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Abstract

If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain
species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the
concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity.

This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of
chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only
those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction
rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which
appear as feasible factors in a pure component factorization.

The new analysis of the ambiguity of reaction rate constantsextends recent research activities on the Area of
Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in
order to reduce the AFS. The new methods are applied to model and experimental data.

Key words: spectral recovery, factor analysis, nonnegative matrix factorization, kinetic modeling, feasible rate
constants, area of feasible solutions.

1. Introduction

Multivariate curve resolution techniques are well-
established and powerful tools to extract pure compo-
nent information from spectroscopic data. Unfortu-
nately, these methods suffer from the non-uniqueness of
the possible nonnegative factorizations. Usually a con-
tinuum of factorizations exists. This fact is well-known
under the keyword of rotational ambiguity [1, 2]. If ad-
ditionally soft- and/or hard-constraints are imposed on
the solutions, then one can determine a unique solution.
In general, the non-uniqueness of the nonnegative fac-
torizations can be represented by drawing the sets of all
possible concentration profiles or all possible spectra in
the form of feasible bands [3]. Alternatively, the area
of feasible solutions (AFS) [4, 5, 6, 7, 8, 9] is a low-
dimensional representation of the set of all nonnegative
concentration profiles and all nonnegative pure compo-
nent spectra which appear in possible factorizations of
the spectral data matrix. In this sense, we consider the
AFS methodology as aglobal approachsince it pro-

vides an overview of the full range of all nonnegative
factorizations. In recent works [10, 11, 12] various soft
constraints have directly been applied to the AFS in or-
der to reduce the rotational ambiguity. This reduction of
the ambiguity is reflected by drastically smaller subsets
of the original AFS. These subsets represent the possi-
ble factorizations which additionally meet the soft con-
straints.

In this work the global approach including the subse-
quent reduction step is extended to kinetic hard-models.
A kinetic hard-model is well-known to be a very power-
ful restriction for a multivariate curve resolution method
[13, 14, 1, 15]. The parameters of such kinetic models,
namely the reaction rate constants, have not to be known
in advance, but can be computed during the model-
fitting process by means of an optimization procedure.
It is a well-known fact [16, 14, 17, 18] that sometimes
the reaction rate constants cannot uniquely be deter-
mined from incomplete concentration data, e.g. if the
concentration values are only accessible for the main



product of the reaction.This is a possible situation if,
e.g., an isolated spectral peak of the main product can
be used to extract the concentration information, see
[15]. For first-order consecutive chemical reactions the
non-uniqueness is also known as the “slow-fast ambi-
guity”. In case of the slow-fast ambiguity for instance,
the concentration profile of the main reaction product
depends in a symmetric way on two of the reaction rate
constants. In other words, these two rate constants can
be permuted without changing the time-dependent con-
centration function of this chemical component.Pos-
sibly but not necessarily this change can be associated
with negative entries in the spectral factor; this issue is
also discussed in this paper.A general analysis of these
questions is given in [19, 20], where identifiability and
distinguishability for first-order and more general sys-
tems are the key concepts. Identifiability means that ki-
netic parameters for an assumed kinetic can be found in
a unique way and distinguishability implies that one can
determine a unique reaction scheme.

The aim of this paper is to combine the question
of unique or non-unique reaction rate constants with
model-free curve resolution methods for the case of
general first-order kinetics. The rotational ambiguity
inherent to these pure component factorizations is re-
duced by considering only those concentration factors
which are possible solutions of the kinetic equations for
properly adapted reaction rate constants. To this end we
introduce the setK of rate constants whose associated
solutions of the kinetic equations result in feasible con-
centration factors. Further, the subsetK+ of K is de-
fined by taking only those reaction rate constants whose
associated concentration factorsC can be supplemented
by nonnegative spectral factorsA so that the productCA
reconstructs the initial spectral observation matrix. Fi-
nally, the setK+ is extended to a set of feasible rate
constants with respect to perturbationsK+ε by introduc-
ing an accepted noise levelε ≥ 0. A central result of
this paper is a theorem which characterizes the setK by
a similarity condition for the Kirchhoffmatrix.

1.1. Organization of the paper

The paper is organized as follows: Section 2 reca-
pitulates an elementary model example of the slow-fast
ambiguity for a first-order consecutive reaction system
with three components [16, 17]. Section 3 shows how a
kinetic hard-model can be implemented by a cost func-
tion which depends only on the reaction rate constants.
The central definitions of the sets of consistent and fea-
sible reaction rate constants are introduced in Section 4.
Additionally this section contains the central results of

the paper, namely Theorem 4.3 on a simple characteri-
zation of consistent vectors of rate constants. Section 5
is devoted to an extension of the set of feasible reaction
rate constants to noisy data. Finally, in Section 6 the
new concepts are applied to various first-order reaction
schemes. The associated sets of consistent and feasible
reaction rate constants are mathematically derived and
numerically computed.

2. Rate constants ambiguity for an elementary first-
order consecutive reaction

The kinetic equation of a first-order chemical reaction
with given initial concentrationsc0 has the form of the
vectorial initial value problem

dc(t)
dt
= M(k) c(t), c(t1) = c0. (2.1)

Therein thes× smatrix M(k) is the kinetic or Kirchhoff
matrix ands is the number of chemical components. It
depends on nonnegative reaction rate constants, which
are written by a vectork ∈ Rq with q components.

A simple consecutive first-order reaction scheme
with three components is sufficient in order to demon-
strate a certain non-uniqueness of the reaction rate con-
stants, which is known as the slow-fast ambiguity [16].

