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Abstract

If for a chemical reaction with a known reaction mechanisendbncentration profiles are accessible only for certain
species, e.g. only for the main product, then often the i@acate constants cannot uniquely be determined from the
concentration data. This is a well-known fact which inclsitiee so-called slow-fast ambiguity.

This work combines the question of unique or non-uniqueti@acate constants with factor analytic methods of
chemometrics. The idea is to reduce the rotational amlyigiiipure component factorizations by considering only
those concentration factors which are possible solutibttseokinetic equations for a properly adapted set of reactio
rate constants. The resulting set of reaction rate corsstamtesponds to those solutions of the rate equations which
appear as feasible factors in a pure component factorizatio

The new analysis of the ambiguity of reaction rate constartends recent research activities on the Area of
Feasible Solutions (AFS). The consistency with a given dbalhneaction scheme is shown to be a valuable tool in
order to reduce the AFS. The new methods are applied to madedbgerimental data.

Key words: spectral recovery, factor analysis, nonnegative matdtofézation, kinetic modeling, feasible rate
constants, area of feasible solutions.

1. Introduction vides an overview of the full range of all nonnegative
factorizations. In recent works [10, 11, 12] various soft
constraints have directly been applied to the AFS in or-
der to reduce the rotational ambiguity. This reduction of
the ambiguity is reflected by drastically smaller subsets
of the original AFS. These subsets represent the possi-
ble factorizations which additionally meet the soft con-
straints.

Multivariate curve resolution techniques are well-
established and powerful tools to extract pure compo-
nent information from spectroscopic data. Unfortu-
nately, these methodsf$er from the non-uniqueness of
the possible nonnegative factorizations. Usually a con-
tinuum of factorizations exists. This fact is well-known
under the keyword of rotational ambiguity [1, 2]. If ad-
ditionally soft- angor hard-constraints are imposed on In this work the global approach including the subse-
the solutions, then one can determine a unique solution. quent reduction step is extended to kinetic hard-models.
In general, the non-uniqueness of the nonnegative fac- A kinetic hard-model is well-known to be a very power-
torizations can be represented by drawing the sets of all ful restriction for a multivariate curve resolution method
possible concentration profiles or all possible spectrain [13, 14, 1, 15]. The parameters of such kinetic models,
the form of feasible bands [3]. Alternatively, the area namely the reaction rate constants, have not to be known
of feasible solutions (AFS) [4, 5, 6, 7, 8, 9] is a low- in advance, but can be computed during the model-
dimensional representation of the set of all nonnegative fitting process by means of an optimization procedure.
concentration profiles and all nonnegative pure compo- It is a well-known fact [16, 14, 17, 18] that sometimes
nent spectra which appear in possible factorizations of the reaction rate constants cannot uniquely be deter-
the spectral data matrix. In this sense, we consider themined from incomplete concentration data, e.g. if the
AFS methodology as global approachsince it pro- concentration values are only accessible for the main



product of the reactionThis is a possible situation if,  the paper, namely Theorem 4.3 on a simple characteri-
e.g., an isolated spectral peak of the main product canzation of consistent vectors of rate constants. Section 5
be used to extract the concentration information, see is devoted to an extension of the set of feasible reaction
[15]. For first-order consecutive chemical reactions the rate constants to noisy data. Finally, in Section 6 the
non-uniqueness is also known as the “slow-fast ambi- new concepts are applied to various first-order reaction
guity”. In case of the slow-fast ambiguity for instance, schemes. The associated sets of consistent and feasible
the concentration profile of the main reaction product reaction rate constants are mathematically derived and
depends in a symmetric way on two of the reaction rate numerically computed.

constants. In other words, these two rate constants can

be permuted without changing the time-dependent con- o .
centration function of this chemical componerios- 2 Rate constants ambiguity for an elementary first-
sibly but not necessarily this change can be associated ©Order consecutive reaction

with negative entries in the spectral factor; this issue is o ) : i .
also discussed in this papérgeneral analysis of these .The.kmejuq _equatlon of af_lrst-order chemical reaction
questions is given in [19, 20], where identifiability and  With given initial concentratione, has the form of the
distinguishability for first-order and more general sys- Vectorial initial value problem

tems are the key concepts. Identifiability means that ki- do(t)

netic parameters for an assumed kinetic can be found in T M(K) c(t), c(ty) = co. (2.1)
a unigue way and distinguishability implies that one can

determine a unique reaction scheme. Therein thesx s matrix M(K) is the kinetic or Kirchh&

The aim of this paper is to combine the question matrix andsis the number of chemical components. It
of unigue or non-unique reaction rate constants with depends on nonnegative reaction rate constants, which
model-free curve resolution methods for the case of are written by a vectdk € RY with g components.
general first-order kinetics. The rotational ambiguity =~ A simple consecutive first-order reaction scheme
inherent to these pure component factorizations is re- with three components is ficient in order to demon-
duced by considering only those concentration factors strate a certain non-uniqueness of the reaction rate con-
which are possible solutions of the kinetic equations for stants, which is known as the slow-fast ambiguity [16].
properly adapted reaction rate constants. To this end we
introduce the sek of rate constants whose associated ) ] .
solutions of the kinetic equations result in feasible con- Example 2.1. We consider the first order consecutive
centration factors. Further, the subgét of K is de- reaction vk
fined by taking only those reaction rate constants whose X>YSzZ
associated cpncentrationfactﬁ?rsan be supplemented | i1 the initial concentrationgl, 0,0) for X, Y and Z.
by nonnegative spectral factohso that the produ@ A

o= , , . The associated kinetic matrix or Kirchffonatrix reads
reconstructs the initial spectral observation matrix. Fi-

nally, the setK* is extended to a set of feasible rate -k, 0 0

constants with respect to perturbatigkis by introduc- MK =| ki —k» Of. (2.2)
ing an accepted noise level> 0. A central result of 0 k O

