Introduction to Bases and Strong Generating Sets

For i > 2 we can apply the lemma to the case B′ = (β2, . . . , βm), S ′ =
⋃

2≤j≤m Sj and
G′ = Gβ1 so that we have a group acting on n− 1 elements. By doing this, we obtain that
G′(β2,...,βi−1) = 〈S ′ ∩G′(β2,...,βi−1)〉. This implies

G[i] = (Gβ1)(β2,...,βi−1) = 〈S ′ ∩G(β1,...,βi−1)〉 ≤ 〈S ∩G(β1,...,βi−1)〉 ≤ G(β1,...,βi−1) = G[i]

(2.9)
So (2.8) and (2.9) show that the SGS condition (2.4) is fulVlled for all i. Thus S is a strong
generating set relative to the base B.

Finally we are ready to construct a base and strong generating set for G = 〈X〉 with
the Schreier-Sims algorithm. We proceed by extending a list B = (β1, . . . , βk) and sets Si
that approximate a generating set for G[i], maintaining 〈Si〉 ≥ 〈Si+1〉 for all i. We say our
construction is up to date above level j when additionally (2.7) holds for all j < i ≤ k.
When we are up to date above level 0 it follows from Lemma 2.9 that we have found a
BSGS.
To start the algorithm we choose a β1 ∈ Ω which is moved by at least one generator in

X . We set B = (β1) and S1 := X and we are up to date above level 1.
When we are up to date above level j, we test whether (2.7) holds for i = j. The

inclusion 〈Sj〉βj ≥ 〈Sj+1〉 is always fulVlled by our construction as we ensure that Si ⊆
G[i] and hence that βj is invariant under Sj+1. So we need only to test the opposite
inclusion 〈Sj〉βj ≤ 〈Sj+1〉. This can be done by checking that all generators of 〈Sj〉βj lie
in 〈Sj+1〉.
Note that Lemma 2.8 gives a description of the generators of 〈Sj〉βj , which we can use

for testing. Furthermore, Lemma 2.9 ensures that we have an SGS for 〈Sj+1〉, so we can
test membership by sifting.
If all Schreier generators of 〈Sj〉βj are in 〈Sj+1〉 and we thus have veriVed (2.7), we are

up to date above level j − 1. Otherwise we have computed a nontrivial siftee h which we
add to Sj+1 and are up to date above level j + 1. In the case j = k we also add a new
βk+1 ∈ Ω to our list with hβk+1 6= h.
Algorithm 2.4 depicts a more formal description of the process. The call Sift with

parameter j + 1 means we use Algorithm 2.3 on our partial base (βj+1, . . . , β|B|) and
partial strong generating set

⋃
i≥j+1 Si because we are testing for membership in Sj+1.

Our Schreier generator sifts through if and only if k ≥ |B| − (j + 1) + 1 and h is the
identity, thus the check in line 14. In an implementation we could slightly improve this
algorithm by avoiding to sift the same Schreier generator twice when we reach the for-
loop at line 12 at a j we have worked at before.
Another ineXciency occurs when we use this algorithm with Schreier tree transversals.

Suppose we construct an orbit αS and during its construction create an orbit element βx

from some x ∈ S and a previous element β ∈ αS . Then the Schreier generator g :=
uβxu

−
βx constructed from β and x is always the identity, g = (). We call these Schreier

generators trivial by deVnition as coined by [HEO05, Sec. 4.1] and we can ignore them
in the Schreier-Sims algorithm. However, we are only able to detect Schreier generators
that are trivial by deVnition if we use a Schreier tree transversal. In this case, constructing
a Schreier generator from the pair (β, x), we know that βx was constructed by x because
−−→
βx β is an edge of the tree with label x. In the other case of an explicit transversal we have
no history information of how βx ∈ αS was initially constructed. Thus we cannot decide

12

2.3 BSGS construction with Schreier-Sims algorithm

Input: B0 = (β1, . . . , βk) possibly empty prescribed base, G = 〈S〉 ≤ Sym(Ω)
Output: base B and corresponding strong generating set S

B ← B01

if |B| = 0 then2

Vnd Vrst base point β1 ∈ Ω with βS1) {β1}3

B ← (β1)4

end5

for i = 1 to |B| do6

Si ← S ∩G(β1,...,βi)7

compute orbit ∆(i) = βSii and corresponding transversal U (i)8

end9

j ← 110

while j ≥ 1 do11

forall β ∈ ∆(j), x ∈ Sj do12

h, k ← Sift (uβxu−βx , j + 1)13

if k + j < |B| or h 6= () then14

if j > |B| then15

Vnd new base point βj+1 ∈ Ω with hβj+1 6= h16

add βj+1 to base B17

end18

Sj ← Sj ∪ {h}19

recompute orbit ∆(j) = β
Sj
j and corresponding transversal U (j)

20

j ← j + 121

next j ; // i. e. jump to line 1122

end23

end24

j ← j − 125

end26

S ←
⋃
i Si27

return B, S28

Algorithm 2.4: Schreier-Sims BSGS construction

whether a Schreier generator is trivial by deVnition and have to actually compute it. Not
all trivial Schreier generators are trivial by deVnition, but some are and we can detect this
with a Schreier tree and ignore these generators before building the product uβxu−βx .

The asymptotic running time behavior of this algorithm depends on how we handle
transversals. For our analysis we can split up the algorithm into three parts: setup, orbit
and transversal construction and Vnally sifting. Let Tconstruct(X) be the time to compute
an orbit and the related transversal for the action of a point under a set X . Moreover, let
Taccess be the time to access a transversal element. We further assume that we are not given
a prescribed base and compute B from scratch. It will become clear in the course of the
analysis how to extend the result for a prescribed base.

In the setup phase we spend O(Tconstruct(|S|) + n) time to construct a Vrst base point
and its orbit. During the main loop, lines 11 through 26, we add at most logG elements

13

2 Introduction to Bases and Strong Generating Sets

to each set Sj because every time we do this |〈Sj〉| increases. This sums up to a time of
O(|B| log |G|Tconstruct(log |G|) + log |G|Tconstruct(|S|)).
For the sifting part, we note that we have to consider each of the

∑
j |U (j)||Sj| ∈

O(n log2 |G|+|S|n) Schreier generators only once. Sifting can be done inO(log |G|Taccess)
time. So the sifting part sums up to O((n log2 |G|+ |S|n) log |G|Taccess).
We can plug in the results from Section 2.2.1, summarized in Figure 2.4 on page 15, for

Taccess and Tconstruct. For explicit transversals we thus need O(n2 log3 |G| + |S|n2 log |G|)
time. Choosing Schreier tree transversals results in a O(n3 log3 |G| + |S|n3 log |G|) time
complexity. Regarding memory usage we note that we always have a O(|S|n) require-
ment for the group generators. Additionally, we have to store

∑
j |Sj| strong generators

which is O(log2 |G|). By a result of [CST89, Thm. 1], this is also O(n log |G|), even if
log |G| /∈ O(n). For the log |G|many transversals U (j) we need in the explicit case O(n2)
memory each and O(n) in the Schreier tree case. Thus the memory requirements sum up
to O(n2 log |G|+ |S|n) and O(n log2 |G|+ |S|n), respectively.
There are a lot of other BSGS construction algorithms. [But91, Ch. 14] provides a nice

overview of the deterministic algorithms before 1990, which are, roughly speaking, also
O(n5). All these deterministic algorithms tend to scale badly for groups of large degree
because there may be a lot of Schreier generators to be constructed, which then have to
be sifted. A practical alternative are randomized constructions with deterministic or ran-
domized routines checking for the SGS property. The interested reader may Vnd in [Ser03,
Sec. 4.5] a nearly linear-time randomized construction algorithm, which is also imple-
mented in GAP. [Ser03, Ch. 8] presents two classical strong generating tests commonly
used in GAP and Magma.

2.4 Transversal revisited – shallow Schreier trees

The basic Schreier tree construction algorithm we looked at in Section 2.2.1 results in trees
of worst-case depth n. To see this, consider for instance a cyclic group with only one
generator: in this case the tree degenerates and every node has at most one child. Using
a Schreier tree, the time needed to construct transversal elements, which we have seen
to be a fundamental part of algorithms, grows proportionally with the depth of the tree.
Shallow trees with a smaller maximal depth can decrease the performance penalty arising
from unbalanced, degenerated trees.
There are at least two methods for constructing shallow Schreier trees with a

O(log |G|) depth guarantee: a randomized and a deterministic one. A detailed analysis
of both the deterministic and the randomized algorithm can be found in [Ser03, Sec. 4.4].
In this section we will only cover the deterministic method originally due to [Bab91]. We
begin with the deVnition of a cube:

DeVnition 2.10. Let g1, . . . , gk ∈ G. We deVne the cube Ck of g1, . . . , gk as the set
Ck := {gε11 g

ε2
2 · · · g

εk
k : ε1, . . . , εk ∈ {0, 1}}. We say the cube Ck is non-degenerate if

|Ck| = 2k is maximal. Finally, we deVne the inverse cube C−k := {g− : g ∈ Ck}.

We can use the following lemma to actually construct non-degenerate cubes.

Lemma 2.11. Let g1, . . . , gk, gk+1 ∈ G and Ck, Ck+1 the corresponding cubes of g1 up to
gk and gk+1, respectively. Then |Ck+1| = 2|Ck| if and only if gk+1 /∈ C−k Ck.

14

2.4 Transversal revisited – shallow Schreier trees

Proof. |Ck+1| = 2|Ck| is equivalent to the fact that the sets Ck and Ckgk+1 are disjoint.
They are disjoint if and only if gk+1 /∈ C−k Ck.

So for the construction of a non-degenerate cube Ck we iteratively construct cubes Ci+1

from Ci such that gi+1 /∈ C−i Ci. Membership testing in C−i Ci in general is diXcult (cf.
[Ser03, p. 65]), but for our purposes an easier to compute condition for non-membership is
suXcient. Clearly, if, for some α ∈ Ω, we Vnd a g ∈ G with αg /∈ αC−i Ci , then g /∈ C−i Ci.
We can compute the set αC

−
k Ck iteratively in O(kn) time. Beginning with ∆1 :=

{α}, we set ∆i+1 := ∆i ∪ ∆hi
i where hi is the i-th member of the sequence

g−k , g
−
k−1, . . . , g

−
1 , g1, g2, . . . , gk. This induces a directed, labeled graph on the vertex set

αC
−
k Ck with label set {hi : 1 ≤ i ≤ 2k} = {g−i , gi : 1 ≤ i ≤ k}. In this a graph an edge

−−−→α1 α2 exists and has label h−i , if α1 = αhi2 for some i. A breadth-Vrst-search on this graph
yields a Schreier tree as in DeVnition 2.5.

Suppose we have a non-degenerate cube Ck of g1, . . . , gk ∈ G with αC
−
k Ck = αG. The

non-degeneracy of the cube ensures k ≤ log |G|, thus the Schreier tree constructed as
above has depth at most 2 · k ≤ 2 log |G|.
It remains to be discussed how we can construct the mentioned cube Ck with αC

−
k Ck =

αG. To this end, we Vnd a Vrst element g1 that moves α. Especially g1 6= (), so C1 is
non-degenerate. If αC

−
1 C1 = αG we are done. If this is not the case then we Vnd an s ∈ G

with αs /∈ αC
−
1 C1 and set g2 := s. We then have an extended non-degenerate cube C2

which either suXces to generate the orbit or we Vnd another group element to extend the
cube.
Algorithm 2.5 has the details. What makes it rather long compared to the idea described

above is to avoid repeating checks for αC
−
i Ci when working on αC

−
i+1Ci+1 . Therefore, when

we have a new cube element g in line 8, we Vrst compute αC
−
i Cig in lines 9 to 16 and then

αg
−C−i Ci+1 in lines 18 to 31. Furthermore, important to note is that we treat L as an ordered

set so that we insert g at the end (l. 17) and g− at the front (l. 32) of the label sequence.
Constructing a shallow variant of a Schreier tree costs extra time. As in every orbit

computation we always need O(|S|n) by the two for-loops in lines 4 and 5 of Algorithm
2.5. Besides that, we also have to deal with cubes. As we have seen before, for every i ≤ k

the set αC
−
i Ci can be computed inO(nk) time, which we have to construct at most k times.

Multiplying i ≤ k group elements in lines 7 and 8 also can surely be done in O(nk) time,
regardless of how permutations are implemented. Hence, with the bound k ≤ log |G|, we
get n log2 |G| additional costs. This results in a total time of O(n log2 |G| + |S|n). The
table in Figure 2.4 summarizes the asymptotic results of this section and Section 2.2.1.

Explicit Schreier Tree Shallow Schreier tree
Construction time O(|S|n2) O(|S|n) O(n log2 |G|+ |S|n)
Memory usage O(n2) O(n+ |S|n) O(n log |G|)
Transversal element access O(1) O(n2) O(n log |G|)

Figure 2.4: Asymptotic time and memory requirements for diUerent transversal implemen-
tations

Note that Algorithm 2.5 does not employ a breadth-Vrst-search to build the tree. It still
achieves the 2 log |G|-depth bound because this only depends on the choice of the label set.

15

2 Introduction to Bases and Strong Generating Sets

Input: G = 〈S〉 permutation group acting on Ω, α ∈ Ω
Output: αG, labeled edge set E for Schreier tree and label set L

∆← {α}1

E ← ∅2

L← ∅3

for β ∈ ∆ do4

for s ∈ S do5

if βs /∈ ∆ then6

uβ ← multiplied edge labels along path from β to α7

g ← uβs ; // our new cube element8

// extend orbit by ∆g

Γ← ∅9

for γ ∈ ∆ do10

if γg /∈ ∆ then11

Γ← Γ ∪ {γg}12

add edge
−−→
γg γ with label g− to E13

end14

end15

∆← ∆ ∪ Γ16

L← L ∪ {g}17

// check the extension of α with g−

if αg
−
/∈ ∆ then18

∆← ∆ ∪ {αg−}19

add edge
−−−→
αg
−
α with label g to E20

end21

// check all possible extensions of αg
−

with the current

labels

Γ← {αg−}22

for l ∈ L do23

for γ ∈ Γ do24

if γl /∈ ∆ then25

Γ← Γ ∪ {γl}26

add edge
−→
γl γ with label l− to E27

end28

end29

end30

∆← ∆ ∪ Γ31

L← {g−} ∪ L32

end33

end34

end35

return ∆, E, L36

Algorithm 2.5: Orbit and shallow Schreier tree

16

2.5 Base change

A breadth-Vrst-approach, however, will produce trees of lesser or equal depth on the same
input. For an implementation of this improvement we would have to keep track of the
depth d(α) of orbit elements α ∈ ∆ in the already constructed part of the tree. A bucket
sort (cf. [CLRS09, Sec. 8.4]) with respect to d(α), providing insertion into a d(α)-sorted
sequence in O(1) time, could be used without deteriorating the asymptotic time behavior
given above.

2.5 Base change

As we will see later, many applications that rely on computations with bases and strong
generating sets require a speciVc base. For example, if we want to compute stabilizers (cf.
Section 3.1.4) then we need a base which is closely related to the set we like to stabilize.
Because constructing a complete BSGS from scratch is likely to be an expensive process
we would like to have an algorithm that modiVes a strong generating set with respect to
base (β1, . . . , βm) so that it is strong generating relative to some other base (α1, . . . , αk).
In this section we will examine several solutions to this problem. The interested reader
may also Vnd several of the presented algorithms with examples in [But91, Ch. 12] and
[Ser03, Sec. 5.4].
Assume for a moment that we know how to perform a base point transposition. Given

an SGS relative to a base (β1, . . . , βm), a base point transposition at i constructs an SGS
relative to (β1, . . . , βi−1, βi+1, βi, βi+2, βi+3, . . . , βm). We can use this method to insert a
new base point α ∈ Ω at a speciVc position j ≤ m. First we insert α as a redundant base
point after the Vrst βi such that G[i+1] = G(β1,...,βi) Vxes α. This ensures that G(β1,...,βi) =
G(β1,...,βi,α) and the new transversal that we insert is trivial. Then we apply |i − j| many
transpositions to bring α into the desired position, which gives us a possibly redundant
base (β1, . . . , βj−1, α, βj, . . . , βm). Note that if i < j all necessary transpositions are
trivial and we can also insert α directly at position j. By repeating such insertions with
α1 at position 1, α2 at position 2 &c., and stripping redundant elements afterward, we can
change the base to a completely diUerent one (α1, α2, . . . , αk−1, αk, . . .).
Algorithm 2.6 formalizes this base change procedure. The following two sections present

two algorithms, one deterministic, one randomized, to perform a base point transposition.

2.5.1 Deterministic base point transposition

The Vrst, deterministic transposition algorithm is due to Sims (cf. [Sim71b]). Let S be
an SGS for G relative to the base (β1, . . . , βm) with stabilizer chain G = G[1] ≥ · · · ≥
G[m] ≥ G[m+1] = 1 and transversals U (1), . . . , U (m). Our goal is to compute an SGS S̄
relative to (β1, . . . , βi−1, βi+1, βi, . . . , βm) with stabilizer chainG = Ḡ[1] ≥ · · · ≥ Ḡ[m] ≥
Ḡ[m+1] = 1 and transversals Ū (1), . . . , Ū (m).
Most of the stabilizers do not change, we have Ḡ[j] = G[j] for every j 6= i + 1. Ac-

cordingly for 1 ≤ j < i and i + 1 < j ≤ m the transversals do not change, Ū (j) = U (j).
We can easily compute the new i-th fundamental orbit βG

[i]

i+1 and obtain a new transversal
Ū (i). It remains to set up Ū (i+1).
As we do not know a generating set for Ḡ[i+1] yet we iteratively construct the new

(i + 1)-st fundamental orbit ∆̄(i+1), starting with ∆̄(i+1) := {βi} and S̄ := S. Then we

17

2 Introduction to Bases and Strong Generating Sets

Input: B = (β1, . . . , βm), S BSGS, sequence of new base points (α1, . . . , αk)
Output: updated BSGS with base (α1, . . . , αk, . . .)

for i = 1 to k do1

if βi 6= αi then2

// find insertion position

j ← i+ 13

while αG
[j+1]

i) {αi} do4

j ← j + 15

end6

insert αi into B at position j7

insert ∆(i) = {αi} and corresponding transversal U (i) into sequence of orbits8

and transversals at position j
while j > i do9

B, S ← Transpose (B, S, j − 1)10

j ← j − 111

end12

end13

end14

Algorithm 2.6: Base change with transpositions

construct Schreier generators from Ū (i) and Ḡ[i]. Whenever we Vnd a Schreier generator
h ∈ Ḡ[i+1] that extends our orbit, we add h to S̄. With the new generator we recompute

∆̄(i+1) := β
〈S̄∩Ḡ[i+1]〉
i = β

〈S̄∩G[i]
βi+1

〉
i . From |G| =

∏m
i=1 |U (i)| by (2.3) we know that for the

Vnal orbit we must have

|∆̄(i+1)| = |Ū (i+1)| = |U
(i+1)| · |U (i)|
|Ū (i)|

.