Example 2.1. We consider the first order consecutive
reaction

X
k1−→ Y

k2−→ Z

with the initial concentrations(1, 0, 0) for X, Y and Z.
The associated kinetic matrix or Kirchhoffmatrix reads

M(k) =



−k1 0 0
k1 −k2 0
0 k2 0

 . (2.2)

The solution of the initial value problem(2.1) for these
initial concentrations and this Kirchhoff matrix with
(k1, k2) = (2, 1) results in concentration profiles which
are shown in the first row of Figure 1. Additionally,
this first row in Figure 1 shows the three pure compo-
nent spectra which we have assumed. The associated
series of mixture spectra, i.e. the rows of the matrix D,
are plotted in Figure 2. A second set of rate constants,
namely(k̃1, k̃2) = (1, 2), exists, which is consistent with
the spectral data matrix D. The resulting concentration
profiles and pure component spectra are shown in the
second row of Figure 1.
This example problem allows to explain the slow-fast
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Figure 1: Two different factorizations for the consecutive reaction described in Example 2.1. The associated series of spectra for the mixture is

shown in Figure 2. The two concentration factors are consistent with the kinetic modelX
k1−−→ Y

k2−−→ Z for different sets of kinetic rate constants.
The factorA is nonnegative for each of these factorizations. Thus the two factorizations are feasible and consistent with the givenkinetic model.

ambiguity [21, 16, 17]. The crucial point is that the two
concentration profiles of the reaction product Z (in red
color) in the left column in Figure 1 are identical even
though the vectors of rate constants are different. In
other words, if the concentration of Z is an observable
quantity, then at least two sets of rate constants exist,
which result in the same concentration profile.

3. Kinetic hard-modeling and pure component fac-
torizations

We consider the following pure component factoriza-
tion problem: For a given spectral data matrixD ∈ Rm×n

a factorizationD = CA is wanted with nonnegative fac-
torsC ∈ R

m×s andA ∈ R
s×n. The spectral data matrix

D contains in itsm rows the mixture spectra taken at
m times from a chemical reaction system. Eachspec-
tral profilecontains absorption values atn frequencies.
The numbers represents the assumed active and inde-
pendent chemical components.We understand an in-
dependent chemical component as a chemical compo-
nent which increases the rank of the spectral data ma-
trix D by 1. Thuss is the rank of the matricesD,C and
A for noise-free and non-perturbed data.The matrices

C andA contain the concentration profiles and spectra
of the s pure components. For an introduction to this
factorization problem see, e.g., [1] and the references
therein. Usually, the nonnegative factorizationD = CA
is not unique. Instead, continua of nonnegative matrices
C andA exist. These sets of feasible solutions can be
represented by the low-dimensional AFS plots.

We are interested in a chemically correct and inter-
pretable factorization for which thes columns of the
concentration factorC describe the concentration pro-
files of thes chemical components along the time axis.
The associated factorA contains in its rows the pure
component spectra. The a priori knowledge of a chem-
ical reaction scheme is a very useful information in
order to determine chemically relevant factorizations
D = CA. In the best possible case only a single so-
lution is consistent with the chemical reaction scheme.
A by-product of such model-fit computations are opti-
mally adapted reaction rate constants. In other cases,
not only a single solution can be identified, but a small
subset of the initial set of all nonnegative factorizations
of D. With respect to the AFS representation of these
solutions, such a subset can have the form of a one-
dimensional curve within a two-dimensional AFS set
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Figure 2: Series of mixture spectra for the three-componentconsecutive reactionX→ Y→ Z, see Example 2.1.

(for the case of a three-component system).

3.1. A cost function on nonnegativity and consistency
with a kinetic hard-model

A certain chemical reaction scheme can be integrated
into a pure component factorizationD = CA. This of-
ten allows to reduce the rotational ambiguity drastically.
This integration can be done in the form of a hard con-
straint by considering a proper cost functional within an
SVD-based optimization procedure[1, 13, 22, 23]. Al-
ternatively, the hard model approach can be combined
with additional soft constraints in a joint optimization,
see e.g. [15].

In the following, we use the hard model approach.
This means that we construct a cost functionf (k) which
depends only on the (unknown) vectork ∈ R

q of re-
action rate constants. By solving the associated initial
value problem (IVP), solely those concentration pro-
files are considered as possible factorsC = C(ode)(k)m×s

+

which fulfill the IVP (2.1) and for which an associated
nonnegative spectral factorA exists so thatCAapproxi-
mates the given mixture data matrixD. Optimal values
of the rate constants are computed by a numerical min-
imization of the cost function. We still have to explain
how the time-continuous solution of the IVP

c(t) =



c1(t)
...

cs(t)


∈ Rs (3.1)

is related to the matrix factorC(ode)(k) ∈ R
m×s
+ . This

matrix results from an evaluation of the concentration
functions along the time gridt1 < t2 < · · · < tm. Thus
C(ode)(k) is completely determined by the vector of rate
constantsk. Finally, D ≈ UΣVT is a truncated singular
value decomposition [24] with the ranks, which is the

number of independent species. The numerical evalua-
tion of the cost function for a given vectork is summa-
rized in the steps:

1. C(ode)(k) is computed by solving the initial value
problem (2.1).

2. Thes× s matrix T = (C(ode)(k))+UΣ is computed
with the pseudo-inverse (C(ode)(k))+ of C(ode)(k).
(By the left-multiplication with the pseudo-inverse
a least-squares problem is solved with respect to
thes-dimensional column space ofU.)

3. The matrix factorsC = UΣT−1 andA = TVT are
calculated.

4. The value of the cost functionf (k) is

f (k) =
m∑

i=1

s∑

j=1

(
min

( Ci j

maxl(Cl j )
, 0

)
)2

+

s∑

i=1

n∑

j=1

(
min

( Ai j

maxl(Ail )
, 0

))2

+ ‖C(ode)(k) −C‖2F .

(3.2)

Therein the squared Frobenius norm‖ · ‖2F is the
sum of squares of its argument.