this paper is a theorem which characterizes th&Shy

a similarity condition for the Kirchhfd matrix. The solution of the initial value problef2.1) for these

initial concentrations and this Kirchlp matrix with
(k1,k2) = (2, 1) results in concentration profiles which
are shown in the first row of Figure 1. Additionally,
The paper is organized as follows: Section 2 reca- this first row in Figure 1 shows the three pure compo-
pitulates an elementary model example of the slow-fast nent spectra which we have assumed. The associated
ambiguity for a first-order consecutive reaction system series of mixture spectra, i.e. the rows of the matrix D,
with three components [16, 17]. Section 3 shows how a are plotted in Figure 2. A second set of rate constants,
kinetic hard-model can be implemented by a cost func- namely(k., ko) = (1, 2), exists, which is consistent with
tion which depends only on the reaction rate constants. the spectral data matrix D. The resulting concentration
The central definitions of the sets of consistent and fea- profiles and pure component spectra are shown in the
sible reaction rate constants are introduced in Section 4.second row of Figure 1.
Additionally this section contains the central results of This example problem allows to explain the slow-fast
2

1.1. Organization of the paper
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Figure 1: Two diferent factorizations for the consecutive reaction desdrin Example 2.1. The associated series of spectra for theimaiis

A . . - k k . N
shown in Figure 2. The two concentration factors are coersisvith the kinetic modeK =L, Y 2 Z for different sets of kinetic rate constants.
The factorA is nonnegative for each of these factorizations. Thus tleefaatorizations are feasible and consistent with the gkieatic model.

ambiguity [21, 16, 17]. The crucial point is that the two
concentration profiles of the reaction product Z (in red
color) in the left column in Figure 1 are identical even
though the vectors of rate constants argfetent. In

C andA contain the concentration profiles and spectra
of the s pure components. For an introduction to this
factorization problem see, e.g., [1] and the references
therein. Usually, the nonnegative factorization= CA

other words, if the concentration of Z is an observable is not unique. Instead, continua of nonnegative matrices
guantity, then at least two sets of rate constants exist, C and A exist. These sets of feasible solutions can be

which result in the same concentration profile.

3. Kinetic hard-modeling and pure component fac-
torizations

We consider the following pure component factoriza-
tion problem: For a given spectral data ma@ix R™"
a factorizatiorD = CAis wanted with nonnegative fac-
torsC € R™S andA € R¥", The spectral data matrix
D contains in itsm rows the mixture spectra taken at
m times from a chemical reaction system. Eagec-
tral profile contains absorption values mfrequencies.

represented by the low-dimensional AFS plots.

We are interested in a chemically correct and inter-
pretable factorization for which the columns of the
concentration facto€ describe the concentration pro-
files of thes chemical components along the time axis.
The associated factok contains in its rows the pure
component spectra. The a priori knowledge of a chem-
ical reaction scheme is a very useful information in
order to determine chemically relevant factorizations
D = CA In the best possible case only a single so-
lution is consistent with the chemical reaction scheme.
A by-product of such model-fit computations are opti-

The numbers represents the assumed active and inde- mally adapted reaction rate constants. In other cases,

pendent chemical component$Ve understand an in-

not only a single solution can be identified, but a small

dependent chemical component as a chemical compo-subset of the initial set of all nonnegative factorizations
nent which increases the rank of the spectral data ma-of D. With respect to the AFS representation of these

trix D by 1. Thussis the rank of the matrice®, C and
A for noise-free and non-perturbed dathe matrices
3

solutions, such a subset can have the form of a one-
dimensional curve within a two-dimensional AFS set



0 20 40 60

100

Figure 2: Series of mixture spectra for the three-componensecutive reactioX — Y — Z, see Example 2.1.

(for the case of a three-component system). number of independent species. The numerical evalua-
tion of the cost function for a given vecthiis summa-
3.1. A cost function on nonnegativity and consistency rized in the steps:

with a kinetic hard-model 1. Cld)k) is computed by solving the initial value
A certain chemical reaction scheme can be integrated problem (2.1).

into a pure component factorizati@ = CA. This of- 2. Thesx smatrix T = (C%)k))*UX is computed
ten allows to reduce the rotational ambiguity drastically. with the pseudo-inverseC{o®)(k))* of Cde)k).
This integration can be done in the form of a hard con- (By the left-multiplication with the pseudo-inverse
straint by considering a proper cost functional within an a least-squares problem is solved with respect to
SVD-based optimization proceduik 13, 22, 23] Al- the s-dimensional column space bf.)
ternatively, the hard model approach can be combined 3, The matrix factor€ = UXT! andA = TVT are
with additional soft constraints in a joint optimization, calculated.
see e.g. [15]. 4. The value of the cost functiof(k) is

In the following, we use the hard model approach. o ,
Zle msans rhat we construct a cost functhkz whlcr] f(K) = Z Z (mln( ))

pends only on the (unknown) vectore RY of re max(C”)

action rate constants. By solving the associated initial
value problem (IVP), solely those concentration pro- - , Aij 2 (32
files are considered as possible factrs Cde)k)Ts " Z Z (mm ) max(Ay)’ ))

which fulfill the IVP (2.1) and for which an associated (ode), )
nonnegative spectral factérexists so tha€ A approxi- +[IC*XK) - ClIz.
mates the given mixture data matiix Optimal values

of the rate constants are computed by a numerical min-
imization of the cost function. We still have to explain
how the time-continuous solution of the IVP This approach is closely related to the pure hard-
modeling of de Juan et al. in [13]. A minorftérence

i=1 j=1

Therein the squared Frobenius nonm||§ is the
sum of squares of its argument.

ci() . is that we expand the time-discrete concentration with
c=f : |eR (3.1) respect to the left singular valuesBf which means no
cs(t) difference for model data and amounts to a low-rank ap-

proximation for perturbed data. In contrast to the well-
is related to the matrix factaE©%)k) € R™S. This known hard-soft MCR methods, the matric@sand A
matrix results from an evaluation of the concentration are completely determined by tlsex s matrix T, which
functions along the time grit}f < t; < --- < ty. Thus again is directly related to the mati°9Xk), see steps
c(°e) k) is completely determined by the vector of rate 2 and 3 of the cost function. This underlines the high
constantk. Finally, D ~ UZVT is a truncated singular  impact of the kinetic model on the pure component fac-
value decomposition [24] with the rargk which is the torsC andA.