If the number of elements in ∆̄(i+1) is below that number, we proceed with another
Schreier generator. In the case we have reached this cardinality for ∆̄(i+1), we know
that we have a complete generating set for Ḡ[i+1] and, along with our orbit calculations,
a transversal Ū (i+1) and so we are done. As in the Schreier-Sims algorithm in Section 2.3,
for performance reasons we should avoid constructing Schreier generators that are trivial
by deVnition.

Algorithm 2.7 shows an in-place variant of the transposition part. Again, like in the
Schreier-Sims construction, it would be an improvement for an implementation to con-
struct and check each Schreier generator in line 6 only once. A detailed analysis in [But91,
p. 123] shows that this deterministic base point transposition has a O(n4) complexity.

2.5.2 Randomized base point transposition

Random group elements

Instead of computing Schreier generators for Ḡ[i+1] explicitly, we can use randomness.
But Vrst of all we need to know how to eXciently construct random elements of a group.

18

2.5 Base change

Input: B = (β1, . . . , βm), S BSGS with transversals U (j), i base point index to
change

Output: updated BSGS with base (β1, . . . , βi−1, βi+1, βi, βi+2, . . . , βm)

swap the values of βi and βi+11

compute orbit ∆̄(i) = βG
[i]

i and corresponding transversal Ū (i)2

S̄ ← S3

compute orbit ∆̄(i+1) = β
〈S̄∩G[i]

βi
〉

i+1 and corresponding transversal Ū (i+1)4

while |∆̄(i+1)| < |U(i+1)|·|U(i)|
|Ū(i)| do5

forall β ∈ ∆̄(i), x ∈ S̄ ∩G[i] do6

h← uβxu
−
βx7

if hβi+1 /∈ ∆̄(i+1) then8

S̄ ← S̄ ∪ {h}9

recompute orbit ∆̄(i+1) = β
〈S̄∩G[i]

βi
〉

i+1 and corresponding transversal Ū (i+1)10

break11

end12

end13

end14

S ← S̄15

U (i) ← Ū (i)16

U (i+1) ← Ū (i+1)17

∆(i) ← ∆̄(i)18

∆(i+1) ← ∆̄(i+1)19

Algorithm 2.7: Base point transposition – deterministic version

Because we shall need the uniform random distribution of elements several times we write
in short U(G) for the uniform distribution on the set or group G. We assume throughout
the chapter that we have means to generate uniformly distributed elements from a given
set.

EXciently generating g ∈ U(G) for a general group G is a hard task, which is not
covered by this thesis. Both [Ser03, Sec. 2.2] and [HEO05, Sec. 3.2.2] contain algorithm
descriptions for that. The situation is much easier if we have a base and strong generating
set for G. Equation (2.2) tells us that every g ∈ G is uniquely composed from transversal
elements

g = umum−1 · · ·u2u1, for some ui ∈ U (i).

Hence, if we choose ui ∈ U(U (i)) for all i we get a uniformly distributed group element g
as the product of the ui.

When we have access to U(G) and a transversal U for G mod Gα, α ∈ Ω, we also can
compute uniformly distributed random elements of the stabilizer Gα as follows:

Lemma 2.12. Let α ∈ Ω and U be a transversal for G mod Gα. Further, let g ∈ U(G) and
β := αg. Consider uβ ∈ U such that αuβ = β. Then gu−β is uniformly distributed in Gα.

19

2 Introduction to Bases and Strong Generating Sets

Proof. Let {u1, . . . , uk} =: U be the transversal elements. Then G can be partitioned in
G =

⋃k
i=1Gαui. Every g ∈ G is in exactly one coset Gαuβ . So every coset Gαui has the

same chance to occur as Gαuβ and every h ∈ Gα has the same chance to occur as gu−β .
Thus gu−β is uniformly distributed in Gα if g is uniformly distributed in G.

Transposition

For a base transposition we are in the situation that we know Ḡ[i] and have a transversal
Ū (i) for Ḡ[i] mod Ḡ[i+1]. We then need generators for Ḡ[i+1] = Ḡ

[i]
βi+1

. So instead of
computing Schreier generators, we generate g ∈ U(Ḡ[i+1]) according to Lemma 2.12 from
Ū (i) and Ḡ[i] = G[i], which we already have an SGS for. Then we test whether g extends
the known transversal part. If it does then we add it to our generating set and start over
again.

Input: B = (β1, . . . , βm), S BSGS with transversals U (j), i base point index to
change

Output: updated BSGS with base (β1, . . . , βi−1, βi+1, βi, βi+2, . . . , βm)

swap the values of βi and βi+11

compute orbit ∆̄(i) = βG
[i]

i and corresponding transversal Ū (i)2

S̄ ← S3

compute orbit ∆̄(i+1) = β
〈S̄∩G[i]

βi
〉

i+1 and corresponding transversal Ū (i+1)4

while |∆̄(i+1)| < |U(i+1)|·|U(i)|
|Ū(i)| do5

generate g ∈ U(Ḡ[i])6

Vnd ug ∈ Ū (i) with βugi+1 = βgi+17

h← gu−g8

if hβi+1 /∈ ∆̄(i+1) then9

S̄ ← S̄ ∪ {h}10

recompute orbit ∆̄(i+1) = β
〈S̄∩G[i]

βi
〉

i+1 and corresponding transversal Ū (i+1)11

end12

end13

S ← S̄14

U (i) ← Ū (i)15

U (i+1) ← Ū (i+1)16

∆(i) ← ∆̄(i)17

∆(i+1) ← ∆̄(i+1)18

Algorithm 2.8: Base point transposition – randomized version

One can prove that, if S̄ is not complete then with probability of at least 1
2
such ran-

domly generated g will not sift through our partial BSGS and therefore extend our gener-
ating set (cf. [Ser03, Lemma 4.3.1]). Also note that because we know the size of the new
transversal Ū (i+1) in advance we know when we have found enough generators to make
S̄ a strong generating set. Hence we have a randomized base transposition algorithm and
we can tell whether its result is correct by looking at the size of the transversal product.

20

2.5 Base change

Algorithm 2.8 formalizes the process and is very similar to the deterministic version in
Algorithm 2.7. The only diUerence is how we Vnd the probable generators h. Note that
because of the randomized nature of this algorithm we cannot guarantee its termination.

2.5.3 Base change by conjugation

Now that we know all the details of changing a base with Algorithm 2.6 we have a
second look at it and reduce the number of transpositions that we need to apply to
B := (β1, . . . , βm) so that it is preVxed by (α1, . . . , αk). One way to accomplish that
is conjugation as observed by [Sim71a]. If we have a BSGS (B, S) then we can easily
construct another valid BSGS (Bg, Sg) for g ∈ G. Here Bg = (βg1 , . . . , β

g
m) as usual and

Sg := {g−sg : s ∈ S} denotes group conjugation. To turn this rather special case in a
generally applicable algorithm we use conjugation in combination with transpositions.

Let us assume we have a g ∈ G which we can use for the Vrst j − 1 elements, i. e. we
know a base B′ := (γ1, . . . , γl) and g such that

γgi = αi for 1 ≤ i ≤ j − 1. (2.10)

At the beginning we could start with g = () and j = 1. If αg
−

j is in the j-th basic orbit

(with respect to B′) we Vnd a u ∈ U ′(j) with γuj = αg
−

j and update g ← ug. Because

u ∈ U ′(j) and thus acts as identity on the Vrst j − 1 base elements, property (2.10) is
preserved and extends to j. In the other case that αg

−

j is not in the j-th basic orbit we

insert αg
−

j (via repeated transpositions) at position j, resulting in γj = αg
−

j . After this step
we have a g fulVlling (2.10) for the Vrst j elements and we can continue this way until we
have covered all elements at j = k. Algorithm 2.9 modiVes Algorithm 2.6 such that it uses
conjugation where applicable.

2.5.4 Base change by construction – randomized BSGS construction

Both presented base change algorithms so far may be slow when a long new base sequence
is prescribed. In such cases it would be an alternative to compute a new BSGS from scratch
to avoid a high number of transpositions. In this section we look at a randomized version
of the Schreier-Sims construction, which we may choose to compute a new base and strong
generating set if the prescribed base diUers substantially from the existing one and we
expect too many transpositions. However, in practice it may be diXcult to recognize
automatically in advance with certainty whether computation from scratch is faster than
transpositions.

We randomize the Schreier-Sims algorithm 2.4 in a similar way as the randomized trans-
position algorithm 2.8 originates from its deterministic counterpart Algorithm 2.7. The bot-
tleneck of the Schreier-Sims construction is that all Schreier generators have to be sifted to
ensure that the generating set is also a strong generating set by Lemma 2.9. We now relax
this criterion and use random generators. To make the construction work without errors
we have to know the group order in advance. This is always the case when we want to
perform a base change because we can read it from the existing transversal system (2.3).

21

2 Introduction to Bases and Strong Generating Sets

Input: B = (β1, . . . , βm), S BSGS, sequence of new base points (α1, . . . , αk)
Output: updated BSGS with base (α1, . . . , αk, . . .)

g ← ();1

for i = 1 to k do2

αi ← αg
−

i ;3

if βi 6= αi then4

if αi ∈ ∆(i) then5

Vnd element uαi ∈ U (i) such that β
uαi
i = αi;6

g ← uαig;7

else8

// find insertion position

j ← i+ 1;9

while αG
[j+1]

i) {αi} do10

j ← j + 1;11

end12

insert αi into B as position j;13

insert ∆(i) = {αi} and corresponding transversal U (i) into sequence of14

orbits and transversals;
while j > i do15

B, S ← Transpose (B, S, j − 1);16

j ← j − 1;17

end18

end19

end20

end21

B ← Bg;22

S ← Sg;23

for i = 1 to k do24

recompute orbit ∆(i) and corresponding transversal U (i);25

end26

Algorithm 2.9: Base change with conjugation and transpositions

To construct a base and strong generating set B, S in a randomized fashion for a group
G = 〈X〉, we start similarly to the deterministic Schreier-Sims algorithm. At the begin-
ning we choose a β1 ∈ Ω which is moved by at least one generator and start withB = (β1)
and S1 := X . If we have a prescribed base we of course skip this step. Let us assume we
already have constructed some subsets S1, . . . , Sk, generating subsets of G[1], . . . , G[k].

We generate uniformly independently distributed random elements g ∈ U(G) accord-
ing to the results of Section 2.5.2. We then sift them through the existing transversal
system. If one of these g does not sift through we end up with an index j and a siftee h.
We can add this siftee h to Sj to improve our approximation of a strong generating set.
If j = k we also add a new base point βk+1. When the product

∏k
i=1 |U (i)| equals the

known base order we are done because no element g ∈ G can have a non-trivial siftee
without enlarging the transversal product. If the orders mismatch we start again sifting

22

2.5 Base change

random elements through an augmented set system S1, . . . , Sk. Algorithm 2.10 formalizes
this procedure.

Input: B = (β1, . . . , βk) prescribed base, G = 〈X〉 ≤ Sym(Ω), a random generator
for U(G), group order |G|

Output: base B and corresponding strong generating set S

if |B| = 0 then1

Vnd Vrst base point β1 ∈ Ω with βX1) {β1};2

B ← (β1);3

end4

for i = 1 to |B| do5

Si ← X ∩G(β1,...,βi);6

compute orbit ∆(i) = βSii and corresponding transversal U (i);7

end8

repeat9

compute g ∈ U(G);10

h, j ← Sift (g);11

if h 6= () then12

if j ≥ |B| then13

Vnd new base point βj ∈ Ω with hβj 6= h;14

add βj to base B;15

end16

Sj ← Sj ∪ {h};17

recompute orbit ∆(j) = β
Sj
j and corresponding transversal U (j);18

end19

until
∏k

i=1 |U (i)| = |G| ;20

S ←
⋃
i Si21

return B, S22

Algorithm 2.10: Randomized Schreier-Sims BSGS construction

If the BSGS of a group has to be changed to a signiVcantly diUerent base, using this
algorithm to compute a new BSGS from scratch may be the fastest way. We will come
back to this in Section 4.2.3 when we look at results from experiments with diUerent base
change algorithms.
One could also use this algorithm if an initial BSGS has to be constructed and no prior

BSGS is known. The Vrst problem then is to generate random group elements because we
do not have access to U(G). A second problem may be that the group order is unknown
in advance and we thus do not know when the construction is complete. There is an algo-
rithm often referred to as “random Schreier-Sims algorithm” by Leon (cf. [Leo80]), which
addresses both problems heuristically. Though there is not much to modify in Algorithm
2.10 to adapt these solutions, this is beyond the scope of this thesis. The interested reader
may also consult [Ser03, Sec. 4.3] for further explanations concerning this approach.

23

2 Introduction to Bases and Strong Generating Sets

24

3 Backtrack Search

An often occurring problem when dealing with symmetries is to compute the setwise
stabilizer G∆ for a subset ∆ ⊆ Ω under action of G ≤ Sym(Ω). This problem naturally
arises during symmetry computation when a computation is restricted to a subproblem
deVned by ∆ ⊂ Ω. For example, consider the left polyhedral cone in Figure 3.1. The reader
not too familiar with the terminology of polyhedrons may consult [Zie95] for deVnitions.

y y

Figure 3.1: Polyhedral cones

Suppose we were given the four half-spaces deVning the cone, identiVed with
{1, 2, 3, 4}, and our goal was to compute the vertices and rays of the cone up to its sym-
metry. The symmetry group G of the left cone is the same as that of the square: rotations
around the y-axis by multiples of 90 degree and four reWections, the dihedral group D4

of order 8. If the left cone was too hard to work with we could branch into a lower-
dimensional subproblem Vrst, depicted on the right. The suitable symmetry group to use
for this would be the stabilizer G1 of the corresponding half-space 1 in G: one horizontal
reWection and the identity. In this two-dimensional cone we would then Vnd one vertex
(the apex of the cone) and one ray up to symmetry because the second ray can be obtained
from the Vrst by reWection. Going back to the full three-dimensional cone and solving
the other three remaining subproblems would give us one apex and four candidate rays in
total. From these four rays we need of course only one because the others can be obtained
by rotation. For more elaborate ways to compute vertices and rays of polyhedrons up to
symmetries the interested reader may look into [BSS09].

A second interesting problem in symmetry computation is group intersections. For in-
stance, consider solving linear programs up to symmetries. In this case we could compute
the symmetry group of the whole problem as intersection of the symmetry group of the
polyhedron we are optimizing over and the symmetry of the target function.

Both the set stabilizer and group intersection problem have been shown to be
polynomial-time equivalent to the problem of computing graph isomorphisms. Thus no
general, provable theoretically fast algorithms are known. In practice, however, graph

25

3 Backtrack Search

isomorphisms can often be computed eXciently, despite the unknown complexity class
membership in P (cf. [Luk93]). Like graph isomorphisms, those group problems are usu-
ally solved with a backtracking approach. An algorithm walks through the group and Vnds
all elements with the desired properties, in this case generating a set stabilizer or a group
intersection. In this section we will study two BSGS-based algorithms for this task, one of
them inspired by graph isomorphism techniques. These backtracking algorithms are fairly
general and also commonly used for other group-theoretic problems like centralizers and
normalizers, which we exclude from our considerations here.

In a general setting, we attempt to Vnd the set G(P) of all elements of a group G sat-
isfying a mathematical property P . It seems reasonable that for “unstructured” properties
like an arbitrary equation in group elements the search has to “touch” almost every single
group element. One kind of structure that helps in bounding the search space is thatG(P)
is a subgroup ofG or a coset of a subgroup (or empty). In this case search problems usually
become tractable despite a worst-case complexity of Ω(|G|).
We can also use these subgroup search methods to compute automorphisms of combi-

natorial objects such as matrices. For instance, for a matrix A we may set G := Sym(A)
as the group of all permutations acting on A and deVne P to be to true for a g ∈ G if and
only Ag = A. Then G(P) is the automorphisms group of all matrices. To compute G(P)
the backtrack framework may remain the same in general, only P speciVc components
have to be adapted.

For every subgroup problem there is a related coset problem where we would like to
Vnd one representative of the coset. For instance, consider the set stabilizer problem. The
subgroup task is to Vnd the setwise stabilizerG∆ for a set ∆ ⊆ Ω. The corresponding coset
problem is, given Γ,∆ ⊆ Ω, to Vnd g ∈ G with ∆g = Γ (or establish that no such element
exists). In other words, we have to Vnd a representative of a coset (G∆)g with ∆(G∆)g = Γ
or a representative of a coset g(GΓ) with ∆g(GΓ) = Γ, if such a coset exists. We could then
solve the corresponding subgroup problem to obtain the full coset if it is required, but
usually one representative is enough. Going back to the example of a polyhedral cone in
Figure 3.1, we need to solve such a coset problem if we want to know whether two vertices
or rays Γ,∆ can be obtained from each other by action of the symmetry group G.

To illustrate the methods and techniques we will focus on subgroup search. At the end
of each section we will discuss what changes are necessary to perform a search for coset
representatives.

3.1 Classical backtracking

We organize the search forG(P) based on the concept of a search tree which hasG as root
and all elements of G as leaves. We traverse this tree depth-Vrst in search for elements
fulVlling the property P . While doing that, we hope that we can prune whole subtrees
because they contain irrelevant data to construct G(P). Our goal is to examine as few
leaves (group elements) as possible.

26

3.1 Classical backtracking

3.1.1 Search tree

A base together with a strong generating set enables us to enumerate all group elements
by enumerating all possible transversal combinations

unun−1 · · ·u2u1 with ui ∈ U (i), (3.1)

which is our equation (2.2) from page 6. During this enumeration we can check every
unun−1 · · ·u2u1 if it is in G(P). The key to fast results is a clever organization of the
search. Thus we set up our search tree in the following way.

