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Abstract: In this paper we are concerned with boundary value problems for general
second order elliptic equations and systems in a polyhedral cone. We obtain point
estimates of Green’s matrix in different areas of the cone. The proof of these es-
timates is essentially based on weighted Lo estimates for weak solutions and their
derivatives. As examples, we consider the Neumann problem to the Laplace equation
and the Lamé system.

1. Introduction

We deal with the Dirichlet, Neumann and mixed problems for elliptic systems of second order
equations in a polyhedral cone K. Our main goal is to obtain point estimates for Green’s
matrix. In a forthcoming work we will prove, by means of such estimates, solvability theorems
and regularity assertions in weighted L, Sobolev and Hoélder spaces.

As is well-known, the nonsmoothness of the boundary causes singularities of the solutions
at the edges even if the right-hand side of the differential equation and the boundary data are
smooth. Therefore, Green’s matrix G(z, §) is singular not only at the diagonal but also for z or £
near the vertex or an edge. For a cone without edges these singularities were described by Maz'ya
and Plamenevskii [12] in terms of eigenvalues, eigenfunctions and generalized eigenfunctions of
a certain operator pencil. The presence of edges on the boundary makes the investigation of
Green’s functions more difficult. In [10] Maz'ya and Plamenevskil obtained estimates for Green’s
functions of boundary value problems in a dihedral angle. The results in [10] are applicable,
e.g., to the Dirichlet problem for elliptic equations but not to the Neumann problem. Green’s
functions for the Dirichlet problem in polyhedral domains were studied in papers by Maz'ya and
Plamenevskil [13] (Lamé and Stokes systems), Maz'ya and RoBmann [15] (strongly elliptic 2m
order equations). Concerning the Neumann problem for the Laplace equation in domains with
edges, we refer to the preprints of Solonnikov [22], Grachev and Maz'ya [5].

We outline the main results of our paper. Let K = {z € R3 : w = 2/|z| € Q} be a polyhedral
cone with faces I'; = {z : x/|z| € v;} and edges M;, j = 1,...,n. Here Q is curvilinear polygon
on the unit sphere bounded by the sides ~1,...,v,. Suppose that K coincides with a dihedral
angle D; in a neighborhood of an arbitrary edge point x € M;. By & we denote the set
M;U---UM,U{0}. We consider the boundary value problem

3
L(0x)u=— Y AijOp0pu=f inK, (1.1)
ij=1
u=gj onI'; for j € Jy, (1.2)
3
B(0y)u = Z A;jnjOzu =gy, only for k€ Jp. (1.3)
ij=1



where A; ; are constant £ x ¢ matrices such that A; ; = A;ﬂ-, JoUJ1 ={1,....n}, JonJ =0,
u, f, g are vector-valued functions, and (nj, ng,ng) denotes the exterior normal to OK\S.

Weak solutions of problem (1.1)—(1.3) can be defined by means of the sesquilinear form

3
bic (u,v) = /IC Z A jOr;u - Oy;v dr, (1.4)

ij=1

where u - T is the scalar product in C of the vectors u and v. We denote by H the closure of

the set {u € C5°(K)*: w=0onI'j for j € Jy} with respect to the norm

3 ) 1/2
|wm=(A§]mM@m) . (15)
j=1

Here C§°(K) is the set of all infinitely differentiable functions on K with compact supports.
From the above assumptions on the coefficients A; ; it follows that bx(u,v) = bx(v,u) for
u,v € ‘H. Throughout this paper, it will be assumed that the form by is H-coercive, i.e.,

bic(u,u) > cllull3; for all u € H. (1.6)
By Lax-Milgram’s lemma, this implies that the variational problem

bic(u,v) = (Fyv) forallve™H (1.7)

is uniquely solvable in H for arbitrary F' € H*. Here (-, -)x denotes the scalar product in Lo (K)*

or its extension to H* x H.