4



For model data, which have been generated from a With these preparations we define the setbf
given kinetic model, no low-rank approximation is nec- consistent rate constants as follows:

essary as the data matrix has at most the fdside o ) ]
from rounding errors). Then mirf(k) = 0 holds and Definition 4.1 (Set of D-consistent reaction rate con-

— T H
the associated matri°9eYk) coincides with the matrix ~ Stants) Let D = UZV' be the singular value decom-
C. position of the rank-s matrix & R™". The set of D-

g i i dis defi
In general cases, additional vectors of rate constantsCONnsistent reaction rate constants R is defined as

k can exist, which also fulfillf (k) = 0. In such cases, _ . _

the kinetic model does not providefiaient informa- K = {ke R c(f) solves(2.1), C =7c() and
tion in order to restrict the rotational ambiguity only to 3T € R¥S, rank(T) = s and C= UST ).

a single pure component factorizatin= CA. Such
ambiguities are well known for irreversible consecutive
chemical reactions; cf. Example 2.1.

In words the sef of D-consistent rate constants com-

prises all reaction rate constants whose associated solu-

tion ¢(t) of (2.1)on the discrete time grid}. .., tn can

be represented by the left singular vectors of D, i.e. the

4. Parameter ambiguity for general first-order ki- columns of U. (Sometimes we call the D-consistency
netics simply consistency.)

The ambiguity of the reaction rate constants for gen- This definition of theD-consistent rate constant is not
eral first-order reaction systems is analyzed in this sec- suficient to guarantee that the concentration fa&or
tion. The central result of this section is Theorem 4.3 can be supplemented by a nonnegative spectral féctor
which provides a simple criterion for determining sets in away that the reconstructi@n= CAholds. This ad-
of rate constants that are consistent with the factoriza- ditional requirement is part of the following definition.

tion of the given spectral data. Definition 4.2 (Set of nonnegatively feasible rate con-

4.1. Definitions of sets of consistent and feasible reac- stants)
tion rate constants K* ={keR%: c(t) solves(2.1), C =T c(t) and
We assume that the given spectral data méeirix AT e RS, rank(T) =s, C=UZT?

R™M has at least one factorizatidh = CA with non-
negative factor€ € R™s andA € R". Therein, the (4.3)
s columns of the concentration fact@r should be in- '
terpreted as the concentration profiles of stehemical The definition of the sek™*, in comparison to (4.2),
components along the time axis. Thmeentries of each  contains the additional demand that> 0. Conse-
column ofC are the concentration values for the points quently it holds thatk* ¢ K. For the consecutive

in timetl, oo tme Fina”y, we assume that the concentra- reaction from Examp|e 2.1 the set Btconsistent re-
tion factorC is consistent with a vectdre R of non-  action rate constants is equal to the set of nonnegatively
negative reaction rate constants in the following sense: fegsible rate constants. This means tfat= K+ =

The initial value problem (2.1) with the Kirchlfoma- ((2,1), (1,2)).

trix M(k) has a solutiom(t) = (c1(t),...,cs(t))" € RSso

that the evaluation of theseconcentration profiles for 4 2. Analysis by the eigenvalues of the Kirclftroatrix

C: Mathematcally i evaluation with respect t the TS SEC of D-consisent rate constants can easiy
grid pointst; t reads be pharacyenzed .by the set of the eigenvalues qf the ki-
vrem netic matrixM(k) in (2.1). Starting from a certai-
) ... csty) ponsistent ra_te colnst.antvectdre K, a furthgr yectok
) is also contained ifK if M(k*) andM(Kk) are similar ma-

with A= TV" > 0}.

C= = 7). (4.1) trices. (Similarity ofM(k) andM(k*) means that a reg-

Ciltm) ... Cs(tm) ular matrixZ € RS exists so tham(k*) = Z-tM(K)Z.)

) ) ) o o The following theorem contains the details.
The last equation defines the time grid discretization op-

erator7” which evaluates the time-continuous solution Theorem 4.3. Let D € R™" be a nonnegative matrix

c(t) of (2.1) on the given time grid. This results in the withrank{D) = s so that a matrix factorization B CA

matrix C. with C € R™S and A € R¥" exists. For this D the
5



vector K € R%is assumed to be a vector of D-consistent
rate constants in the sense of Definition 4.1. This means
that
Tc(t)=C =uUx(T")™? (4.4)

with a regular sx s matrix T*. Then the following equiv-
alence holds:

The vector ke RY is D-consistent, if and only if the
matrices Mk) and M(k*) are similar matricesi.e., they
have the same sets of eigenvalues.