This approach is closely related to the pure hard-
modeling of de Juan et al. in [13]. A minor difference
is that we expand the time-discrete concentration with
respect to the left singular values ofD, which means no
difference for model data and amounts to a low-rank ap-
proximation for perturbed data. In contrast to the well-
known hard-soft MCR methods, the matricesC andA
are completely determined by thes× smatrixT, which
again is directly related to the matrixC(ode)(k), see steps
2 and 3 of the cost function. This underlines the high
impact of the kinetic model on the pure component fac-
torsC andA.
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For model data, which have been generated from a
given kinetic model, no low-rank approximation is nec-
essary as the data matrix has at most the ranks (aside
from rounding errors). Then mink f (k) = 0 holds and
the associated matrixC(ode)(k) coincides with the matrix
C.

In general cases, additional vectors of rate constants
k̃ can exist, which also fulfillf (k̃) = 0. In such cases,
the kinetic model does not provide sufficient informa-
tion in order to restrict the rotational ambiguity only to
a single pure component factorizationD = CA. Such
ambiguities are well known for irreversible consecutive
chemical reactions; cf. Example 2.1.

4. Parameter ambiguity for general first-order ki-
netics

The ambiguity of the reaction rate constants for gen-
eral first-order reaction systems is analyzed in this sec-
tion. The central result of this section is Theorem 4.3
which provides a simple criterion for determining sets
of rate constants that are consistent with the factoriza-
tion of the given spectral data.

4.1. Definitions of sets of consistent and feasible reac-
tion rate constants

We assume that the given spectral data matrixD ∈
R

m×n has at least one factorizationD = CA with non-
negative factorsC ∈ R

m×s andA ∈ R
s×n. Therein, the

s columns of the concentration factorC should be in-
terpreted as the concentration profiles of thes chemical
components along the time axis. Them entries of each
column ofC are the concentration values for the points
in time t1, . . . , tm. Finally, we assume that the concentra-
tion factorC is consistent with a vectork ∈ R

q of non-
negative reaction rate constants in the following sense:
The initial value problem (2.1) with the Kirchhoff ma-
trix M(k) has a solutionc(t) = (c1(t), . . . , cs(t))T ∈ Rs so
that the evaluation of theses concentration profiles for
the points in timet1, . . . , tm reproduces the matrix factor
C. Mathematically this evaluation with respect to the
grid pointst1, . . . , tm reads

C =



c1(t1) . . . cs(t1)
...

...

c1(tm) . . . cs(tm)


=: T c(t). (4.1)

The last equation defines the time grid discretization op-
eratorT which evaluates the time-continuous solution
c(t) of (2.1) on the given time grid. This results in the
matrixC.

With these preparations we define the set ofD-
consistent rate constants as follows:

Definition 4.1 (Set of D-consistent reaction rate con-
stants). Let D = UΣVT be the singular value decom-
position of the rank-s matrix D∈ R

m×n. The set of D-
consistent reaction rate constants k∈ Rq is defined as

K = {k ∈ Rq : c(t) solves(2.1), C = T c(t) and

∃T ∈ Rs×s, rank(T) = s and C= UΣT−1}.
(4.2)

In words the setK of D-consistent rate constants com-
prises all reaction rate constants whose associated solu-
tion c(t) of (2.1)on the discrete time grid t1, . . . , tm can
be represented by the left singular vectors of D, i.e. the
columns of U. (Sometimes we call the D-consistency
simply consistency.)

This definition of theD-consistent rate constant is not
sufficient to guarantee that the concentration factorC
can be supplemented by a nonnegative spectral factorA
in a way that the reconstructionD = CAholds. This ad-
ditional requirement is part of the following definition.

Definition 4.2 (Set of nonnegatively feasible rate con-
stants).

K+ = {k ∈ Rq : c(t) solves(2.1), C = T c(t) and

∃T ∈ Rs×s, rank(T) = s, C = UΣT−1

with A= TVT ≥ 0}.
(4.3)

The definition of the setK+, in comparison to (4.2),
contains the additional demand thatA ≥ 0. Conse-
quently it holds thatK+ ⊆ K . For the consecutive
reaction from Example 2.1 the set ofD-consistent re-
action rate constants is equal to the set of nonnegatively
feasible rate constants. This means thatK = K+ =
{(2, 1), (1, 2)}.

4.2. Analysis by the eigenvalues of the Kirchhoffmatrix

The setK of D-consistent rate constants can easily
be characterized by the set of the eigenvalues of the ki-
netic matrixM(k) in (2.1). Starting from a certainD-
consistent rate constant vectork∗ ∈ K , a further vectork
is also contained inK if M(k∗) andM(k) are similar ma-
trices. (Similarity ofM(k) andM(k∗) means that a reg-
ular matrixZ ∈ Rs×s exists so thatM(k∗) = Z−1M(k)Z.)
The following theorem contains the details.

Theorem 4.3. Let D ∈ R
m×n be a nonnegative matrix

with rank(D) = s so that a matrix factorization D= CA
with C ∈ R

m×s and A ∈ R
s×n exists. For this D the
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vector k∗ ∈ Rq is assumed to be a vector of D-consistent
rate constants in the sense of Definition 4.1. This means
that

T c∗(t) = C∗ = UΣ(T∗)−1 (4.4)

with a regular s×s matrix T∗. Then the following equiv-
alence holds:

The vector k∈ R
q
+ is D-consistent, if and only if the

matrices M(k) and M(k∗) are similar matrices,i.e., they
have the same sets of eigenvalues.

The proof of this theorem is postponed to Appendix
A.