In Section 2 we consider the boundary value problem in a dihedron D = K x R, where
K is an infinite angle in the x1, xo-plane with opening #. The main goal of this section is the
estimation of Green’s matrix. We give here the estimates in the case of the Neumann problem to
the Laplace equation, which was also considered in [22]. Let o = (a1, a2, a3) and v = (71, ¥2,73)
be arbitrary multi-indices. Then

’g;’| >min(0,7r/9—a1—a2—6) ( ’€’| >min(0,7r/0—71—72—8)
|z — ¢ |z — ¢

for |x —¢&| > min(|2'], |£']), where 2’ = (21, 22), £ = (£1,&2), and € is an arbitrarily small positive
number. For |z — &| < min(|2/|,]¢|) there is the estimate ‘8%82/G(.%',§)| < clz — g7 lel=h,
The same inequalities hold for Green’s matrix of the Neumann problem to the Lamé system if
6 < m, while in the case § > 7w the number 7/6 in the exponent has to be replaced by £,.(6)/6,
where £ (0) is the smallest positive root of the equation

0207, €)| < ela— g1l (

sin  siné
=0. 1.
€ + 7 0 (1.8)

For the proof of these inequalities, we use weighted Lo estimates for weak solutions and their
derivatives.

Section 3 concerns the parameter-dependent boundary value problems
LANu=f inQ, u=g; onv, j€Jo, BAu=gr ony, ke (1.9)

generated by problem (1.1)—(1.3) on the intersection  of the cone K with the unit sphere S2.
Here
LA u=p* L) (P u(w)), BAu=p'* B(d,) (p u(w)), (1.10)



p = |z|, and w = x/|x|. Let A(\) be the operator of problem (1.9). We prove that problem
(1.9) is uniquely solvable (in a certain class of weighted Sobolev spaces) for all A, except finitely
many, in a double angle of the complex plane containing the imaginary axis. Furthermore, we
obtain an a priori estimate of the solution.

In Section 4, by means of these results, solvability theorems for the boundary value problem
(1.1)—(1.3) in weighted Sobolev spaces are obtained. In particular, we prove the existence of
weak solutions u € Vﬁ1 (K)t, where Vﬂ1 (K) is the weighted Sobolev space with the norm

_ 1/2
Jullvie = ([ 12 (9u? + Jal2fup) do) " (1.11)
K

Here, for example, by a weak solution of the Neumann problem we mean a vector function
u € V[}(/C)Z satisfying
bic(u,v) = (F,v)x for all v € V24(K)",

where F is a given continuous functional on V! 5(IC)€ . We prove that the absence of eigenvalues
of the pencil 2 on the line ReA = —f — 1/2 ensures the unique existence of a weak solution
u € Vﬁl (K)f. Furthermore, we prove regularity assertions for the solution. For example, we
conclude from our results that the second derivatives of the solution u € H of the Dirichlet
and Neumann problems for the Laplace equation (and other second order differential equations,
including the Lamé system) are square summable if the angles at the edges are less than 7 and
there are no eigenvalues of the pencil 2 with positive real part < 1/2. In particular, the W?2
regularity holds for the Dirichlet problem to the Laplace equation and to the Lamé system if K
is convex. This follows from the monotonicity of real eigenvalues of the pencil 2 in the interval
[0,1] (see, e.g., the monograph by Kozlov, Maz'ya and Romann [8, Ch.2,3]). For the Neumann
problem to the Laplace equation the W? regularity was proved by Dauge [3, 4].

The absence of eigenvalues of the pencil 2 on the line Re A = —3 — 1/2 guarantees also the
existence of a unique solution G(z,€) of the problem

L(@0:) Glw,€) = 8w — &) I, w6 €K, (1.12)
G(.%',f) =0, xe€ Fj, Eek, je Jy, (1.13)
B(&;) G(w,f) =0, xz¢€ Fj, Eek, je (1.14)

(Iy denotes the ¢ x ¢ identity matrix) such that the function z — C(‘f(g') G(z,€) belongs to

the space Vﬁ1 (I0)2* for every fixed ¢ € K and for every smooth function ¢ on (0, 00) equal to

one in (1,00) and to zero in (0,%). We obtain point estimates for the derivatives of G(z,¢) in

different areas of K x K. For example, Green’s function of the Neumann problem to the Laplace
equation satisfies the following estimate for |z| < [¢]/2:

0500Gw,€)| < clafd-lotte T (12

||

><|£|_1_/L_|7|_8 H (rj’ég))min(om/(’j'vé).