The proof of this theorem is postponed to Appendix
A

Remark 4.4. 1. Theorem 4.3 shows that the set
membership of a certain k to the s&t of D-
consistent reaction rate constants, see Definition
4.1, can simply be decided by testing the similar-
ity of the matrices Nk) and M(k*) with k* € K.
Similar matrices, this is written as ) ~ M(k*),
have the same eigenvalues and their equal eigen-
values can be paired in a way that the associated

eigenspaces have the same dimensions. (Inthelan- 2.

guage of linear algebra, theets of eigenvaluesf

M(K) and M(k*) are the same and in the case of

multiple eigenvalues any eigenvalue ofkdVlis as-

sociated with the same eigenvalue ofkt) and
these eigenvalues have the same geometric multi-
plicity, see [24].) With the similarity operatox

this can compactly be written as

K ={keRI: M(K) ~ M(K)} . (4.5)

. Numerically, Equatior{4.5) can approximately be
checked by the simple and computationally cheap
computation of theets of eigenvalued M(k) and
M(k*). If M(k) and M(k*) have equal eigenvalues
(equality is meant with respect to a proper multiple
of the machine precision) and if in the case of mul-
tiple eigenvalues all geometric multiplicities are
the same, then ) ~ M(k*) holds. Numerically,
the non-diagonalizabilty of a matrix (such a ma-
trix is often called defective) cannot be checked as
the Jordan normal form of a matrix cannot be com-
puted numerically. The key point is that a proper
arbitrarily small perturbation of a defective ma-
trix can transform this matrix into a diagonalizable
matrix (with a large condition number).

. Theorem 4.3 provides a simple criterion on D-
consistency in the sense of Definition 4.1. This cri-
terion does not guarantee the nonnegativity of the
factor A. If additionally the existence of a non-

6

negative factor A is required, thel reduces to its
subsetX™" of nonnegatively feasible rate constants.

4.3. Graphical presentation ¢t andK™*

If the first-order chemical reaction system is de-
scribed by a number af rate constants, then the sés
andK* are subsets of thg-dimensional space. How-
ever only forq = 2 andq = 3 a graphical representation
of these sets is easily possible by a 2D or 3D plot. Ev-
ery opportunity should be taken in order to reduce the
dimension of the graphical representation for the cases
with g = 4. A reduction from the dimensiogto g — 1
is possible in the following way:

1. Similar matrices have the same trace (sum of di-
agonal elements or, equivalently, sum of eigenval-
ues). Hence a constantexists so that

>,

i=1

W Ai = —traceM(K)) (4.6)

for allk € K. TheJ; are the eigenvalues &4(k).
For a first-order chemical reaction system the neg-
ative trace of the Kirchh matrix M(k*) with k* €

XK equals
q
Dki=u
i=1

as theith subreaction contributes the ternk; to
the diagonal of the Kirchh® matrix %; for an il-
lustration of this relation see the example systems
in Sections 6.2, 6.3 and 6.4.

. A combination of the last two equations shows that
the jth rate constank; for j € {1,...,q} can be
expressed as

q
=03,
i=1
i#]

K . (4.7)

Hence the linear relation (4.7) allows to present the sets
K andK* within a (g — 1)-dimensional space.

4.4. Numerical computation g€ and K"

The numerical computation of the skt of all vec-
tors of D-consistent reaction rate constants, see Defi-
nition 4.1, requires very long computation times. For
each possibl& an initial value problem is to be solved
in order to determine the matrig©@€)k). The result
of Theorem 4.3 is that initial value problems are not be
solved any longer. Instead an eigenvalue problem is to
be solved for the smafix sKirchhoft matrix M(k). This



is a simple and computationally very cheap step. Addi-
tionally, Section 4.3 shows th&t can graphically be
represented in (- 1)-dimensional space. A straight-
forward strategy for the computation &f is a system-

atic grid search. Therefore we cover a proper bounded

subset of theR%! by an equidistant grid. For each
grid point, the grid points are vectors of rate constants,
it is checked whether or not this point fulfills tH2-
consistency. A comparable grid search has been use
in [25] for the computation of the area of feasible solu-
tions.

The starting point for the grid search algorithm is
a certainD-consistent rate constakt. Such an ini-
tial solution can be calculated by using a proper hard-
modeling kinetic procedure as used in [13, 1]. Then the

grid search can be started. For very simple reaction sys-

tems the whole computation can be done analytically,

solutions with an absolute scaling whenever a kinetic
model of the reaction is accessible.

4.6. Application to data without sign restrictions

Up to now we have always assumed that the matrix
D contains only nonnegative absorption data. How-
ever, Definition 4.1 of the sekK describes the consis-

d;Dency with the kinetic model and does not requird¢o

e a nonnegative matrix. At first, the analysis by the
set K* includes that the spectral factdy is a com-
ponentwise nonnegative matrix. Hence, any spectro-
scopic technique which underlies the bilinear Lambert-
Beer law can be analyzed in the sense of th&GetVe
have tested this for simulated circular dichroism spec-
troscopic data.

see Section 6 for an example. In the general case, a5. Computation of K+ for perturbed data

numerical approximation ok is the only practical ap-
proach.

Finally, the subseX™* of nonnegatively feasible rate
constants can be extracted frdhby checking compu-
tationally the nonnegativity of the factéraccording to
Definition 4.2.

4.5. Link to the area of feasible solutions

The area of feasible solutions (AFS), e.g. see [4, 5, 6,
7, 8, 9], represents the set of all factorizatidhs= CA
with nonnegative factor€ and A for a given spectral
data matrixD. In more detail, the concentrational AFS
which is denoted byMc in [7] is a low-dimensional
representation of the set of all nonnegative factors
Analogously, the spectral AE&(, is a low-dimensional
representation of all spectral fact@éxsThe AFS is com-
puted only by using the spectral data matiix The
AFS does not include a consistency check of the non-
negative solutions i€ and A with a kinetic model of
the reaction. This fact opens the possibility to combine
the information on the set of nonnegatively feasible rate
constants<* with the AFS construction. The feasibility
condition by Definition 4.2 imposes an additional con-
straint on the areas of feasible solutioh and Ma.
Hence subsets of the AFS can be identified which repre-
sent those factorizations &f that are additionally con-
sistent with the underlying kinetic model. In Section 6.7
and Figure 14 numerical results of such a combination
of Mc and M, with a kinetic model are presented.