Remark 4.4. 1. Theorem 4.3 shows that the set
membership of a certain k to the setK of D-
consistent reaction rate constants, see Definition
4.1, can simply be decided by testing the similar-
ity of the matrices M(k) and M(k∗) with k∗ ∈ K .
Similar matrices, this is written as M(k) ∼ M(k∗),
have the same eigenvalues and their equal eigen-
values can be paired in a way that the associated
eigenspaces have the same dimensions. (In the lan-
guage of linear algebra, thesets of eigenvaluesof
M(k) and M(k∗) are the same and in the case of
multiple eigenvalues any eigenvalue of M(k) is as-
sociated with the same eigenvalue of M(k∗) and
these eigenvalues have the same geometric multi-
plicity, see [24].) With the similarity operator∼
this can compactly be written as

K =
{
k ∈ Rq : M(k) ∼ M(k∗)

}
. (4.5)

2. Numerically, Equation(4.5)can approximately be
checked by the simple and computationally cheap
computation of thesets of eigenvaluesof M(k) and
M(k∗). If M(k) and M(k∗) have equal eigenvalues
(equality is meant with respect to a proper multiple
of the machine precision) and if in the case of mul-
tiple eigenvalues all geometric multiplicities are
the same, then M(k) ∼ M(k∗) holds. Numerically,
the non-diagonalizabilty of a matrix (such a ma-
trix is often called defective) cannot be checked as
the Jordan normal form of a matrix cannot be com-
puted numerically. The key point is that a proper
arbitrarily small perturbation of a defective ma-
trix can transform this matrix into a diagonalizable
matrix (with a large condition number).

3. Theorem 4.3 provides a simple criterion on D-
consistency in the sense of Definition 4.1. This cri-
terion does not guarantee the nonnegativity of the
factor A. If additionally the existence of a non-

negative factor A is required, thenK reduces to its
subsetK+ of nonnegatively feasible rate constants.

4.3. Graphical presentation ofK andK+

If the first-order chemical reaction system is de-
scribed by a number ofq rate constants, then the setsK
andK+ are subsets of theq-dimensional space. How-
ever only forq = 2 andq = 3 a graphical representation
of these sets is easily possible by a 2D or 3D plot. Ev-
ery opportunity should be taken in order to reduce the
dimension of the graphical representation for the cases
with q ≥ 4. A reduction from the dimensionq to q− 1
is possible in the following way:

1. Similar matrices have the same trace (sum of di-
agonal elements or, equivalently, sum of eigenval-
ues). Hence a constantψ exists so that

ψ = −
q∑

i=1

λi = −trace(M(k)) (4.6)

for all k ∈ K . Theλi are the eigenvalues ofM(k).
2. For a first-order chemical reaction system the neg-

ative trace of the Kirchhoffmatrix M(k∗) with k∗ ∈
K equals

q∑

i=1

ki = ψ

as theith subreaction contributes the term−ki to
the diagonal of the Kirchhoff matrixK ; for an il-
lustration of this relation see the example systems
in Sections 6.2, 6.3 and 6.4.

3. A combination of the last two equations shows that
the jth rate constantk j for j ∈ {1, . . . , q} can be
expressed as

k j = ψ −
q∑

i=1
i, j

ki . (4.7)

Hence the linear relation (4.7) allows to present the sets
K andK+ within a (q− 1)-dimensional space.

4.4. Numerical computation ofK andK+

The numerical computation of the setK of all vec-
tors of D-consistent reaction rate constants, see Defi-
nition 4.1, requires very long computation times. For
each possiblek an initial value problem is to be solved
in order to determine the matrixC(ode)(k). The result
of Theorem 4.3 is that initial value problems are not be
solved any longer. Instead an eigenvalue problem is to
be solved for the smalls×sKirchhoffmatrixM(k). This
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is a simple and computationally very cheap step. Addi-
tionally, Section 4.3 shows thatK can graphically be
represented in a (q− 1)-dimensional space. A straight-
forward strategy for the computation ofK is a system-
atic grid search. Therefore we cover a proper bounded
subset of theRq−1 by an equidistant grid. For each
grid point, the grid points are vectors of rate constants,
it is checked whether or not this point fulfills theD-
consistency. A comparable grid search has been used
in [25] for the computation of the area of feasible solu-
tions.

The starting point for the grid search algorithm is
a certainD-consistent rate constantk∗. Such an ini-
tial solution can be calculated by using a proper hard-
modeling kinetic procedure as used in [13, 1]. Then the
grid search can be started. For very simple reaction sys-
tems the whole computation can be done analytically,
see Section 6 for an example. In the general case, a
numerical approximation ofK is the only practical ap-
proach.

Finally, the subsetK+ of nonnegatively feasible rate
constants can be extracted fromK by checking compu-
tationally the nonnegativity of the factorA according to
Definition 4.2.

4.5. Link to the area of feasible solutions

The area of feasible solutions (AFS), e.g. see [4, 5, 6,
7, 8, 9], represents the set of all factorizationsD = CA
with nonnegative factorsC and A for a given spectral
data matrixD. In more detail, the concentrational AFS
which is denoted byMC in [7] is a low-dimensional
representation of the set of all nonnegative factorsC.
Analogously, the spectral AFSMA is a low-dimensional
representation of all spectral factorsA. The AFS is com-
puted only by using the spectral data matrixD. The
AFS does not include a consistency check of the non-
negative solutions inC andA with a kinetic model of
the reaction. This fact opens the possibility to combine
the information on the set of nonnegatively feasible rate
constantsK+ with the AFS construction. The feasibility
condition by Definition 4.2 imposes an additional con-
straint on the areas of feasible solutionsMC andMA.
Hence subsets of the AFS can be identified which repre-
sent those factorizations ofD that are additionally con-
sistent with the underlying kinetic model. In Section 6.7
and Figure 14 numerical results of such a combination
ofMC andMA with a kinetic model are presented.

An interesting additional feature of the setK+ is that
the scaling information for the factorsC andA is known
as these factors result from the solutionC(ode) of an ini-
tial value problem. All this provides the selected AFS

solutions with an absolute scaling whenever a kinetic
model of the reaction is accessible.