)minm,w/oﬂavs)

J

Here A_ < ReA < A, is the widest strip in the complex plane containing the line Re A =
—f — 1/2 which is free of eigenvalues of the pencil A, 6; is the angle at the edge M;, r; is the
distance to Mj, and ¢ is an arbitrarily small positive number. The same estimate holds for the

Lamé system if 0; < w for j = 1,...,n. If 6; > 7, then the number 7 in the exponent has to
be replaced by &, (6;). In the case § =0, when Ay = 0 and A_ = —1, these estimates can be
improved.



2. The boundary value problem in a dihedron

Let D be the dihedron {z = (2/,23) : 2’ = (z1,22) € K, x3 € R}, where K is the angle
{2/ = (x1,22) : 0 <71 <00, 0 < ¢ <0} Here r, ¢ are the polar coordinates in the (x1,z2)-
plane. Furthermore, let T~ = {z: ¢ =0} and " = {z : = #} be the sides of D, M = T+NT—
the edge, and d* € {0,1}. We consider the boundary value problem

L@@yu=f inD, dfu+(1—-d¥)B0;)u=g* onT*. (2.1)

This means, for d© = d~ = 1 we are concerned with the Dirichlet problem, for d¥ = d~ = 0
with the Neumann problem, and for d* # d~ with the mixed problem.

We denote by Hp the closure of the set {u € C§°(D)* : d*u = 0 on I'*} with respect to the
norm (1.5), where K is replaced by D, and by bp the sesquilinear form

3
bp(u,v) = / Z A jOz,u - Og; 0 div. (2.2)
D=1
Suppose again that
bp(u,u) > c / ‘VU|%@ dx for all u € Hp. (2.3)
D

Then the variational problem
bp(u,v) = (F,v)p for all v € Hp (2.4)

has a unique solution u € Hp for arbitrary F' € H,.

A large part of this section deals with the regularity of weak solutions. For the Dirichlet and
mixed problems, which are handled at the end of the section, we give only the formulation of a
theorem which follows from results of Maz'ya and Plamenevskii [9], Nazarov and Plamenevskii
[18]. The more complicated case of the Neumann problem is studied in Sections 2.2-2.5. The
results here were partially obtained by Zajaczkowski and Solonnikov [23], Nazarov [16, 17],
RoBmann [20], Nazarov and Plamenevskii [18].

The proof of point estimates for Green’s matrix in this section is essentially based on weighted
Ls estimates for weak solutions and their derivatives. As examples, we consider the Neumann
problem for the Laplace equation and the Lamé system.

2.1. Weighted Sobolev spaces in a dihedron and in an angle

Let 6 > —1. Then L%(D) denotes the closure of C§°(D) with respect to the norm

. 1/2
full gy = [ 3 7 1ogulas) "

D o=k

where = |2/| = (22 + 23)'/2. Furthermore, we set
k .
WD) = () L}(D).
=0

For arbitrary real § let V¥(D) be the closure of C$°(D\M) with respect to the norm

1/2
HUHV;(DF/ T 20kt |a§;u|2dx) . (2.5)

P al<k



Analogously, we define the spaces L¥(K), V¥(K) and WE(K) for a plane angle K with vertex
in the origin (then in the above norms D has to be replaced by K ).
By Hardy’s inequality, every function u € C§°(D) satisfies the inequality

/ r20 Dy de < ¢ / 2 |Vul? dx (2.6)
D D

for § > 0 with a constant ¢ depending only on § . Consequently, the space L’g(D) is continuously
imbedded into LE~1(D) if § > 0. If § > k—1, then L¥(D) = V(D). Furthermore, from Hardy’s
inequality it follows that

[ o= al ™ (o) do < [Tl (2.7)

for every u € Hp and for an arbitrary point xyp € M. This means that any vector function
u € Hp is square integrable on every bounded subset of D. From (2.6) an (2.7) we conclude
that

/Dr% |pul® dz < || Vul},pye- (2.8)

for § > —1 if u € Hp and ¢ is a function in C'(D) with compact support.
The spaces of the traces of functions from L¥(D), V(D) and WE(D), k > 1, on the sides

't = 4 x R of D are denoted by Lk 1/2( +), V(;k_l/z(F ) and Wk 1/2( +), respectively. The
norm in Lé 1/2 (T*) is defined as

HUHng—l/Q(Fi) = inf {||v]|p) : v E L5(D), vlps = u}.