An interesting additional feature of the st is that
the scaling information for the facto®andA is known
as these factors result from the solut®%) of an ini-
tial value problem. All this provides the selected AFS

7

Section 4 contains an analysis of the ambiguity of
the kinetic rate constants for first-order kinetics. Up to
now this analysis is restricted to non-perturbed model
data and cannot be applied to experimental data with
a nonzero noise-to-signal ratio. For experimental data
the minimum of the cost functiotfi(k), see Equation
(3.2), is usually larger than zero. Hence the definition
of the set ofD-consistent rate constanf§ in Equa-
tion (4.2) cannot be applied in its strict sense, since the
non-perturbed solutio®(©%®) of the initial value prob-
lem cannot precisely be reconstructed from the left sin-
gular vectors oD.

In order to overcome this problem and in order to an-
alyze the sensitivity of the reaction rate constants, we
define the set of feasible rate constaits for a noise
level whose magnitude is controlled by the parameter
€. The setK contains all rate constants for which the
cost functionf (k) from Equation (3.2) returns a value
not larger thare. The following algorithm for the com-
putation ofK uses the sek as its starting point.

5.1. Definition of the set of feasible rate constants for
perturbed data

The set of nonnegatively feasible rate constaits
with respect to the noise level> O is defined to be
K ={keR]: f(k) <& (5.1)
Therein, the cost functiofi(k) is given in (3.2). By the
construction off the inequalityf (k) < & guarantees that
negative entries o€ and A are bounded from below
and thatC(°%® js re-constructable from the left singular
vectors except for a minor error which tends to zero if



¢ tends to zero. For the limit cage= 0 it holds that 6.1. Atwo-component reversible reaction system

K =K*.
For perturbed data the trace invariance property from ~ We consider the reaction mechanism of the two-
Section 4.3 is no longer true. In other worgg , 4; is component reversible system
not constant in cases with> 0. Hence the representa- K
tion of K* for a system withg rate constants can only X=Y

be given in theR? and not in theR%™*. kot

with the initial valuescyx(0) = 1 andcy(0) = 0. The

5.2. Algorithmic approach for the computation®f Kirchhoff matrix reads

In Section 4 a strategy has been developed for the
computation of ' andK*. Based on the properties M(K) = (—kl ko1 )
K+ ¢ KandK* c K foranye > 0 a procedure ki -k

to computeK; is outlined next:

1. Starting from &éD-consistent rate constakit (or at
least thek* which minimizesf(-)) the associated
setKX is computed by the grid search algorithm.

2. The setK is reduced togK* by testing the nonneg-
ativity constraint for the factoA.

3. The setX™ is inflated to the sek} by evaluating
the cost functiorf in a neighborhood ok™*.

The eigenvalues df1(k) ared; = —k; —k_; and, = 0.

The concentration profiles can be computed by solv-
ing the associated initial value problem. The refer-
ence reaction rate constants are takerkias- 2 and
k*, = 1. For this parametrization the concentration pro-
files are shown together with the associated pure com-
ponent spectra, two Gaussian functions are assumed, in

Figure 3.
Steps 1 and 2 are explained in Section 4. Step 3 is de- First the set oD-consistent rate constamsis deter-
scribed in the next subsection. mined. Therefore all 2 matrices are to be determined
which are similar taM(k). By similarity these matrices
5.3. Numerical inflation ofC* to K have the eigenvaluesk; — k_; and 0. With the trace of
The setK for q = 2 is planar and a subsetBE. Its a reference matrif (k") with ¢ = k; +k*, cf. Equation

numerical computation can be based on the same tech{4.6), this leads to the linear relation
nigues as have been used for the computation of the area
of feasible solutions in [4, 5, 6, 7]. In particular, these ki+ka=y¢.
concepts are the grid search method [25], the triangle
enclosure procedure [6] or the polygon inflation method
[7, 8]. Minor changes in the program codes are neces-
sary, namely the target function, which classifies a rate
constant as feasible or not, has to be changed.

7(:{(',0 ) oze(O,z,b]}.

This equation describes a straight line in the positive
guadrant of the positive rate constants. In other words
k.1 = ¢ — ki. Hence

For the casg = 3 the setK; is a subset oR3. Once (6.1)

again, the grid search method, the sliced triangle enclo-

sure procedure [26] or a polyhedron inflation algorithm  |n order to determine the subskt we fix in the present
are appropriate tools for the computatior¢f. model problemk! = 2 andk’, = 1 so thaty = 3,
cf. Equation (4.6). By an elimination in the equation
6. System analysis for model data sets and experi- CA = C Awhich describes two feasible factorizations
mental data (for the details see [27]) we get the subset of rate con-
stantsK™* being associated with nonnegatite
In this section the analytical concepts are applied to
four different sets of model data and additionally to one + a .
data set of experimental YVis spectra. These demon- K= {(l// - ) @ €[1.9004 W]}' 6.2
strations include the analysis of fourfldirent types of
first-order chemical reactions which include consecu-
tive reactions and equilibrium reactions. For the model Ay — Ay
data sets the ambiguity of the reaction rate constants klifl‘,‘f‘ng—li = 19004
are analyzed by computing the sé&sandkX™*. For the
UV/Vis data and also for two of the model data setsthe  The setsK andK™* as well as the associated continua
setsK are computed for dierent values of. of nonnegative factor€ andA are shown in Figure 4.
8

Therein the lower bound far satisfies



concentration

FactorC FactorA
1 | ‘ 1
—comp.X
---comp.Y
0.8/ 0.8
------------------------ S
0.6/ 1 = 0.6
,’ (@]
7 ] 2 04f
0.4 g g 0.
0.2/ 0.2}
% 1 2 % 20 40 60 80 100
time channel

Figure 3: Concentration profiles and pure component spémtthe two-component model problem from Section 6.1.
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Figure 4: The model problem from Section 6.1 is considereeft: [The set ofD-consistent rate constari§ by (4.2) is an anti-diagonal broken
line and solid line in [03] x [0, 3]. Its subset of nonnegatively feasible kineti&s by (4.3) is drawn as a solid line. These sets are analytically
given in (6.1) and (6.2). The vectér= (0, 3) is not an element oK; this open end of the set is marked by a small black circle.