4.6. Application to data without sign restrictions

Up to now we have always assumed that the matrix
D contains only nonnegative absorption data. How-
ever, Definition 4.1 of the setK describes the consis-
tency with the kinetic model and does not requireD to
be a nonnegative matrix. At first, the analysis by the
setK+ includes that the spectral factorA is a com-
ponentwise nonnegative matrix. Hence, any spectro-
scopic technique which underlies the bilinear Lambert-
Beer law can be analyzed in the sense of the setK . We
have tested this for simulated circular dichroism spec-
troscopic data.

5. Computation ofK+ for perturbed data

Section 4 contains an analysis of the ambiguity of
the kinetic rate constants for first-order kinetics. Up to
now this analysis is restricted to non-perturbed model
data and cannot be applied to experimental data with
a nonzero noise-to-signal ratio. For experimental data
the minimum of the cost functionf (k), see Equation
(3.2), is usually larger than zero. Hence the definition
of the set ofD-consistent rate constantsK in Equa-
tion (4.2) cannot be applied in its strict sense, since the
non-perturbed solutionC(ode) of the initial value prob-
lem cannot precisely be reconstructed from the left sin-
gular vectors ofD.

In order to overcome this problem and in order to an-
alyze the sensitivity of the reaction rate constants, we
define the set of feasible rate constantsK+ε for a noise
level whose magnitude is controlled by the parameter
ε. The setK+ε contains all rate constants for which the
cost functionf (k) from Equation (3.2) returns a value
not larger thanε. The following algorithm for the com-
putation ofK+ε uses the setK as its starting point.

5.1. Definition of the set of feasible rate constants for
perturbed data

The set of nonnegatively feasible rate constantsK+ε
with respect to the noise levelε ≥ 0 is defined to be

K+ε = {k ∈ R
q
+ : f (k) ≤ ε}. (5.1)

Therein, the cost functionf (k) is given in (3.2). By the
construction off the inequalityf (k) ≤ ε guarantees that
negative entries ofC and A are bounded from below
and thatC(ode) is re-constructable from the left singular
vectors except for a minor error which tends to zero if
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ε tends to zero. For the limit caseε = 0 it holds that
K+0 = K+.

For perturbed data the trace invariance property from
Section 4.3 is no longer true. In other words

∑q
i=1 λi is

not constant in cases withε > 0. Hence the representa-
tion of K+ for a system withq rate constants can only
be given in theRq

+ and not in theRq−1
+ .

5.2. Algorithmic approach for the computation ofK+ε
In Section 4 a strategy has been developed for the

computation ofK andK+. Based on the properties
K+ ⊆ K andK+ ⊂ K+ε for any ε > 0 a procedure
to computeK+ε is outlined next:

1. Starting from aD-consistent rate constantk∗ (or at
least thek∗ which minimizes f (·)) the associated
setK is computed by the grid search algorithm.

2. The setK is reduced toK+ by testing the nonneg-
ativity constraint for the factorA.

3. The setK+ is inflated to the setK+ε by evaluating
the cost functionf in a neighborhood ofK+.

Steps 1 and 2 are explained in Section 4. Step 3 is de-
scribed in the next subsection.

5.3. Numerical inflation ofK+ toK+ε
The setK+ε for q = 2 is planar and a subset ofR2

+. Its
numerical computation can be based on the same tech-
niques as have been used for the computation of the area
of feasible solutions in [4, 5, 6, 7]. In particular, these
concepts are the grid search method [25], the triangle
enclosure procedure [6] or the polygon inflation method
[7, 8]. Minor changes in the program codes are neces-
sary, namely the target function, which classifies a rate
constant as feasible or not, has to be changed.

For the caseq = 3 the setK+ε is a subset ofR3
+. Once

again, the grid search method, the sliced triangle enclo-
sure procedure [26] or a polyhedron inflation algorithm
are appropriate tools for the computation ofK+ε .

6. System analysis for model data sets and experi-
mental data

In this section the analytical concepts are applied to
four different sets of model data and additionally to one
data set of experimental UV/Vis spectra. These demon-
strations include the analysis of four different types of
first-order chemical reactions which include consecu-
tive reactions and equilibrium reactions. For the model
data sets the ambiguity of the reaction rate constants
are analyzed by computing the setsK andK+. For the
UV/Vis data and also for two of the model data sets the
setsK+ε are computed for different values ofε.

6.1. A two-component reversible reaction system

We consider the reaction mechanism of the two-
component reversible system

X
k1−−⇀↽−−
k−1

Y

with the initial valuescX(0) = 1 andcY(0) = 0. The
Kirchhoffmatrix reads

M(k) =

(
−k1 k−1

k1 −k−1

)
.

The eigenvalues ofM(k) areλ1 = −k1− k−1 andλ2 = 0.
The concentration profiles can be computed by solv-

ing the associated initial value problem. The refer-
ence reaction rate constants are taken ask∗1 = 2 and
k∗−1 = 1. For this parametrization the concentration pro-
files are shown together with the associated pure com-
ponent spectra, two Gaussian functions are assumed, in
Figure 3.

First the set ofD-consistent rate constantsK is deter-
mined. Therefore all 2×2 matrices are to be determined
which are similar toM(k). By similarity these matrices
have the eigenvalues−k1 − k−1 and 0. With the trace of
a reference matrixM(k∗) with ψ = k∗1+k∗−1, cf. Equation
(4.6), this leads to the linear relation

k1 + k−1 = ψ.

This equation describes a straight line in the positive
quadrant of the positive rate constants. In other words
k−1 = ψ − k1. Hence

K =
{(

α

ψ − α

)
: α ∈ (0, ψ]

}
. (6.1)

In order to determine the subsetK+ we fix in the present
model problemk∗1 = 2 andk∗−1 = 1 so thatψ = 3,
cf. Equation (4.6). By an elimination in the equation
CA = C̃ Ã which describes two feasible factorizations
(for the details see [27]) we get the subset of rate con-
stantsK+ being associated with nonnegativeA

K+ =
{(

α

ψ − α

)
: α ∈ [1.9004, ψ]

}
. (6.2)

Therein the lower bound forα satisfies

k1 max
i=1,...,n

A1i − A2i

A1i
= 1.9004.