DeVnition 3.1. Let B = (β1, . . . , βm) be a base for G with strong generating set S and
corresponding transversals U (i) for 1 ≤ i ≤ m. Our search tree is a labeled tree with the
following properties:
• The root at level 0 has the empty label ().

• We label every node at level i > 0 with a sequence (γ1, . . . , γi) ∈ Ωi for 1 ≤ i ≤ m.

• A node (γ1, . . . , γi) at level i < m has the children (γ1, . . . , γi, γi+1) for each
γi+1 ∈ (∆(i+1))g where g ∈ G is an arbitrary permutation fulVlling (β1, . . . , βi)

g =
(γ1, . . . , γi).

This is just a reformulation of the enumeration based on (3.1). We observe that from
one node of the search tree to one of its children we Vx one more base point image.
The parent node has (β1, . . . , βi)

g = (γ1, . . . , γi) for some g ∈ G, the child node has
(β1, . . . , βi, βi+1)h = (γ1, . . . , γi, γi+1) for some h ∈ H . We apply the decomposition (3.1)
to g = un · · ·u1 and h = vn · · · v1 where uj, vj ∈ U (j). Because of the i Vxed Vrst base
points we must have that uj = vj for all 1 ≤ j ≤ i. So each path from the root to a leaf
represents a sequence of group elements (u1), (u2u1), (u3u2u1), . . . , (unun−1 · · ·u2u1).
This also means that each tree node at level i represents a coset G[i+1]g of G. Al-

though we label the tree with partial base images it is sometimes more convenient to
look at a node as a coset, so we will use the notation that is best in the context. More
formally, for a node n := (γ1, . . . , γi) we deVne the function coset to return the cor-
responding coset: coset(n) = {g ∈ G : βgj = γj ∀1 ≤ j ≤ i}. The leaves,
(γ1, . . . , γm) = (β1, . . . , βm)umum−1···u1 for some uj ∈ U (j), correspond uniquely to group
elements umum−1 · · ·u1 ∈ G. Conversely, because of the way we deVne child nodes,
every g = umum−1 · · ·u1 ∈ G corresponds to a leaf (γ1, . . . , γm) = (β1, . . . , βm)g.

G = G[1]

G[2]gi1

g1 g2 g3

G[2]gi2

g4 g5 g6

G[2]gi3

g7 g8 g9

G[2]gi4

g10 g11 g12

Figure 3.2: Group with twelve elements split up into cosets by a search tree

27

3 Backtrack Search

Example 3.2. Figure 3.2 depicts an example of a group G = {g1, . . . , g12} which is split
up into cosets by a search tree. This is also how a search tree for the alternating group A4

looks like because |U (1)| = 4 and |U (2)| = 3 for A4, as a simple calculation shows.

For a cyclic group the search tree degenerates. From Example 2.4 on page 7 we know
that for a cyclic group |U (1)| = |Ω| = |G| regardless of the base. This means that the tree
has all its |G| leaves already at level 1, which makes pruning more diXcult.

Input: BSGS for group G with transversals U (i) and basic orbits ∆(i), node n,
corresponding g ∈ coset(n), level i

if i = m+ 1 then1

VisitGroupElement (g)2

return3

end4

forall δ ∈ ∆(i) do5

γi+1 ← δg6

Vnd uδ ∈ U (i) with βuδi = δ7

n′ ← extend n by γi+18

Traverse(n′, uδg, i+ 1)9

end10

Algorithm 3.1: Depth-Vrst traversal of the search tree of a group

Algorithm 3.1 displays an exemplary depth-Vrst traversal of a search tree according to
DeVnition 3.1 and provides a basis for the more advanced algorithms to come. We refer
to this algorithm Traverse for recursion and we start it with the arguments n = (), g =
(), i = 1. In method VisitGroupElement we could implement whatever code we want
to be executed for every group element g ∈ G.
When we look for elements of G(P) in our search tree we would like to establish as

early as possible that we can skip the traversal of subtrees because the corresponding
cosets G[i]g contain irrelevant data. In the following sections we will see how to perform
the search forG(P) and how to prune the tree. Before we look at methods that depend on
the property P we examine generally applicable ideas.

3.1.2 Pruning the tree

For our backtrack search we perform a depth-Vrst traversal of our tree deVned in DeVnition
3.1. The following lemma suggests that it is advantageous to Vnd all members of G[i] ∩
G(P) before touching any element from G \G[i].

Lemma 3.3. Let G(P) be a subgroup of G and suppose that for some i all elements of
K = G[i] ∩ G(P) are known. Then for every h, h′ ∈ G(P) with G[i]h = G[i]h′ we have
that 〈K,h〉 = 〈K,h′〉.

Proof. It suXces to show that Kh = Kh′. From G[i]h = G[i]h′ we know that there is a
u ∈ G[i] ∩G(P) such that h = uh′. By deVnition ofK we have u ∈ K and thus h and h′

are in the same coset Kh = Kh′.

28

3.1 Classical backtracking

If we know G[i] ∩ G(P) and we Vnd an h ∈ G(P) then we can skip the whole rest of
its coset G[i]h because we cannot obtain new group generators this way. In the case that
G(P) is a coset of a subgroup this lemma is not really relevant because we stop the search
as soon as we have found one element.

Another beneVt of computing G[i] ∩G(P) Vrst is that we obtain automatically a strong
generating set relative to the original base B ifG(P) is a subgroup. To see this we observe
that G(P)[i] = G(P) ∩ G[i] because G(P) ⊆ G. Hence by examining G(P) ∩ G[i] Vrst
we get generators for all subgroups along the stabilizer chain of G(P).

In order to compute G(P) ∩ G[i] before G \ G[i] we visit children of the nodes in
the search tree in a special order. We introduce an ordering ≺ of Ω in which the base
elements come Vrst, and in order. For 1 ≤ i < j ≤ m we deVne βi ≺ βj and
βi, βj ≺ α for all α ∈ Ω \ B. We may set the relationship among α ∈ Ω \ B arbi-
trarily to make ≺ a complete order. During the search tree traversal we order the chil-
dren (γ1, . . . , γi−1, γ

(1)
i), . . . , (γ1, . . . , γi−1, γ

(k)
i) of a node such that γ(j)

i ≺ γ
(j+1)
i for all

1 ≤ j ≤ k − 1. So the Vrst child of (γ1, . . . , γi−1) is always (γ1, . . . , γi−1, βi). We thus
visit all elements of G[i] before any from G \G[i].

Input: BSGS for group G with transversals U (i) and basic orbits ∆(i), node n,
corresponding g ∈ coset(n), level i, completed level icompleted (global variable)

Output: K generating set of 〈K〉 = G(P) subgroup of G with property P if i = 1

if i = m+ 1 then1

if g satisVes P then2

return {g}, icompleted3

end4

return ∅, i5

end6

∆̄← Sort((∆(i))g,≺)7

forall δ ∈ ∆̄ do8

γi+1 ← δ9

δ′ ← δg
−

10

Vnd uδ′ ∈ U (i) with βuδ′i = δ′11

n′ ← extend n by γi+112

K ′, j ← Backtrack(n′, uδ′g, i+ 1)13

K ← K ∪K ′14

if j < i then15

return ∅, j16

end17

end18

icompleted ← min{icompleted, i}19

return K, i20

Algorithm 3.2: Backtrack subgroup search with elementary pruning

Algorithm 3.2 implements the improvements of this section and it is recursively referred
to as Backtrack. We introduce a new global variable icompleted, whose value is shared
among all recursive calls and is initialized withm, to save the level up to whichG[i]∩G(P)

29

3 Backtrack Search

is fully known. We make use of this in line 3 where we instruct to backtrack to the
last completed level. This multi-level backtracking due to Lemma 3.3 is then executed in
line 16. Of course, that we may do this depends on the order in which we visit the children
of a node. Therefore we sort the orbit with respect to ≺ in line 7 and complete G[i] before
visiting any element from G \G[i].

3.1.3 Double coset minimality

Suppose that we know subgroups K,L ≤ G such that

g ∈ G(P) ⇐⇒ KgL ⊆ G(P). (3.2)

Then we need to consider only one element of every double coset KgL that is somehow
representative for the double coset. If we had some kind of order on G we could restrict
our backtrack search to elements which are minimal in KgL. To this end we can use
an ordering of Ω as introduced in the last section. This also induces an ordering of G
by g ≺ h, if and only if Bg is lexicographically ≺-smaller than Bh, i. e. there exists
1 ≤ k ≤ m with βgi = βhi for 1 ≤ i < k and βgk ≺ βhk . However, determining
double coset-minimality in general is NP-hard (cf. [Luk93]) so we usually settle for weaker
criteria. In this section we look at some necessary conditions for double coset-minimality.
If these conditions do not hold for some node of our search tree then we can prune this
node because it cannot lead to minimal elements.
Before we go into details we assure ourselves that we usually have non-trivial subgroups

K,L for which (3.2) holds and double coset minimality may be a useful concept. Of
course (3.2) is always fulVlled for the trivial groups K = L = 〈()〉. When we search
for a subgroup we do not need to distinguish between K and L, it is enough to consider
the double coset KgK . We start with trivial K and add all elements of G(P) that we
Vnd during the backtrack search to K and thus iteratively enlarge K . When performing
a coset representative search [HEO05] suggests that it might be beneVcial to solve one
related subgroup problem Vrst to obtain non-trivial K or L and prune the tree based on
this knowledge. We will come back to this later in Section 3.1.5.
We now look at two necessary criteria for double coset minimality elements. These

criteria help us to establish that a node in our search tree does not lead to double coset
minimal elements and hence can be pruned.

Lemma 3.4. Let n := (γ1, . . . , γj) be a node in the search tree. Suppose that βj ∈
β
K(β1,...,βi−1)

i for some i ≤ j. If elements g ∈ coset(n) are minimal in their coset KgL,

then γi � min γ
L(γ1,...,γi−1)

j .

Proof. As βj ∈ β
K(β1,...,βi−1)

i there exists h1 ∈ K(β1,...,βi−1) with βj = βh1
i . Suppose to

the contrary that there exists a γ ≺ γi with γ ∈ γ
L(γ1,...,γi−1)

j . Then γ = γh2
j for some

h2 ∈ L(γ1,...,γi−1), and for the product holds h1gh2 ∈ KgL. We also have h1gh2 ≺ g

because βh1gh2

i = γ ≺ γi = βgi and β
h1gh2

k = βgk for k < i. This contradicts the minimality
of g in KgL.

Note that the precondition is always fulVlled for i = j, as clearly βj ∈ β
K(β1,...,βj−1)

j .
To apply Lemma 3.4 in practice we need a base for L starting with γ1, . . . , γi−1, which

30

3.1 Classical backtracking

may be expensive to compute. In an implementation we have to Vnd a balance between
the costs of a base change and the potential gain by pruning. One strategy could be
to apply this lemma only in two situations: First, because of our ordering ≺ we have
(β1, . . . , βi−1) = (γ1, . . . , γi−1) up to some i for the Vrst nodes in tree. For these we can
readily apply the lemma since we already have a suitable base. Second, we could apply
the lemma for tree nodes that are close to the root. By doing that, we limit the number of
required base changes and can hope to prune large subtrees.

Lemma 3.5. Let n := (γ1, . . . , γi) be a node in the search tree and s := |β
K(β1,...,βi−1)

i |. If
elements g ∈ coset(n) are minimal in their double coset KgL, then γi cannot be among
the s− 1 greatest (w.r.t. ≺) elements of its orbit under G(γ1,...,γi−1).

Proof. Consider the set Γ := {βhgi : h ∈ K(β1,...,βi−1)}, which has cardinality |Γ| = s
and includes γi = βgi ∈ Γ. All elements of Γ are in the same G(γ1,...,γi−1)-orbit because
for every γ = βhgi ∈ Γ we have γg

−h−g = γi and g−h−g ∈ G(γ1,...,γi−1). Furthermore, for
each h ∈ K(β1,...,βi−1) it holds that hg ∈ KgL. So by minimality of g it follows that

g � hg ∀h ∈ K(β1,...,βi−1). (3.3)

Because we have βgj = γj = βhgj for 1 ≤ j ≤ i − 1 and every h ∈ K(β1,...,βi−1), equa-
tion (3.3) implies that βgi = γi � βhgi for every h ∈ K(β1,...,βi−1), so γi = min Γ. Thus the

orbit γ
G(γ1,...,γi−1)

i must contain |Γ| − 1 = s− 1 elements after γi.

We can apply Lemma 3.5 without a base change. When we are at a node n =
(γ1, . . . , γi−1) in the search tree, the extension for the children of n are given by all
γi ∈ (∆(i))g for a g ∈ coset(n). We can rewrite this set as

(∆(i))g = βG
[i]g

i = γ
g−G(β1,...,βi−1)g

i = γ
G(γ1,...,γi−1)

i .

So by Lemma 3.5 we can ignore the s− 1 greatest elements of (∆(i))g when we visit child
nodes. Because we have a strong generating set for K by construction of K (cf. Section
3.1.2) computing s is not too diXcult. Algorithm 3.3 in the next section on page 32 provides
an example with pruning based on Lemma 3.5.

3.1.4 Problem-dependent pruning

Besides these general pruning methods which are independent of our problem, we can also
Vnd simpliVcations of the search tree that come from P . By deVnition of our search tree
in DeVnition 3.1 on page 27, for a node n := (γ1, . . . , γi−1) of our search tree we have all
(γ1, . . . , γi−1, γi) as children with γi ∈ (∆(i))g and a g ∈ coset(n). Some properties P
may imply constraints on the base image. That means, we may Vnd a set ΩP(n) dependent
on the node n and the property P such that the following holds: If γi /∈ ΩP(n) there
cannot be a g ∈ G(P)∩coset(n) with βgi = γi. In other words, if γi /∈ ΩP(n) wemay skip
the child γi. Note that we usually do not know anything about the reverse direction. The
membership γi ∈ ΩP(n) has just to be a necessary condition for coset(n′) ∩ G(P) 6= ∅
where n′ := (γ1, . . . , γi−1, γi). Furthermore, it may happen that we do not have such
restrictions and thus ΩP(n) = Ω. We will see examples for non-trivial ΩP(n) shortly.

31

3 Backtrack Search

Input: BSGS for group G with transversals U (i) and basic orbits ∆(i), node n,
corresponding g ∈ coset(n), level i, completed level icompleted (global variable),
known generators K0 for a subgroup 〈K0〉 ≤ G(P), level limit ilimit

Output: K generating set of 〈K〉 = G(P) if i = 1

if i = m+ 1 then // visit leaves1

if g satisVes P then2

return {g}, icompleted3

end4

return ∅, i5

end6

K ← K07

sprune ← |(∆(i))g|8

∆̄← Sort((∆(i))g,≺)9

forall δ ∈ ∆̄ do10

Kstab ← 〈K〉(β1,...,βi−1)11

if sprune < |βKstab
i | then12

break13

end14

if δ /∈ ΩP(n) then // child restriction15

next16

end17

δ′ ← δg
−

18

Vnd uδ′ ∈ U (i) with βuδ′i = δ′19

γi+1 ← δ20

n′ ← extend n by γi+121

K ′, j ← Backtrack(n′, uδ′g, i+ 1, K, ilimit)22

K ← K ∪K ′23

if j < i then24

return K, j25

end26

sprune ← sprune − 127

end28

icompleted ← min{icompleted, i}29

return K, i30

Algorithm 3.3: Subgroup search with elementary double coset pruning

32

3.1 Classical backtracking

Algorithm 3.3 further extends Algorithm 3.2 with this P-dependent pruning and prun-
ing based on double coset minimality due to Lemma 3.5. We check for problem-dependent
restrictions on line 15. Lines 8 and 12 contain code for double coset minimality pruning. As
already mentioned,K is by construction a strong generating set with respect to the baseB
of the inputG. Hence we can easily compute the i-th elementKstab := K [i] = K(β1,...,βi−1)

of the subgroup chain ofK . This computation is performed in line 11. Note that we speak
of K in this text and formally use 〈K〉 in the algorithm because in the text we mean K
to be whole known subgroup, whereas in the algorithm K is only a set of generators for
G(P). With the subgroup Kstab we then compute the i-th basic orbit βKstab

i of K , whose
length we need in our double coset pruning. Finally, sprune is set to the number of elements
in ∆̄. If this drops below |βK[i]

i | in line 12 we can stop by Lemma 3.5.

In the following we will examine specializations for the set stabilization and group
intersection problem. Both [Ser03, Sec. 9.1.2] and [HEO05, Sec. 4.6] contain problem-
speciVc pruning methods for other problems like centralizers and normalizers.

Setwise stabilizer

Given G ≤ Sym(Ω) and a set ∆ ⊆ Ω, we want to Vnd generators of the setwise stabilizer
G∆ of ∆. We start with computing a BSGS (B, S) for G in which all elements of ∆
precede Ω \ ∆ in the base. Let k be the Vrst index for which βk /∈ ∆. We can always
Vnd such an index by extending the base with possibly redundant base points from Ω \∆.
Then we already have computed a subgroup G[k] = G(β1,...,βk−1) = G(∆) ≤ G∆, namely
the pointwise stabilizer of ∆.

[Ser03, Sec. 9.1.2] also contains the observation that we only have to traverse the search
tree up to level k− 1. Note that for a node n = (γ1, . . . , γk−1) of the search tree we either
have coset(n) ⊆ G∆ (in other terms {γ1, . . . , γk−1} ⊆ ∆) or coset(n) ∩ G∆ = ∅. Thus,
if coset(n) ⊆ G∆ holds, Lemma 3.3 on page 28 tells us that one generator from the coset
is enough. Naturally, in the other case coset(n) ∩G∆ = ∅ we also prune the node.
For the nodes at level i < k − 1 we also do not have to consider all children. It is

obviously enough to traverse all children where γi+1 ∈ ∆. So with the notation from
above,

ΩP(n) ≡ ∆ for i < k − 1. (3.4)

Because we have found a lot of specializations for the set stabilizer problem we summa-
rize all changes in a separate algorithm description. Algorithm 3.5 computes the setwise
stabilizer G∆ and calls Algorithm 3.4 as Backtrack. Algorithm 3.4 specializes Algorithm
3.3 by three features.

First, we limit the length of the base image we consider to ilimit, which is originally
computed in line 2 of Algorithm 3.5. When in the backtrack search of Algorithm 3.4 this
limit is reached at the check in line 1, we abort the search. In the special case that we are
in the Vrst branch of the search tree, corresponding to g being the identity, we add the
generators of G[i] = G(∆), which is a subgroup of G∆, to our result set K .