Center and right: The continua of associated nonnegatatertsC andA for the set of feasible kineticK™* are plotted. A color shading from red
to blue is used in order to express the pairing of associatrdentration profiles and spectra. The isolated red spgrtfle in the right subplot

is the spectral profile oX, which can uniquely be extracted from the dat&-ato.



Next the same model problem is considered for non- stants are plotted in Figure 7. These sets can be plot-
negative initial concentrations valueg(0) > 0 and ted in 2D as the fixed trace condition, see Section 4.3,
cy(0) > 0. Then the subseX™ of K consists of two implies the linear relatiofk; = ¢ — ko — k.o wherein
isolated line segments, see Figure 5. the constanty = 4 is the sum of the components of

k* = (1,2,1). Figure 7 additionally shows the con-
6.2. A three-component partially reversible reaction tinua of the concentration profiles and of the nonneg-
system - part 1 ative spectra which are representedAsy.

The reaction mechanism for a three-component sys- ] . )
tem is taken as follows 6.3. A three-component partially reversible reaction

system - part 2

k. ke
XHY? Z As a second reaction mechanism for a three-
2

component system we consider
The initial concentrations are given logx(0) = 1,

cv(0) = 0 andcz(0) = 0, and the Kirchhff matrix reads X ‘ké Y e, Z
k1
ki O 0 . _ :
MK =| ke ke ko |. with the initial concentrationsx(0) = 1, ¢y(0) = 0 and
0 k -k, cz(0) = 0. The Kirchhdf matrix is given by

The eigenvalues of the matrii(k) are 11 = -k, —ki S 0

A2 = =k — k2 and Az = 0. For the model problem the M) =| ki ~ki-k O}

reference valuek; = 1, k;, = 2 andk’, = 1 are used. 0 kz 0

For these parameters the concentration profiles and the, . .
pure component spectra (three Gaussians) are presenteHS eigenvalues arg; > = —( + V#)/2 andis = 0 with
in Figure 6.

The set ofD-consistent rate constark§ and its sub-
set of feasible rate constanf§* have the following
forms

(ﬂ = k]_ + K]_ + kz, (]5 = (k]_ + Kl + k2)2 - 4|(1|(2.

We use the reference valuks= 2,k*, = k; = 1. The
three pure component spectra %r Y andZ are the

@ v—¢ same as used in Section 6.2, see Figure 6. The concen-
K = { a cae 0y — ¢]} u { B |:8<(0, ¢]} tration profiles are presented in Figure 8.
y-¢-a

¢-B The setsk andX™* have the form
¢
K= a cae[1.7155y — a _
{[df—¢>—a] Fhresy ¢]}U %z{{ ﬂ(a)]:ae[%&,w—ﬁ},
{[Vf[j] 05081 ]} vie) (6.4)
:pe]0. ) @
¢-pB %+ =1| Bla) :ae[l.sool‘“ Vel
(6.3 ¥(a) 2

with ¢ = ki = L andy = kj + K, + k', = 4. The
lower bounds forr andg in K result from a numerical ~ Therein the functiong(a) andy(«) are given by
evaluation of the following terms

1(y - 2a)% -
N pla)= 3228 o) =y o pi)

kg_nl1ax =1.7155 @

i=1...,n 2i . .

B _ 3 o _ with = 4, ¢ = 8 and the given values fde;; andk;.

ki max G kl)lfrr J(rk(lw k"kZ))'iz' kohsi _ 0.8087 The lower bound forr in K has the form

i=1,...,n 142 — K1)A1i

A R A "

The derivation of these formula requires complex math- klig}% 2 » 2 =1.3001

ematical computations which have been done by using

computer algebra systems; all results have been con-All these results together with the continua of nonneg-

firmed numerically by means of the grid search proce- ative factorsC and A which are represented by the set

dure. The sef and its subseK™ of feasible rate con-  K* of feasible rate constants are presented in Figure 9.
10



The setsK andkK™*

Vel
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Figure 5: The model problem from Section 6.1 is consideredHe case of nonnegative initial concentratiang0) = 0.55 andcy(0) = 0.45.
Once again the set d@-consistent rate constarit§ and also the set of feasible rate constakitsare shown. The s&* consists of two isolated
line segments.

FactorC FactorA
1 | ‘ ‘ 1
—comp.X
---comp.Y
c 08 --comp.Z || 0.8/
S N\ I c
S 06 ] 2 o6
5 0.4¢ ‘,—f‘_ _____________________________ 1 g 04
o ad
0.2}/, ] 0.2}
0 ‘ 0 ‘ ‘ ‘ ‘
0 2 4 6 0 20 40 60 80 100
time channel

Figure 6: Concentration profiles and spectra of the pure compts for the model problem from Section 6.2. The reactaia constants are
ki =1,k = 2 andk_, = 1, and the initial concentrations are set{d0) = 1, cy(0) = 0 andcz(0) = 0.
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Figure 7: Analysis of the three-component model system fBsution 6.2. Left: The set dP-consistent rate constar#§ is drawn by dashed
and by solid lines. Its subsé(* is plotted by the solid line. All these lines are openkat= 0, i.e. the pointsky, kz,k_2) = (3,0,1) and
(k1, ko, k-2) = (1, 0, 3) do not belong t&<. These two points are marked by small circles. Because dixbe trace condition, see Section 4.3, and
ki = 4—kp — ko for k* = (1,2,1), the setsK andKX™* can be drawn in 2D.