Analogously, the norms in Vk Y 2(Fj:) and Wf -1/ 2(Fi) are defined. An equivalent norm in
Vék 1/2(I’i) is given by (see [9, Le.1.4])

26 | ak— 1 k—1 2 dajgdy3
“ - a ’I” x3) — 0 & T, ——=dr
il = ([ 1k i) = 0 P
k—1 k-1 9 dridry
+ ‘Tl(ar u)(Tl,SCg)—(ar u)(’l”g,xg)} —QdIg
RSy Jo r1 — 72|
S 2(0—k+5)+1 | 57 1/2
L2 ’ laﬁu(r,xs)lpdrdxg) : (2.9)
r+ 53

For 0 > k — 1 this is also an equivalent norm in Lk Y 2(Fj[)

2.2. The operator pencil corresponding to the boundary value problem

Let Hipg) = {u € W0,0) : d~u(0) = d*u(f) = 0}, where W' denotes the usual Sobolev
space and d* are the numbers introduced in the beginning of this section. Furthermore, let

2
1 —
ar (u,v; \) = oz 2 E A; j0,,U - 0,,V da’,
W dg=1
1<|z’|<2
where U = ru(p), V = r‘xv(np), u,v € Hpgy, A € C. The form a(-,-;A) generates a

continuous operator A(N) : Ho,p) — HZ‘O 0) by

(A()\)U, ’U) = (LK(’LL, U3 )‘)7 u,v € H(Oﬁ)'



Here (-,-) denotes the scalar product in Lo((0,8))¢. As is known, the spectrum of the pencil A
consists of isolated points, the eigenvalues. The line Re A = 0 contains no eigenvalues if d* # d—
or d© =d~ = 1. In the case d* = d~ = 0 (the case of the Neumann problem), the line Re A = 0
contains the single eigenvalue A = 0. The eigenvectors corresponding to this eigenvalue are
constant vectors. Every of these eigenvectors has exactly one generalized eigenvector (see [8,
Ch.12]). We set

8x70 ZAZjaxl(?wJ? 8:)370 ZAZ]n] i
5,j=1 t,j=1

and denote by ¥& be sides of K.

Remark 2.1 The vector function u = Z (log7)* vs_r(¢) is a solution of the problem
k=0

1
k!
L(0y,0)u=0in K, pTu+ (1—pF)B(dy,0)u=0on~*

if and only if )\ is an eigenvalue of the pencil A(\) and v, v1,...,vs is a Jordan chain corre-
sponding to this eigenvalue (see [8, Le.12.1.1]).

We denote by A1 the eigenvalue of the pencil A(\) with smallest positive real part and by
(1 its real part.

2.3. Regularity results for the solution of the Neumann problem

Let dt = d~ = 0. We assume that F is a functional on Hp which has the form

(F,U)D:/f.5d$—|—2/ gF -Tdoy, veHp, (2.10)
D T JIE

where f € LY(D)*, g* € Lé/g(f‘i)é, 0 < ¢ < 1. Then the solution of (2.4) belongs to the Sobolev
space W2.(D) and satisfies the equations

L(Oy)u=f inD, B(d,)u=g" onT% (2.11)

Note that the right-hand side of (2.10) always defines a functional on Hp if f € LY (D)t g% €
L§/2(Fi)e, and the supports of f and g% are compact. For the first term on the right of (2.10),
this can be easily proved by means of (2.8). Furthermore, we have L; Y 2(Pi) = Vél/ 2(Fi) for
0 > 0 and, due to the equivalence of the norm in V:;k 1/2(Fi) (2.9),

[ gt dos < gt s
T+ r )

This implies

2
‘/ gt -@dai‘
T+

The following lemma can be found in [9, Le.3.1].

IN

¢ / T2671|gi’2 dO':t . / r1726|¢v‘2 dO'j:
r+ r+

+/2 2 +/2 2
cllg HV61/2(Fi [ pv]| 1/2( )ZSCHQ ||L§/2(Fi)[ ”¢U||HD-

IN



+_
Lemma 2.1 Let g% € V(SHd 3/2(Fi)é, where | > 1 ifdt =d~ = 1,1 > 2 else. Then there
exists a vector function u € V(D) such that d*u+ (1 — d*) Bu= g* on T'* and

+
HUHV(;I(D)Z <c zi: lg ||V;+di—3/2(ri)€

with a constant c independent of g* and g~.

