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Abstract

All maximal partial clones on 4-element, 5-element, and
6-element sets have been found and are compared to the
case of maximal clones of all total functions. Due to the
large numbers of maximal partial clones other criteria to
check for generating systems of all partial functions are an-
alyzed.

1 Introduction

In many-valued logic finite basic sets are considered. We
only have to consider the set Ek := {0, 1, . . . , k − 1} with
k ≥ 3 being fixed in the rest of this paper.

The set Pk := {f (n) | f (n) : Enk → Ek, n ≥ 1} is the
set of all total functions on Ek. Let D ⊆ Enk , n ≥ 1 and
f (n) : D → Ek. Then f is called an n-ary partial function
on Ek with domain D. We also write dom(f) = D. Let
P̃

(n)
k be the set of all n-ary partial functions on Ek and

P̃k :=
⋃
n≥1

P̃
(n)
k .

Let C∅ :=
{
f ∈ P̃k

∣∣∣ dom(f) = ∅
}
.

The n-ary function e(n)
i defined by e(n)

i (x1, . . . , xn) :=
xi with i ∈ {1, . . . , n} is called projection onto the i-th
coordinate. Let Jk :=

{
e
(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ n
}

be the
set of all projections.

Let f [g1, . . . , gn] ∈ P̃
(m)
k be the composition as given

in [2] with f ∈ P̃
(n)
k and g1, . . . , gn ∈ P̃

(m)
k , i.e., x ∈

dom(f [g1, . . . , gn]) iff

(x ∈
n⋂
i=1

dom(gi)) ∧ (g1(x), . . . , gn(x)) ∈ dom(f)

and
f [g1, . . . , gn](x) := f(g1(x), . . . , gn(x))

for all x ∈ dom(f [g1, . . . , gn]).
A partial clone (clone) on Ek is a composition closed

subset of P̃k (Pk) containing Jk. Relations are useful
to describe the clones of P̃k. We often write the el-
ements of relations as columns and a relation can then
be given as a matrix. For example the relation % =
{(0, 1, 2), (1, 2, 0), (3, 4, 5), (2, 3, 1)} can also be written as

% =

 0 1 3 2
1 2 4 3
2 0 5 1

 .

Let a matrix be given by C = (cij)h×n. Then ci∗ are
the rows of the matrix with i ∈ {1, . . . , h}, i.e., ci∗ =
(ci1, ci2, . . . , cin), and c∗j are the columns of the matrix
with j ∈ {1, . . . , n}, i.e., c∗j = (c1j , c2j , . . . , chj)T.

Let R(h)
k be the set of all h-ary relations on Ek and

Rk :=
⋃
h≥1R

(h)
k .

An n-ary function f (n) ∈ P̃k preserves an h-ary re-
lation %(h) ∈ Rk iff for all c∗1, c∗2, . . . , c∗n ∈ % with
c1∗, . . . , ch∗ ∈ dom(f) holds

f(c∗1, . . . , c∗n) :=


f(c11, . . . , c1n)
f(c21, . . . , c2n)

...
f(ch1, . . . , chn)

 ∈ %.
Let pPOLk % be the set of all functions f ∈ P̃k which pre-
serve the relation % ∈ Rk.

Let f ∈ P̃ (1)
k be a unary function. Define f0 := e

(1)
1 and

fn(x) := f(fn−1(x)) for all n ≥ 1.
For each m ∈ N let ηm := (0, 1, . . . ,m− 1)T.
Let ω(v) be the set of entries of v = (v1, . . . , vh) ∈ Ehk ,

i.e., ω(v) = ω((v1, . . . , vh)) := {v1, . . . , vh}. Additionally
let ω(%) =

⋃
v∈% ω(v).



2 Theorem of Haddad and Rosenberg

Definition 1. Let for all h with 1 ≤ h ≤ k

%1 := {(a, a, b, b), (a, b, a, b) | a, b ∈ Ek} ,
%2 := {(a, a, b, b), (a, b, a, b), (a, b, b, a) | a, b ∈ Ek} ,
ιhk :=

{
(x1, . . . , xh) ∈ Ehk

∣∣ |{x1, . . . , xh}| ≤ h− 1
}
.