Center and right: The continua of associated nonnegateterfsC andA for the set of feasible kineticK™ are plotted. A color shading from red
to blue is used in order to express the pairing of associaiedentration profiles and spectra. The sifigtdated concentration profiles or spectra
represent unique solutions, e.g. the spectral profilé cdin uniquely be extracted from the data atO0.
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Figure 8: The concentration profiles for the three-compbonerdel system from Section 6.3. The pure component spethe same as used in
Section 6.2 and are shown in Figure 6.
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Figure 9: Analysis of the three-component model system f8attion 6.3. Left: The set db-consistent rate constari#§ is drawn by dashed and
by solid curved lines. Its subs&™* is plotted by the solid line. These sets are given analyyidal Equation (6.4). Because of the fixed trace
condition, see Section 4.3, akgl= 4 — k; — k_1, the setsX andX™* can be drawn in 2D.
Center and right: The continua of associated nonnegatitertsC and A are plotted for the set of feasible kineti#&". A color shading from
red to blue is used in order to express the pairing of assstiedncentration profiles and spectra. The pure componentrapfX andZ are
known (from the spectral data ti= 0 andt = 10). Then the complementarity theory [28, 29, 30] guarantkat the concentration profile of the
complementary componeiitis also uniquely determined aside from scaling; and in thet,continuum of concentration profiles¥fis spanned
by a single function and its scalar multiples.
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6.4. Athree-component system including parallel reac- 6.5. Feasible rate constants for perturbieaisy experi-
tions mental data

Next the set of feasible rate constants is computed
for UV/Vis data from [31] where the influence of sub-
stituents in ButiPhane ligands is investigated on the hy-

Next the three componenXs Y andZ are assumed to  drogenation activity of rhodium complexes. A number
form two reaction pathways for the componentThe of k = 82 UV)Vis spectra each with = 1951 channels

reaction mechanism is is given. The underlying reaction mechanism is simply
k :
X LR v X ko 7 X = Y. In order to demonstrate the computation of
w - the set of feasible rate constants we assume the slightly

more complex mechanism of the equilibrium
with the initial concentrationsx(0) = 1, cy(0) = 0 and

cz(0) = 0. Hence the Kirchhid matrix reads X kﬁl Y
ky
-k-ky ki O
M(K) = Ky -k, o0l. The set of nonnegatively feasible rate consté€tsvith
ko 0O O respect to the noise level > 0 is computed, cf. (5.1).
The following analysis allows to judge of the question
The eigenvalues d¥l(k) ared; 2 = —(y+ v¢)/2,43 =0 whether or not the experimental data could also be in-
with terpreted by an equilibrium reaction.
Due to the high quality of the UWis spectral data
Y=k +ki+ky, only a relatively small noise levelis assumed. For the
¢ = (K + K1 + k)2 — 4k_1ko. given experimental data we have observed the minimum

miny f(K) = 1.09-107°. This shows that must be larger
The reference values for the rate constants are taken aghan 109- 107° in order to find any feasible solutions.
ki = 2andk’; = k; = 1. Once again, the same Gauss First the functionf (k) is evaluated on the rectangle of
profiles as used in Section 6.2 are taken for the pure reaction rate constants
component spectra. The solution of the initial value
problem (2.1) with the presem (k) and the given ini- (ki k1) €[107%, 21072 x [0, 1077].
tial values results in the concentration profiles which are

shown in Figure 10. The results and the computed s&f$ for the three dif-

_ . ferent values € {1.5-103 5103, 1- 1072} are pre-
The set ofD-consistent rate constarii§and its sub-  sented in Figure 12. All computations have been exe-

set of nonnegatively feasible rate constakitsread cuted by using a simple grid search method; the com-
putational costs for the evaluation of the cost function
B (p) ) U= NP Y+ B are not very high. As the sét} consists only of one
K= B -Be 2 2 ’ connected set, even the polygon inflation technique [7]
6) (6.5) can be used for the numerical computatiorkgf.
a(B)
Kt = {{ B ] : B€[0.58115 1.7207]}. 6.6. Numerical computation of the &t
¥(B) In Section 5.1 the s&X* of feasible rate constants for
. ) turbed data is introduced. By definition it holds that
Therein the constantg8) andy(B) are given by perturbed data 1s Introduced. By definition It holds tha
KK CcK7
1y -28)°-¢ coE
aB)=-5———— YB)=v-alB)-B .
4 B for every 0< & < &.

First, we consider Example 2.1 for which the gét
consists of only two isolated points. For the two noise
levels

andy = 4, ¢ = 12. The analytic formula for thg-

interval inK* are skipped due to their high complexity.

Instead, only the numerical evaluation of these bounds

is given. Figure 11 shows the s&tsand K™ together

with the associated continua of nonnegative feasible fac- the two setsK; increase aroun&™, which is shown in

torsC andA. the upper left sub-plot of Figure 13. For this problem
13
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Figure 10: The concentration profiles for the three-compbn®odel data from Section 6.4. The pure component speartharsame as used in

Section 6.2 and shown in Figure 6.
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Figure 11: Analysis of the three-component model systertudling parallel reactions from Section 6.4. Left: The setDstonsistent rate
constantsk is drawn by dashed and by solid lines. Its sul¥sétis plotted by the solid line. Because of the fixed trace camdlitsee Section 4.3,
andky = 4 -k — k1 for k* = (2,1, 1), the sets andX™* can be drawn in 2D.
Center and right: The continua of associated nonnegatiterfsC andA for the set of feasible kinetick™ are plotted. A color shading from red to

blue is used in order to express the pairing of associatedectration profiles and spectra. The siriglelated spectra represent unique solutions.
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Figure 12: Analysis of the UX¥is data set for ButiPhane ligands and the hydrogenatiavitgcisee Section 6.5.

Left: Numerical evaluation of the cost functidifk), see Equation (3.2).

