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1 Introduction

Multivariate curve resolution techniques are important tools in analytical chemistry.
Usually, the goal of these methods is to extract information about pure component
concentration and absorptivity from a spectroscopic data matrix. This is a soft modeling
problem in the field of chemometrics; it uses a minimal amount of knowledge about the
system to derive useful results while using numerical methods.

Based on the assumption of Lambert-Beer law, the data matrix is decomposed into
a product of concentration and absorptivity matrices. Thus, the pure component reso-
lution of spectroscopic data can be interpreted as a nonnegative factorization problem.
This means that the solutions of this problem could be transferred to other disciplines
with similar research questions.

Generally, the aforementioned nonnegative matrix factorization does not have a
unique solution, see the research paper from Abdollahi and Tauer [1]. There are multi-
ple types of ambiguities for this problem; here mainly the so-called rotational ambiguity
is examined. It leads to a continuum of possible solutions.

This work focuses on the mixture resolution for three-component chemical systems.
In this case, there exists an advantageous low-dimension representation that helps to
visualize the rotational ambiguity in two dimensions. It is called the area of feasible
solutions (AFS).

Various methods have been suggested to approximate the AFS. Polygon inflation
algorithm is one of them and together with its inverse alteration can be successfully used
for three-component systems. Based on this method, a Matlab toolbox FACPACK
was introduced in 2014 [15], [18].

Some essential research papers include the solution for two-component systems [8] and
geometric approaches [9], [2] and [12]. More recent numerical algorithms are described
in [5] and [16]. The latter is the first work on the polygon inflation algorithm and was
followed by [17] and [14]. Important theoretical background was discussed earlier in
[11] and [13].

The goal of this work is to motivate and to examine the polygon inflation algorithm
and its inverse counterpart for the pure component resolution of three-component sys-
tems by means of a Matlab implementation. Chapter 2 derives the AFS from the
original mixture resolution problem. The polygon inflation algorithm and the inverse
polygon inflation algorithm are introduced in chapter 3 and chapter 4 respectively.
Also, some difficulties of practical realization are shown there. An optimal choice of
parameters and numerical results are of a particular interest; they are summarized in
chapter 5.
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2 Nonnegative matrix factorization

This chapter introduces the nonnegative matrix factorization problem for the pure
component analysis, based on the Lambert-Beer law. Further, an approach, using the
singular value decomposition, and the difficulties, associated with the ambiguity of
the nonnegative matrix factorization problem, are presented. Finally, with the help of
the Perron-Frobenius theorem, the concept of an AFS for three-component systems is
established.

The theory behind this chapter is based on the work by Lawton and Sylvestre [8] and
Borgen and Kowalski [2], that is further developed in other publications. This chapter
predominantly uses [16], [17] and [14] to lay the theoretical foundations of this work.

2.1 The matrix representation of the problem

2.1.1 The chemical background

Pure component resolution starts with a given nonnegative spectroscopic data matrix
D ∈ R

k×n. It contains mixed experimental data.
The chemical justification of the nonnegative matrix factorization problem is the

Lambert-Beer law in matrix notation. It reads D = CA + E with a concentration
matrix C ∈ R

k×s, an absorption matrix A ∈ R
s×n and an error matrix E ∈ R

k×n. The
chemical meaning is as follows: Dij constitutes the absorption measurement i at the
frequency j, Alj the absorptivity of the pure component l at the frequency j and Cil the
concentration of the pure component l in the measurement i. The number of chemical
components is s and it is assumed that rank(D) = s.

The main goal is to find a nonnegative concentration matrix C ∈ R
k×s and a non-

negative absorption matrix A ∈ R
s×n, so that

D = CA.

The existence of a solution can be assumed for experimental data matrices, as stated
in [13].

2.1.2 The singular value decomposition

The singular value decomposition can be used as a foundation to find the nonnegative
matrix factorization of D.

Theorem 1. For D ∈ R
k×n exists a factorization

D = UΣV T ,
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2 Nonnegative matrix factorization

called singular value decomposition, where U ∈ R
k×k orthogonal, Σ = diag(σi) ∈

R
k×n with σi called the i-th singular value, i = min(m, n), and V ∈ R

n×n orthogonal.

Proof. See theorem 2.4.1. in [6].

A rank-s matrix can be represented by the first s singular values and vectors. Let
Ai,: denote the i-th row of matrix A and A:,i, the i-th column.

Theorem 2. If D ∈ R
k×n with rank(D) = s, then

D =
s∑

i=1

ΣiiU:,iV
T

:,i .

Proof. See corollary 2.4.7. in [6].

Since D is a rank-s matrix, only the first s singular values and singular vectors
are needed and the rest can be discarded, reducing the matrices to Û ∈ R

k×s, Σ̂ =
diag(σi) ∈ R

s×s and V̂ ∈ R
n×s. The property UΣV T = Û Σ̂V̂ T holds true. Let’s call

this representation the truncated singular value decomposition.

2.1.3 The transformation matrix

In general, the singular value decomposition does not provide a nonnegative factoriza-
tion; however, it can be used for creating one. To do this, a regular transformation is
required.

Definition 1. A regular matrix T ∈ R
s×s in the context of this thesis is called a feasible

transformation matrix if

D = Û Σ̂V̂ T = Û Σ̂(T −1

︸ ︷︷ ︸

C

T )V̂ T

︸ ︷︷ ︸

A

, (2.1)

with C = ÛΣ̂T −1 and A = T V̂ T being component-wise nonnegative matrices.

The existence of such T is proved in Lemma 2.1. in [11], see the theorem below.

Theorem 3. For a given D with D = CA and a truncated singular value decomposition

D = Û Σ̂V̂ T with rank(D) = s, there exists a feasible transformation matrix T .

Proof. Let’s consider the matrices C and Û Σ̂ as linear transformations

C : Rs → R
k and Û Σ̂ : Rs → R

k.

From D = CA = Û Σ̂V̂ T and rank(D) = rank(C) = rank(ÛΣ̂) = s follows that the
spans of the images of both linear transformations coincide. This allows a change of
basis from one to the other. Thus, a regular matrix T with CT = ÛΣ̂ exists.
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2 Nonnegative matrix factorization

From D = CA = ÛΣ̂V̂ T and C = Û Σ̂T −1 follows

Û Σ̂T −1A = Û Σ̂V̂ T

Û Σ̂(T −1A − V̂ T ) = 0,

where 0 is a matrix consisting of zeros. The last step follows from the fact that
rank(Û Σ̂) = s. Consequently, (T −1A − V̂ T ) is a matrix consisting of zeros and

A = T V̂ T .

Therefore, the singular value decomposition together with a feasible transformation
matrix can be used to obtain a nonnegative factorization of D. The nonnegative fac-
torization problem has been reduced to determining a feasible regular transformation
matrix T with s2 degrees of freedom.

2.1.4 Problem of ambiguity

A feasible transformation matrix T is not unique and a set of possible nonnegative
factorizations exists. There are three types of ambiguities for the transformation matrix,
according to [1].

Permutation ambiguity can be described, as expanding the original transformation
with a permutation matrix P ∈ R

s×s to

D = ÛΣ̂V̂ T = ÛΣ̂(T −1P T

︸ ︷︷ ︸

C

P T )V̂ T

︸ ︷︷ ︸

A

.

The resulting factorization is nonnegative; therefore, P T is also a feasible transforma-
tion. This changes only the order of components in the nonnegative matrices C and A,
and that is not problematic in the context of this work.

Intensity ambiguity is caused by similar argumentation to the permutation am-
biguity. Instead of a permutation matrix, a diagonal matrix diag(a1, . . . , as) and its
inverse is used here. This type of ambiguity can be limited by additional information
or assumptions.

Rotational ambiguity is the most problematic of the three. It is caused by the fact
that a feasible transformation is not unique even when the ambiguity caused by permu-
tations and scaling is excluded. The rotational ambiguity is limited by the constraint
of nonnegativity of the concentration and absorption matrices.

2.1.5 Target function

The limitations of the transformation matrix T can be expressed with the help of a
target function.
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2 Nonnegative matrix factorization

Definition 2. The target function f for the polygon inflation algorithm is defined as

f(T ) =






C̃
Ã
R̃




 , C̃ =





















min
(

0, C11

‖C:,1‖∞

+ ε
)

...

min
(

0, Ck1

‖C:,1‖∞

+ ε
)

...

min
(

0, C1s

‖C:,s‖∞

+ ε
)

...

min
(

0, Cks

‖C:,s‖∞

+ ε
)





















, Ã =





















min
(

0, A11

‖A1,:‖∞

+ ε
)

...

min
(

0, A1n

‖A1,:‖∞

+ ε
)

...

min
(

0, As1

‖As,:‖∞

+ ε
)

...

min
(

0, Asn

‖As,:‖∞

+ ε
)





















, R̃ =












R11

R21
...

R(s−1)s

Rss












,

where R = Id(s) − TT + and both A and C are defined as before. The symbol Id(s)
stands for an s × s identity matrix and T + for the pseudo-inverse of matrix T .

The target function is to be minimized according to

min
T ∈Rs×s

‖f(T )‖2
2 = min

T ∈Rs×s

(

f1(T )2 + · · · + fs·k+s·n+s2(T )2
)

,

and a value equal to zero means that the constraints on the transformation matrix T
are satisfied. Some reasoning behind the choice of f(T ) is shown below.

The matrix R ensures the regularity of T , owing to the fact that the pseudo-inverse
T + equals T −1 for regular matrices. The pseudo-inverse of T is described in [6] as the
solution to

min
X∈Rs×s

‖TX − Id(s)‖F

and that corresponds to ‖R̃‖2. Therefore, a very small value of ‖R̃‖2 means that
T + ≈ T −1 because numerical rounding-error can cause ‖R̂‖2 > 0. In the case of this
value being near the machine epsilon, matrix T can be assumed to be regular.