Definition 2. Let ε be an arbitrary equiv-
alence relation on Eh. Define δ

(h)
k,ε :={

(a0, . . . , ah−1) ∈ Ehk
∣∣ (i, j) ∈ ε =⇒ ai = aj

}
. If h

or k can be deduced from the context we just write δε
or δ(h)ε or δk,ε. If the relation ε is given by the non-
singular equivalence classes ε1, . . . , εr then we write
δ
(h)
k;ε1,...,εr

or δε1,...,εr instead of δ
(h)
k,ε . For example

δ
(h)
k;Eh

=
{

(x, x, . . . , x) ∈ Ehk
∣∣ x ∈ Ek}.

Definition 3. Let %(h) ⊆ Ehk . Then we write σ(%) := % \
ιhk and δ(%) := % ∩ ιhk = % \ σ(%). If δ = δε for some
equivalence relation ε then we write ε(%) := ε.

Definition 4. Let %(h) ⊆ Ehk . Then % is

• areflexive, if h ≥ 2 and δ(%) = ∅, i.e., for each
(x1, . . . , xh) ∈ % we have xi 6= xj for all 1 ≤ i <
j ≤ h.

• quasi-diagonal, if σ(%) is a non-empty areflexive rela-
tion, δ(%) = δε with ε 6= ι2h an equivalence relation.

Definition 5. Let %(h) ⊆ Ehk , σ := σ(%) and δ := δ(%).
If r = (r0, r1, . . . , rn−1) ∈ Enk is a tuple and π ∈ Sn

then we write r[π] := (rπ(0), rπ(1), . . . , rπ(n−1)). Let
Γσ :=

{
π ∈ Sh

∣∣ σ ∩ σ[π] 6= ∅
}

, where Sh is the set of all
permutations on Eh and σ[π] :=

{
s[π]

∣∣ s ∈ σ}.
The model of % is the h-ary relation M(%) :={
η
[π]
h

∣∣∣ π ∈ Γσ
}
∪ (δ ∩ Ehh) on Eh.

The relation % is coherent, if the following conditions
hold:

1. % 6= Ehk , % 6= ∅,

2. (a) % is a unary relation, i.e., h = 1, or
(b) % is areflexive with 2 ≤ h ≤ k, or
(c) % is quasi-diagonal with 2 ≤ h ≤ k, or
(d) δ = ιhk with 3 ≤ h ≤ k, or
(e) δ = %i with i ∈ {1, 2} (see Definition 1) and

h = 4,

3. r[π] ∈ σ for all r ∈ σ and all π ∈ Γσ ,

4. for every σ′ with ∅ 6= σ′ ⊆ σ there is a rela-
tional homomorphism ϕ : Ek → Eh from σ′ to
M(%), such that ϕ(r) = ηh for some r ∈ σ′, i.e.,
(ϕ(r0), . . . , ϕ(rh−1)) = (0, . . . , h − 1) for some r =
(r0, . . . , rh−1) ∈ σ′,

5. (a) if δ = ιhk and h ≥ 3 then Γσ = Sh,

(b) if δ = %1 then Γσ = 〈(0231), (12)〉 (Γσ is
the permutation group generated by the cycles
(0231) and (12)),

(c) if δ = %2 then Γσ = S4.

Let R̃max
k be the set of all coherent relations with

pPOLk % 6= pPOLk χ for all %, χ ∈ R̃max
k and % 6= χ.

Let

pMk := {Pk ∪ C∅} ∪
{

pPOLk %
∣∣∣ % ∈ R̃max

k

}
.

Theorem 6 (of Haddad and Rosenberg; [3, 4]). Let k ≥ 2.
For each A ⊂ P̃k with A = [A]P there is a maximal partial
clone MA with A ⊆ MA. A clone M is a maximal partial
clone of P̃k if and only if M ∈ pMk, i.e., pMk is the set of
all maximal partial clones of P̃k.

Theorem 7 (Completeness criterion for P̃k; [4]). Let C ⊆
P̃k. Then [C]P = P̃k if and only if C 6⊆ M for all M ∈
pMk.

Definition 8. The set of coherent relations R̃max
k can be

divided into the following sets:

U := {χ(µ) ∈ R̃max
k | µ = 1},

A := {χ(µ) ∈ R̃max
k | µ ≥ 2 ∧ χ is areflexive},

Q := {χ(µ) ∈ R̃max
k | µ ≥ 2 ∧ χ is quasi-diagonal},

S := {χ(µ) ∈ R̃max
k | µ ≥ 3 ∧ δ(χ) = ιµk},

L := {χ(µ) ∈ R̃max
k | µ = 4 ∧ δ(χ) ∈ {%1, %2}}.