Since V51/2(I‘i) = L(ls/z(I‘i) for § > 0 and V(D) C L3(D), we conclude that for all g* €
L§/2(Fi)£ there exists a vector function v € L2(D) such that B(9d,)v = g* on I'F.

For the proof of the following lemma we refer to [23] and [20] (for general elliptic problems
see also [17, 18]).

Lemma 2.2 Let ¢, 1 be infinitely differentiable functions on D with compact supports such
that 1» = 1 in a neighborhood of supp ¢. If u € Hp is a solution of (2.4) and F' is a functional

of the form (2.10), where ¢ f € Lg(D)Z and gt € L§/2(Fi)£, max(1l — pu1,0) < § < 1, then
¢u € L3(D)" and

loull oy < e (105 gy + D Il /o psy + Iulles ) (2.12)
+

Corollary 2.1 Let max(1 — u1,0) < § < 1. Then for every u € L3(D)* the estimate
ez oye < ¢ (1L@:)ull gy + > 1B@)ull 172 s )

is valid. Here the constant c is independent of u.

Proof: Due to Lemma 2.1, we may assume, without loss of generality, that B(0,)u = 0. If
the support of u is contained in the ball || < 1, then by Lemma 2.2, we have

lull 2oye < € (1@l gy + Nl aoye ) (2.13)

Let supp u be contained in the ball |z] < N. Then the support of the function v(z) = u(Nx) is
contained in the unit ball |z| < 1. Furthermore, B(0,)v = 0 on I't. Therefore, v satisfies (2.13).
From this inequality, by means of the coordinate change x = y/N, one obtains

HUHLE(D)Z <c (”L(ax)UHLg(D)Z 4+ NO-1 HUHL%)(D)Z>
with the same constant ¢ as in (2.13). The result follows. m

The following theorem generalizes Lemma 2.2.

Theorem 2.1 Let ¢, ¥ be the same functions as in Lemma 2.2. If uw € Hp s a solution of
(2.4) and the functional F has the form (2.10), where ¥4, f € LY(D)* and 1di,g* € L§/2(Fi)f
for 5 =0,...,k, max(1 — pu1,0) < § < 1, then ¢pdi,u € Lg(D)é forj=0,...,k and

k k k
S N0k ullzzioye < e (D2 1005, fllzgeoye + D2 S0 N0, 0% p1r2pye + [Wullyoy)  (2:14)

§=0 j=0 j=0 =+

with a constant ¢ independent of u.



Proof: We prove the theorem by induction in k. For k = 0 the assertion follows from Lemma
2.2 and from the unique solvability of problem (2.4) in Hp. Suppose the theorem is proved for
k — 1. Then, under our assumptions on F, we have yd2,u € L%(D)g for j =0,...,k—1. Let
v =084 u. Then ¢v € L%(D)". We consider the vector function

op(z) = b7t (v(2, 23 + h) —v(@, x3)),

where h is a sufficiently small real number. Obviously, vy, is a solution of the problem Lvy, = &y,
in D, Bu, = \I’f on I't, where & = 8’;3_1f, Ut = 8’;3_19i. Consequently,

lovnll 2oy < e (Ix@alligeoye + 22 INEEN 12 gy + Ixvnlliyem) (2.15)
+

with a constant ¢ independent of h. Here x®;, = (x®)n, — x»® and, for sufficiently small |/,

H(X‘I))hnig(p)z / 20 =2 ‘ (x®)(2', 23+ h) — (X(I))(:I:’,mg)}2da:

= / 25’/ amg («/, 3 + th) dt’ dx</D r2 [0,y (x(2)®(2)|” da
< c(lwok; fHLo(Dﬂr 100k, 1op): ).
xn®l7opye < clvdr fliToem)

Analogously,
+ k—1 2 k _£12
Tl a2y < € (100050 122y + 10050 * 172 g, )