The setsK andK+ as well as the associated continua
of nonnegative factorsC andA are shown in Figure 4.
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Figure 3: Concentration profiles and pure component spectrafor the two-component model problem from Section 6.1.
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Figure 4: The model problem from Section 6.1 is considered. Left: The set ofD-consistent rate constantsK by (4.2) is an anti-diagonal broken
line and solid line in [0, 3] × [0, 3]. Its subset of nonnegatively feasible kineticsK+ by (4.3) is drawn as a solid line. These sets are analytically
given in (6.1) and (6.2). The vectork = (0, 3) is not an element ofK ; this open end of the set is marked by a small black circle.
Center and right: The continua of associated nonnegative factorsC andA for the set of feasible kineticsK+ are plotted. A color shading from red
to blue is used in order to express the pairing of associated concentration profiles and spectra. The isolated red spectral profile in the right subplot
is the spectral profile ofX, which can uniquely be extracted from the data att = 0.
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Next the same model problem is considered for non-
negative initial concentrations valuescX(0) > 0 and
cY(0) > 0. Then the subsetK+ of K consists of two
isolated line segments, see Figure 5.

6.2. A three-component partially reversible reaction
system - part 1

The reaction mechanism for a three-component sys-
tem is taken as follows

X
k1−→ Y

k2−−⇀↽−−
k−2

Z.

The initial concentrations are given bycX(0) = 1,
cY(0) = 0 andcZ(0) = 0, and the Kirchhoffmatrix reads

M(k) =



−k1 0 0
k1 −k2 k−2

0 k2 −k−2

 .

The eigenvalues of the matrixM(k) are λ1 = −k1,
λ2 = −k2 − k−2 andλ3 = 0. For the model problem the
reference valuesk∗1 = 1, k∗2 = 2 andk∗−2 = 1 are used.
For these parameters the concentration profiles and the
pure component spectra (three Gaussians) are presented
in Figure 6.

The set ofD-consistent rate constantsK and its sub-
set of feasible rate constantsK+ have the following
forms

K =





φ

α

ψ − φ − α

 : α ∈ (0, ψ − φ]


∪





ψ − φ
β

φ − β

 : β ∈ (0, φ]



K+ =





φ

α

ψ − φ − α

 : α ∈ [1.7155, ψ − φ]


∪





ψ − φ
β

φ − β

 : β ∈ [0.8087, φ]


(6.3)

with φ = k∗1 = 1 andψ = k∗1 + k∗2 + k∗−2 = 4. The
lower bounds forα andβ inK+ result from a numerical
evaluation of the following terms

k2 max
i=1,...,n

A2i − A3i

A2i
= 1.7155,

k1 max
i=1,...,n

(ψ − k1)A1i + (k1 − k−2)A2i − k2A3i

k1A2i + (ψ − k1)A1i
= 0.8087.

The derivation of these formula requires complex math-
ematical computations which have been done by using
computer algebra systems; all results have been con-
firmed numerically by means of the grid search proce-
dure. The setK and its subsetK+ of feasible rate con-

stants are plotted in Figure 7. These sets can be plot-
ted in 2D as the fixed trace condition, see Section 4.3,
implies the linear relationk1 = ψ − k2 − k−2 wherein
the constantψ = 4 is the sum of the components of
k∗ = (1, 2, 1). Figure 7 additionally shows the con-
tinua of the concentration profiles and of the nonneg-
ative spectra which are represented byK+.

6.3. A three-component partially reversible reaction
system - part 2

As a second reaction mechanism for a three-
component system we consider

X
k1−−⇀↽−−
k−1

Y
k2−→ Z

with the initial concentrationscX(0) = 1, cY(0) = 0 and
cZ(0) = 0. The Kirchhoffmatrix is given by

M(k) =



−k1 k−1 0
k1 −k−1 − k2 0
0 k2 0

 .

Its eigenvalues areλ1,2 = −(ψ ±
√
φ)/2 andλ3 = 0 with

ψ = k1 + k−1 + k2, φ = (k1 + k−1 + k2)2 − 4k1k2.

We use the reference valuesk∗1 = 2, k∗−1 = k∗2 = 1. The
three pure component spectra forX, Y and Z are the
same as used in Section 6.2, see Figure 6. The concen-
tration profiles are presented in Figure 8.

The setsK andK+ have the form

K =





α

β(α)
γ(α)

 : α ∈
[
ψ −
√
φ

2
,
ψ +
√
φ

2

]
,

K+ =





α

β(α)
γ(α)

 : α ∈
[
1.3001,

ψ +
√
φ

2

]
.

(6.4)

Therein the functionsβ(α) andγ(α) are given by

β(α) = −1
4

(ψ − 2α)2 − φ
α

, γ(α) = ψ − α − β(α)

with ψ = 4, φ = 8 and the given values fork∗±1 andk∗2.
The lower bound forα in K+ has the form

k1 max
i=1,...,n

A1i − A2i

A1i
= 1.3001.

All these results together with the continua of nonneg-
ative factorsC andA which are represented by the set
K+ of feasible rate constants are presented in Figure 9.
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Figure 6: Concentration profiles and spectra of the pure components for the model problem from Section 6.2. The reaction rate constants are
k1 = 1, k2 = 2 andk−2 = 1, and the initial concentrations are set tocX(0) = 1, cY(0) = 0 andcZ(0) = 0.
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Center and right: The continua of associated nonnegative factorsC andA for the set of feasible kineticsK+ are plotted. A color shading from red
to blue is used in order to express the pairing of associated concentration profiles and spectra. The single/isolated concentration profiles or spectra
represent unique solutions, e.g. the spectral profile ofX can uniquely be extracted from the data att = 0.
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Section 6.2 and are shown in Figure 6.
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6.4. A three-component system including parallel reac-
tions

Next the three componentsX, Y andZ are assumed to
form two reaction pathways for the componentX. The
reaction mechanism is

X
k1−−⇀↽−−
k−1

Y, X
k2−→ Z

with the initial concentrationscX(0) = 1, cY(0) = 0 and
cZ(0) = 0. Hence the Kirchhoffmatrix reads

M(k) =



−k1 − k2 k−1 0
k1 −k−1 0
k2 0 0

 .