Right: Different levels ot lead to a chain of set&}". The three values € {1.5- 10°3,5-1073, 1- 1072} have been used.

the two isolated solutions are transformed by noise to factorization ofD with an underlying kinetic model can
two continua of possible solutions. The upper right sub- reduce the rotational ambiguity. The series of the ex-

plot of Figure 13 shows the sé&(* for the reversible  tracted concentrational factors and spectra are shown in
two-component reaction system from Section 6.1. For Figure 11.
this experiment the three noise levels are

£e(5-105, 5.10% 5-10°3). 7. Conclusion
The remaining two plots in the lower row of Fig Kinetic modeling is widely used in the process of
" extracting pure component information from spectro-
ure 13 demonstrate the seks" and K for the three- gp P P

t model problem f Section 6.3 wh scopic data. However, little attention is paid to the ex-
comptor:jen tr‘;{o € d‘?}rg em Lom §c||:9n ) QN Iose”as- istence of an ambiguity of the rate constants. For first-
tsrf)ua ed setst an b are s ownt'm |gu1;ef - Ina order reaction schemes we have presented the theoret-

€S€ cases one observes a continudlereol an In- ical basis together with an algorithmic approach for an
creasing: (i.e. small deviations fro”? the k'net'(? model efficient numerical computation of this ambiguity. An-
?re fécceg';e\zd fatr;]d ?IS? s_matlll ?Sg_atgi entries in thg fac'alytical investigations of these ambiguities have been
orst andA ot the +ac orizatiorb) = are accepte ) carried out for four typical first-order reaction schemes.
onincreasing set&’ of nonnegatively feasible reaction

¢ ant Additionally, numerical results have been presented for
rate constants. model data and UWis experimental data. The latter

. results confirm the stability of the numerical algorithm
6.7. Combination of the AFS and*

with respect to noise.
In Section 4.5 an explanation is given how the area

of feasible solutions\ can be combined with the set
. . References
of feasible rate constanf§*. Next a numerical exam-

ple is given for the three-component model system from [1] M. Maeder and Y.M. NeuholdPractical data analysis in chem-
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Figure 13: Numerical study of the impact of an increasing@adévele on the sets<;.

K andk; for Example 2.1

3
%
%00
x K
2 L

1

1 k12

K001 fOr K from Figure 9

kk 40 K1

K for K* from Figure 5

4 :
I:l(](aOOS
l:l(Kaooos

3 l:l(Ka.ODOOS
- K

J2

1l .

O L L

1 k21 3 4
K000 fOr K* from Figure 9

3
&2
R4

1

0

0

kk 40

k1
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A. Appendix: Proof of the Theorem 4.3

This section contains the proof of the Theorem 4.3

from Section 4, which is a main result of this paper.

Proof. Let c(t) andc*(t) be solutions of the initial value
problems

U oMmon.  dw=c
LR -mcn.  cw=c

We set the starting tim& equal to 0. This assump-
tion does not restrict the generality of the proof as the
zero pointin time can be fixed arbitrarily. However, this
allows us to write the solutions of the initial value prob-

lems in the simple form
C(t) — eM(k)tCO, c (t) — eM(k*)tCO'

We assume the similariti(k) = Z"*M(k*)Z with a
regular matrixZ € R¥S. We also assume tha (k)
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andM(k*) are diagonalizable matrices; at the end of the
proof the general case is treated. With the time-grid dis-
cretization operator from (4.1) we can write= C(k)

as follows:

(c(t2)"
C=7c(t) :

(cltm)T
(eM (Kty Co)T

(eM Ktm Co)T

Cg (eZ’lM(k*)Ztl)T

Ik
C'IO'(eZ M(k )Ztm)T

qZT (M) TZ-T

qZ7 (e (i(*)tm)T 7-T

with Z7T = (zY)". Together with the diagonaliza-
tion of M(k*) = Y"1AY for the diagonal matrixA =
diag@s, ..., As) containing the eigenvalues, ..., 4s,
we continue the calculation from above

(Y2 (YD) T

(Y TeMn(Y2) T

(YZg)TeM

- : Y. (A1)
(YZg) e

With the definitionw := YZg € RS the (mx s)-matrix
(in large brackets) in (A.1) can be written as

wl et wpeltth o weelsth
S L (A2)
wl ehtm wielttn o pgelstn
The s column vectors

(el ..., eltm)T e R™

fori = 1,..., sspan the column space of the matrix in
Equation (A.2). In order to see that these two spaces are
s-dimensional, one has to take into account thaiC
andC* are ranks matrices.

We introduce the vectar* = Y € RSin order to build



the matrix

(W)T el Vvie/lltl V\f;e/lstl

(A.3)

(VV")T eAtm V\f{e/lltm V\f;e/lstm
If w* has no zero components (i.e. the raxdendition),
then the column spaces of (A.2) and (A.3) are the same
and a regulas x smatrixG exists so that

w' et (wH)Tert

G.

(VW)T eAtm

wl ehtm

With these results we continue the chain of transforma-
tions from Equation (A.1). Hence

wl et
YD =

wl ehtm

(YZg)TeM
C= : .
(YZg) e
(\N*)T eAt1

: (YT
(W)T eAtm
cYTert

: Y TY'G(Y2)T
cgYTertn
C'IO' (eM (k*)tl)T

Y'G(Y2T

Cg (eM .(k*)tm)T
(TCc®)YGYDT
=C'Y'G(YDT  with (4.4)
=UZ(THYTG(YD™T).

=T-1

This is just theD-consistency ok with the regularsx s
matrix T~ = (T*)"YYTG(Y2) .
The second direction of the proof can be shown by using

matrix can convert these into diagonalizable matrices.
A continuity argument helps to transfer the assertion to
the “small” set of non-diagonalizable matrices. O

the same arguments as used above. However, a partially

new arrangement of the logical flow and of some of the
definitions (e.g. of the matriX) is required. Further,
the uniqueness of the solution of an initial value prob-
lem is used.

If the similar matricesM(k) and M(k*) are not diag-
onalizable, then a continuity argument can be used to
prove the assertion. The set of diagonalizable matrices
is a dense set in the set of all matrices. In other words,
arbitrarily small perturbations of a non-diagonalizable
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