Second, we apply the ΩP(n) restriction. The images of the Vrst base points, which are
by construction in Algorithm 3.5 a subset of ∆, have to remain in ∆ as described in (3.4).
This check is performed in line 20.

33

3 Backtrack Search

Input: BSGS for group G = 〈S〉 with transversals U (i) and basic orbits ∆(i), node n,
corresponding g ∈ coset(n), level i, completed level icompleted (global variable),
known generators K0 for setwise stabilizer 〈K0〉 ≤ G∆, level limit ilimit

Output: K generating set of 〈K〉 = G∆ if i = 1

if i = ilimit then // visit leaves1

if ∆g = ∆ then2

if g = () then3

K ← S ∩G[i]4

else5

K ← {g}6

end7

return K, icompleted8

end9

return ∅, i10

end11

K ← K012

sprune ← |(∆(i))g|13

∆̄← Sort((∆(i))g,≺)14

forall δ ∈ ∆̄ do15

Kstab ← 〈K〉(β1,...,βi−1)16

if sprune < |βKstab
i | then17

break18

end19

if δ /∈ ∆ then // child restriction20

break21

end22

δ′ ← δg
−

23

Vnd uδ′ ∈ U (i) with βuδ′i = δ′24

γi+1 ← δ25

n′ ← extend n by γi+126

K ′, j ← Backtrack(n′, uδ′g, i+ 1, K, ilimit)27

K ← K ∪K ′28

if j < i then29

return K, j30

end31

sprune ← sprune − 132

end33

icompleted ← min{icompleted, i}34

return K, i35

Algorithm 3.4: Set stabilizer search with elementary double coset pruning

34

3.1 Classical backtracking

Input: group G, set ∆
Output: K generating set of 〈K〉 = G∆ setwise stabilizer of ∆ in G

Compute a BSGS B, S for G that starts with ∆1

k ← Vrst index of in B such that βk /∈ ∆2

icompleted ← |B|3

K ← ∅4

K, j ← Backtrack((), 1, 1, icompleted, K, k)5

return K6

Algorithm 3.5: Set stabilizer search setup

Third, if the base point image δ = γi+1 is not in ∆ we can even abort the loop. All
remaining elements in ∆̄ are ≺-greater than δ, which is not in ∆. By construction of ≺
and the ordering of our base, all elements ≺-greater than δ can neither be in ∆.

Group intersection

Given G,H ≤ Sym(Ω) with |G| ≤ |H|, we are looking for generators of G ∩ H . We
compute an arbitrary base B = (β1, . . . , βm) for G and a base for H which begins with
B. Let ∆

(i)
H be the i-th fundamental orbit of H .

First of all we build up our search tree with respect to G. When we process a node
n := (γ1, . . . , γk−1) of the tree, we may compute the child node restriction as:

ΩP(n) = (β
H(β1,...,βk−1)

k)h = (∆
(k)
H)h

where h ∈ H is an element with βhi = γi for i ≤ k − 1. We can Vnd h by sifting through
the Vrst k − 1 transversals of H . This restriction says in other words: If and only if γk ∈
ΩP(n) then there exists a h ∈ H which has the same image of the Vrst k base points. So
especially γk ∈ ΩP(n) is a necessary condition for coset(n′)∩G(P) = coset(n′)∩H 6= ∅
where n′ := (γ1, . . . , γk−1, γk).

When our tree traversal reaches levelm at node nm we have to check by sifting whether
the unique element g ∈ coset(nm) is also a member of H because we so far have only
ensured that there exists an h ∈ H with the same image of the Vrstm base points.

3.1.5 Coset representative search

WhenG(P) is a coset and we look for a coset representative instead of a subgroup we can
proceed as in the subgroup case that we have studied in detail before. The most important
thing of course is that we can abort the search when we have found one element satisfying
P .
Additionally, if some non-trivial K or L are known beforehand, the search tree may

be pruned eXciently by double coset minimality constraints. Especially if several coset
representatives for diUerent right-hand sides are sought, it might be worthwhile to solve
the related left-hand side subgroup problem Vrst. [HEO05] states that is generally helpful
for larger groups to solve a subgroup problem before the coset problem to avoid “disasters”
where the search gets stuck in the tree.

35

3 Backtrack Search

Applied to the set stabilizer case, where the coset case is by far more important
than for group intersections, this means the following. Assume that we have sets
∆,Γ1,Γ2, . . . ,Γm ⊆ Ω and want to know whether elements g1, . . . , gm ∈ G exist such
that ∆g1 = Γ1, . . . ,∆

gm = Γm. Then it may be beneVcial to computeG∆ Vrst because we
can use it as K for double coset pruning as clearly ∆g = Γ ⇐⇒ ∆(G∆g) = Γ. Of course
we also have to adapt the constraint (3.4) and replace it by ΩP(n) ≡ Γ.

3.2 Partition backtracking

The backtracking approach we have seen so far has one big disadvantage: it works only
with one (base) point at the same time. However, it is often possible to put the knowledge
of all prior decisions to good use and further prune the tree. To illustrate this we take a
look at an example from graph theory.

1 2

5 4

36

Figure 3.3: Graph automorphism example

Example 3.6. If we want to compute all automorphism of the graph depicted in Figure
3.3, i. e. all permutations that leave the graph structure unchanged, we also can em-
ploy backtracking. First we observe that all automorphisms must preserve the triangu-
lar structure of {1, 5, 6} and {2, 3, 4}. More formally, we have an unordered partition
Π := {{1, 5, 6}, {2, 3, 4}} of all vertices which every automorphism must not change.
Starting our backtrack search at vertex 1, we can choose among 1, 2, 4 and 5, which have
the same valency, for the image of 1. Choosing, for instance, 2 as the image of 1 has im-
mediate implications on the possibilities we have for the remaining vertices. Because we
have to preserve Π it follows that {5, 6} has to be mapped onto {3, 4}. Due to the degrees
of these vertices we then must map 3 onto 6 and 4 onto 5. This gives us one automorphism
(1 2)(3 6)(4 5) of the graph. Note that without the knowledge of the conservation of Π we
might have tried to choose 4 as the image of 2 during our backtrack search and only later
found out that it does not lead to a correct solution.

Backtracking methods based on partitions were introduced by McKay in the 1980s in
the realm of graph automorphisms (cf. [McK81] and the software [nauty]). Later on in
1991 Leon successfully applied partition-based backtracking to group theoretical problems
(cf. [Leo91, Leo97]), extending his previous work on automorphisms of combinatorial ob-
jects such as matrices and linear codes (cf. [Leo84]). Theißen worked separately at the dif-
Vcult special case of computing normalizers (cf. [The97]). In this section we concentrate on

36

3.2 Partition backtracking

the application of Leon’s ideas to the set stabilizer and group intersection problem, which
– as in the case of the classical backtrack search – are only a sample of problems where this
method is applicable. The general framework is still abstract enough to allow the search
for automorphisms of discrete and combinatorial objects such as matrices, graphs or linear
codes (cf. [Leo91]). A patched derivative of Leon’s original partition backtracking imple-
mentation, for instance, is still used in the GAP package [GUAVA] for computation with
codes.

3.2.1 Introduction to partitions

First we need to clarify the central term of a partition that has already been introduced
informally in our graph example. It will become clear immediately that we need ordered
instead of unordered partitions to backtrack properly.

DeVnition 3.7. An ordered partition Π = (Π1, . . . ,Πk) of Ω is a sequence of non-empty,
pairwise disjoint subsets Πi ⊆ Ω such that

⋃k
i=1 Πi = Ω. The sets Πi are called cells of

Π. We denote the length of Π by |Π| := k and the set of all ordered partitions by OP(Ω).
The group Sym(Ω) acts cellwise on ordered partitions: Πg := (Πg

1, . . . ,Π
g
k) for every

g ∈ Sym(Ω).

We prefer ordered partitions to unordered partitions because two ordered partitions
Π,Σ ∈ OP(Ω) with |Π| = |Σ| = |Ω|, i. e. consisting of only single-element cells, induce
exactly one permutation g ∈ Sym(Ω) by Πg = Σ. In the following we refer to ordered
partitions of Ω simply as partitions. An important relation between partitions is that of a
reVnement:

DeVnition 3.8. Let Π = (Π1, . . . ,Πl) and Σ = (Σ1, . . . ,Σm) be partitions. We say that
Π is a reVnement of Σ, Π ≤ Σ, if the cells of Σ are a consecutive union of cells of
Π. Formally, Σi =

⋃ki
j=ki−1+1 Πj for some indices 0 = k0 < k1 < · · · < km = l. A

reVnement is strict if |Π| > |Σ| and we write Π � Σ in this case.

The central concept of our partition backtracking will be a reVnement process that in
some way harmonizes with the property P we are looking for.

DeVnition 3.9. A P-reVnementR is a mappingR : OP(Ω)→ OP(Ω) such that
• R(Π) ≤ Π for Π ∈ OP(Ω) and,

• if g ∈ G(P) and Π ∈ OP(Ω) it holds that

R(Π)g = R(Πg). (3.5)

In other words, the operation of a P-reVnement and every g ∈ G(P) on partitions
commute. This means, if g is unknown, we can potentially gain information on g because
we know how it acts on a Vner partition with less degrees of freedom. To actually create
reVnements of partitions we can use an intersection of partitions.

DeVnition 3.10. Let Π = (Π1, . . . ,Πl) and Σ = (Σ1, . . . ,Σm) be partitions. We deVne
the intersection Π ∧ Σ as the partition with the non-empty sets Πi ∩ Σj for 1 ≤ i ≤ l,
1 ≤ j ≤ m as cells, ordered by the following rule: Πi1 ∩ Σj1 precedes Πi2 ∩ Σj2 if and
only if i1 < i2 or i1 = i2 and j1 < j2.

37

3 Backtrack Search

Lemma 3.11. Let Π,Σ ∈ OP(Ω). The intersection Π∧Σ is a reVnement of Π. The reverse
statement does not hold.

Proof. By deVnition of the intersection we have Π ∧ Σ = (Π1 ∩ Σ1,Π1 ∩ Σ2, . . . ,Π1 ∩
Σm,Π2 ∩ Σ1,Π2 ∩ Σ2, . . .), which is a reVnement of Π. The order in which we have
deVned the intersection to work with cells is also the reason why Π∧Σ is not a reVnement
of Σ.

Example 3.12. Consider the set Ω = {1, 2, . . . , 7}. We write Π := (1 3 5 | 2 4 | 6 7) in short
for the partition ({1, 3, 5}, {2, 4}, {6, 7}). We have that Σ := (1 3 | 5 | 2 4 | 6 | 7) ≤ Π is
a strict reVnement of Π. Because the order into which cells are split up is not relevant,
Σ′ := (5 | 1 3 | 4 | 2 | 6 7) ≤ Π is another strict reVnement of Π. We can “isolate” elements
α ∈ Ω of a partition by intersecting with Iα := (α |Ω \ {α}). For example, to isolate 5 in
Π we compute Π ∧ I5 = (5 | 1 3 | 2 4 | 6 7).

Before we step into technical details we have a brief look at the idea of partition back-
tracking. Let us assume we have Π,Σ ∈ OP(Ω) such that for some (possibly unknown)
g ∈ G(P) the relation Πg = Σ holds. As mentioned before, Πg := (Πg

1, . . . ,Π
g
k) means

cellwise action of g on the partition. For instance, the trivial partitions Π = Σ = (Ω) are
an obvious starting point. The Vner Π and Σ are, i. e. the more cells they have, the more
information we get about g ∈ G(P). If both Π and Σ are discrete, that means all cells
consist of a single element, the permutation g is uniquely determined.
The way to get there are P-reVnements. We start with a pair Π̂, Σ̂ of ordered partitions

such that Π̂g = Σ̂ for some g ∈ G(P). Then we try to Vnd P-reVnementsR that actually
yield Vner partitions Π := R(Π̂) � Π̂ and Σ := R(Σ̂) � Σ̂. For such a reVnement R we
obtain Πg = R(Π̂)g = R(Π̂g) = Σ by the P-reVnement property (3.5). We can iterate
this process until we cannot Vnd a better, strict reVnement. If the resulting Π and Σ are
not discrete we resort to backtracking as follows: We pick one cell index 1 ≤ j ≤ |Π| with
|Πj| ≥ 2 and one α ∈ Πj . Because Πg = Σ and especially Πg

j = Σj the image αg of α
has to be some β ∈ Σj . In a backtracking manner we probe each of this possible image
candidates β.

DeVnition 3.13. A backtrack reVnement Bα is a function OP(Ω)→ OP(Ω) deVned as

Bα(Π) := Π ∧ ({α},Ω \ {α}).

So for the next iteration we set Π̂ := Bα(Π) and Σ̂ := Bβ(Σ) for some β ∈ Σj ,
assuming that there still is a g ∈ G(P) with Π̂g = Σ̂ (and αg = β). When we eventually
reach a discrete partition Σ the pair Π,Σ deVnes a unique g ∈ Sym(Ω) by Πg = Σ. What
is left to us is to check whether also g ∈ G(P).

Example 3.14. For a small example of the idea we consider G = S3 = 〈(1 2), (2 3)〉 and
look for the stabilizerG{3} of 3 inG. We start with Π̂ = Σ̂ = (Ω) = (1 2 3). Because every
g ∈ G(P) = G{3} must map 3 onto itself a suitable strict P-reVnement R is R := I3

with Iα from Example 3.12. That means we isolate 3 into a single cell. We thus obtain
Π = I3(Π̂) = (3 | 1 2) and Σ = I3(Σ̂) = (3 | 1 2). For every g ∈ G(P) holds Πg = Σ.
We cannot Vnd another strict P-reVnement so we start backtracking. We have to pick

the cell 1 2 of Π and choose B1 as backtrack reVnement. Hence we have to consider

38

3.2 Partition backtracking

the pairs B1(Π),B1(Σ) and B1(Π),B2(Σ) next. First we continue with Π̂ := B1(Π) =
(3 | 1 | 2) and Σ̂ := B1(Σ) = (3 | 1 | 2). Both cells are discrete so we can read g = (),
which obviously is in G(P). The second backtrack alternative is Π̂ := B1(Π) = (3 | 1 | 2)
and Σ̂ := B2(Σ) = (3 | 2 | 1). We infer g = (1 2), which also is in G(P). We have no
more alternative left and we thus know G(P) is complete with G(P) = {(), (1 2)}.

3.2.2 Search tree

We begin with a deVnition of an R-base that plays a role similar to the BSGS base in
classical backtracking.

DeVnition 3.15. An R-base is a chain of reVned partitions Π(i), Π̂(i) together with a pair
of P- and backtrack reVnementR(i), Bαi such that

Π̂(i) = Bαi(Π(i−1)) (3.6)

Π(i) = R(i)(Π̂(i)) (3.7)

holds for 1 ≤ i ≤ m, starting with Π0 := R(0)(Ω) where R(0) is an initial P-reVnement.
The chain ends at the Vrst indexm such that Π(m) is discrete.

We can ensure the Vniteness of the chain by a careful choice of αi for (3.6). As long as
Π(i) is not discrete we Vnd a cell of Π(i) that has at least two elements. Isolating one of
them yields a strict reVnement.

It is very important to note that an R-base depends not only on the group G to search
in, but also on the property P . Searches for diUerent subgroups of the same group G will
lead to diUerent R-bases. So it takes the role of both base and child restriction ΩP(n)
(cf. page 31) of classical backtracking.

DeVnition 3.16. Let Π ∈ OP(Ω) be a partition that has been created from Ω by a series
of reVnements. We deVne fix(Π) as the ordered sequence of single-element cells of Π in
the order in which they appeared in the reVnement process.

Example 3.17. To clarify the meaning of fix we look at the following partitions and their
“fix” points

Π(0) = (1 2 3 4 5 6 7) fix Π(0) = ∅
≥ Π(1) = (1 2 3 | 4 5 6 7) fix Π(1) = ∅
≥ Π(2) = (1 | 2 3 | 4 5 6 7) fix Π(2) = (1)

≥ Π(3) = (1 | 3 | 2 | 4 5 6 7) fix Π(3) = (1, 3, 2)

≥ Π(4) = (1 | 3 | 2 | 4 5 | 6 7) fix Π(4) = (1, 3, 2)

≥ Π(5) = (1 | 3 | 2 | 4 | 5 | 6 7) fix Π(5) = (1, 3, 2, 4, 5)

≥ Π(6) = (1 | 3 | 2 | 4 | 5 | 7 | 6) fix Π(6) = (1, 3, 2, 4, 5, 7, 6)

We are now ready to deVne our search tree for partition backtracking.

39

3 Backtrack Search

DeVnition 3.18. Let Π(i), Π̂(i), R(i), Bαi be an R-base. Our search tree is a tree with
partitions Σ(i) as node labels and the following properties:

• The root at level 0 has the label Σ(0) := Π(0).

• Let i be an intermediate level 0 ≤ i < m. Let b be the cell index of Π(i) which
contains αi+1. Then the node Σ(i) has the children

Σ(i+1),β := R(i+1)(Bβ(Σ(i))) for every β ∈ Σ
(i)
b

for which there exists a g ∈ G with (fix Π(i+1))g = fix Σ(i+1),β . Here we use the
superscript β in Σ(i+1),β only as a referencing index with no further computational
meaning.

DeVnition 3.18 is a formal description of the general idea we discussed in the last section.
We start with a partition Π(0) from our R-base and the root node Σ(0) which by deVnition
fulVll the relationship

(Π(0))g = Σ(0) ∀g ∈ G(P). (3.8)

In the Vrst level child nodes Σ(1) we Vrst split up our search into all possible cases for the
image of α1. Naming Π̂(1) := Bα1(Π(0)) and Σ̂(1),β := Bβ(Σ(0)), equation (3.8) implies
that

(Π̂(1))g = Σ̂(1),β ∀g ∈ G(P) ∩ {g ∈ G : αg1 = β}. (3.9)

We then apply the P-reVnementR(1) and (3.9) implies together with the reVnement prop-
erty (3.5) that

(Π(1))g = Σ(1),β ∀g ∈ G(P) ∩ {g ∈ G : αg1 = β}. (3.10)

Before we continue with the next backtrack round we would like to know if the restriction
αg1 = β leads to an unsatisVable situation and we may thus skip this node. In general
this is hard to decide and so we settle for weaker criteria: First of all the number of cells
|Π(1)| = |Σ(1)| has to be equal. Second, the sizes of corresponding cells |Π(1)

j | = |Σ(1)
j |

have to match for 1 ≤ j ≤ |Π(1)|. At last we check whether there exists at least a
g ∈ G which maps the single element cells fix Π(1) onto fix Σ(1). We could easily test this
necessary requirement if we had a BSGS of G that starts with fix Π(1).