For the vectors Ã and C̃ a minimum of the actual value and zero is used to eliminate
the influence of positive values on the decision, whether the matrices have negative
entries. The parameter ε serves the purpose of stabilizing the algorithm by accepting
small negative entries, see [14]. The scaling of the elements with the maximal absorp-
tivity (in A) or concentration (in C) of the pure component allows the parameter ε to
be universal for different data sets.

2.2 The area of feasible solutions

To obtain the two-dimensional representation of the AFS, the previously described s-
component systems are narrowed down to three-component systems. Thus, s = 3 and
rank(D) = 3 are used in the following chapters. However, these ideas can be generalized,
see e.g. [14].
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2 Nonnegative matrix factorization

2.2.1 The scaling of the transformation matrix

A feasible transformation matrix T ∈ R
3×3 for a three-component system has nine

degrees of freedom. It is possible to reduce that to six degrees of freedom by scaling
the first column.

From






A11 A12 . . . A1n

A21 A22 . . . A2n

A31 A32 . . . A3n




 =






T11 T12 T13

T21 T22 T23

T31 T32 T33












V̂11 V̂21 . . . V̂n1

V̂12 V̂22 . . . V̂n2

V̂13 V̂23 . . . V̂n3







follows, that

A1,: = T11V̂:,1 + T12V̂:,2 + T13V̂:,3

A2,: = T21V̂:,1 + T22V̂:,2 + T23V̂:,3

A3,: = T31V̂:,1 + T32V̂:,2 + T33V̂:,3.

The scaling of the first row T:,1 with the element from the first column T11 can be
interpreted as multiplying the equation 2.1 with a matrix L = diag(T −1

11 , 1, 1) and its
inverse

D = ÛΣ̂T −1L−1LT V̂ T ,

with LT being the new feasible transformation matrix. This can be done with all three
rows.

Clearly, the scaling of the matrix T is allowed if and only if Ti1 6= 0, ∀i ∈ {1, 2, 3}
because the inverse T −1

i1 of zero is not defined.
Let’s assume that the first column of the matrix T does not contain any zeros.

Following the naming convention in [16], the problem now looks like,

A1,: = V̂:,1 + αV̂:,2 + βV̂:,3

A2,: = V̂:,1 + S11V̂:,2 + S12V̂:,3

A3,: = V̂:,1 + S21V̂:,2 + S22V̂:,3,

with

T =






1 α β
1 S11 S12

1 S21 S22






and has six degrees of freedom.

2.2.2 The Perron-Frobenius theorem

The assumption, that the first column of the matrix T does not contain any zeros, was
made to carry out the scaling. This is indeed true in the most cases and can be proved
with the Perron-Frobenius theorem that discussed in detail in [10].

Firstly, a definition of an irreducible matrix is required.
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2 Nonnegative matrix factorization

Definition 3. A nonnegative matrix A ∈ R
n×n, n ≥ 2 is called reducible if a permuta-

tion matrix P exists, so that

P T AP =

(

B C
0 D

)

,

where B and D are square submatrices. If the matrix is not reducible, it is called

irreducible.

Since the irreducibility of some matrices needs to be tested, an easily implementable
evaluation is useful. Note that here and further in the text the inequality signs (namely,
<, >, ≤, ≥) of matrices and vectors denote a component-wise inequality.

Theorem 4. A nonnegative matrix A ∈ R
n×n, n ≥ 2 is irreducible if and only if

(Id(n) + A)n−1 > 0.

Proof. See corollary 2.2. in [10].

Now a part of the actual Perron-Frobenius theorem follows.

Theorem 5. An irreducible, nonnegative matrix A has a real positive eigenvalue λmax

such that

λmax ≥ |λi|

for any eigenvalue λi of A. There exists an eigenvector vmax with vmax > 0 that corre-

sponds to λmax.

Proof. See theorem 4.1 in [10].

Returning to the nonnegative matrix factorization problem, a condition for the exis-
tence of the scaling matrix L is needed. This is given in the following theorem.

Theorem 6. If DT D is irreducible, then Ti1 6= 0, ∀i ∈ {1, 2, 3} for a feasible transfor-

mation matrix T .

Proof. This proof is based on the theorem 2.2 in [17]. The matrix D is nonnegative
per definition. Thus, DT D is also nonnegative. With the Perron-Frobenius theorem
from the irreducibility and nonnegativity of DT D follows the existence of a positive
eigenvector that corresponds to the largest eigenvalue of DT D.

The connection between eigenvalues and singular values is as follows: the eigenvalues
of DT D and DDT are the squared singular values of D. The eigenvectors of DT D and
DDT are the right and left singular vectors of D respectively. The largest singular value
is located in Σ11, and the corresponding singular vectors, in the first columns of U and
V .

Therefore, the singular vector, corresponding to the largest singular value and, in ex-
tension, the largest eigenvalue of DT D, can be assumed to be component-wise positive,
see also the remark after the proof. This singular vector is V̂:,1, as it is located in the
first column of V̂ . Moreover, singular vectors are orthogonal to each other because V
is an orthogonal matrix.

7



2 Nonnegative matrix factorization

This means that no vector (0, α, β) ∈ R
3\(0, 0, 0) exists with (0, α, β)V̂ T = As,: being

a nonnegative vector.
Let’s assume the opposite. Then (0, α, β)V̂ T ≥ 0 holds true. It is also known that

V̂:,2 and V̂:,3 are orthogonal. Consequently, (c1V̂:,2 + c2V̂:,3)V̂ T
:,2 = c1V̂:,2V̂

T
:,2 = c1 equals 0

only for c1 = 0 and similarly (c1V̂:,2 + c2V̂:,3)V̂ T
:,3 equals 0 only for c2 = 0; hence, from

c1V̂:,2 + c2V̂:,3 = 0 follows c1 = c2 = 0. Thus, V̂:,2 and V̂:,3 are linearly independent
and (0, α, β)V̂ T > 0. From that follows (0, α, β)V̂ T V̂:,1 > 0 because V̂:,1 > 0. This is a
contradiction to the orthogonality of V , since

(0, α, β)V̂ T V̂:,1 = (0, α, β)(1, 0, 0)T = 0.

The assumption must be wrong, and no vector (0, α, β) ∈ R
3\(0, 0, 0) exists, with

(0, α, β)V̂ T = As,: being a nonnegative vector.
Therefore, the first singular vector V̂:,1 must influence the nonnegative matrix A, and

this means that Ti1 6= 0, ∀i ∈ {1, 2, 3}.

Also, a comment on the singular value decomposition is necessary. While the exis-
tence of a component-wise positive eigenvector, corresponding to the largest eigenvalue
of DT D, is given by the Perron-Frobenius theorem, left and right singular vectors of
D can be calculated component-wise negative. This can be easily fixed by multiplying
both of them with −1, as that can be interpreted as scaling.

The irreducibility of DDT and DT D can be assumed for spectroscopic applications,
see [17]; therefore, it does not restrict practical applications of this work. The irre-
ducibility of DDT guarantees the positivity of the left singular vector and can be used
for a similar proof to the previous theorem. It is also required for the proof of the
theorem 2.5 in [17] that is used further in this work.

2.2.3 The two-dimensional representation

In this section the original nonnegative factorization problem is finally reduced to finding
the area of feasible solutions (AFS). For a three-component system, it can be projected
on a plane.

Definition 4. A solution (α, β) ∈ R
2 is called feasible if and only if ∃S ∈ R

2×2 such

that

T =






1 α β
1 S11 S12

1 S21 S22






is regular, C ≥ 0, and A ≥ 0 for C = Û Σ̂T −1 and A = T V̂ T .

This can be continued by defining the set of all feasible solutions.

Definition 5. The area of feasible solutions is defined as

M =
{

(α, β) ∈ R
2 : (α, β) is feasible

}

in accordance with definition 4.
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2 Nonnegative matrix factorization

Thus, the feasible solutions (α, β) can be shown on a two-dimensional plane. The
topology of the AFS is discussed in [7].

Theorem 7. The area of feasible solutions for a nonnegative rank-3 matrix D ∈ R
k×n

is empty or consists of 3m, m ∈ N segments.

Proof. See theorem 7.3. in [7]

A useful constraint to AFS, called FIRPOL, is given by Borgen and Kowalski in
[2]. It is based upon the nonnegativity of the first row of A and can be applied as a
limitation to the AFS.

Definition 6. The polygon FIRPOL is defined as

F =
{

(α, β) ∈ R
2 : (1, α, β)V̂ T ≥ 0

}

.

It follows that M ⊂ F and M 6= F because (0, 0) /∈ M, but (0, 0) ∈ F , see theorem
2.5 in [17].

To fix the orientation of the AFS, the second and the third singular vectors of the
singular value decomposition are multiplied by −1 under some circumstances. That
influences the orientation regarding the α and β axes, see [16], e.g. multiplying the
second singular vector by −1 corresponds to reflection over the β-axis.

If the maximum of the column V̂:,i, i = 1, 2, 3 is smaller than the maximum of the
column −V̂:,i, then columns V̂:,i and Û:,i are multiplied by −1. This ensures that the
element of a column of V̂ with the absolute maximum is positive; thus, it can also be
done to the first column. This is referred to as the normal orientation. The changes in
orientation for the two-dimensional representations are shown in figure 2.1.

2.2.4 The feasibility of a solution

The focus of this section is to explain how the decision is made whether (α, β) ∈ M.
The first step should always be to check whether (α, β) ∈ F . This check is a simple

multiplication and is not computationally intensive. If a solution does not belong to
FIRPOL, then it can be labeled as not feasible because M ⊂ F .