3 Number of maximal partial clones and
maximal clones

Definition 9. Let %(h) ∈ R̃max
k .

Define the relation-class class(%) by

class(%) := {{(g(v))[π] | v ∈ %} | g ∈ Sk, π ∈ Sh}.

Let pM C
k := {class(%) | % ∈ R̃max

k }.

For the number of maximal partial clones |pMk| in k-
valued logic with k ∈ {2, 3, 4, 5, 6} see Table 3. These are
compared to the number of maximal (total) clones |Mk| as
given in [7]. See Tables 1 and 2 for more detailed infor-
mation about which types of relations contribute to the total
number of coherent relations. The relations are split by ar-
ity which is shown in the second row of the header of the
Tables. One can see that the ternary quasi-diagonal and are-
flexive relations contribute the biggest part to the number of
maximal partial clones for k ≥ 4. Especially the ternary
relations % ∈ Q with δ(%) = δ3{0,1} contribute 292440 for



k = 5 and 5008453443 for k = 6. That means these rela-
tions alone determine the magnitude of |pMk|, at least for
these cases.

These numbers were found by a computer program
which is described in [11]. The program is written in
Haskell, is single-threaded and took about 52 hours on a
SunFire V490 to compute all coherent relations for k = 6.
The numbers found coincide with previous results; see [1]
for k = 2, [6] and [8] (independent from each other) for
k = 3, and [5] with corrections in [10] for k = 4.

The size of pM C
k seems to be related to |pMk| in an in-

teresting way as can be seen in Table 4. It seems reasonably
to assume that

|pMk| ∼ k! · |pM C
k |

for k ≥ 6. Because pPOLk % = pPOLk %[π] for any %(h)

and π ∈ Sh, there are at most |Sk| = k! different partial
clones for every class(%). Thus clearly |pMk| ≤ k!·|pM C

k |.
Thinking about automatic checking for completeness of

sets C ⊂ P̃k the following idea might reduce the memory
size needed for these checks.

Definition 10. Let f (n) ∈ P̃k and g ∈ Sk. Then define
F (n) := fg by

dom(F ) := {(g−1(x1), . . . , g−1(xn)) | (x1, . . . , xn) ∈ dom f}

and

fg(y1, . . . , yn) := g−1 (f(g(y1), . . . , g(yn)))

for all (y1, . . . , yn) ∈ dom(F ).
For U ≤ Sk let fU := {fg | g ∈ U} and f? := fSk .

For C ⊆ P̃k let CU := {fU | f ∈ C} and C? := CSk .

Theorem 11. Let C ⊆ P̃k and T ⊆ R̃max
k with

R̃max
k ⊆

⋃
%∈T

class(%).

Then [C]P = P̃k if and only if

• C 6⊆ Pk ∪ C∞, and

• Cg 6⊆ pPOLk % for all % ∈ T and all g ∈ Sk.

Proof. Let M ∈ pMk \ {Pk ∪ C∞}. Then there is some
χ(h) ∈ R̃max

k with M = pPOLk χ by Theorem 6, and by
assumption there is some % ∈ T with χ ∈ class(%). Thus
we have some g ∈ Sk and π ∈ Sh with

χ = {g(v)[π] | v ∈ %},

where we can assume w.l.o.g. π = id. We have Cg 6∈
pPOLk %, thus there is some f (n) ∈ C and v1, . . . , vn ∈ %
with

fg(v1, . . . , vn) := w ∈ Ehk \ %.

Thus

f(g(v1), . . . , g(vn)) = g(w) ∈ g(Ehk ) \ g(%) = Ehk \ χ

with g(vi) ∈ g(%) = χ for all i ∈ {1, . . . , n}. That means
f 6∈ pPOLk χ = M .

Thus C 6⊆ M for all M ∈ pMk and by Theorem 7 we
have [C]P = P̃k.

Example 12. Let k = 6 and we want to check if C =
{f1, . . . , fl} is complete, i.e., [C]P = P̃k. We assume the
following setting.