Of course we would like to execute these checks on every level to prune the tree early.
Because fix Π(m) is known after the setup of the R-base and because fix Π(i) is a preVx
of fix Π(i+1), we compute a BSGS for G with base fix Π(m) once at the beginning. Using
Algorithm 3.6 on this BSGS, we then can perform checks for (fix Π(i))g = fix Σ(i),β on
every level i.

The leaves of the search tree, discrete partitions Σ(m), correspond uniquely to group
elements g which may or may not be a member of G(P). So the search tree may con-
tain more than |G(P)| leaves. By construction we only ensure that every g ∈ G(P)
corresponds to a leaf of the tree because we build up a chain of necessary conditions for
membership by the P-reVnement property (3.5) on page 37.

Lemma 3.19. For every g ∈ G(P) there exists a leaf Σ(m) of the search tree with
(Π(m))g = Σ(m).

40

3.2 Partition backtracking

Input: B = (β1, . . . , βm), S BSGS with transversals U (i), sequence of points
(α1, . . . , αk)

Output: g ∈ G with βgi = αi for 1 ≤ i ≤ k, if such an element exists

g ← ()1

for i = 1 to k do2

δ ← αg
−

i3

Vnd uδ ∈ U (i) with βuδi = δ4

if no uδ found then5

return ∅6

end7

g ← uδg8

end9

return g10

Algorithm 3.6: Recover group element from given (partial) base image

Proof. We proof this lemma by induction on the level i. Our induction hypothesis is that
for every g ∈ G(P) there exists a node Σ(i) at level i in the search tree with

(Π(i))g = Σ(i). (3.11)

For i = 0 we have already seen this in (3.8).
So let the induction hypothesis be true up to level i−1 < m and let g ∈ G(P) arbitrary.

Let further βi := αgi and Σ(i−1) be a node with (Π(i−1))g = Σ(i−1). We have to show that
we can always choose a child Σ(i) of Σ(i−1) with (Π(i))g = Σ(i). To see this let j be the
cell index of Π(i−1) containing αi. Because of (3.11) the cell Σ

(i−1)
j must contain βi = αgi .

Cell j is the cell we choose the backtrack reVnement Bβ from, so we can choose the child
Σ(i),βi . Furthermore, by deVnition of βi it holds that (Bαi(Π(i−1)))g = Bβi(Σ(i−1)). Thus
after a P-reVnement we obtain (Π(i))g = Σ(i),βi =: Σ(i).

Corollary 3.20. If G(P) is a subgroup then A := (α1, . . . , αm) forms a base of G(P).

Proof. Lemma 3.19 shows that every g ∈ G(P) corresponds to a leaf Σ(m) of the search
tree. Two diUerent elements g, h ∈ G(P), g 6= h must correspond to two diUerent leaves
because otherwise they would have the same image of all elements of Ω, since leaves are
discrete partitions. If g and h correspond to diUerent leaves they must diUer at least in
one of the αi images. Hence every g ∈ G(P) is uniquely determined by its image of
(α1, . . . , αm), so A is a base for G(P).

Remark 3.21. Note howwe can emulate also a classical backtrack search. We set allR(i) to
the identity function and perform noP-reVnement at all. For the backtracking reVnements
we choose αi := βi where (β1, . . . , βm) is a base for G. In this way we iteratively test all
partial base images of (β1, . . . , βj), 1 ≤ j ≤ m, which is what classical backtracking does.

Algorithm 3.7, recursively referred to as PartitionBacktrack, depicts the search algo-
rithm discussed so far. Starting with i = 0, we perform a depth-Vrst search on the search
tree deVned by DeVnition 3.18. Lemma 3.19 guarantees that we hit every g ∈ G(P).
We prune the tree only very moderately, in Section 3.2.4 we will discuss more powerful
methods.

41

3 Backtrack Search

Input: Π(i), Π̂(i),R(i), Bαi R-base for a property P , partition Σ(i), level i, known
generators K0 for a subgroup 〈K0〉 ≤ G(P)

Output: K generating set of 〈K〉 = G(P) subgroup of G with property P if i = 0

if i = m then1

if g satisVes P then2

return {g}3

else4

return ∅5

end6

end7

K ← K08

j ← cell index of αi+1 in Π(i)9

forall β ∈ Σ
(i)
j do10

Σ(i+1) ← R(i+1)(Bβ(Σ(i)))11

if |Σ(i+1)| 6= |Π(i+1)| then12

next β13

end14

for k = 1 to |Σ(i+1)| do15

if |Σ(i+1)
k | 6= |Π(i+1)

k | then16

next β17

end18

end19

Vnd g ∈ G with (fix Π(i+1))g = fix Σ(i+1)20

if no such g exists then21

next β22

end23

K ← K ∪ PartitionBacktrack(Σ(i+1), K, i+ 1)24

end25

return K26

Algorithm 3.7: Partition backtrack subgroup search with very basic pruning

42

3.2 Partition backtracking

3.2.3 Constructing an R-base

Now that we know what we need an R-base for we discuss the matter of how to construct
one for our problem P . This consists of two independent tasks, which we have to perform
repeatedly: Vnding proper P-reVnements and choosing the right αi for the backtrack re-
Vnements.

We begin with the choice of the αi. Looking again at the search tree in DeVnition
3.18, we see that the size of the backtrack search is bounded by the product d := |Π(0)

j0
| ·

|Π(1)
j1
| · · · · · |Π(m)

jm
| where ji denotes the cell index of αi in Π(i). Thus an obvious goal

for the choice of αi is to minimize the product d. A heuristic approach that also is easy
to compute is to successively choose ji such that |Π(i)

ji
| is minimal. This of course might

not minimize the total product d. Nevertheless, [Leo97, p. 140] states that according to his
experience this simple heuristic works as good as any other which is easy to implement. A
computationally more expensive alternative would be to try multiple values of ji for every
i and choose the combination which yields minimal d. We postpone the discussion of this
approach until the end of this section and turn to a completely diUerent optimization: As
we will see below, the choice of αi may require a base change to allow for eXcient R-base
construction. To reduce the number of base changes, especially proVtable for small groups,
we could also try to choose αi so that no base change is required as long as it does not
increase d to much. In an implementation we have to Vnd a compromise between the two
αi-selection strategies. We now turn to the second task in R-base construction, Vnding
proper P-reVnements.

For every problemP we can choose from a pool of applicableP-reVnements, depending
on P . To avoid redundancies we are interested in Vnding P-reVnements that yield strict
reVnements of the input partition. In the following we examine P-reVnements which we
can try to apply for stabilizing properties or group membership properties.

If P contains the stabilization of a set, we can choose the following:

Lemma 3.22. Let ∆ ⊆ Ω and G(P) ⊆ G∆. Then

Rstab, ∆(Π) := Π ∧ (∆ | Ω \∆) (3.12)

is a P-reVnement.

Proof. Set Σ := (∆ | Ω \ ∆). We have to show that (Πi ∩ Σj)
g = Πg

i ∩ Σj for all cell
indices i, j and g ∈ G(P). This obviously holds because by deVnition Σ is invariant under
action of G∆ and thus also of G(P), yielding (Πi ∩ Σj)

g = Πg
i ∩ Σg

j = Πg
i ∩ Σj .

Important to note is that we can apply this P-reVnement for a given ∆ only once to
obtain a strict reVnement. The second application of Rstab, ∆ has no more reVnement
power because ∆ and Ω \∆ have already been separated.

Lemma 3.22 is just a reformulation of our observations from Section 3.1.4. The real
power of reVnements for groups lies in exploiting the orbit structures.

DeVnition 3.23. Let G ≤ Sym(Ω). We deVne Θ(G) as the ordered partition of Ω which
consists of the orbits of Ω under action of G as cells, ordered by the minimal element of
each orbit.

43

3 Backtrack Search

Example 3.24. Consider G = 〈(1 3)(2 4)(5 6), (1 3)(2 5)(4 6)〉. Then G has the distinct
orbits 1G = {1, 3} and 2G = {2, 4, 5, 6}. Because min 1G = 1 < 2 = min 2G we obtain
Θ(G) = (1 3 | 2 4 5 6).

Lemma 3.25. Let H ≤ Sym(Ω) and G(P) ⊆ H . Let Π ∈ OP(Ω) be given. Then

Rorbit,H , Π(Σ) :=

{
Σ ∧Θ(Hfix Π)t if there exists a t ∈ H with (fix Π)t = fix Σ

Σ otherwise
(3.13)

is a P-reVnement.

Proof. If no such t exists and the second case in (3.13) applies we have nothing to show.
So let g ∈ G(P) be arbitrary and Θ := Θ(Hfix Π). We assume there exists a t ∈ H with
(fix Π)t = fix Σ. Let u ∈ H with (fix Π)u = fix(Σg). Such a u exists because u = tg
would be a valid choice. To proof the lemmawe have to show that (Σi∩Θt

j)
g = Σg

i∩Θu
j for

all cell indices i, j and g ∈ G(P). We observe that (fix Π)tgu
−

= fix Π, so tgu− ∈ Hfix Π

and thus Θtgu−

j = Θj or in other terms: Θtg
j = Θu

j .

A Vrst question when dealing with the P-reVnement of Lemma 3.25 is which partition
Π to choose. Leon showed in [Leo91, Lemma 8] that, if there is a partition Π that yields
a strict reVnement Rorbit,H , Π(Σ) of Σ, we can always choose Π := Σ. When we search
for elements of G(P) and require membership in G it is thus suXcient to check whether
Rorbit, G, Π(Π) yields a strict reVnement of our previous partition Π. If we are looking for a
group intersection G ∩H , we can try bothRorbit, G, Π andRorbit,H , Π.

The key for computing Rorbit, G, Π(Π) eXciently in practice is having a base for G that
begins with fix Π, making generators ofGfix Π available. So whenever fix Π changes during
the R-base construction we have to change the base of all involved groups such that these
start again with fix Π.

The two P-reVnements Rorbit and Rstab provide only a sample for the two subgroup
problems we focus on. The interested reader may Vnd in [Leo97, Fig. 2] more P-
reVnements for other problems such as centralizers or automorphisms of combinatorial
objects.

As an example Algorithm 3.8 shows the case of R-base construction for a set stabiliza-
tion problem. We apply Rstab, ∆ only once at the beginning because multiple applications
are redundant as discussed above. It remains to try Rorbit, G, Π(i) before resorting to back-
tracking. For the backtracking parameters αi we choose the simple strategy of selecting
a cell with minimal cardinality. R-base constructions for diUerent problems diUer in the
choice of the considered reVnements. As mentioned above, for G ∩H we would include
Rorbit,H , Π(i) parallel toRorbit, G, Π(i) .

Because we compute an R-base only once during the whole partition backtracking pro-
cess it may be worthwhile to put more eUort into the R-base construction in order to reduce
the search tree size. The parameters we can adjust are: when to apply which reVnement
and the choice of the αi. We could even enumerate all or randomly generate and test some
reVnement combinations to minimize the search tree size d := |Π(0)

j0
| · |Π(1)

j1
| · · · · · |Π(m)

jm
|.

However, only larger problems might beneVt from such optimizations because the pre-
processing eUort gets too large relatively to the problem size.

44

3.2 Partition backtracking

Input: group G ≤ Sym(Ω) and set ∆ ⊆ Ω
Output: R-base for G(P) = G∆

Π̂(0) ← (Ω)1

R(0) ← Rstab, ∆2

Π(0) ← R(0)(Π̂(0))3

i← 04

while |Π(i)| 6= |Ω| do5

whileRorbit, G, Π(i)(Π(i)) � Π(i) do6

R(i) ← R(i) ◦ Rorbit, G, Π(i)7

Π(i) ← Rorbit, G, Π(i)(Π(i))8

change base of G such that it starts with fix Π(i)9

end10

if |Π(i)| 6= |Ω| then11

j ← cell index of Π(i) with minimal cardinality |Π(i)
j | ≥ 212

αi ← arbitrary element of Π
(i)
j13

Π̂(i+1) ← Bαi(Π(i))14

Π(i+1) ← Π̂(i+1)15

change base of G such that it starts with fix Π(i+1)16

R(i+1) ← 1 ; // identity refinement17

end18

i← i+ 119

end20

Algorithm 3.8: R-base construction for a set stabilization problem

Still, the value of d is not the only factor determining the time needed for backtrack
search. During the search we may have opportunities to prune the tree, which we cannot
foresee in the construction phase. Hence there may be situations in which an R-base that
is not optimal with respect to the product d oUers a better search order for pruning.

3.2.4 Pruning the tree

We can use the same pruning techniques as for classical backtracking in Section 3.1.2,
3.1.3 and partly 3.1.4. We can gain the additional advantage from Lemma 3.3 and order
the child nodes in our search tree. An appropriate order is sorting according to fix Π(m),
which contains a base A := (α1, . . . , αm) for G(P) in the subgroup case as we have seen
in Corollary 3.20 on page 41. This ordering ensures that we always work at G[i] ∩ G(P)
before G \G[i]. Thus we can prune nodes based on Lemma 3.3 and obtain automatically a
strong generating set for G(P) relative to the base A.

When we search for a setwise stabilizer G∆ we can apply similar techniques as in Sec-
tion 3.1.4 to prune the tree. During the R-base construction we choose the points αi so
that αi lies in ∆, if possible. If for some index k we cannot choose αk ∈ ∆ any longer we
Vnish the construction as usual until a discrete partition is reached and we thus get a base
A = (α1, . . . , αm) for G∆ which starts with elements from ∆. In the partition backtrack

45

3 Backtrack Search

search we then can abort our search at level k and add G(α1,...,αk−1) ⊆ G∆ to K , like in
the classical backtracking case.

Furthermore, given K ⊆ G(P), it still holds that when we add elements g to the result
setK in Algorithm 3.7 we can restrict our search to elements minimal in their double coset

KgK . So after the aforementioned ordering we can skip the last s := |α
K(α1,...,αi−1)

i | − 1
backtracking alternatives due to Lemma 3.5. We may also prune nodes based on Lemma
3.4, replacing β1, . . . , βj by α1, . . . αj as subgroup base.

[Leo97, Prop. 6] contains one more necessary condition for double coset minimality
based on partitions. However, it is more expensive to check and Leon is unsure about its
usefulness.

Input: Π(i), Π̂(i),R(i), Bαi R-base for a property P , partition Σ(i), level i, completed
level icompleted (global variable), known generators K0 for a subgroup
〈K0〉 ≤ G(P)

Output: K generating set of 〈K〉 = G(P) subgroup of G with property P if i = 0

if i = m then1

if g satisVes P then return {g}, icompleted;2

else return ∅, i;3

end4

K ← K0;5

j ← cell index of αi+1 in Π(i);6

sprune ← |Σ(i)
j |;7

forall β ∈ Sort(Σ
(i)
j ,≺) do8

Kstab ← 〈K〉(α1,...,αi)
;9

if sprune < |αKstab
i+1 | then break;10

Σ(i+1) ← R(i+1)(Bβ(Σ(i)));11

if |Σ(i+1)| 6= |Π(i+1)| then next β;12

for k = 1 to |Σ(i+1)| do13

if |Σ(i+1)
k | 6= |Π(i+1)

k | then14

next β;15

end16

end17

Vnd g ∈ G with (fix Π(i+1))g = fix Σ(i+1);18

if no such g exists then19

next β;20

end21

K ′, l← PartitionBacktrack(Σ(i+1), K, i+ 1);22

K ← K ∪K ′;23

if l < i then return K, l;24

sprune ← sprune − 1;25

end26

icompleted ← min{icompleted, i};27

return K, i;28

Algorithm 3.9: Partition backtrack subgroup search with elementary pruning

46

3.2 Partition backtracking

Algorithm 3.9 extends Algorithm 3.7 from page 42 and improves its pruning capabilities.
In line 8 we sort the backtracking reVnements according to ≺. We deVne this ordering ≺
as α ≺ β for α, β ∈ Ω if and only if α precedes β in fix Π(m), the order in which Vx
points appear during R-base construction. This ordering allows multi-level backtracking
in line 24 according to Lemma 3.3. Additionally, we can check for double coset minimality
in line 10 due to Lemma 3.5. So this Algorithm 3.9 incorporates the same pruning facilities
as the classical backtracking Algorithm 3.3 on page 32.

3.2.5 Coset representative search

For partition backtracking the coset case diUers more from the subgroup case than for
classical backtracking. Naturally we can abort the search when we have found one element
satisfying P . But we also have to extend our search tree formulation and P-reVnement
DeVnition 3.9 on page 37.

DeVnition 3.26. A P-reVnement is a pair of mappingsRL,RR : OP(Ω)→ OP(Ω) such
that

• RL(Π) ≤ Π andRR(Π) ≤ Π for Π ∈ OP(Ω) and,

• if g ∈ G(P) and Π,Σ ∈ OP(Ω) it holds that

Πg = Σ =⇒ RL(Π)g = RR(Σ) (3.14)

This deVnition contains the original one as special case where left and right reVnement
RL = RR are equal. In the R-base construction we replace R by RL, in the search tree
we useRR instead ofR. The same arguments we used in Section 3.2.2 hold with minimal
changes regarding (3.14) for this case. These show that a partition backtrack search on the
extended R-base and search tree Vnds all elements of G(P).

We can extend both Rstab and Rorbit reVnement of Lemma 3.22 and 3.25 according to
the new DeVnition 3.26. However, if we concentrate on the important case of set stabilizer
cosets we do not have to change Rorbit because the precondition G(P) ⊆ H is still valid
when we look for cosets of H , so we can compute with Rorbit = Rorbit,L = Rorbit,R. We
extendRstab as follows:

Lemma 3.27. Let ∆,Γ ⊆ Ω and ∆g = Γ for all g ∈ G(P). Then

Rstab2, ∆, Γ,L(Π) := Π ∧ (∆ | Ω \∆)

Rstab2, ∆, Γ,R(Σ) := Σ ∧ (Γ | Ω \ Γ)

is a P-reVnement.