If the solution belongs to FIRPOL, a much more time-consuming test is required.
The difficulty is in finding a suitable S ∈ R

2×2 for given values (α, β). The decision can
be regarded as a nonlinear least-squares problem of two known data points and four
adjustable parameters. The target function f from chapter 2.1.5 with s = 3 is used for
this decision.

The result of the minimization problem is the basis for deciding whether the solution
is feasible. In general, rounding-errors are present. Therefore, all solutions with

min
S∈R2×2

‖f(α, β, S)‖2
2 ≤ εtol,

for a small parameter εtol are considered to be included in AFS. This is referred to as
the standard test.

9



2 Nonnegative matrix factorization

-0.5 0 0.5 1 1.5

-0.5

0

0.5

1

Normal orientation

-1.5 -1 -0.5 0 0.5

-0.5

0

0.5

1

Second column times −1

-0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

Third column times −1

-1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

Second and third column times −1

Figure 2.1: The AFS of the FACPACK data set example2.mat with different orienta-
tions, depending on the columns of V̂ and Û .

Note that similar treatment of small negative entries is advised in [14] for the FIR-
POL. Thus, the solution belongs to FIRPOL if

min

(

0,
(1, α, β)V̂ T

‖(1, α, β)V̂ T ‖∞

+ ε

)

≥ 0.

However, this would mean that the standard test and FIRPOL have different tol-
erances and a solution, that is acceptable by the standard test, might not be feasible
according to FIRPOL. To circumvent this, a slightly modified decision for FIRPOL is
used

n∑

i=1



min

(

0,

(

(1, α, β)V̂ T

‖(1, α, β)V̂ T ‖∞

+ ε

)

1i

)2


 ≤ εtol;

it provides an equivalent statement to the standard test.
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3 Polygon inflation algorithm

In this chapter the polygon inflation algorithm for finding the AFS is introduced. The
general idea of the algorithm is explained; mainly [16] and [14] are used as sources.
Then some details and difficulties of the implementation are presented.

3.1 General concepts of the algorithm

The general concept of the polygon inflation algorithm is to approximate the area of
feasible solutions with a polygon that is expanded by adding new vertices (α, β). The
polygon inflation algorithm is intended to be used for the computation of an AFS that
consists of exactly three disconnected segments. For other cases alternative methods
should be used, e.g., the inverse polygon inflation, see chapter 4.

3.1.1 Adding a new vertex

An essential part of the polygon inflation algorithm is the search for new vertices. A
new vertex is added by means of two stages - a pre-bisection stage and a bisection stage.

The pre-bisection stage roughly approximates the boundary of the AFS. The
search for a new vertex originates from the midpoint of an edge that is marked for
refinement and is realized perpendicularly to the edge. If the midpoint is located in the
AFS, then the search for the new vertex is started outwards (away from the polygon)
and if the midpoint is not a feasible solution, then the search is started inwards (to the
interior of the polygon).

Then some steps are made. After each step, the feasibility of the solution is checked.
When two such solutions are found, where one of them lies in the AFS and the other
does not, an approximate location of the boundary is detected.

The bisection stage is used to refine the location of the boundary. The use of
bisection method is suggested in [16] and it is described in e.g. [3].

For the bisection method, two solutions are required - one of them is feasible (let’s
call it pi) and the other one is not (let’s call it p̂i). The iteration follows by halving the
interval between the two points and determining whether the new point pnew is feasible.
If it is, then pi+1 = pnew and p̂i+1 = p̂i, else p̂i+1 = pnew and pi+1 = pi. This is continued
until ‖p̂i − pi‖ ≤ εb.

After the termination of the bisection method, the new vertex of the polygon is set
to be pi because it has to be feasible and p̂i is not.

11



3 Polygon inflation algorithm

3.1.2 Adaptivity and termination

The subdivision of the edges could simply be done in a set order until a defined number
of vertices is reached. However, this approach would require a large amount of vertices
because sharp corners of the AFS would be approximated in the same fashion as straight
fragments. This is solved by subdividing edges adaptively, see figure 3.1.

-0.5 0 0.5
-1

-0.5

0

0.5

1

Figure 3.1: A rectangle has been approximated with 73 vertices. The symbol ◦ denotes
the initial point (compare with figure 3.4) and ×, the found vertices.

Thus, for each edge i some value ∆i, that is responsible for the decision which edge is
to be subdivided next and when the adaptive iteration should be stopped, is necessary.

In [16] it is suggested to use the gain-of-area for this purpose, defined as

∆̂i =
1

4
‖Pi − Pi+1‖2‖M − Pnew‖2,

where Pi and Pi+1 are two successive vertices, M is the midpoint between them and
Pnew is the vertex that was added. Hence, the edge, which previously increased the
area of the polygon the most, will be subdivided again. This would, for example, stop
straight fragments of the AFS being unnecessary subdivided.

However, using ∆̂i failed to provide the necessary adaptivity, see figure 3.2. This can
be explained by the dependency of the length of the old edge through ‖Pi − Pi+1‖2.
This halts the subdivision of very short edges that are even significantly different from
the previous edge. Using only the height of the isosceles triangle (formed by the old
edge as a base and two new edges as legs), as done in FACPACK, circumvents this
problem, see figure 3.2. Thus,

∆i = ‖M − Pnew‖2

is used.
The edge, chosen to be divided during the polygon inflation, is defined as having the
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Figure 3.2: A close-up view of the upper left corner of the rectangle in 3.1 using gain-
of-height and gain-of-area. For ∆i 73 steps were taken and for ∆̂i only 45
steps. The other parameters were set for both cases as εb = 10−3, δ = 10−10

and par(5)=1e-1.

maximal ∆i. Note that the two most recent edges will have identical ∆i; in this case
one of them is to be divided first.

The polygon inflation algorithm is terminated when maxi ∆i drops below a predefined
parameter δ. This parameter allows to change the accuracy of the resulting polygon
because a lower δ results in more vertices. Hence, a higher refinement follows, see
chapter 5.3.

An interesting characteristic is the lack of adaptivity in case of a lucky guess. See fig-
ure 3.3 for an example. For this particular triangle, it would happen with any arbitrary
initial point, as it is an isosceles triangle. This is connected with the initialization that
is explained in the next section. The first two vertices create an edge, that is parallel
to the base of the triangle. Thus, the mid-perpendicular of this edge will intersect the
apex of the triangle. The following subdivisions result with ∆i = 0 (or some small
numerical error) for both edges adjacent to the apex. The reason is that they coincide
with the legs of the triangle. Consequently, the edges near the apex of the triangle will
not be subdivided anymore.

3.1.3 The initialization

To start the polygon inflation algorithm, an initial polygon has to be constructed. In
[16] an initial triangle is used. However, due to the lack of the gain-of-height values
∆i for the initial triangle, another three steps are needed before the main iteration
can start; it results in a hexagon. To reduce the initiation phase a quadrilateral, with
∆i calculated for the third and fourth vertex, is used in this work. This change has
minimal influence on the resulting polygon.

The construction of the quadrilateral is started with an initial point in the AFS. The
standard feasibility test delivers an opportunity to find initial points by changing the
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Figure 3.3: The triangle has been approximated with 57 vertices. Note the lack of
adaptivity at the apex.

minimization problem to

min
α∈R, β∈R, S∈R2×2

‖f(α, β, S)‖2
2 ≤ εtol.

A successful minimization provides an initial solution (α, β) and the corresponding
matrix S for one segment of the AFS.

The initial points for other segments can be found in remaining rows of the matrix
T from the minimization problem, more precisely






1 S11 S12

1 α β
1 S21 S22




 and






1 S11 S12

1 S21 S22

1 α β




 ,

and can be analogously checked for feasibility. This is the case because it is possible to
expand the equation 2.1 with a permutation matrix P ∈ R

3×3 to

D = ÛΣ̂V̂ T = ÛΣ̂(T −1P T

︸ ︷︷ ︸

C

P T )V̂ T

︸ ︷︷ ︸

A

.

The original factors A and C as well as the factors A0 and C0 that are computed
during the initialization are compared in figure 3.5. This also means that the sequence
in which the three polygons will be processed depends on the factor A0 and can vary.

An initial matrix factorization is accepted if all three initial solutions are feasible.
Otherwise, it is repeated with different random number generation.

Then a construction of an initial quadrilateral can follow by finding four vertices on
the boundary of the AFS, see figure 3.4. The searching directions in the pre-bisection
stage for the first two vertices are manually set beforehand. The third and fourth vertex
is found by subdividing the first edge in opposite directions.
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Then the polygon inflation can proceed normally. The segments are processed con-
secutively.
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Figure 3.4: The construction of an initial quadrilateral for the approximation of the
boundary of a rectangle.
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Figure 3.5: Pure component concentration profiles and spectra for the FACPACK data
set example2.mat, compared with the calculations during the initialization
of the algorithm.
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3.2 Challenges regarding the numerical optimization

A successful implementation of the adaptive polygon inflation algorithm depends on
a diverse spectrum of strategies. Most challenges are associated with flawed results
of numerical optimization. Therefore, choosing correct techniques and appropriate pa-
rameters is of considerable importance.

3.2.1 The numerical optimization in Matlab

To check the feasibility of a solution, the numerical optimization problem

min
S∈R2×2

‖f(α, β, S)‖2
2

has to be solved. A suitable algorithm for this problem in Matlab is lsqnonlin.
This algorithm requires a starting approximation S ∈ R

2×2 and the success of the
minimization relies partially on it. Therefore, a poorly chosen matrix S can lead to
a solution mistakenly labeled as not feasible. To reduce this possibility, the following
strategy is adopted.