• Every tuple in the domain of an f ∈ C needs t = 10
Bytes on average to store.

• There are less than 1000 tuples in all domains com-
bined, i.e.,

d :=
∑
f∈C

|dom f | < 1000.

Because there exist binary partial Sheffer functions for
k = 6, i.e., with less than 36 tuples in the domain, the
restriction to 1000 tuples is not too restrictive.

• Every coherent relation takes about r = 10 Bytes to
store in a convenient format for testing preservation of
relations.

If we use the direct approach of storing all coherent
relations in memory, then we need at least r · |pMk| =
10 · 5242621816 Bytes, approximately 50 Gigabytes.

If we use Theorem 11 instead, then we need about t · d ·
k!+r · |pM C

k | < 10 ·1000 ·720+10 ·7322017 = 80420170
Bytes, approximately 80 Megabytes.

As |pMk| ≈ k!|pM C
k | for k = 6 we have to make about

the same number of tests in either case. Furthermore it is
fast to generate the set Cg for all g ∈ Sk. Thus the use of
Theorem 11 reduces the memory consumption considerably
while leaving the number of tests nearly constant.

For k = 5 we have r · |pMk| = 3257220 and t · d · k! +
r · |pMk| < 1232870 Bytes for the different approaches,
respectively. This is not so important with the todays mem-
ory sizes, and we would make about 20% more tests with
the second approach compared to the first. Thus the second
approach would be worse for k = 5 in the given scenario.

Unfortunately even the number of relation classes
|pM C

k | will propably grow very fast since |pM C
k | > |Mk|

for all k ≤ 6. Thus a list of coherent relations seems not
practical for bigger k. Under these circumstances we try
to use the description of coherent relations directly without
generating all coherent relations. We cannot hope to find
precise criteria for completeness but sufficient and neces-
sary conditions for complete systems should help in prac-
tice. The next chapter states such conditions.



4 Other completeness criteria

The number of coherent relations is quite large and it is
computationally difficult to find all of them. Thus we give
a list of coherent relations which are easy to enumerate and
functions are easy to check for preservation against these re-
lations. These give some necessary conditions for complete
function systems.

Example 13. Let C ⊆ P̃k with [C]P = P̃k. Then C 6⊆
pPOLk % for all % ∈ U ∪ {ιhk | 3 ≤ h ≤ k}.

If % ∈ U then we can check if C ⊆ pPOLk % in at most∑
f∈C |dom f | steps, because every tuple in dom f is in-

dependent of each other with regard to % in this case. Addi-
tionally, the set U = {χ ⊂ Ek | χ 6= ∅} can be enumerated
fast. For k = 6 with the setting from the example above
there are at most |U| ·

∑
f∈C |dom f | < 26 · 1000 = 64000

single tuple tests to be done. This is very small with respect
to checking all coherent relations.

If % ∈ {ιhk | 3 ≤ h ≤ k} then the test is easy, and most
expensive if C = {f} for some function f ∈ P̃k, so just as-
sume this is the case. Just take any h tuples s1∗, . . . , sh∗ ∈
dom f with |{f(si∗) | i ∈ {1, . . . , h}}| = h and check that
for every column s∗j we have at most h−1 different entries,
i.e. |{sij | i ∈ {1, . . . , h}}| ≤ h− 1.

The next theorem gives a sufficient condition for com-
pleteness.

Theorem 14. Let

• C := {f (h1)
1 , . . . , f

(hl)
l } ⊆ P̃k,

• ϕ1, . . . , ϕm ∈ Sk,

• Uj := {ϕ(v) | v ∈ Uj−1, ϕ ∈ 〈ϕ1, . . . , ϕj〉} for j ∈
{1, . . . ,m} and U0 := {ηk}.

Let

1. 〈ϕ1, . . . , ϕm〉 = Sk,

2. for all j ∈ {1, . . . ,m} there are i ∈ {1, . . . , l} and
v1, . . . , vhi

∈ Uj−1 with fi(v1, . . . , vhi
) = ϕj(ηk),

3. there are i ∈ {1, . . . , l} and v1, . . . , vhi
∈ Um with

fi(v1, . . . , vhi) ∈ δ
(k)
ε for some non-trivial equiva-

lence relation ε such that there is some x ∈ Ek with
(x, y) 6∈ ε for all y ∈ Ek \ {x}, i.e., ε has a singular
equivalence class,

4. for all χ ∈ {ιhk | h ∈ {3, . . . , k}} ∪ {%1, %2} there is
some f ∈ C with f 6∈ pPOLk χ, and

5. there is some f ∈ C with f 6∈ Pk ∪ C∞.