Proof. Set Π′ := (∆ | Ω \ ∆) and Σ′ := (Γ | Ω \ Γ). We have to show that for every
g ∈ G(P) the following implication holds:

Πg = Σ ⇒ (Πi ∩ Π′j)
g = Σi ∩ Σ′j for all i, j. (3.15)

The condition Πg = Σ implies that Πg
i = Σi for all i. Because g ∈ G(P) it holds that

∆g = Γ. Hence we have (Π′j)
g = Σ′j and thus (3.15) holds.

47

3 Backtrack Search

Problem P-reVnements to use
Setwise stabilizer Rstab,Rorbit Lemma 3.22,3.25
Group intersection Rorbit Lemma 3.25
Set image Rstab2,Rorbit Lemma 3.27,3.25
Coset intersection cf. [Leo97, Fig. 2]

Figure 3.4: Overview of P-reVnements for diUerent problems

The table in Figure 3.4 summarizes the usage of all P-reVnements we examined in this
chapter. The interested reader can Vnd in [Leo97, Fig. 2] an extension of Rorbit that can
be used in the coset case of group intersection, which is coset intersection. In this Vgure
by Leon there are also P-reVnements described for various other problems such as matrix
and group isomorphism.

48

4 Implementation

In this section we will take a closer look at implementation details and the author’s im-
plementation PermLib. The author has developed PermLib with three design goals in
mind: performance, maintainability and ease of use. The only software dependency is the
renowned Boost [Boost] C++ library. It is mostly used for smart pointers, which help to
avoid memory leaks. Moreover, unit tests for low-level data structures are provided within
the Boost test library to control the number of fundamental implementation Waws. More
information about PermLib can be found in Appendix A.
In this chapter we Vrst look at data structures for fundamental objects, which we have

not discussed yet. Permutations are core elements of all algorithms, the same is true for
partitions in partition-based backtracking. Because the performance of all other algorithms
thus heavily depends on these basics we have to Vnd data structures that allow us to
perform all necessary operations fast and eXciently.
After a quick overview of the implementation we look at a series of experiments with

PermLib. It will soon become clear that exhaustive tests go beyond the scope of this thesis,
so we just scratch the surface of an extensive survey on computational group theory. In
fact we use the experiments to gain some additional insights into the zoo of data structures
we have explored so far. Furthermore, we compare the performance of PermLibwith the
other public available state-of-the-art code of GAP and partly Magma. The former is at
the disadvantage of being interpreted at runtime, so that a comparison of actual algorithm
implementations beyond running time is diXcult. The latter is not open source and was
available only a special workstation to the author, so not for all experiments Magma results
are available.

4.1 Low-level data structures

4.1.1 Permutation

Permutations are a central element for all algorithms we have discussed so far, so data
structures for permutations play a key role for fast implementations. A trivial approach
is to store a permutation g ∈ Sym(Ω), |Ω| =: n, as an n-dimensional array whose α-
th cell contains the image αg. In this way we have access to the image of an element α
under action of g in O(1) time and we can compute the inverse g− in Ω(n) time. How-
ever, multiplying two permutations takes Ω(n2) time. We call this form of permutation
implementation elementary permutations.
A more sophisticated approach are so called permutation words, as for example de-

scribed in [HEO05, Sec. 4.4.3]. The idea is to store g as a list (or word) of other permu-
tations (s1s2 . . . sl), representing the product s1s2 · · · sl. When we choose the si from a
Vxed “representative” label set S ≤ Sym(Ω), which we store as elementary permutations,

49

4 Implementation

it is enough to store g = s1s2 · · · sl as pointers to elements si. Storing all permutations
in double-linked lists allows multiplication in constant time O(1) by list concatenation.
Computing the image αg = αs1s2···sl , however, takes Ω(l) time. If we store for every s ∈ S
also s− ∈ S then we can invert g by reversing the list and replacing each pointer si by s−i ,
also summing up to Ω(l) time.

A canonical choice for the label set S is a strong generating set for a group G with
respect to a certain base that we are interested in, adjoined by generator inverses. During
computations, e. g. a base change, new generators may arise, Vrst as words in the original
generators. We can multiply them out completely and add them to the label set together
with their inverse as elementary permutations.

Choosing between storing permutations completely as image arrays and as permutation
words is a trade-oU between speed of image access and multiplication. With increasing n
an Ω(n2) eUort for frequently occurring multiplications becomes more and more infeasi-
ble. On the other hand, we often require only a fraction of all possible images so that the
penalty for using words gets not too big.

Because permutations are such a fundamental instrument for our computations, the
speed depends very much on the quality and techniques of permutation implementa-
tions. For PermLib both elementary permutations and permutation words have been im-
plemented and their usage can be exchanged almost transparently. A very important issue
for permutation words is when words should be multiplied out. This is hard to decide
automatically so it can and should be triggered by the user if necessary. At the moment
PermLib multiplies words out only if they are used as group generators.

The current permutation word implementation also is unable to automatically clear
generators that are no longer used in any word from its storage. Although some kind of
smart pointer would seem suitable for this purpose, the author has not succeeded yet with
a comparably fast implementation based on a smart pointer without losing the ability of
fast permutation inversion. Nevertheless, an automatic resource deallocation could also
be implemented for the current version by manual reference counting.

4.1.2 Partition

Leon referenced both in [Leo91, Leo97] an additional paper that was yet to come and
dealt with implementation techniques for partition backtracking. However, this paper has
never appeared, but in [Leo97, p. 130] one can Vnd a sketch of a data structure Leon pro-
posed for partitions. A quick analysis of the GAP source code reveals that GAP uses very
similar structures. The data structures for partitions are a crucial element for a partition
backtracking implementation to become fast so we take a look at current public state-of-
the-art. Closed source-implementations like [Magma] may still do it diUerently.

An obvious requirement for a partition data structure in the context of backtracking
is the ability to perform fast intersections. A less obvious requirement that the author
experienced during his experiments also is fast intersection reverting, i. e. recovering the
original partition Π from Π′ := Π ∧ Σ. This is because copying complete partitions in
memory with their O(n) size as it would be necessary when diving into recursion is too
expensive to yield competitive performance. Leon’s approach for recovery mitigates this
eUect.

50

4.1 Low-level data structures

Leon proposes the use of seven arrays to represent a partition but a lower number is
already suXcient. In the following we use four arrays to represent a partition Π ∈ OP(Ω),
where OP(Ω) denotes the set of all ordered partitions of Ω. We set n := |Ω| and k := |Π|.
• partition[1..n] is an ordering of the numbers 1 to nwhere elements of the same
cell are stored contiguously and that is consistent with the following three arrays.

• cellSize[1..k] contains at position i the size |Πi| of the i-th cell of Π.

• cellStart[1..k] contains at position i the index of the the Vrst el-
ement of cell Πi in partition. This means the i-th cell Πi con-
sists of partition[cellStart[i]], partition[cellStart[i] + 1], . . . ,
partition[cellStart[i] + cellSize[i] - 1].

• cellOf[1..n] contains at position i the cell number c such that i ∈ Πc.
The array cellOf is not necessary to deVne a partition and is used only to enhance perfor-
mance of recovering. Before we go into the details of recovery we start with intersection.
The intersection operation as deVned in DeVnition 3.10 on page 37 is a convenient way

to describe mathematically a reVnement process but is not usable in an implementation.
Usually only a small part of the |Π| · |Σ| intersections in Π ∧ Σ have a non-trivial result.
For instance, we can always skip all single-element cells of Π. Hence it is better from an
algorithmic point of view to deVne an operation intersect : OP(Ω)→ OP(Ω) as

intersect(Π, i,Γ) :=

{
(Π1, . . . ,Πi−1,Πi ∩ Γ,Πi \ Γ,Πi+1, . . . ,Πm) if ∅ (Πi ∩ Γ (Πi

Π otherwise
(4.1)

the intersection of the i-th cell of Π with a set Γ ⊆ Ω. We then can write Π∧Σ as a series
of consecutive intersections for some indices (i1, j1), . . . , (il, jl):

Π ∧ Σ := intersect(. . . (intersect(intersect(Π, i1,Σj1), i2,Σj2), . . . , il,Σjl) (4.2)

Note that the i1, i2, . . . , il need not to be pairwise diUerent when we have to intersect one
cell Σs with diUerent cells of Π. Back to our data structure, this means that for intersect we
have to split up a cell of Π. To facilitate this operation we maintain that every contiguous
segment of partition[] that corresponds to a cell of Π is sorted. Additionally, we require
that the intersecting set Γ is also a sorted list. Under these conditions we can compute both
Πi ∩ Γ and Πi \ Γ fast in O(|Γ|+ |Πi|) time (cf. [Knu98, Sec. 5.3.2]).
In partition[] we split the area corresponding to cell i into two cells by introducing

a new cell index m := |Π| + 1, adjusting cellStart, cellSize and cellOf of i and m
and moving elements in the partition area as required by the cell split. In doing so, we
maintain that both emerging cells are still sorted. After Π′ := intersect(Π, i,Γ) we thus
have cells Π′i = Πi∩Γ, Π′m = Πi \Γ and Π′j = Πj for all other cells j. If we establish that
Π = intersect(Π, i,Γ), we do not have to change anything. Technically, the reVnement
relation intersect(Π, i,Γ) ≤ Π does not necessarily hold because the cell indices i,m
need not to be adjacent as required by DeVnition 3.8 on page 37. But this is only a labeling
issue, which we can omit in an implementation for eXciency reasons without violating
theoretical properties established before. Figure 4.1 depicts an example of relevant parts of
a partition data structure before and after an intersection.
Our second requirement for the partition data structure is recovering. If we have the

result Π′ := intersect(Π, i,Γ) of a intersection and Π′ � Π we can recover Π in the

51

4 Implementation

. . . 1 2 3 6 7 8 . . .

. . . 2 6 7 1 3 8 . . .

cellStart[i] cellStart[i+1]

cellStart[i]

cellStart[m]

cellStart[i+1]

Π: partition[]

Π′: partition[]

Figure 4.1: Example intersection of a partition (. . . | 1 2 3 6 7 8 | . . .) with {2, 6, 7}

following way. First we observe that intersect splits cell i into two neighborly cells i,m
and m = |Π′| = |Π| + 1 as shown in Figure 4.1. So we locate cell m by looking at
cellStart[m]. We obtain the index i0 of the cell we have to merge m with by looking
at the left neighbor of the cell m cellOf[partition[cellStart[m]-1]], containing
i0. Then we merge partition[cellStart[i_0]] up to partition[cellStart[m] +

cellSize[m]] into a single sorted cell and update cellSize and cellOf of i0, yielding
a data structure representing Π. Hence recovery can be accomplished in O(|Πi0|) time.

4.2 Experiments

The PermLib implementation allows a simple exchange of many presented algorithms and
data structures. The user may choose freely among

• two permutation representations (cf. Section 4.1.1),

• three transversal implementations (cf. Section 2.2.1 and 2.4),

• two transposition-based base change algorithms with two transposition algorithms
and one base change by construction from scratch (cf. Section 2.5),

• two subgroup search algorithms with diUerent pruning options (cf. Chapter 3),

which can all be combined transparently without interdependence.

This Wexibility has the disadvantage that it leads to an explosion of the number of diUer-
ent conVgurations to test, over 120 in theory for a subgroup search. Because an extensive
series of experiments covering all facets is beyond the scope and time limits of this thesis
we proceed in two steps. In the Vrst step we will gather evidence which combinations
of permutation and transversals lead to promising results in base construction and base
change experiments. We will also try to Vnd out which base change algorithms lead to a
good performance. In the second step we will use the top combinations of the Vrst step to
evaluate backtracking methods.

52

4.2 Experiments

4.2.1 Data acquisition and setup

In the realm of groups it is hard to generate representative, random instances as groups
come in many diUerent Wavors and structures. Therefore libraries of instances are very
important if a broad and rather representative analysis is to be conducted. The groups we
use for our analysis in this section come from three sources:
The open-source computer algebra system GAP contains various libraries. For our anal-

ysis we shall use the library of all primitive permutation groups because it oUers the broad-
est range of order and degree (the smallest n for which a group is a subgroup of Sn) with
many instances. From this library we will work with permutation groups up to degree 400
and with order |G| ≤ 263, so that the group order easily Vts into a 64-bit integer word. A
group is called primitive if it preserves no nontrivial partition of G, i. e. for a set ∆ ⊆ Ω
it holds for every g ∈ G that ∆g = ∆ and ∆g ∩ ∆ = ∅ both imply |∆| ∈ {0, 1, |Ω|}.
The order limitation is not strictly necessary, it would suXce to bound the size of the fun-
damental orbits ∆(i) in the base construction by 263 for the code to work properly. The
critical point is the orbit size comparison during the base transpose algorithms (Algorithm
2.7 and 2.8), which might get wrong if the size does no longer Vt. But these sizes are a-
priori unknown so we impose the limit on the group order and get a sample consisting of
2453 primitive groups over a quite broad degree range.
The second source is a small sample of 10 automorphism groups of polyhedra which the

author has encountered over the last years. Naturally, this selection is not representative
but may give indication of the usefulness of the discussed techniques for a designated
application area.
The third source are full symmetric groups Sn for n ∈ {10, 20, 30, 40}. It is uncommon

to search for set stabilizers in Sn or explicitly construct a BSGS for it because these are
easily computable. But we include Sn into our experiments because the symmetric group
plays an important in backtrack searches not covered in this thesis and may provide an
extreme case of usage. For these we remove the 263 order limit to work with halfway
reasonable sized groups although there is a non-zero probability that the output may be
wrong in some cases because integer overWows occur.
For the base change and set stabilization experiments we also need random subsets of Ω

for prescribed bases or sets to stabilize. For these random subsets of Ω of given size were
generated before so that all runs work on the same data.
All tests were conducted, if not stated otherwise, on the same machine, a server with

four dual core AMD CPUs at 2 GHz each and 16 GB of RAM in total, running Ubuntu 8.04
in 64-bit version. The benchmark executables were compiled with the GNU C++ compiler
in version 4.2.4 with -O3 optimization setting and disabled asserts.

4.2.2 BSGS construction

For every group of the test set a base and a strong generating set have been computed
multiple times with diUerent parameter combinations. Parameters are the implementation
of permutations (elementary or as words) and the transversal storage (explicit, as Schreier
tree or as shallow Schreier tree).
Figure 4.2 shows the results for the library of primitive groups. For each group a BSGS

was constructed 100 times. The results have been clustered with respect to the integer

53

4 Implementation

0.01s

0.1s

1s

10s

100s

1000s

0 50 100 150 200 250 300 350 400av
er
ag
e
ba
se

co
ns
tr
uc
tio

n
tim

e
in

gr
ou

p
cl
as
s

degree of primitive group class

average base construction times; 100 runs each

P Explicit
P Schreier

PW Explicit
PW Schreier

0.01s

0.1s

1s

10s

100s

1000s

0 50 100 150 200 250 300 350 400av
er
ag
e
ba
se

co
ns
tr
uc
tio

n
tim

e
in

gr
ou

p
cl
as
s

degree of primitive group class

average base construction times; 100 runs each

P Explicit
P ShallowSchreier

PW Schreier
PW ShallowSchreier

Figure 4.2: Base construction average times for primitive permutation groups

54

4.2 Experiments

tenth of the degree, so degrees 10 to 19, 20 to 29, 30 to 39 &c. each form a class in the
chart. Because the running time of the Schreier-Sims algorithm depends on both degree
and order, this clustering regardless of the group structure is quite arbitrary and only
used to Vnd a presentable form. Throughout this chapter P and PW in a legend stand
for elementary permutation implementation and implementation as permutation word,
respectively. The second term in the legend speciVes the used transversal implementation.
For almost all classes explicit transversals together with an elementary permutation im-

plementation are the fastest combination. Elementary permutations used together with a
Schreier tree transversal are throughout the sample the slowest combination. Permutation
words work better with Schreier tree transversals but are still outperformed by elementary
permutations and explicit transversals.
That explicit and Schreier tree transversals show very similar performance when used

with permutation words is not by accident. Because permutations words in explicit
transversals are usually not multiplied out but words in generators, “explicit” transver-
sals for permutation words are just another form of Schreier tree storage and not really
explicit. In this implementations the performance variation is caused by memory opera-
tion patterns which in this case favor explicit transversals slightly.
The reason why Schreier tree transversal implementations both with elementary per-

mutations and permutation words are slowest has two diUerent reasons. Because the
Schreier-Sims construction mainly consists of building Schreier generators a lot of multi-
plications are needed to build the transversal elements from the tree. This high number
of multiplications is the reason why the combination “P Schreier” is slow. We could al-
ready expect this from the asymptotic analysis of the Schreier-Sims algorithm on page 14.
Permutations word, on the other hand, are less aUected by the multiplications because
for these word multiplications are relatively cheap. However, the words still have to be
multiplied out to check if a Schreier generator is the identity. This occurs during the
Schreier-Sims construction too often to actually gain a beneVt.
It remains to analyze the performance of the shallow Schreier tree variant of Section 2.4

in the bottom part of Figure 4.2. For the primitive groups the shallow Schreier tree im-
plementation using permutation words comes very close to the “P Explicit” optimum, and
always at least as fast as the normal Schreier tree variant. The shallow trees together with
elementary permutations gain over the normal Schreier trees (not in this Vgure), but are
still inferior to the permutation words with the same transversal technique. These results
are in accordance with our observations from above that the major factor of Schreier tree
performance is the multiplications to construct a transversal element. Shallow Schreier
trees reduce this number of edge label multiplications and are thus faster.
Figure 4.3 shows results for the Schreier-Sims algorithm implementation on the sym-

metric groups Sn for n ∈ {10, 20, 30, 40}. The algorithm conVgurations which the pre-
liminary evidence of the primitive group library lets us suppose to be slow are omit-
ted. Only the three most promising variants are shown and compared with GAP. The
GAP calls used were as close to the API of the C++ implementation as possible, call-
ing StabChain(Group(...)) on a list of generators. The running times of PermLib are
rather indiUerent, with increasing degree the Shallow tree variant with permutation words
has a minimal lead over the rest. At least for these examples the C++ implementation can
compete with GAP performance. For this special case Sn, however, there are faster ways to
construct a BSGS in GAP by calling SymmetricGroup(n) directly instead of Group(.).