For the midpoint of an edge in the pre-bisection stage, the optimization problem
should be solved in three steps. Firstly, using lsqnonlin with S from one of the both
neighboring vertices. If it fails the feasibility test, then it has to be repeated with S
from the other neighboring vertex. This ensures that both of the best available starting
approximations are used. If it also fails, then an additional test using the genetic
algorithm ga in Matlab can be done. The genetic algorithm requires no starting
approximation but is slower and delivers less precise solutions. However, it can be used
in combination with lsqnonlin to obtain a precise feasible solution. If the test with the
genetic algorithm also delivers a value that is larger than εtol, then it is to be assumed,
that the solution is not feasible.

If the midpoint was feasible, then each step in the pre-bisection stage can use the
matrix S from the previous step. The matrix S from the midpoint can be used for the
first step. This is done because the closest possible solution is the most likely to have a
similar S to the examined solution and it can be used as a good starting approximation.

The case where the midpoint was not feasible is more complicated. The starting
matrix S from the midpoint can be a very poor approximation for the actual matrix.
Thus, in each step inwards in pre-bisection stage, a multitude of starting matrices
can and should be checked - the matrix from previous approximation, as well as both
matrices from neighboring vertices. Since the correct acknowledgment, when a solution
is feasible, is critical for this stage, even the genetic algorithm can be used in each
step. However, the calculation of it is computationally expensive and, in the case of an
infinite loop occurring due to other errors, it means a large computing time leading to
no solution. Therefore, the genetic algorithm has not been used for this purpose.

In the bisection stage, both matrices S from endpoints of the halved interval are
tested as initial approximations. Only if the new point fails the test with both of them,
it is assumed to be not feasible.

Even after such precautions, errors regarding numerical optimization can occur.
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3.2.2 Possible errors

Some solutions can be mistakenly labeled as not feasible due to a poor starting matrix
S or an unsuccessful minimization. There is no possibility of the opposite because if a
minimum, smaller than εtol, can be found, then the definition of a feasible solution is
met. Owing to the fact that ε and εtol tolerate small negative entries, rounding errors
and inaccurate data, solutions near the border of the AFS can also be accepted as
feasible; however, this behavior can be influenced by changing these parameters.

Three cases, where the minimum, lower than εtol, could not be found by an error, are
presented.

Case 1. A solution can be mistakenly labeled not feasible while testing the midpoint
of two vertices in the pre-bisection stage. Consequently, the following search of the
boundary will be started in the incorrect direction - inwards. In the best case, a feasible
solution is found while still within the correct AFS segment. However, an infinite loop
of steps in the wrong direction can occur when the algorithm fails to find the minimum
for the entirety of the AFS segment. In the worst case, a feasible solution in a different
AFS segment will be found. This is a rare possibility, as the given S from one of the
neighboring vertices is unlikely to be a good approximation for a point in a different
segment.

Case 2. A further possible circumstance, when a solution can be mistakenly labeled
as not feasible, is during the search for the boundary in the pre-bisection stage. This
results in a vertex that is located further in the interior of the AFS segment than it
should be. This is not only a poor approximation of the boundary but also can lead
to the main iteration never stopping. The erroneous vertex will end up having a large
∆i and will be chosen for subdivision. Normally the subdivision will run smoothly and
end up in a vertex near the boundary. Thus, ∆i will stay large and the edge with the
incorrect vertex will again be subdivided. The outcome is a polygon that wraps around
the AFS segment multiple times (disregarding the inaccurate vertices). This can be
observed in figure 3.6.

Case 3. Finally, a solution can be mistakenly found not feasible during the bisection
stage. This results in a similar problem as in the previous case. Here the greatest
challenge is an uneven boundary. The search for new vertices is always done perpen-
dicular to already found edges. If the boundary is too ragged, then the direction in the
pre-bisection stage can be shifted and that can lead to a vertex in the wrong position.
In this case, the numbering of vertices in the polygon loses its meaning regarding the
direction and all following vertices from the wrong edge will be searched in the incorrect
direction.

One can infer from these cases alone that a multitude of techniques is required to
detect and correct such errors. The results with no error correction can be seen in figure
3.6.

3.2.3 Solutions

The first approach to this problem was to label two vertices as incorrect if they are closer
to each other than to their neighbors and to delete both. However, this could result in
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Figure 3.6: The polygon of FACPACK data set example2.mat without any removal
of incorrect vertices by angle. The stopping criterion was not met after
calculation of 400 vertices. The default options of lsqnonlin were used to
provide a better example. The reference in blue for the AFS segment has
been computed using FACPACK.

the removal of all vertices and it can be problematic in sharp edges. This approach is
inherently poor because it only detects errors after the vertices have been accepted and
only uses distance, instead of direction; it can be improved by using angles.

No unfeasible vertices can be accepted. Therefore, small interior angles of the polygon
can be treated as a better approximation of boundary. Large interior angles are to be
resolved because they are an indication of a vertex that is accepted far in the interior of
the AFS. Which angles should be tolerated can be determined by a maximal parameter
α. It can also be done adaptively, depending on the total number of vertices.

The angle test should already be done at the moment when a new vertex has been
found. If the interior angle is larger than the parameter α, then the vertex should not
be accepted. One can assume that it is too far from the border. A follow-up strategy is
to subdivide the the old edge in a different location and try again. Possible subdivisions{

1
3
, 2

3
, 1

4
, 3

4

}

, where 1
2

is the midpoint, are used.

18



3 Polygon inflation algorithm

Additionally, an inspection of all vertices should follow each successful introduction of
a new vertex, as the newly added vertex could prove to be a much better approximation
of the boundary.

An infinite loop in the pre-bisection stage should not be allowed. If a predetermined
value of steps is exceeded, then the search is stopped and the algorithm continued
similarly to the case, when a vertex is not accepted by the angle.

Finally, a solution to the last problem in the case 1 is presented. If a vertex in a
different segment is indeed accepted, then the next subdivision will inevitably fail for all
possible subdivisions (either due to an infinite loop during the search for the boundary,
or due to the angle parameter). Thus, one of the neighboring vertices must be wrong
and should be deleted. If the wrong vertex was not deleted, then the subdivision of the
edge will fail again and the wrong vertex will be removed in the next step. This also
solves other situations when all defined subdivisions have been tried and still no new
vertex has been found.

The problem associated with deleting vertices is how to choose the new ∆i. It is set as
the maximum of both old values ∆i to avoid stopping the iteration sooner as expected.
Furthermore, the deletion of all vertices can be a problem, hence the parameters have
to be carefully considered.

3.3 Challenges regarding the initialization

The quality of the initialization is arguably one of the most important parts of the
algorithm. There is little information about the AFS, there are not enough vertices
to discard any, an unsuccessful search for a vertex cannot be easily mitigated and any
erroneous vertex can negatively influence the following subdivisions.

3.3.1 A different approach

It can be challenging to find feasible initial solutions. The first approach that was tested
did not provide the necessary stability. Let’s call this strategy the nnmf initialization,
as it is based on the nonnegative matrix factorization algorithm nnmf in Matlab.

The initial nonnegative factorization of D = C0A0 from nnmf is used to determine
the matrix T0 = A0V̂ . Scaling is also necessary to ensure that the first column of T0

consists of 1. Therefore, the transformation matrix T possesses the composition

T =






1 T12 T13

1 T22 T23

1 T32 T33




 ,

and the solutions (T12, T13), (T22, T23) and (T32, T33) can be tested for feasibility. The
elements from the other rows of T are already an optimal starting point for the opti-
mization problem, as they have been obtained directly through the nonnegative factor-
ization. The solutions are not automatically feasible because of the inaccuracy of the
factorization D ≈ C0A0. The nonnegative factorization might need to be repeated until
an admissible starting point has been found.

19



3 Polygon inflation algorithm

From 1000 tests with nnmf, using ’algorithm’,’mult’ and starting the random
number generation with rng(’default’), the average value of norm(D − C0A0) was
0.505 and the minimal 0.125. These values indicate that the factorization is poor and
that no successful starting matrix was found. The example data set linesegment.mat

from FACPACK was tested. In comparison, a successful starting matrix for the data set
example2.mat was found after 8 steps. It was accepted with norm(D − C0A0) = 0.140.

Therefore, this approach was abandoned in favor of a different initialization. It is
described in chapter 3.1.3; the minimization problem is solved with ga and lsqnonlin.
Let’s call it the ga-lsqnonlin initialization.

The ga-lsqnonlin initialization also might need multiple iterations; for linesegment.mat

it required three iterations. The values of norm(D −C0A0) were 0.022, 0.001 and 0.083,
with the last corresponding to a feasible initial matrix. This means that the solution
could be still improved.

It should be noted that the nnmf initialization is a fitting way to forgo these difficulties
for constructed problems. The matrices C and A are known in this case. Therefore,
T0 = AV̂ will always provide a feasible solution. This can be successfully used for the
examination of the subsequent parts of the algorithm.

3.3.2 The initial quadrilateral

The construction of the initial quadrilateral can also be subject to some complications.
A notable issue occurs when the initial point is near the edge of the AFS and the

first two vertices have a small distance between them. Thus, it might not be possible
to construct one of the following vertices or the algorithm does not detect the largest
part of the AFS due to labeling interior points as not feasible. So first two vertices
being closer than the parameter dinit are disallowed. This is also important for an AFS
consisting of a dot set, see chapter 5.8.

Even when first two vertices are valid, an infinite loop in the pre-bisection stage
can occur. A possible explanation is that no neighboring vertex has a good starting
approximation S for a new vertex, when they are far apart. A subdivision resulting in
an infinite loop is disallowed here since the initial quadrilateral should consist of four
as fitting vertices as possible.