Then [C]P = P̃k.

Proof. Assume [C]P 6= P̃k. Then there is some M ∈ pMk

with C ⊆M . Because there is some f ∈ C with f 6∈ Pk ∪
C∞ we know that there is some coherent relation %(h) ∈
R̃max
k with M = pPOLk %.

• We first consider σ(%) = ∅. Then % ∈ {ιhk | h ∈
{3, . . . , k}} ∪ {%1, %2} and thus there is some f ∈ C
with f 6∈ pPOLk %, i.e. C 6⊆M .

• Now we see that there is some v ∈ σ(%) and we
can assume v = ηh. That means {v} = prh U0 :=
pr0,1,...,h−1 U0 and by (2) there is some function f ∈
C such that ϕ1(v) = f(v, . . . , v) ∈ % because f ∈
pPOLk %. Doing this repeatedly we get prh U1 =
{ϕ(v) | ϕ ∈ 〈ϕ1〉} ⊆ %.

By iteration we get prh U2,prh U3, . . . ,prh Um ⊆ %.
Thus σ(Ehk ) ⊆ σ(%) because 〈ϕ1, . . . , ϕm〉 = Sk and
thereforeUm = σ(Ekk ). This implies thatGσ(%) = Sh,
i.e. % is totally-symmetric.

If h = 1 then σ(Ehk ) = Ek and thus % = Ek, i.e.
% 6∈ R̃max

k , in contradiction to the assumption.

For h ≥ 2 we know by (3) that δ(%) 6= ∅. This means
that δ(%) = ι2k because % is coherent. But then % = E2

k

in contradiction to the assumption that % is coherent.

For h ≥ 3 we even know that δ(%) 6= δε for all ε
without singleton class. Assume δ(%) = δε and ε has
at least one singleton class. But then there is some π ∈
Sh with δ(%)[π] 6= δ(%) in contradiction to % coherent.

Thus δ(%) ∈ {ιhk , %1, %2}. If h = 4 then δ(%) 6= %i
for i ∈ {1, 2} because of (3), i.e., fi(v1, . . . , vhi) =
(x, x, y, z) ∈ δ(E4

k)\%i. Thus we see that δ(%) = ιhk =
δ(Ehk ). But then % = σ(%) ∪ δ(%) = Ehk contradicting
% coherent.

Thus we can conclude that C 6⊆ M for all M ∈ pMk and
by Theorem 7 we get [C]P = P̃k.

5 Conclusion

We have given the number of maximal partial clones up
to k = 6 which forced us to think about different ways
for checking for completeness of sets of partial functions.
It might be interesting to investigate this further and find
different approaches. There are still some open problems
such as the following:

• What are good candidate sets T for Theorem 11?

• Is there a formula for the number of maximal partial
clones like the one for the number of maximal total
clones? See [9].
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k |pMk| |S| |L| Pk ∪ C∅
3 4 5 6

2 8 1 1 1
3 58 1 1 1 1
4 1102 15 1 4 2 1
5 325722 1023 31 1 46 16 1
6 5242621816 1048575 32767 63 1 4141 786 1

Table 1. Number of maximal partial clones I

k |Q ∪ A|
1 2 3 4 5 6

2 2 3
3 6 30 18
4 14 416 505 144
5 30 16457 295080 11945 1092
6 62 1934514 5008589703 230676900 319722 14581

Table 2. Number of maximal partial clones II

k |Mk| |pMk|
2 5 8
3 18 58
4 82 1 102
5 643 325 722
6 15 182 5 242 621 816
7 7 848 984 ?
8 549 761 933 169 ?

Table 3. Number of maximal (partial) clones

k |pMk| |pM C
k |

|pMk|
|pMC

k
| k! |pMk|

|pMC
k
|·k!

2 8 7 1.14 2 0.57
3 58 26 2.23 6 0.37
4 1102 138 7.99 24 0.33
5 325722 3287 99.1 120 0.82
6 5242621816 7322017 716 720 0.99

Table 4. Size of pM C
k in comparison to pMk