55

4 Implementation

0.1s

1s

10s

100s

1000s

10000s

S10 S20 S30 S40

ba
se

co
ns
tr
uc
tio

n
tim

e

symmetric group

base construction times; 1000 runs each

P Explicit
PW Schreier

PW ShallowSchreier
GAP 4.4.10

Figure 4.3: Base construction times for symmetric groups

0.01s

0.1s

1s

10s

100s

1000s

E
6

m
et

5

psm
et

5

E
7

m
et

6

psm
et

6

bh
105

E
8

m
et

7

psm
et

7

ba
se

co
ns
tr
uc
tio

n
tim

e

polyhedron

base construction times; 1000 runs each

P Explicit
PW Schreier

PW ShallowSchreier
GAP 4.4.10

Figure 4.4: Base construction times for polyhedral automorphism groups

56

4.2 Experiments

Using this specialization, GAP becomes even faster than the C++ implementation. How-
ever, this is no surprise because the set {(1 2), (2 3), . . . , (n− 1n)} is a strong generating
set relative to any n − 1 points from Ω. Hence there is nothing really to compute and it
only remains to set up the transversal data structures.
Finally, we look at the test set coming from practice, the polyhedral automorphism

groups. Figure 4.4 shows the results of the runs with the top three performance parameter
combinations and GAP. The automorphism groups are ordered by degree ascendingly from
left (E6 with degree 36) to right (psmet7 with degree 154). From the PermLibvariations no
one dominates the other. Rather a correlation between winning parameter combination
and polyhedron class (Ex, metx, psmetx) can be suspected. The result pattern of GAP
suggests there is a certain minimal time for initialization. At least this would explain why
GAP comes closer to the C++ implementation for bigger instances than for the smaller
ones.

4.2.3 Base change

Besides the two parameters from the last section, permutation and transversal implemen-
tation, we have two additional degrees of freedom for base change algorithms: the base
change algorithm
• “simple”, Algorithm 2.6 with transpositions only,

• “conjugation”, Algorithm 2.9 with transposition and conjugation,

• “construction”, Algorithm 2.10 re-construction from scratch,
and the base transposition algorithm for the transposition-based change algorithms.
To gather quickly evidence which combination works best with which permutation and

transversal implementation we begin with experiments on a subset of the primitive group
library. Instead of testing each of the 2453 groups from the library with a small number of
base changes we perform many base changes on a smaller subset. We will use all primitive
groups of degree 50, 100, 400 and a random selection of primitive groups of degree 256,
which still gives us 109 groups to work with. Because we have to randomly generate
prescribed bases for every degree that we want to test, this selection of four diUerent
degrees also helps to bound the experiment eUorts. The numbers 50, 100, 256 and 400
themselves are not important, it is meant to be a not too small selection of groups with
increasing degree.
First we examine the base transposition algorithms. Therefore we pick the base change

algorithm 2.6 which uses only transpositions so that it is a good indicator for transposition
performance. For the subset of primitive groups we plug in both the deterministic and
the randomized transposition algorithm and repeatedly change bases according to a pre-
computed, randomly generated sequence of base points. Each of these 1000 prescribed
bases has length log2 n for a group of degree n, regardless of the actual group order.
Figure 4.5 shows the results of deterministic and randomized base point transposition

side by side for four diUerent permutation/transversal implementations. For both elemen-
tary permutation variations, the left four columns of each cluster in the Vgure, we see that
the randomized version is measurably faster than the deterministic version. For the two
permutation words combinations, the four columns on the right, there is only a small dif-
ference in the result between deterministic and randomized transposition. Analysis with

57

4 Implementation

0.1s

1s

10s

50 100 256 400

av
er
ag
e
ba
se

ch
an
ge

tim
e

degree of primitive group class

average base change times; 1000 runs each

P Explicit Det
P Explicit Rand
P Schreier Det

P Schreier Rand

PW Schreier Det
PW Schreier Rand
PW Shallow Det

PW Shallow Rand

Figure 4.5: Base change/transposition average times for selected primitive groups

the performance analysis tool Valgrind [Vgrind] and internal statistics suggest that gener-
ating random Schreier generators based on permutation words is too slow to beneVt from
the reduced total generator number. For the remaining experiments we therefore use the
deterministic base transpose algorithm for permutation words and the randomized version
for elementary permutations.

The next step is to measure running times of the three base change algorithm. First
we start with a similar setup: for each primitive group we change the base 1000 times
according to a randomly generated list of bases of length blog2 nc. Figure 4.6 shows the
results.

By comparing the left-most and right-most column of each cluster in the Vgure, we see
that the “simple” base change with only transpositions performs always worse than its im-
proved variant with conjugation. For most cases base change by construction, represented
by the column in the middle, is the fastest method. This is not very surprising as we are in
fact performing 1000 base constructions per group because the bases are totally unrelated.
A more realistic test case would consist of sets that are more similar to each other and
share the same preVx. This allows a better reuse of the previous BSGS elements.

Figure 4.7 shows the results of such a run with 1000 random bases of length 2blog2 nc
that were each generated from their predecessor. Both transposition based algorithms run
in almost zero time, whereas the construction method takes a lot of time. The absolute
values of Figure 4.6 and 4.7 are not comparable because the prescribed base length diUer
and in the former run each base change was performed on a copy of a original BSGS and

58

4.2 Experiments

0.1s

1s

10s

100s

50 100 256 400 50 100 256 400 50 100 256 400

av
er
ag
e
ba
se

ch
an
ge

tim
e

primitive group degree

average base change times; 1000 runs each

Conj
Constr
Simple

Conj
Constr
Simple

Conj
Constr
Simple

PW/SS/DetPW/S/DetP/E/Rand

Figure 4.6: Base change average times for selected primitive groups

0.01s

0.1s

1s

10s

100s

50 100 256 400 50 100 256 400 50 100 256 400

av
er
ag
e
ba
se

ch
an
ge

tim
e

primitive group degree

average base change times; 1000 runs each

Conj
Constr
Simple

Conj
Constr
Simple

Conj
Constr
Simple

PW/SS/DetPW/S/DetP/E/Rand

Figure 4.7: Base change average times for selected primitive groups and similar sets

59

4 Implementation

in the latter run there was no such copy, so each base change ran on the result on its
immediate predecessor to exploit the base similarity.

0.1s

1s

10s

E
6

m
et

5

psm
et

5

E
7

m
et

6

psm
et

6

bh
105

E
8

m
et

7

psm
et

7

ba
se

ch
an
ge

tim
e

polyhedron

base change times; 5000 runs each

P/Ex/Rand/Conj
P/S/Rand/Conj

PW/S/Det/Conj
GAP 4.4.10

Figure 4.8: Base change times for polyhedral automorphism groups

Finally, we look at results from the polyhedron data set in Figure 4.8. For this ex-
periment 5000 base changes have been executed with non-similar sets. We ignore the
“construction” algorithm because its absolute performance in this test setup is not a good
measure for practice as we have seen in Figure 4.7. Hence we compare the three best per-
mutation/transversal combinations together with the “conjugation” algorithm with GAP.
We look at the two middle columns of each cluster and observe that both Schreier tree
transversals give the best performance. The reason for this is that conjugation is easier
to perform on a Schreier tree transversal than on an explicit transversal. For a Schreier
tree we only have to conjugate the group elements of the label set, i. e. the group genera-
tors. To update an explicit transversal after conjugation we have to conjugate every single
transversal element. Usually the number of the latter is much larger than the number of
group generators.

Again as in Figure 4.4 on page 56 we could guess a relationship between fastest permu-
tation implementation (elementary or word) and the polyhedron class. The psmetx series
seems to be the only one for which words are the faster choice. The results also show that
the base change performance of PermLib can compete with GAP for these instances from
practice.

60

4.2 Experiments

4.2.4 Subgroup search: setwise stabilizer

When we analyze backtracking algorithms by setwise stabilizers we have one additional
degree of freedom besides the choice of the backtrack algorithm: the form and size of
the set to stabilize. Several thousand random subsets of Ω with diUerent but prespeciVed
length were generated for each group that is part of this analysis. Besides the backtracking
algorithm, we can examine the eUect of pruning. The correctness of the following re-
sults has been checked insofar as two diUerent implementations always returned the same
subgroup orders.
We begin with an experiment which gives some indication how the diUerent parameters

play together. Every group from the selection of primitive groups that we already have
used for base change experiments in the last section stabilized 200 random generated sets
of length k − 3, k − 2, k − 1, k, k + 1 each with k = blog2 nc. These length values
were chosen heuristically so that not all set stabilizers become trivial. For presentation the
average running times of all groups of same degree was computed and is shown in the
following charts.

0.01s

0.1s

1s

10s

50 100 256 400

av
er
ag
e
se
ts
ta
bi
liz
at
io
n
tim

e
pe
r
cl
as
s

degree of primitive group class

average set stabilization times; 200 runs each

P Explicit Rand Conj Backtrack
P Explicit Rand Conj Partition

P Schreier Rand Conj Backtrack
P Schreier Rand Conj Partition

PW Schreier Det Conj Backtrack
PW Schreier Det Conj Partition

Figure 4.9: Set stabilizer search average times for primitive groups

Figure 4.9 depicts the running times of the two backtracking algorithm for three dif-
ferent permutation/transversal combinations. There is not a clear pattern which permu-
tation/transversal combination performs best. But by comparing neighborly columns we
observe that the classical backtracking algorithm is measurably faster than the partition
backtracking variant for all three conVgurations. This is because the problem instances
were solved by traversing only a quite small number of nodes. The pruning techniques of
Section 3.1.4 prove to be eXcient at least for small set sizes because the depth of the search

61

4 Implementation

tree is bounded by |∆| and only nodes with γi ∈ ∆ have to be considered. For larger sets
we observe a diUerent situation, though.

Figure 4.10 shows the results of a single groupG of degree 100 and order about 1.2·1012.
For this run sets ∆ of size 2 to 25 were randomly generated. For 50 sets of each size the
stabilizer G∆ was computed, for |∆| ≥ 13 the group G∆ had always order 2 or less. As
shown for the small sets, classical backtracking beats partition backtracking because it has
no overhead with partition handling for the small number of nodes. With increasing set
size and also traversed node number the partition backtracking implementation becomes
more and more eXcient.

0.1s

1s

10s

100s

5 10 15 20 25

se
ts
ta
bi
liz
at
io
n
tim

e

size of sets

set stabilization times for 50 runs each

P Explicit Rand Conj Backtrack
P Explicit Rand Conj Partition

Figure 4.10: Set stabilizer search time depending on set size

In the next experiment we examine the inWuence of double coset minimality according
to Lemma 3.4 on page 30. This is the only double coset minimality criterion we looked at
that has signiVcant costs because it possibly involves base changes. So all other presented
criteria were enabled by default and we just toggle pruning based on Lemma 3.4, which
we abbreviate with DCM. Figure 4.11 is a continuation of Figure 4.9 on page 61. We can
see that DCM pruning has not a big, measurable eUect on the running times. It tends to
make the search slightly slower because of the additional base changes that are required.
This, and the superior performance of classical backtracking for smaller set sizes, are an
indication that the number of nodes is already quite near a minimum for backtrack search.

Finally, we compare PermLib with other implementations. We cannot compare with
Leon’s original code because it is not well-suited for sequential runs and sometimes caught
segmentation faults during preliminary experiments. However, we can run experiments
with the computer algebra software Magma [Magma], which states on its homepage that

62

4.2 Experiments

0.01s

0.1s

1s

10s

50 100 256 400

av
er
ag
e
se
ts
ta
bi
liz
at
io
n
tim

e
pe
r
cl
as
s

degree of primitive group class

average set stabilization times; 200 runs each

P Explicit Rand Conj Backtrack
P Explicit Rand Conj Backtrack DCM

P Explicit Rand Conj Partition
P Explicit Rand Conj Partition DCM

Figure 4.11: Set stabilizer search average times with enhanced double coset pruning for
primitive groups

it uses code written by Leon for partition backtrack search. Because Magma is not freely
available the following results were obtained on a diUerent machine than the previous
ones, so the absolute values are not comparable. Figure 4.12 and 4.13 show the running
times for GAP and Magma and the fastest PermLib conVguration based on elementary
permutations and Schreier Tree transversals. For each polyhedron 5000 randomly gener-
ated sets of length k − 3, k − 2, k − 1, k, k + 1 each with k = blog2 nc were stabilized,
and 1000 for every symmetric group.

For both group types GAP, depicted by the right-most column in each cluster, is by far
the slowest competitor in both cases. An interesting thing happens with Magma, related
to the second-to-right columns. For the polyhedral groups it seems to scale a bit better
than the author’s implementation, shown in the left-most columns. However, in the runs
with the symmetric groups its performance suddenly deteriorates signiVcantly. Because
it is unfortunately closed-source software we can only speculate about the cause. One
reason could be that the stabilizer routine of Magma does not use a technique like we saw
in Section 3.1.4 so that it does not Vnd the generators G(∆) ≤ G∆ early to prune the tree
based on this subgroup or does not bound the search tree depth by |∆|. This seems to be
a plausible assumption since neither [Leo91, Leo97] nor Leon’s original C implementation
(e. g. available through [GUAVA]) seem to contain this specialization.

63

4 Implementation

0.1s

1s

10s

100s

E
6

m
et

5

psm
et

5

E
7

m
et

6

psm
et

6

bh
105

E
8

m
et

7

psm
et

7

se
ts
ta
bi
liz
at
io
n
tim

e

polyhedron

set stabilization times for 5000 runs each

P Schreier Rand Conj Backtrack
P Schreier Rand Conj Partition

Magma 2.15
GAP 4.4.9

Figure 4.12: Set stabilizer search times for polyhedral automorphism groups

0.1s

1s

10s

100s

1000s

S10 S20 S30 S40

se
ts
ta
bi
liz
at
io
n
tim

e

symmetric group

set stabilization times for 1000 runs each

P Schreier Rand Conj Backtrack
P Schreier Rand Conj Partition

Magma 2.15
GAP 4.4.9

Figure 4.13: Set stabilizer search times for symmetric groups

64

4.2 Experiments

4.2.5 Subgroup search: group intersection

Our Vnal case study for backtracking subgroup searches are group intersections. The au-
thor has selected 20 primitive groups of diUerent degree and order from the sample and
built 10 intersecting pairs from it. All of these intersections except one (instance “9”) have
an order greater than one.

0.01s

0.1s

1s

10s

100s

1000s

10000s

1 2 3 4 5 6 7 8 9 10

in
te
rs
ec
tio

n
tim

e

instance number

intersection times for 200 runs each

P Schreier Rand Conj Partition
P Schreier Rand Conj Backtrack

P Schreier Rand Conj Backtrack DCM
P Schreier Rand Conj Partition DCM

Figure 4.14: Intersection search times for primitive groups

Figure 4.14 shows the running times for intersections with both classical backtracking
and partition backtracking, with and without DCM pruning. The long running times for
some cases made tests with permutation words impossible because these are currently
lacking proper memory management. So we restrict our analysis to elementary permu-
tations with the fastest solution based on Schreier trees. The results are to some extent
indiUerent. Classical backtracking dominates the smaller instances, depicted by the two
middle columns. Looking at the right-most columns, we see that partition backtracking
with DCM pruning is fastest for some larger instances. Especially for the instance “9”
classical backtracking takes 100 times longer to establish that the intersection is trivial.
Figure 4.15 helps us to understand this behavior. It shows the number of visited nodes

during backtrack search in Figure 4.14. For most instances the absolute number diUers
not much between all parameter combinations, so classical backtracking may be faster
because of smaller overhead. In the cases “7”, “8” and “9” partition backtracking together
with DCM pruning can cut the number of nodes by the thousands.
In contrast to the set stabilizer experiments, DCM pruning can have a signiVcant per-

formance eUect. This may be due to two reasons: First, the usefulness of DCM pruning
depends on the size of the subgroup K . If K is trivial, we cannot prune by DCM.

65

4 Implementation

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10

no
de
s

instance number

nodes visited during backtrack search

P Schreier Rand Conj Partition
P Schreier Rand Conj Backtrack

P Schreier Rand Conj Backtrack DCM
P Schreier Rand Conj Partition DCM

Figure 4.15: Number of nodes visited during intersection search for primitive groups

0.001s

0.01s

0.1s

1s

10s

100s

1 2 3 4 5 6 7 8 9 10

in
te
rs
ec
tio

n
tim

e

instance number

intersection times for 10 runs each

P Schreier Rand Conj Partition DCM
P Explicit Rand Conj Partition DCM

Magma 2.15
GAP 4.4.9

Figure 4.16: Intersection search times for primitive groups

66

4.2 Experiments

So relatively big result groups compared to the set stabilizer instances can make DCM
pruning more attractive. The second reason is restricted to partition backtracking: When
computing intersections we usually start with a backtrack reVnement on the empty parti-
tion (Ω) and have no small cell (∆ |Ω \ ∆) of size |∆| � |Ω| available to choose a Vrst
reVnement from. This means that the Vrst level of the search tree gets quite large and
DCM pruning has a chance to mitigate this eUect.
Finally, we compare again the performance with GAP and Magma in Figure 4.16. Sim-

ilarly to the comparison of set stabilization performance, we can observe two facts: The
performance of GAP is often worse than the author’s implementation by a factor of ten.
This may be due to the performance penalty caused by interpretation at runtime and
traversing a large number of nodes. In contrast to that we see that Magma scales very well
and runs almost in constant time throughout all instances. This means that it is in turn a
factor of ten faster than the author’s implementation for instance “9”. The reasons of this
huge diUerences are not clear.