If the construction of the initial quadrilateral by some reason fails, then it has to be
repeated with a different initial direction vector. The direction vector can be rotated by
some parameter θ. Under normal circumstances, this can overcome the major problems
of the initialization.

If one of the AFS segments is a dot set, then no initial quadrilateral can be con-
structed. Therefore, some restriction on rotation should be implemented to recognize
this case. For example, if the direction vector is rotated close enough to the original
direction vector, then the search for the initial quadrilateral is terminated.
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3.4 Other challenges

3.4.1 Segments in close proximity

The adaptive polygon algorithm presents a problem in a case of two segments located
close to one another.

If the step size in the pre-bisection stage is chosen too large, then the previous point
can be located in one set and the next point in the other. In this case, the correct
boundary would not be found.

Most likely the polygon would contain the correct boundary of both segments; how-
ever, a polygon, wrapping around the boundary multiple times, is possible. It can
happen that near the closest point of the two segments the boundary is not found at
all. In the case of a lucky subdivision, the step can lie between the both sets, resulting
in only one found set, which is the correct behavior of the algorithm. For an example,
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Figure 3.7: The solution of the adaptive polygon algorithm using different pre-bisection
step sizes for the problem of two circles; they are located 0.002 from each
another at the closest point. Note that the algorithm should not be able to
leave the circle with the initial point, marked ◦ .
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see figure 3.7.
The solution to this problem would be a reduction of the step size in the pre-bisection

stage. However, that leads to an increased number of steps and computing time and
should be undertaken only in this particular case. To be absolutely sure that other
segments will not be found, the step size in the pre-bisection stage should be less than
the smallest distance between the segments. This can be observed in figure 3.7.

Of course, for a real data matrix D it is not known how far apart the sets are located.
It is advisable to reduce the pre-bisection step size if the results from the first use are
suspicious. It is also possible that the AFS consists of only one segment with a hole;
then the inverse polygon inflation algorithm is needed, see chapter 4.

3.4.2 The adaptivity

The adaptivity of the polygon inflation algorithm is one of its strengths. However, a
problem can be constructed where this property is troublesome. It can lead to not
finding some segments of the AFS.

Let’s take the rectangle from the figure 3.1 as an example. No outwards-pointing
shapes between the found vertices can be detected with the used precision. This happens
because the algorithm has no other way of detecting such characteristics. Thus, it could
happen in an unlucky case that some parts of the AFS are not approximated because
an assumption of a straight line has been made through adaptivity.

A similar situation occurs when one of the segments is very narrow. If the width of
the segment is comparable with the terminating parameter δ, then the iteration could
stop prematurely. This leads to a part of AFS that is not approximated, see figure 3.8.

Note, that a different terminating parameter or even a different starting point could
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Figure 3.8: The resulting polygon for one segment of the AFS. The iteration with
δ = εb = 10−2 (black) has stopped prematurely, when compared to δ = εb =
10−4 (blue). The data set DotSegment.mat from FACPACK has been used.
Other parameters are set as the default values in chapter 5.2.
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solve this problem. This can be used to determine such cases.
The algorithm can be used twice with different initial points and different preci-

sions. If the Hausdorff distance (see chapter 5.1) between the two resulting polygons
is larger than some error bound, then it can be assumed that some parts of the AFS
are approximated incorrectly. Then a more thorough investigation of the solution can
follow.
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In this chapter the inverse polygon inflation algorithm is outlined. The main differences
to the polygon inflation algorithm are explained; mainly [17] and [14] are used as sources.
Some challenges of the implementation are also presented here.

4.1 General concepts of the algorithm

The inverse polygon inflation algorithm is mainly used for the cases where the polygon
inflation algorithm could not be applied, e.g. if the AFS consists of one segment with a
hole in the center, see figure 4.1. The inverse polygon inflation algorithm is, in essence,
an adjusted polygon inflation algorithm.

4.1.1 Motivation and initialization

If the polygon inflation algorithm delivers a segment, that lies in at least three quad-
rants, then it is to assume that there exists only one segment with a hole, as done in
FACPACK [17]. In this case, the polygon inflation can only detect the outer boundary.
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1

Figure 4.1: AFS segment with a hole. The data set example3.mat from FACPACK
has been used.
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The detection of this case can be a time intensive process because multiple vertices,
initially approximating the hole, must be removed. Only then the polygon inflation
algorithm can finish approximating the segment and detect the need for the inverse
polygon inflation algorithm. Alternatively, this check can be done in each iteration.

The inverse polygon inflation algorithm consists of two steps. First, the outer bound-
ary is approximated with FIRPOL. This is identical to the fast test in the polygon
inflation algorithm. Thus, the polygon inflation algorithm can be used normally, with
the exception that only the fast test is used and the standard test is omitted. This is
computationally more efficient because it does not require numerical optimization. The
origin can be used as a starting point since (0, 0) ∈ F .

Then the approximation of inner boundary follows. It is based on the idea to ap-
proximate the hole in the interior of AFS in the same fashion as a feasible segment is
approximated with the polygon inflation algorithm and is explained in the following
section.

4.1.2 Approximation of the inner boundary

The target function has to be changed to approximate the inner boundary. FIRPOL
already takes care of the constraint of nonnegativity of the row A1,:. Thus, the remaining
constraints have to be enforced and they deliver the inner boundary of the AFS.

Definition 7. The set, that is used to calculate the inner boundary, is defined as

M∗ =
{

(α, β) ∈ R
2 : ∃S ∈ R

2×2 such that T is regular and A2,: ≥ 0, A3,: ≥ 0, C ≥ 0
}

,

for T , A, and C in accordance with definition 4.

The area of feasible solutions is the intersection of the both constraining sets

M = F ∩ M∗.

The procedure for approximating the inner boundary matches the polygon inflation
algorithm, with the exception that no fast test should be used and the target function
should be modified to accommodate M∗.

Definition 8. The target function f for the inverse polygon inflation algorithm is de-

fined as

f(T ) =
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where R = Id(3) − TT + and both A and C are defined as before.

The only change in the target function is in the vector Ã; the elements, corresponding
to A1,:, have been removed.

Another notable difference to the polygon inflation algorithm lies in the initialization.
The set M∗ has a hole in the middle an the goal is to approximate it. If the initial
point would be chosen in the set M∗, then a vertex could be found only in the direction
of the hole. The solutions in the directions, pointing away from the hole, would likely
result in an infinite loop.

Therefore, the initial quadrilateral should surround the hole from all sides. To reliably
do that the inverse polygon inflation should be started at the origin (0, 0). The origin
is never included in the AFS and always in the FIRPOL. Consequently, (0, 0) /∈ M∗.

A noteworthy property of the approximated polygon is the fact that the vertices are
listed in the opposite direction. If the numbering of the vertices for the polygon inflation
algorithm was set to be counter-clockwise, then the interior polygon from the inverse
polygon inflation algorithm will have a clockwise enumeration.

4.2 Challenges regarding the inverse polygon inflation

algorithm

Many difficulties of the polygon inflation algorithm also apply to the inverse version
and are not repeated here. The problems with the initialization and the segments
in close proximity are not a concern here. The search for the outer boundary is also
unproblematic because the fast test does not involve numerical minimization. However,
there are some unique issues.

4.2.1 Unique challenges

Firstly, the inverse polygon inflation algorithm is slower than the polygon inflation
algorithm. This can be explained by the differences in M∗ and M. The polygon
inflation algorithm usually does not require the use of the genetic algorithm because
the midpoints of most edges are feasible solutions. In comparison, to approximate the
hole, the midpoints of most edges, especially at the earlier stages, are located in the
hole and consequently are not feasible. Hence, two tests with lsqnonlin and one with
ga are necessary for many vertices in the pre-bisection stage. This increases the overall
computation time.

Secondly, the inverse polygon inflation algorithm approximates the inner boundary
from the outside of the hole and not the inside of the segment, as it is with the polygon
inflation algorithm. Moreover, the inverse polygon inflation algorithm can only mistak-
enly accept solutions lying outside of the hole, due to the same argumentation as in 3.2.
Thus, for the inverse polygon inflation algorithm, the closing in on the border happens
from the outside. In other words, after the first few vertices, the direction of the search
for a new vertex will generally be inwards. An improvement in precision means the
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reduction of the area of the polygon. This necessitates a separate consideration of the
angle parameter α, see chapter 5.7.

4.2.2 A different approach

An alternative approach for the approximation of the inner boundary was tested, but
it did not prove very successful.

The idea was to leave the target function similar to the polygon inflation algorithm
and only change the condition for accepting the solution. To approximate the hole the
condition should be changed to

min
S∈R2×2

‖f(α, β, S)‖2
2 ≥ εtol,

with the reasoning being that the solutions, accepted for the approximation of the hole,
are exactly the solutions found not to be feasible by the polygon inflation algorithm.

This approach does not function well due to the reversing of the condition. As
with the the inverse polygon inflation, the erroneous vertices can be accepted outside
of the hole in the center. Moreover, it was often observed that the inner boundary
was situated in the interior of the AFS, and many neighboring points were erroneous,
see figure 4.2. This could be explained with using poor starting approximations from
neighboring matrices.
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Figure 4.2: The inverse polygon algorithm (blue) compared with the results from the
alternative approach (red).

Another problem occurred if no feasible solution was found for the entire AFS and
the outer border was reached. Then the algorithm fails to find a new vertex.
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4 Inverse polygon inflation algorithm

In general, this variation failed to provide the necessary stability and precision for the
case of one segment. Thus, it was abandoned in favor of the inverse polygon inflation.