For the proof of the last inequality one can use the equivalence of the norm in Lé/ 2(F *) with
the norm (2.9). Furthermore,

Ixonl oy < e (0% ullyoye + %, ullyoy ). (2.16)

where 7 is a smooth function such that n = 1 in a neighborhood of suppx and ¥ = 1 in a
neighborhood of supp 7. Since the theorem was assumed to be true for k — 1, the right-hand side
of (2.16) is majorized by the right-hand side of (2.14). Consequently, the limit (as h — 0) of the
left-hand side of (2.15) is majorized by the right-hand side of (2.14). This proves the theorem.
u

Lemma 2.3 Let u be a solution of problem (2.11) such that u € WL(D)¢, ¥ f € Wéﬂ:*Q(D)é
and Yg* € Wéfg 3/2(Fi)€, 1 >1,0>—1. Here ¢, ¥ are the same functions as in Lemma 2.2.
Then ¢u € Wéii( )¢ and

loulyigso < e (16 hugzg-son + M5 by + gy ). (247

Proof: By [21, Cor.Z,Rem.Q], the vector function ¢u € Wg(D)Z admits the representation
¢u = v+w, where v € V{(D)* and w € Wéfg(D)e. Let first k = 1. Then Lv = ¢ f+[L, plu—Lw €

W§+}( )N ‘/5[72( ) c V(;lﬂl( )¢ (here [L,¢] = Lé — ¢L denotes the commutator of L and

¢) and, analogously, Bv = ¢g* + [B, ¢lu — Bw € V;+11/2(Fi)£. Using [9, Th.10.2], we obtain

vE V;;lill (D)* and, therefore, ¢u € Wgﬂ(D)e . This proves the lemma for £ = 1. Repeating this
argument, we obtain the assertion for k > 2. m



2.4. Higher regularity of the solution to the Neumann problem

We improve the results of the previous subsection for the case p; > 1. Let us consider first the
Neumann problem in the plane angle K.

Lemma 2.4 Let the integer k > 0 be not an eigenvalue of the pencil A(X). Then for arbitrary
homogeneous polynomials py_s, qil of degrees k —2 and k — 1, respectively (pg—o =0 if k =1)
there exists a homogeneous polynomial py, of degree k such that

L(8,,0) py = pr—2 in K, B(8,,0)pr = g, on v*. (2.18)

Proof: Let pip_o = Z?;g b; le {L‘I;_Z—j and q,il‘vi = ¢tk with bj,ci e C! be given.
Inserting

k
Dk = Z aj ] azg_] (2.19)
5=0

into (2.18) and comparing the coefficients of :Ujl.:r:gﬂ*j and 7F~1 respectively, we get a linear
system of k+ 1 equations with &£+ 1 unknowns ag, a1, ..., ag. Since k is not an eigenvalue of the
pencil A()), the corresponding homogeneous system has only the trivial solution (see Remark
2.1). Therefore, there exists a unique polynomial (2.19) satisfying (2.18). m

Lemma 2.5 Letu € Wéfl(K)g be a solution of the problem

L@y, 0 u=fin K, B(dy,0)u=g" on~* (2.20)
with f € Wg_Q(K)E, gt € Wé_3/2(’yi)e, 1 >2, 0<0<1—1, 0 not integer. Suppose that
the strip | —2 —0 < ReX <1 —1— 0 does not contain eigenvalues of the pencil A(X\). Then
u € WHEK)* and

+
e < € (e + by + 32 1%y

with a constant ¢ independent of u.

Proof: Let k = (I — 1 — J) be the greatest integer less than [ — 1 — §. The vector function u
has continuous derivatives up to order k — 1 at the point = 0 (see [7, Le.7.1.3]). We denote
by pr_1 the Taylor polynomial of degree k — 1 of w and by ¢ a smooth cut-off function equal to
one near the origin and to zero outside the unit ball. Then v = v — (pr_1 belongs to Val_l(K)e
(see [7, Th.7.1.1]). Consequently,