4.2.6 Summary

We could observe that Schreier tree transversals are slower than explicit transversals for
BSGS construction. Permutation words can mitigate the negative performance eUect and
lead to comparable running times in several cases. For base change there may be cases
when a construction from scratch is faster than a change algorithm. From the “true”
change algorithms the base change algorithm by conjugation, Algorithm 2.9 on page 22,
works best. Randomized base point transpositions according to Algorithm 2.8 have a pos-
itive eUect on the running time with elementary permutations. For permutation words
there seems to be a slightly negative impact. Base changes on Schreier tree transversals
are faster than changes on explicit transversals. Shallow Schreier trees seem to perform a
base change slower than normal Schreier trees.
For the two subgroup search problems the combination of elementary permutations,

Schreier tree transversal and base change by conjugation with randomized base transpo-
sition works best. There is no clear performance gain by using permutation words for the
tested instances. Shallow Schreier trees also do not seem to have a positive impact on the
backtrack running time. This may be due to worse base change performance compared to
normal Schreier trees.
Small set stabilization instances with large stabilizer are solved fastest with a classical

backtracking approach without extended pruning by double coset minimality. The larger
the set to stabilize is, the more eXciently the partition backtracking approach works. It
can be the fastest solution for large sets or small stabilizer. For intersection problems
double coset minimality pruning is quite important. Small instances can be solved fast
with classical backtracking. However, partition backtracking is not much slower and is
even dramatically faster for several tested instances. Generally it seems reasonable to
assume that classical backtracking can compete with partition backtracking if the ratio
between |G(P)| and |G| is big enough because in this case P-reVnements cannot reduce
the search space too much and the overhead of partition intersections becomes noticeable.
With a conVguration of elementary permutation, Schreier tree transversal, base change

by conjugation and randomized transpositions, PermLib is faster than GAP in every disci-
pline except base construction. Because base construction happens usually only once this

67

4 Implementation

is no big disadvantage and can possibly be solved by further code optimization or using
permutation words. There are huge running time diUerences in some set stabilization and
intersection problems between GAP and PermLib. Magma is still a bit faster than PermLib
on these examined backtracking problems. Especially for some intersection problems also
larger diUerences appear. Nevertheless, there are also strange results with Magma and
set stabilization in the symmetric group. It remains unclear what causes the observed
dramatic diUerences in performance. Another interesting observation that the author has
made in preliminary experiments is that the running times of PermLib do not scale equally
between a 32-bit and a 64-bit platform. More experiments would be required to analyze
this phenomenon.

68

5 Conclusion

5.1 Summary

In this thesis we have familiarized ourselves with some fundamental algorithms and data
structures to tackle one basic problem in symmetry computation: search in permutation
groups. The base and strong generating set data structure allows us to work eXciently with
permutation groups on the computer. Besides the base and generators, transversals are a
central part of a BSGS structure. We can use either an explicit or a Schreier tree variant
to store transversal elements. With the Schreier-Sims algorithm we can construct a BSGS
for a given permutation group. If in some context one base Vts better than another we can
choose between several base change algorithms. These dedicated base change algorithms
are especially useful whenever the target base shares a common preVx with the source
base.

A base and strong generating set structure induces a tree representation of a permutation
group. We can use backtracking on this tree to search for elements with speciVc properties
in this group. If the set of all sought elements is a subgroup or a coset we have powerful
techniques at our disposal to exclude large portions of the tree from the search. For this
pruning of the tree double coset minimality plays an important role. Furthermore, we have
studied how we can specialize and bound the search space when we look for a setwise
stabilizer or a group intersection.

We can structurally improve this backtrack search by using partitions and the concept
of P-reVnements. These allow us to impose constraints at the same time on a set of
elements instead of only a single point as classical backtracking does. We have examined
P-reVnements for the setwise stabilizer and the group intersection/membership problem.

We also have looked at implementation details of permutations and partitions. Besides
a trivial representation of permutations as vectors at the computer we can store permuta-
tions as words. Moreover, we have seen a data structure for partitions that is especially
useful as it allows to go fast forwards and backwards during backtrack search.

The author has developed a C++ implementation called PermLib of all described algo-
rithms and data structures. In the last section of this thesis we have analyzed the results of
experiments with PermLib for BSGS construction, change and search algorithms. These re-
sults suggest that for the tested groups with degree up to 400 the representation of permu-
tations as words does not signiVcantly improve performance. The use of explicit transver-
sals seems useful only for smaller groups and degree less than 50. We could observe the
best overall performance with permutations stored as vectors and transversals stored in
Schreier trees. The current PermLib implementation of partition-based backtracking is
fast for group intersections and stabilizers of larger sets. For computing stabilizers of small
sets classical backtracking seems to be the best approach.

69

5 Conclusion

The performance of PermLib is in all tested cases better than GAP with huge diUerences
in some cases. Some problem instances also reveal a performance gap of PermLib towards
the Magma implementation, which is often faster than PermLib.

5.2 Outlook

For future work it would be interesting to conduct in-depth experiments, which are able to
perform a fair comparison of alternative algorithm implementations. For the comparison
to GAP we have to keep in mind that it is interpreted at runtime and thus has a natu-
ral performance impediment. Some results in comparison to Magma are to some extent
confusing and require more experiments to gather suXcient explanation of the observed
phenomena.
From a practical point of view the author is especially interested in how his implementa-

tion performs in a real symmetry computation project and plans to use it for his upcoming
study of polyhedral symmetry computation, which is currently bound to GAP and nauty.
The author is convinced that the planned extension of PermLib towards computing poly-
hedral symmetries will show equally promising performance and that PermLib will serve
as a useful library to support future work on exploiting symmetries.

70

A PermLib

PermLib currently has Vve main directories:

• data contains various permutation groups for testing or benchmarking.

• doc contains automatically generated documentation.

• lib contains the PermLib core. PermLib is completely implemented in C++ header
Vles.

• src contains the applications which were used to benchmark PermLib.

• test contains various unit tests.

The only dependency to build PermLib is [Boost] in version 1.34.1 or higher. However,
the build system for the contributed applications makes use of [CMake]. If CMake and
Boost are correctly installed the PermLib applications can be built with:

~/permlib$ mkdir build && cd build

~/permlib/build$ cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo ..

~/permlib/build$ make

Then, for instance, ./src/exmaple should run the example application below and com-
pute a set stabilizer.

1 # i n c l u d e "permutation.h"

2 # i n c l u d e "bsgs.h"

3 # i n c l u d e "transversal/schreier_tree_transversal.h"

4 # i n c l u d e "construct/schreier_sims_construction.h"

5 # i n c l u d e "change/conjugating_base_change.h"

6 # i n c l u d e "search/classic/set_stabilizer_search.h"

7
8 # i n c l u d e <iostream >

9
10 i n t main(i n t argc , cha r *argv []) {

11 u s i n g namespace permlib;

12
13 / / we u s e e l e m e n t a r y p e r m u t a t i o n s
14 t y p e d e f Permutation PERM;

15 / / and S c h r e i e r t r e e t r a n s v e r s a l s
16 t y p e d e f SchreierTreeTransversal <PERM > TRANSVERSAL;

17
18 / / o u r g r o u p w i l l h a v e d e g r e e 1 0
19 c o n s t ulong n = 10;

20
21 / / g r o u p g e n e r a t o r s
22 PERMlist groupGenerators;

23 boost::shared_ptr <PERM > gen1(new PERM(n, std:: string("1 3 5 7 9 10 2 4 6 8")));

24 groupGenerators.push_back(gen1);

25 boost::shared_ptr <PERM > gen2(new PERM(n, std:: string("1 5")));

26 groupGenerators.push_back(gen2);

27
28 / / BSGS c o n s t r u c t i o n
29 SchreierSimsConstruction <PERM , TRANSVERSAL > schreierSims(n);

30 BSGS <PERM , TRANSVERSAL > bsgs = schreierSims.construct(groupGenerators.begin(),

31 groupGenerators.end ());

71

A PermLib

32 std::cout << "Group " << bsgs << std::endl;

33
34 / / we want t o s t a b i l i z e a s e t
35 c o n s t ulong DeltaSize = 4;

36 c o n s t ulong Delta[DeltaSize] = {0, 4, 7, 8};

37
38 / / c h an g e t h e b a s e s o t h a t i s p r e f i x e d by t h e s e t
39 ConjugatingBaseChange <PERM ,TRANSVERSAL ,

40 RandomBaseTranspose <PERM ,TRANSVERSAL > > baseChange(bsgs);

41 baseChange.change(bsgs , Delta , Delta+DeltaSize);

42
43 / / p r e p a r e s e a r c h w i t h o u t DCM p r u n i n g
44 classic :: SetStabilizerSearch <PERM ,TRANSVERSAL > backtrackSearch(bsgs , 0);

45 backtrackSearch.construct(Delta , Delta+DeltaSize);

46
47 / / s t a r t t h e s e a r c h
48 BSGS <PERM ,TRANSVERSAL > stabilizer(n);

49 backtrackSearch.search(stabilizer);

50
51 std::cout << "Stabilizer " << stabilizer << std::endl;

52
53 r e t u r n 0;

54 }

72

Nomenclature

() identity permutation, page 3

αG orbit of α ∈ Ω under g ∈ G, page 3

αg action of g ∈ G on α ∈ Ω, page 3

cosetn the coset which a node n of a search tree corresponds to, page 27

∆(i) i-th fundamental orbit, page 6

fix Π ordered sequence of single-element cells of a partition Π in the order in which they
appeared in the reVnement process, page 39

intersect intersection of a partition with a set, page 51

g− inverse of g ∈ G, page 3

log logarithm to base 2, page 6

|G : H| index of H in G, page 3

|G| order of group G, page 3

ΩP(n) child restriction in classical backtrack search of node n depending on property P ,
page 31

OP(Ω) set of all ordered partitions of Ω, page 37

Π ∧ Σ intersection of two partitions Π, Σ, page 37

U(G) uniform distribution on the set or group G, page 19

G[i] pointwise stabilizer of the i− 1 Vrst base elements, page 5

G(α1,...,αk) pointwise stabilizer of (α1, . . . , αk) as a tuple, page 4

G{α1,...,αk} setwise stabilizer of {α1, . . . , αk} as a set, page 4

Sg conjugate of S ⊆ G under g ∈ G, page 21

Sn the symmetric group of n elements, page 4

73

References

Bibliography

[Bab91] László Babai. Local expansion of vertex-transitive graphs and random gen-
eration in Vnite groups. In STOC ’91: Proceedings of the twenty-third annual
ACM symposium on Theory of computing, pages 164–174, New York, NY, USA,
1991. ACM.

[BL85] Gregory Butler and Clement W. H. Lam. A general backtrack algorithm for
the isomorphism problem of combinatorial objects. Journal of Symbolic Com-
putation, 1(4):363–381, 1985.

[Bri00] Gunnar Brinkmann. Isomorphism rejection in structure generation programs.
In Discrete Mathematical Chemistry. DIMACS Series in Discrete Mathematical
and Theoretical Computer Science, volume 51, pages 25–38. American Mathe-
matical Society, 2000.

[BSS09] David Bremner, Mathieu Dutour Sikiric, and Achill Schürmann. Polyhedral
representation conversion up to symmetries. In David Avis, David Bremner,
and Antoine Deza, editors, Polyhedral computation, CRM Proceedings & Lec-
ture Notes, pages 45–72. American Mathematical Society, 2009. Available from
World Wide Web: http://arxiv.org/abs/math/0702239.

[But91] Gregory Butler. Fundamental algorithms for permutation groups. Springer,
1991.

[CH92] John J. Cannon and George Havas. Algorithms for groups. Australian Com-
puter Journal, 24(2):51–60, 1992.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and CliUord Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

[CST89] Peter J. Cameron, Ron Solomon, and Alexandre Turull. Chains of subgroups
in symmetric groups. Journal of Algebra, (127):340–352, 1989.

[HEO05] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Compu-
tational Group Theory. Discrete Mathematics and Applications. Chapman &
Hall/CRC, 2005.

[Jun03] Tommi Junttila. On the symmetry reduction method for petri nets and similar
formalisms. Research Report A80, Helsinki University of Technology, Labora-
tory for Theoretical Computer Science, Espoo, Finland, September 2003.

[Ker99] Adalbert Kerber. Applied Finite Group Actions. Algorithms and Combina-
torics. Springer, 2nd edition, 1999.

74

http://arxiv.org/abs/math/0702239

[Knu91] Donald E. Knuth. EXcient representation of perm groups. Combinatorica,
11(1):33–43, 1991.

[Knu98] Donald E. Knuth. The art of computer programming, volume 3: sorting and
searching. Addison Wesley, 2nd edition, 1998.

[KÖ06] Petteri Kaski and Patric R.J. Östergård. ClassiVcation Algorithms for Codes and
Designs, volume 15 of Algorithms and Computation in Mathematics. Springer,
2006.

[Leo80] JeUrey S. Leon. On an algorithm for Vnding a base and a strong generating set
for a group given by generating permutations. Mathematics of Computation,
35(151):941–974, July 1980. Available from World Wide Web: http://www.
jstor.org/pss/2006206.

[Leo84] JeUrey S. Leon. Computing automorphism groups of combinatorial objects.
In Computational group theory (Durham, 1982), pages 321–335, London, 1984.
Academic Press.

[Leo91] JeUrey S. Leon. Permutation group algorithms based on partitions, I: Theory
and algorithms. Journal of Symbolic Computation, 12:533–583, 1991.

[Leo97] JeUrey S. Leon. Partitions, reVnements, and permutation group computation.
In Larry Finkelstein and William M. Kantor, editors, Groups and computa-
tion II, volume 28 of DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, pages 123–158. American Mathematical Society, Provi-
dence, R.I., 1997.

[Luk93] Eugene M. Luks. Permutation groups and polynomial-time computing. In
Groups and Computation, DIMACS series in Discrete Mathematics and Theo-
retical Computer Science, volume 11, pages 139–175. American Mathematical
Society, 1993.

[Mar09] François Margot. 50 Years of Integer Programming 1958-2008, chapter Symme-
try in Integer Linear Programming, pages 647–686. Springer, 2009.

[McK81] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981. Available from World Wide Web: http://cs.anu.edu.au/
~bdm/papers/pgi.pdf.

[McK98] Brendan D. McKay. Isomorph-free exhaustive generation. Journal of Al-
gorithms, 26(2):306–324, 1998. Available from World Wide Web: http:

//cs.anu.edu.au/~bdm/papers/orderly.pdf.

[Mila] Wiki of Robert L.Miller. Available from World Wide Web: http://wiki.
rlmiller.org/PermutationGroups. [Online; accessed January 10, 2010].

[Milb] Robert L. Miller. rlm-blog. Available from World Wide Web: http://blog.
rlmiller.org/. [Online; accessed January 10, 2010].

[Ser03] Ákos Seress. Permutation Group Algorithms. Cambridge University Press,
2003.

[Sim70] Charles C. Sims. Computational methods in the study of permutation groups.
In John Leech, editor, Computational Problems in Abstract Algebra, pages 169–
183. Pergamon Press, 1970.

75

http://www.jstor.org/pss/2006206
http://www.jstor.org/pss/2006206
http://cs.anu.edu.au/~bdm/papers/pgi.pdf
http://cs.anu.edu.au/~bdm/papers/pgi.pdf
http://cs.anu.edu.au/~bdm/papers/orderly.pdf
http://cs.anu.edu.au/~bdm/papers/orderly.pdf
http://wiki.rlmiller.org/PermutationGroups
http://wiki.rlmiller.org/PermutationGroups
http://blog.rlmiller.org/
http://blog.rlmiller.org/

A PermLib

[Sim71a] Charles C. Sims. Computation with permutation groups. In SYMSAC ’71:
Proceedings of the second ACM symposium on Symbolic and algebraic manip-
ulation, pages 23–28, New York, NY, USA, 1971. ACM.

[Sim71b] Charles C. Sims. Determining the conjugacy classes of a permutation group.
In Garrett BirkhoU and Marshall Hall Jr., editors, Computers in Algebra and
Number Theory, volume 4 of SIAM-AMS Proceedings, pages 191–195, Provi-
dence, R.I., 1971. American Mathematical Society.

[The97] Heiko Theißen. Eine Methode zur Normalisatorberechnung in Permutation-
sgruppen mit Anwendungen in der Konstruktion primitiver Gruppen, vol-
ume 21 of Aachener Beiträge zur Mathematik. Verlag der Augustiner Buch-
handlung, 1997. Ph.D. thesis at RWTH Aachen.

[Zie95] Günter M. Ziegler. Lectures on polytopes. Springer, New York, 1995.

Software

[Boost] Boost free peer-reviewed portable C++ source libraries. http://www.boost.
org/.

[CMake] CMake – Cross Platform Make. http://www.cmake.org/.

[GAP] GAP – Groups, Algorithms, Programming – a System for Computational Dis-
crete Algebra. http://www.gap-system.org/.

[GUAVA] GUAVA – a GAP package for computing with error-correcting codes. http:

//www.gap-system.org/Packages/guava.html.

[Magma] MAGMA Computational Algebra System. http://magma.maths.usyd.edu.
au/.

[nauty] nauty, computing automorphism groups of graphs and digraphs. http://cs.
anu.edu.au/~bdm/nauty/.

[Sage] Sage Mathematics Software. http://www.sagemath.org/.

[Vgrind] Valgrind – a GPL’d system for debugging and proVling Linux programs. http:
//valgrind.org/.

76

http://www.boost.org/
http://www.boost.org/
http://www.cmake.org/
http://www.gap-system.org/
http://www.gap-system.org/Packages/guava.html
http://www.gap-system.org/Packages/guava.html
http://magma.maths.usyd.edu.au/
http://magma.maths.usyd.edu.au/
http://cs.anu.edu.au/~bdm/nauty/
http://cs.anu.edu.au/~bdm/nauty/
http://www.sagemath.org/
http://valgrind.org/
http://valgrind.org/

Index

backtrack reVnement, 38, 39
base, 5

change, 17, 58, 67
construction, 11, 53, 67
nonredundant, 5, 6

base point transposition, 17, 57, 67
BSGS, 6

coset, 3
cyclic group, 7, 8, 14, 28

degree of a group, 3
double coset, 3

minimality, 30, 46, 62, 65, 67

fundamental orbit, 53

GAP, 1, 14, 49, 50, 53, 67
group

degree, 3
order, 3

index, 3, 6

Lagrange’s Theorem, 3, 6

Magma, 1, 14, 49, 62, 67, 68

orbit, 3
construction, 7
fundamental orbit, 6

order of a group, 3

P-reVnement, 37, 39, 43, 47
extension to cosets, 47
group membership, 44
set image, 47
set stabilizer, 43

partition, 37, 51
discrete, 38
Vx points, 39, 45
intersection, 37, 38, 51

reVnement, 37, 38
permutation, 2–3

cycle form, 2
elementary, 49, 67
permutation word, 49

R-base, 39, 40, 43
set stabilizer, 44

Schreier generator, 11, 18
trivial by deVnition, 12, 18

Schreier tree, 8, 14, 67
shallow, 14–17, 67

Schreier vector, 8
Schreier-Sims algorithm, 11

complexity, 13
randomized, 21

search tree
classical backtracking, 27
partition backtracking, 40

SGS, see strong generating set
siftee, 10
sifting, 10
stabilizer, 4

pointwise, 4
setwise, 4

stabilizer chain, 5, 6, 29
strong generating set, 6–7

for subgroup, 29, 45
symmetric group, 6, 7, 53, 55, 63

transposition, see base point transposition
transversal, 3, 6

explicit, 9
Schreier tree, see Schreier tree

77

INDEX

78