4.2.3 The inverse polygon inflation algorithm for an AFS with

three separated segments

The inverse polygon inflation algorithm can also be successfully used in scenarios with
multiple segments. As previously explained, the calculation will take a longer time.
Also the computing power will be wasted on some areas of M∗ that are not relevant for
the AFS, see 4.3. The resulting approximation agrees with the results from the polygon
inflation algorithm.
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Figure 4.3: The inverse polygon algorithm delivers the inner boundary M∗ and the
outer boundary F of the data set example2.mat. The colorful segments of
the AFS were generated with the polygon inflation algorithm. Note how
they coincide with F ∩ M∗. The parameters are set as the default values
in chapter 5.2.
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Figure 4.4: A close up on the AFS in the figure 4.3.
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5 The numerical results

The polygon inflation algorithm is sensitive to the choice of parameters and an appro-
priate choice is crucial to its success. Some decisions on their values and their influence
on the algorithm are discussed in this chapter. A few examples of varoius AFS are also
given.

5.1 The techniques for the analysis of the algorithm

A useful measure to determine the accuracy of the resulting polygon is the Hausdorff
distance. It intuitively helps to evaluate how different two sets are.

Definition 9. The Hausdorff distance between two sets V and U is

dH(V, U) = max

(

sup
v∈V

inf
u∈U

‖v − u‖2, sup
v∈V

inf
u∈U

‖v − u‖2

)

.

To find the Hausdorff distance between two polygons, it is sufficient to determine the
infu∈u ‖v − u‖2 for all vertices v of the polygon V and vice versa. Thus, the distance
between each vertex of a polygon and each edge of the other polygon and the other
way round is necessary to determine the Hausdorff distance. The minimal distance is
saved for each vertex of both polygons. The maximum of these values is the Hausdorff
distance.

Another way to investigate how the algorithm works is to analyze how many steps
are required in the pre-bisection and bisection stages for each vertex. To reduce the
computing time, the sum of the steps should be held minimal. Also the minimal gain-
of-height ∆i in each iteration is of interest.

A useful statistic regarding numerical approximation is the number of times the ad-
ditional feasibility test with ga was necessary and how many times the initial approxi-
mation matrix S2 from the other neighboring vertex was needed. Also, the number of
times, when adding a new vertex failed due to infinite loops or a large interior angle, can
be used to describe, how well the algorithm functions. Finally, the number of removed
vertices is a good measure for the quality of the numerical approximation.

The algorithm has been mainly tested on the triangle and rectangle from the figures
3.3 and 3.1 and example data sets from FACPACK, such as example2.mat.

5.2 Summary of parameters

In this chapter an overview and general properties of most parameters of the polygon
inflation algorithm and the inverse polygon inflation algorithm are given. More in-depth
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5 The numerical results

analysis of some parameters is provided in the following chapters.
The main parameters of the implemented Matlab program are given in the array par

and this naming convention kept here. A set of appropriate values for the parameters
has been chosen for the numerical investigation of the algorithm and in this work is
referred to as the default parameters in 5.2. These values are given together with the
parameter.

• The parameter par(1) = ε = 10−12 changes the degree of nonnegativity that is
accepted in the matrices C and A. For a constructed problem with noise-free data
it can be set to 0, and [16] suggests values less than 0.05. For further examination
see chapter 5.4.

• The parameter par(2) = εb = 10−3 is the terminating parameter of the bisection
method. It is stopped when the distance between the two points is less than εb.
According to [16] it can be set equal to par(4). For further examination see
chapter 5.3.

• The parameter par(3) = εtol = 10−10 is responsible for the decision over the
feasibility of a solution. Its main purpose is to negate rounding errors. If it is
set too large, an irregular transformation matrix T can be accepted. For further
examination see chapter 5.4.

• The parameter par(4) = δ = 10−3 is used to terminate the main iteration. If
∆i ≤ δ, ∀i is true, then the iteration is stopped. For further examination see
chapter 5.3.

• The parameter par(5) = 0.1 defines the length of a step in the pre-bisection
stage. The actual step size is a product of par(5) and the length of the edge.
This is justified with the assumption that already well-refined edges will not have
large gains of area. For further examination see chapter 5.5.

• The parameter par(8) = 100 changes the number of allowed steps in the pre-
bisection stage. It depends largely on par(5); however, the only drawback of
setting the value too large is the increase in computation time. For further exam-
ination see chapter 5.5.

• The parameter par(9) = α = 190 is responsible for the removal of mistakenly
calculated vertices in the interior of the AFS. This value is given in degrees and
is always calculated for the interior angle. A simple, non-adaptive value seems
to function well. It can be set to 200 or 300 for the inverse polygon inflation
algorithm. For further examination see chapter 5.7.

• The parameter par(10) = θ = 45 alters how much the initial direction vector is
rotated to find the first two vertices in the case of an error in initialization. The
angle is given in degrees counterclockwise and a default value of 45 degrees is used.
If the angle is chosen too small, then additional rotations might be necessary and
it might take longer to detect a dot set. If it is chosen too large, then no initial
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5 The numerical results

quadrilateral might be found after a full 360-degree rotation. It is advisable to
choose θ as a divisor of 360, then a dot set would be found only after one rotation.

Other parameters with lesser importance are:

• The parameter vinit = (−1, 0). The influence of the starting direction is negligible
because of the rotation of initial direction.

• The stopping criterion for the rotation of the initial direction. It is set as the
norm of the new and the initial direction vinit = (−1, 0) being less than 10−5 and,
as long as θ is appropriately chosen, it serves the purpose of neutralizing any
rounding-errors that are accumulated during rotation.

• The parameter dinit = 10−3 rules out any two initial vertices closer than its value.
Caution is required since it is dependent on the scaling of the system. If the AFS
would be scaled down e.g. 1000 times, this parameter would be too large. For
further examination see chapter 5.8.

• The parameter init_step defines the length of the edge for the pre-bisection stage
of the first two vertices (when no such length is available). It is then multiplied
with par(5) to find the step size in the pre-bisection stage. The default value is
set as 1.

There are also some internal parameters for algorithms in Matlab that can consid-
erably affect the success of the polygon inflation algorithm, see also 5.6.

• For lsqnonlin it is possible to change the default algorithm as well as

– ’FunctionTolerance’=1e-12 ( Matlab default is 1e-6); this parameter is
the termination tolerance and has a strong influence on the quality of the
numerical optimization.

– ’MaxIterations’=400 (Matlab default is 400); this parameter seems to
have negligible influence on the quality of the result.

– ’OptimalityTolerance’=1e-12 (Matlab default is 1e-6); this parameter
changes the tolerance of the first-order optimality. Decreasing this parameter
seems to result in more precise solutions but also more failed optimizations.

– ’StepTolerance’=1e-6 (Matlab default is 1e-6); this parameter seems to
have negligible influence on the quality of the result.

and others.

• For ga it is possible to change amongst others ’FunctionTolerance’=1e-6 (Matlab

default is 1e-6); it seems to have negligible influence on the quality of the result.
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5 The numerical results

5.3 The terminating parameters

The parameters εb and δ are responsible for terminating the bisection method and the
main iteration, respectively. Thus, it is expected that lower value results in a more
refined polygon.

5.3.1 The effect on the precision

At first they are set εb = δ, as suggested in [17]. If the algorithm works as intended,
then lower termination criterion δ results in a larger amount of vertices added to the
polygon and this should ensure a more exact approximation of the AFS. This is indeed
the case, see table 5.1.

εb, δ Triangle Rectangle example2.mat

Vertices dH Vertices dH Vertices dH

1 · 10−6 123 1.9 · 10−6 177 1.9 · 10−6 2804 −
1 · 10−5 113 1.3 · 10−5 145 1.2 · 10−5 1187 9.4 · 10−5

1 · 10−4 85 2.9 · 10−4 123 7.8 · 10−5 531 2.0 · 10−4

1 · 10−3 57 1.9 · 10−3 73 1.9 · 10−3 227 3.8 · 10−3

1 · 10−2 41 2.5 · 10−2 57 2.2 · 10−2 100 2.2 · 10−2

1 · 10−1 15 3.2 · 10−1 21 1.4 · 10−1 27 1.9 · 10−1

Table 5.1: The number of vertices and Hausdorff distance for varying εb and δ. To
calculate the Hausdorff distance the actual polygons have been used for the
triangle and the rectangle. For the example2.mat the result with 1 · 10−6

has been used as a reference. Other parameters are set as the default in 5.2.

Note that the solution with FACPACK has not been used as a reference to calculate
the Hausdorff distance here, because additional precision is required to evaluate these
results. The Hausdorff distance dH = 8.2 ·10−5 between the result with εb = δ = 1 ·10−6

and the solution with FACPACK with both e-bound and d-stopping set to 10−6 is a
good result; however, FACPACK still is a different implementation. Hence, it has been
avoided in this section.

Both parameters εb and δ can be adjusted to achieve the desired refinement. The
value 1 ·10−3 is suggested, as it offers a middle ground between precision and computing
time. This value has also been used in [17].

5.3.2 The connection between the terminating parameters

Next, the connection between εb and δ is analyzed. In the figure 5.1 it is clearly visible
where the algorithm would have stopped for a fixed parameter εb = 10−6 and different
δ, indicated by the black horizontal lines. The results, when δ is held fixed and only εb

is changed, are shown in table 5.2.
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Figure 5.1: Change of ∆i with εb = δ = 1 · 10−6. Other parameters are set as the
default in 5.2.

εb Triangle example2.mat

Vertices dH Vertices dH

1 · 10−6 65 1.7 · 10−3 246 1.6 · 10−3

1 · 10−5 65 1.8 · 10−3 243 2.0 · 10−3

1 · 10−4 63 2.4 · 10−3 239 1.4 · 10−3

1 · 10−3 57 1.9 · 10−3 227 3.8 · 10−3

1 · 10−2 81 with errors 183 7.9 · 10−3

1 · 10−1 infinite loop 154 2.9 · 10−2

Table 5.2: The number of vertices and Hausdorff distance for varying εb, and fixed
δ = 1 · 10−3. To calculate the Hausdorff distance the actual sets have been
used for the triangle and the rectangle. For the example2.mat the result
with 1 · 10−6 from 5.1 has been used as a reference. Other parameters are
set as the default in 5.2.