The eigenvalues ofM(k) areλ1,2 = −(ψ±
√
φ)/2,λ3 = 0

with

ψ = k1 + k−1 + k2,

φ = (k1 + k−1 + k2)2 − 4k−1k2.

The reference values for the rate constants are taken as
k∗1 = 2 andk∗−1 = k∗2 = 1. Once again, the same Gauss
profiles as used in Section 6.2 are taken for the pure
component spectra. The solution of the initial value
problem (2.1) with the presentM(k) and the given ini-
tial values results in the concentration profiles which are
shown in Figure 10.

The set ofD-consistent rate constantsK and its sub-
set of nonnegatively feasible rate constantsK+ read

K =





α(β)
β

γ(β)

 : β ∈
[
ψ −
√
φ

2
,
ψ +
√
φ

2

)
,

K+ =





α(β)
β

γ(β)

 : β ∈ [0.58115, 1.7207]


.

(6.5)

Therein the constantsα(β) andγ(β) are given by

α(β) = −1
4

(ψ − 2β)2 − φ
β

, γ(β) = ψ − α(β) − β

andψ = 4, φ = 12. The analytic formula for theβ-
interval inK+ are skipped due to their high complexity.
Instead, only the numerical evaluation of these bounds
is given. Figure 11 shows the setsK andK+ together
with the associated continua of nonnegative feasible fac-
torsC andA.

6.5. Feasible rate constants for perturbed/noisy experi-
mental data

Next the set of feasible rate constants is computed
for UV/Vis data from [31] where the influence of sub-
stituents in ButiPhane ligands is investigated on the hy-
drogenation activity of rhodium complexes. A number
of k = 82 UV/Vis spectra each withn = 1951 channels
is given. The underlying reaction mechanism is simply

X
k1−→ Y. In order to demonstrate the computation of

the set of feasible rate constants we assume the slightly
more complex mechanism of the equilibrium

X
k1−−⇀↽−−
k−1

Y.

The set of nonnegatively feasible rate constantsK+ε with
respect to the noise levelε ≥ 0 is computed, cf. (5.1).
The following analysis allows to judge of the question
whether or not the experimental data could also be in-
terpreted by an equilibrium reaction.

Due to the high quality of the UV/Vis spectral data
only a relatively small noise levelε is assumed. For the
given experimental data we have observed the minimum
mink f (k) = 1.09·10−5. This shows thatεmust be larger
than 1.09 · 10−5 in order to find any feasible solutions.
First the functionf (k) is evaluated on the rectangle of
reaction rate constants

(k1, k−1) ∈ [10−3, 2 · 10−2] × [0, 10−2].

The results and the computed setsK+ε for the three dif-
ferent valuesε ∈ {1.5 · 10−3, 5 · 10−3, 1 · 10−2} are pre-
sented in Figure 12. All computations have been exe-
cuted by using a simple grid search method; the com-
putational costs for the evaluation of the cost function
are not very high. As the setK+ε consists only of one
connected set, even the polygon inflation technique [7]
can be used for the numerical computation ofK+ε .

6.6. Numerical computation of the setK+ε
In Section 5.1 the setK+ε of feasible rate constants for

perturbed data is introduced. By definition it holds that

K+ ⊂ K+ε ⊆ K+ε̃

for every 0≤ ε ≤ ε̃.
First, we consider Example 2.1 for which the setK+

consists of only two isolated points. For the two noise
levels

ε ∈ {1 · 10−3, 5 · 10−3}

the two setsK+ε̃ increase aroundK+, which is shown in
the upper left sub-plot of Figure 13. For this problem
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Figure 10: The concentration profiles for the three-component model data from Section 6.4. The pure component spectra are the same as used in
Section 6.2 and shown in Figure 6.
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Figure 11: Analysis of the three-component model system including parallel reactions from Section 6.4. Left: The set ofD-consistent rate
constantsK is drawn by dashed and by solid lines. Its subsetK+ is plotted by the solid line. Because of the fixed trace condition, see Section 4.3,
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14



2 4 6 8 10 12

x 10
−3

0

0.005

0.01

−2

−1

0

1

2

3

k1

k−1

lo
g(

f(
k)

)

2 4 6 8 10 12

x 10
−3

0

0.002

0.004

0.006

0.008

0.01

 

 

k1

k −
1

K+0.01
K+0.005
K+0.0015

K

Three setsK+ε for different levels ofε

Figure 12: Analysis of the UV/Vis data set for ButiPhane ligands and the hydrogenation activity, see Section 6.5.
Left: Numerical evaluation of the cost functionf (k), see Equation (3.2).
Right: Different levels ofε lead to a chain of setsK+ε . The three valuesε ∈ {1.5 · 10−3, 5 · 10−3, 1 · 10−2} have been used.

the two isolated solutions are transformed by noise to
two continua of possible solutions. The upper right sub-
plot of Figure 13 shows the setK+ for the reversible
two-component reaction system from Section 6.1. For
this experiment the three noise levels are

ε ∈ {5 · 10−5, 5 · 10−4, 5 · 10−3}.

The remaining two plots in the lower row of Fig-
ure 13 demonstrate the setsK+ andK+ε for the three-
component model problem from Section 6.3 whose as-
sociated setsK andK+ are shown in Figure 9. In all
these cases one observes a continuous effect of an in-
creasingε (i.e. small deviations from the kinetic model
are accepted and also small negative entries in the fac-
torsC andA of the factorizationD = CA are accepted)
on increasing setsK+ε of nonnegatively feasible reaction
rate constants.