If εb << δ then the imprecision of bisection can considerably influence the termination
of the main loop. Moreover, it can lead to the polygon being self-crossing; thus, the
meaning of inside and outside is lost and new vertices can be searched in the wrong
direction. This is the reason for the errors and the infinite loop in the triangle case.
However a proper removal of incorrect vertices by angle (which is only done for the cases
with numerical optimization) circumvents this problem. Consequently, if computation
time restricted, a lower value of εb can be used. However, it should be noted that more
vertices will be removed due to not fulfilling the angle parameter. Six vertices were
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removed in the case of εb = 1 · 10−3, but 67 vertices in the case of εb = 1 · 10−1. The
number of steps in bisection dropped considerably. On average 2.74 steps were needed
in the case of εb = 1 · 10−3, but only 0.0045 steps in the case of εb = 1 · 10−1. The
resulting polygon can be seen in figure 5.2.
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Figure 5.2: One segment of example2.mat with different values for εb and δ. Other
parameters are set as the default in 5.2.

If εb >> δ then all vertices are calculated more precisely than can be utilized by the
main iteration. It provides an improvement of the precision to some extent and can
be computationally more efficient. The imprecisions stem from an early termination
of the iteration; for the isosceles triangle, they can be observed near both of the base
vertices. The number of steps in the pre-bisection stage for example2.mat has been
considerably increased. On average 12.6 steps were needed in the case of εb = 1 · 10−6

(in comparison, 2.74 steps in the case of εb = 1 · 10−3).
To conclude, the usage of different εb and δ has limited applications if the computing

time is of interest. In the general, they can be kept the same.

5.4 The numerical approximation parameters

Parameters ε and εtol are both used for the decision whether a solution is feasible.
The parameter εtol negates some small numerical rounding errors during the numerical

optimization. If this value is too large, then some non-invertible matrices T can be
accepted; this can sabotage the results.

Setting εtol to zero prevents any numerical errors to be tolerated. Consequently, no
AFS can be found. In [16] the value 10−10 is used. If the value is reduced to e.g. 10−15

then the number of vertices removed by the angle for example2.mat increases from 6
to 19. The Hausdorff distance to the reference solution in the table 5.1 drops from
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3.8 · 10−3 to 2.5 · 10−3. Therefore, the parameter εtol can be reduced for a more precise
but slightly slower approximation of AFS.

The parameter ε is used to tolerate small negative entries in matrices A and C.
In [16] it is revealed, that it especially useful for cases with perturbated data. In
[14] it is further recommended to set ε larger than the scaled values of the smallest
(negative) entries in A and C if the nonnegative matrix factorization tool is incapable
of providing entirely nonnegative matrices. For data set example2.mat the Hausdorff
distance between solutions with ε = 0 and ε = 1 · 10−12 is 2.0 · 10−3, indicating minor
differences.

An interesting property, demonstrated in [14], is that the area of segments is increas-
ing with rising ε. This behavior is shown in figure 5.3. For ε > 0.05 more noticeable
errors, similar to the lower left segment, are beginning to appear, e.g., for ε = 0.05 a
neighboring vertex was removed 18 times because the new vertex was not found. This
should not happen at all and it indicates problems with numerical optimization for
such a degree of accepted negativity. It is important to note that these are not valid
representations of the actual AFS.
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Figure 5.3: The changes of the AFS for different values of ε. Other parameters are set
as the default in 5.2.

5.5 The pre-bisection stage parameters

The parameters par(5) and par(8) influence the pre-bisection stage of the polygon
inflation algorithm.

The step size, controlled by par(5), plays a crucial role in the pre-bisection stage. If
the size is chosen too large, then bisection stage will need a lot more steps. If the step
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size is too small, then the limitation par(8) of available steps might be reached before
the bisection method could be started.

The actual step size is set adaptively as a product of par(5) and the edge that is
being subdivided. This ensures that the step sizes are larger at the beginning of the
main iteration and smaller at the end when only minor adjustments are required. It
also helps to avoid problems of scaling, if one, for example, wants to approximate a
triangle, that has a 100 times larger area. Without the adaptivity, par(5) and par(8)

should have been adjusted for each problem.
The goal of this chapter is to find the optimal parameter par(5) that produces the

least amount of overall steps. Parameter par(8) is should be chosen accordingly to the
number of steps. The results from the evaluation of the optimal parameter are shown
in tables 5.3 and 5.4.

par(5) Avg. pre-
bisection
steps

Avg. bisec-
tion steps

Avg. steps Max. pre-
bisection
steps

10 1 9.89 10.89 1
5 1 8.89 9.89 1
1 1.01 6.83 7.84 2

0.5 1.07 5.83 6.89 3
0.1 2.41 3.62 6.03 11
0.05 4.01 2.60 6.61 21
0.01 17.61 1.17 18.78 103
0.005 34.40 0.70 35.10 206
0.001 162.93 0.04 162.97 1027

Table 5.3: The average and maximal number of pre-bisection and bisection stage steps
for the rectangle. Other parameters are set as the default in 5.2.

Figure 5.4 illustrates the increase in the number of pre-bisection steps for a decreasing
value of par(5). The adaptivity of the pre-bisection step size is visible there. Excluding
the first few vertices, the behavior of the number of pre-bisection steps stays about the
same, while the number of steps in the bisection stage decreases, indicating that the
step size of the pre-bisection stage is nearing the terminating parameter of the bisection
method.
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Figure 5.4: The number of steps for pre-bisection and bisection stage for the rectangle
with varying par(5). Other parameters are set as the default in 5.2.

par(5) Avg. pre-
bisection
steps

Avg. bisec-
tion steps

Avg. steps Max. pre-
bisection
steps

1 1 6.01 7.01 1
0.5 1.04 5.01 6.05 2
0.1 1.94 2.74 4.68 9
0.05 3.54 1.81 5.36 58
0.01 13.23 0.55 13.77 91

Table 5.4: The average and maximal number of pre-bisection and bisection stage steps
for example2.mat. Other parameters are set as the default in 5.2.

For the case with known boundary as well as for the case with numerical optimization
the optimal value for par(5) seems to be 0.1, as it provides the smallest number of
required steps. Therefore, the total computation effort is reduced. If this value is used,
then par(8)=100 can be safely chosen, ensuring that a successful search for boundary
is not stopped prematurely.

5.6 The internal numerical optimization parameters

This chapter is intended to illustrate how strongly some internal parameters of the
Matlab function lsqnonlin can affect the quality of the optimization. Table 5.5
shows, how some changes to various parameters affect the resulting approximation.
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Settings for lsqnonlin Vertices S2 is
needed

ga is
needed

Not
added
by
angle

Cut by
angle

Default 251 103 20 5 91
’MaxIterations’,800 251 103 20 5 91
’StepTolerance’,1e-12 251 103 20 5 91
’FunctionTolerance’,1e-12 235 16 3 0 8
’OptimalityTolerance’,1e-12 237 74 25 10 61
’FunctionTolerance’,1e-9,

’OptimalityTolerance’,1e-9

243 28 2 0 27

’FunctionTolerance’,1e-12,

’OptimalityTolerance’,1e-12

227 17 6 3 6

’FunctionTolerance’,1e-15,

’OptimalityTolerance’,1e-15

228 10 3 0 7

Table 5.5: The number of vertices and various events for example2.mat with different
parameters for lsqnonlin and ga. Other parameters are set as the default
in 5.2.

Firstly, it is shown that improving the parameters ’MaxIterations’ and ’StepTolerance’

for lsqnonlin has no visible effect on the quality of numerical approximation. Chang-
ing the ’FunctionTolerance’ for ’ga’ to 1e-12 also did not influence any of the
inspected values.

Secondly, changing ’FunctionTolerance’ for lsqnonlin has a very strong positive
impact on all of the investigated measures, in particular, on the number of mistakenly
added vertices and times, when S2 was needed. This can be explained by the fact that,
in general, εtol is set to 1 · 10−10. Thus, the tolerance criterion of the polygon inflation
algorithm is smaller than the default precision of the minimization routine, leading to
misclassified solutions. Improving the precision of the minimization routine to be more
sensitive than εtol greatly reduces the risk of rejecting a valid solution on basis of an
unlucky optimization.

Thirdly, decreasing ’OptimalityTolerance’ seems, at first, to have a negative effect
on the number of failed lsqnonlin approximations. However, this parameter reduces
the vertices, that are mistakenly accepted and afterward removed by about a third.
Hence, the change is favorable.

Consequently, the combined improvement of the parameters ’FunctionTolerance’

and ’OptimalityTolerance’ has the greatest impact on the quality of the approxi-
mation. It can be further increased by lowering these parameters; however, the further
improvement is comparably minimal and not required for general use.
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5.7 The angle parameter

Arguably the most important parameter of the polygon inflation algorithm is α. With-
out a way of recognizing and managing poorly approximated vertices, successfully find-
ing the AFS is hard. The importance has already been thoroughly discussed in the
chapters 3.2 and 4.2. This chapter deals with finding appropriate values of the param-
eter α for the polygon inflation and inverse polygon inflation algorithms.

According to chapter 5.6, with appropriate settings only nine problematic vertices
were detected from the final number of 227 accepted vertices. Hence, the algorithm
would finish without errors, that are depicted in figure 3.6. This means that the im-
portance of α is lower if precision is not very important and the settings for lsqnonlin

from 5.2 are used. Nonetheless, some inaccurate vertices are still accepted.
Choosing α adaptively has been considered, but it does not seem to be necessary

because a simple, fixed parameter functions well. Moreover, an extensive analysis of
the adaptive function would be necessary.

5.7.1 The polygon inflation algorithm

First, the choice of the parameter α for the polygon inflation algorithm is outlined.
The goal is to find the smallest possible angle, where the algorithm still functions. It
should be noted, that it also depends on the problem. If the parameter α is chosen too
large, then the border can have a zigzag pattern. However, if a segment has a large
reflex inner angle somewhere, then the algorithm might have problems approximating
the segment because vertices near this location would fail the angle test.

Let’s assume that the AFS segment has a vertex with an inner angle of 200 degrees.
Then the algorithm with α ≥ 190 could approximate this vertex under lucky circum-
stances (when angles for both vertices nearest the point are equal) and with α ≥ 200,
always.

If the inner angle would be 220 degrees, then under lucky circumstances the algorithm
would function with α ≥ 200 and always, with α ≥ 220.

Reflex inner angles are also produced by an uneven boundary, caused by bisection
method; hence, α = 180 does not function.

For example2.mat with α = 200 and α = 195, the total of 5 vertices did not meet
the angle criterion. With α = 190 the number is 9, with α = 185, 15 vertices and with
α = 182, 26 vertices. The value α = 190 was chosen for this data set to provide a
middle ground between precision and permitted maximal angle.

It is important to mention, that changing the parameter α is not the primary strategy
to improve the precision of the result; this is achieved with the parameter δ because with
a reduced δ the problematic vertex will not fulfill the angle test after a few subdivisions
and will be removed. The parameter α is primarly meant to avoid problems described in
3.2 and ensure the quality of the resulting polygons. Nevertheless, adapting the α to a
particular problem can improve the final precision. For an unknown AFS a higher value
of α can be beneficial for a rough first approximation and can be lowered afterward for
a more refined boundary of the polygon.
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5.7.2 The inverse polygon inflation algorithm

Next, the parameter α for the inverse polygon inflation algorithm is analyzed. For
the first stage, in which FIRPOL is found, no removal of vertices is required, since
the numerical optimization is not involved. The second stage of the inverse polygon
inflation algorithm is different from the polygon inflation algorithm in the respect that
after an initial inflation of the polygon an improvement in precision can be achieved by
deflation.

A vertex with a large reflex angle can be an evidence of a move inwards which is
desired in this case. A vertex with a small acute angle is an indication of the algorithm
failing to do that. Hence, two parameters αmin and αmax were tested for the lower and
upper bounds of the acceptable angles. However, practical testing showed no difference
for αmin = 0 and αmin = 40. An adaptively set value was also tested but it can
result in an infinite loop and additional considerations would be needed to prevent
that. Therefore, the lower bound was abandoned.

Indeed, the numerical tests showed little to no effect even when the upper bound
αmax = α was changed. The value 190 was found to be too small for this case. Thus,
α = 200 and α = 300 was compared, see table 5.6.

α εb, δ Vertices Removed by angle Not added by angle dH

200 10−3 287 1 13 1.9 · 10−3

300 10−3 282 0 0 2.6 · 10−3

200 10−4 851 1 65 5.8 · 10−4

300 10−4 903 0 88 3.8 · 10−4

Table 5.6: Number of vertices and various events for example3.mat with different pa-
rameters εb, δ and α. Hausdorff distance is measured to a result from FAC-
PACK with e-bound and d-stopping set to 10−5. Other parameters are set
as the default in 5.2.

It is important to remember that the parameter α is not intended to improve preci-
sion, but to ensure the functioning of the algorithm. As the results with εb = δ = 10−4

show, even with α = 300 it was possible to detect incorrect vertices and avoid adding
them. It should also be noted that both values of α delivered polygons with fragments
that had a zigzag pattern with still acceptable reflex angles, see figure 5.5. This behav-
ior could be improved by further decreasing the values for εb = δ or by creating a more
complex angle test.

The test did not clearly show a better value for α; both values can be successfully
used.
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Figure 5.5: Uneven boundaries for the inverse polygon inflation algorithm with α = 300
(red) and α = 200 (green). The blue line is a solution from FACPACK
with e-bound and d-stopping set to 10−5. Here εb = δ = 10−4 and other
parameters are set as the default in 5.2.

5.8 An AFS with a dot set

Important parameters for the case, when one of the segments is a dot set, are θ, stopping
criterion for the rotation, and dinit. First two are already thoroughly explained in
chapter 5.2. However, the importance of dinit can be well illustrated with this example.
For a demonstration of this case see figure 5.6.

If dinit = 0, then it can happen that the initial point is accepted as the first and
the second vertex simultaneously. Thus, the direction vector for the search of the third
vertex is not defined and no search is possible. It also eliminates the case where two
vertices with a distance close to machine epsilon are found; thus, an initial quadrilat-
eral is calculated where it should not exist. These problems originate from numerical
approximation mistakes and allowing small negative entries.

It should also be noted that this version of polygon inflation algorithm does not work
with an AFS where one of the segments consists of a line because it can not distinguish
between dot and line sets. The possibility of finding the direction of the line by rotating
the vector is almost non-existent. Thus, another approach should be used to check the
solutions that are marked as a dot set.

5.9 Other examples

This chapter explains how model problems can be generated and gives some examples.
All of the figures in this chapter are generated with the implementation, described in
this thesis.

The generation of the matrix D in example2.mat is explained in [18]. It begins with
finding matrices C and A and then their product D is calculated.
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Figure 5.6: The results of the data set DotSegment.mat with the polygon inflation
algorithm (black) compared with FACPACK (colorful background). δ =
εb = 1 · 10−4. Other parameters are set as the default in 5.2.

The vectors t and x are defined as

t = (0, 1, . . . , 20)T x = (0, 1, . . . , 100)T

and by performing the following operations component-wise

C:,1 = e−k1t

C:,2 =
k1

k2 − k1

(

e−k1t − e−k2t
)

C:,3 = 1 − C:,1 − C:,2

A1,: = a1 exp

(

−(x − b1)2

c1

)

+ d1

A2,: = a2 exp

(

−(x − b2)2

c2

)

+ d2

A3,: = a3 exp

(

−(x − b3)2

c3

)

+ d3

the matrices C and A are calculated with

k1 = 0.75, k2 = 0.25, a1 = 0.95, a2 = 0.9, a3 = 0.7, b1 = 20, b2 = 50, b3 = 80,

c1 = c2 = c3 = 500, d1 = 0.3, d2 = 0.25, d3 = 0.2.

This can be used to create examples for testing purposes by changing some of the
parameters. Some alterations in the structure of the AFS are shown in the figures 5.7,
5.8, 5.9, 5.10 and 5.11.

Note that the orientation can change for these examples because the original matrix
is altered. This complicates the comparison of the resulting AFS. To avoid that, some of
the AFS have been flipped to accommodate the orientation of the original problem from
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example2.mat, see figure 2.1. Thus, the orientation of the resulting polygons is flipped,
when the normal orientation, according to convention in section 2.2.3, is different than
in example2.mat to ease the comparison between them.
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0.3, 0.35, 0.4

0.4, 0.45, 0.5

0.5, 0.55, 0.6

Figure 5.7: The results of the generated problem with varying values for d1, d2, d3 (in
this order). The parameters are set as the default in 5.2.
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Figure 5.8: The results of the generated problem with varying values for k1, k2 (in this
order). The red solution has been reflected over the α-axis. The parameters
are set as the default in 5.2.
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Figure 5.9: The results of the generated problem with varying values for c1, c2, c3 (in
this order). The blue solution has been reflected over the β-axis and the
green - over both axes. The parameters are set as the default in 5.2.
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Figure 5.10: The results of the generated problem with varying values for b1, b2, b3

(in this order). The green and blue solution have been reflected over the
α-axis. The parameters are set as the default in 5.2.
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Figure 5.11: The results of the generated problem with varying values for a1, a2, a3

(in this order). The red solution has been reflected over the α-axis. The
parameters are set as the default in 5.2.
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6 Conclusion

The polygon inflation algorithm and its inverse alteration are robust multivariate curve
resolution methods. They are used to describe the AFS that originates from the rota-
tional ambiguity of the nonnegative matrix factorization problem in analytical chem-
istry. The algorithms were described and analyzed in this thesis. This work focused
on a chemometrical application — more specifically, the pure component resolution of
three-component systems.

The derivation of the method was studied and an overview of the main challenges
of a successful implementation was given. Moreover, appropriate parameters for the
algorithm were suggested and tested. The algorithms were implemented in Matlab

and some numerical results from the publications and the FACPACK toolbox could be
reproduced.

This work is limited to chemometric applications and three-component systems. The
emphasis was set on the polygon inflation algorithm and the inverse polygon inflation
algorithm was rather summarized than exhaustively investigated. The extent of the
work was limited by the available time for finishing this thesis.

This work could be further extended to four-component systems. Furthermore, the
comparison of computing time and stability with other available methods, as well as
a more in-depth analysis of the possible variations of the polygon inflation algorithm
and its parameters could be performed. The goal would be to reduce the produced
errors and the computing time. Future enhancements to the nonlinear least squares
algorithms could also improve this. An extension to distinguish between the dot and
the line segments of the AFS could be programmed and tested.

In the future, applications of the polygon inflation algorithm could be found in other
fields that require the solution of nonnegative factorization problems; a further analysis
of this algorithm is essential for that. Also, an extension to n-component systems is
desired for a wider practical adoption in chemometry.

This work hopefully makes it easier to create practical implementations of the polygon
inflation algorithm for diverse applications in the future.
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