6.7. Combination of the AFS andK+

In Section 4.5 an explanation is given how the area
of feasible solutionsM can be combined with the set
of feasible rate constantsK+. Next a numerical exam-
ple is given for the three-component model system from
Section 6.4. Therefore the areaMC of feasible concen-
tration factorsC and the areaMA of feasible spectral
factorsA are plotted in Figure 14. Then the subset of all
these AFS segments which represent solutions that be-
long to feasible rate constant vectorsK+ in the sense of
Definition 4.2 are marked by black color. This clearly
indicates how strongly the consistency of a nonnegative

factorization ofD with an underlying kinetic model can
reduce the rotational ambiguity. The series of the ex-
tracted concentrational factors and spectra are shown in
Figure 11.

7. Conclusion

Kinetic modeling is widely used in the process of
extracting pure component information from spectro-
scopic data. However, little attention is paid to the ex-
istence of an ambiguity of the rate constants. For first-
order reaction schemes we have presented the theoret-
ical basis together with an algorithmic approach for an
efficient numerical computation of this ambiguity. An-
alytical investigations of these ambiguities have been
carried out for four typical first-order reaction schemes.
Additionally, numerical results have been presented for
model data and UV/Vis experimental data. The latter
results confirm the stability of the numerical algorithm
with respect to noise.
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A. Appendix: Proof of the Theorem 4.3

This section contains the proof of the Theorem 4.3
from Section 4, which is a main result of this paper.

Proof. Let c(t) andc∗(t) be solutions of the initial value
problems

dc(t)
dt
= M(k) c(t), c(t1) = c0,

dc∗(t)
dt
= M(k∗) c∗(t), c∗(t1) = c0.

We set the starting timet1 equal to 0. This assump-
tion does not restrict the generality of the proof as the
zero point in time can be fixed arbitrarily. However, this
allows us to write the solutions of the initial value prob-
lems in the simple form

c(t) = eM(k)tc0, c∗(t) = eM(k∗)tc0.

We assume the similarityM(k) = Z−1M(k∗)Z with a
regular matrixZ ∈ R

s×s. We also assume thatM(k)

andM(k∗) are diagonalizable matrices; at the end of the
proof the general case is treated. With the time-grid dis-
cretization operator from (4.1) we can writeC = C(k)
as follows:

C = T c(t) =



(c(t1))T

...

(c(tm))T



=



(eM(k)t1c0)T

...

(eM(k)tmc0)T



=



cT
0 (eZ−1M(k∗)Zt1)T

...

cT
0 (eZ−1M(k∗)Ztm)T



=



cT
0 ZT (eM(k∗)t1)TZ−T

...

cT
0 ZT (eM(k∗)tm)TZ−T



with Z−T := (Z−1)T . Together with the diagonaliza-
tion of M(k∗) = Y−1ΛY for the diagonal matrixΛ =
diag(λ1, . . . , λs) containing the eigenvaluesλ1, . . . , λs,
we continue the calculation from above

=



cT
0 (YZ)TeΛt1(YZ)−T

...

cT
0 (YZ)TeΛtm(YZ)−T



=



(YZc0)TeΛt1

...

(YZc0)TeΛtm


(YZ)−T . (A.1)

With the definitionw := YZc0 ∈ R
s the (m× s)-matrix

(in large brackets) in (A.1) can be written as



wTeΛt1

...

wTeΛtm


=



w1eλ1t1 . . . wseλst1

...
...

w1eλ1tm . . . wseλstm


. (A.2)

Thescolumn vectors

(eλi t1, . . . , eλi tm)T ∈ Rm

for i = 1, . . . , s span the column space of the matrix in
Equation (A.2). In order to see that these two spaces are
s-dimensional, one has to take into account thatD, C
andC∗ are rank-smatrices.
We introduce the vectorw∗ = Yc0 ∈ Rs in order to build
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the matrix


(w∗)TeΛt1

...

(w∗)TeΛtm


=



w∗1eλ1t1 . . . w∗se
λst1

...
...

w∗1eλ1tm . . . w∗se
λstm


. (A.3)

If w∗ has no zero components (i.e. the rank-scondition),
then the column spaces of (A.2) and (A.3) are the same
and a regulars× smatrixG exists so that



wTeΛt1

...

wTeΛtm


=



(w∗)TeΛt1

...

(w∗)TeΛtm


G.

With these results we continue the chain of transforma-
tions from Equation (A.1). Hence

C =



(YZc0)TeΛt1

...

(YZc0)TeΛtm


(YZ)−T =



wTeΛt1

...

wTeΛtm


(YZ)−T

=



(w∗)TeΛt1

...

(w∗)TeΛtm


G(YZ)−T

=



cT
0 YTeΛt1

...

cT
0 YTeΛtm


Y−TYTG(YZ)−T

=



cT
0 (eM(k∗)t1)T

...

cT
0 (eM(k∗)tm)T


YTG(YZ)−T

= (T c∗(t)) YTG(YZ)−T

= C∗ YTG(YZ)−T with (4.4)

= UΣ (T∗)−1YTG(YZ)−T )︸                  ︷︷                  ︸
=:T−1

.

This is just theD-consistency ofk with the regulars× s
matrixT−1 = (T∗)−1YTG(YZ)−T .
The second direction of the proof can be shown by using
the same arguments as used above. However, a partially
new arrangement of the logical flow and of some of the
definitions (e.g. of the matrixZ) is required. Further,
the uniqueness of the solution of an initial value prob-
lem is used.
If the similar matricesM(k) and M(k∗) are not diag-
onalizable, then a continuity argument can be used to
prove the assertion. The set of diagonalizable matrices
is a dense set in the set of all matrices. In other words,
arbitrarily small perturbations of a non-diagonalizable

matrix can convert these into diagonalizable matrices.
A continuity argument helps to transfer the assertion to
the “small” set of non-diagonalizable matrices.
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