L(9y,0) v = [ = L(ar,0) (Cpr—1) € Wy *(K)' N V{3(K)f,

I— I—
B(0y,0)v] .« = g% — B(0w,0) ((pr-1)| = € Wy 2(K) v 2 (k).
By [7, Th.7.1.1], there are the representations
L(0y,0)v=Cpy_o+ F in K, B(dy,0)v=_q, +G= on~*,

where p;_,, q,il are homogeneous polynomials of degrees kK — 2 and k — 1, respectively, F' €
VJZ_Q(K)Z, G* e V;_?’/Q(’yi)e. By Lemma 2.4, there exists a homogeneous polynomial p;, of de-
gree k such that L(0,,0)p}, = pj_o in K and B(0,/,0)p;, = qlf_l on~*. Then v—(pj, € V:;I_I(K)Z,
L(Dy,0) (v = ¢pf) € Vi2(K)Y, B(9ar,0) (v —Cpf)| o € V3 **(v%)". Applying [11] (in the case
p = 2 see also [7, Th.6.1.4]), we obtain v — (p} € V{(K)* and, therefore, u € W}(K)¢. Further-
more, the desired estimate holds. m

We prove an analogous result for the problem in the dihedron D.



Lemma 2.6 Let u be a solution of problem (2.11), and let ¢, be smooth functions on D
with compact supports such that ¢y = ¢. Suppose that Yu € Wé_l(D)Z, YOz, u € Wé_l(D)Z,
Uf e Wé‘Q(D)E, gt € W§_3/2(Fi)f, 0<d<l—1, 6 is not integer, and the stripl —2 — 6 <
Re\ <1—1—0 does not contain eigenvalues of the pencil A(X). Then ¢pu € WH(D)* and

1
loulhore < e (2 160l oy + 16 lg-sioy + W™ oy ) (221

§=0
Here the constant ¢ depends only on the C' norm of C.
Proof. From the equation L(0,/, 0y, )u = f it follows that
L(0,7,0) (pu) = F, where F' = ¢f + ¢L10z,u + [L(0y,0), @] u.

Here [L(0,,0),¢] = L(0,,0) ¢ — ¢L(0,s,0) is the commutator of L(9,s,0) and ¢, and L; is a
first order differential operator with constant coefficients, L10z,u = (L(8,/,0) — L(0y, Ozy)) u.
An analogous representation holds for G* = B(9,,0) (gbu)‘ri. For almost all x3 we have

oy x3)u(-,xg) € Wg““(K)Z. Furthermore, by the conditions of the lemma, F(-, z3) € VVg_Q(K)Z

and G*(-,z3) € Wé_g/Q(’yi)?’. Consequently, by Lemma 2.5, we obtain ¢(-, z3) u(-, x3) € WH(K)*

and
2 2 2
/RH(b(?x?)) u('vx?))Hwé(K)é drsz < C/ﬂ{(”é(’xfi) u<'7x3)”wg—1(}()é + HF(‘vxfi)HW(é—Q(K)é

+ 2
+Zi: |G (.71:3|’W;73/2(7i)z> dxs.

Here the right-hand side of the last inequality can be estimated by the right-hand side of (2.21).
This together with the assumption that ¢0,,u € Wél_l(D)é implies the assertion of the lemma.
(]

Theorem 2.2 Let u € Hp be a solution of problem (2.11), and let ¢, be smooth functions
on D with compact supports such that ¥ = 1 in a neighborhood of supp ¢. We suppose that
Vfe Wg_2(D)Z, Ygt € Wg_g/z(Fi), 1 >2, 6 is not integer, and max(l —1—p1,0) <9 <1—1.
Then ¢u € WH(D)*.

Proof: We prove the theorem by induction in (I —1—4). Here (s) denotes the greatest integer
less than s.

1) If (I-1—8) = 0, then max(1—p1,0) < 6142 < 1,9f € WL, (D), dhg* € W,/7, (T )",
Consequently, according to Theorem 2.1, we have yu € W5271 +Q(D)E, where x is a smooth
function equal to one near supp ¢ such that ¢ = 1 near supp x. Applying Lemma 2.3, we obtain
pu € WHD)*.

2) Let (I —1—46) = 1. Then max(2 — y1,0) <0 —1l+3 < 1 < 1 and, by means of Theorem
2.1, we obtain x@iﬁu e Wz, +3(D)€ for j =0, 1. Consequently, it follows from Lemmas 2.6 and
2.3 that ¢u € WX(D)*.

3) Let k <l —6—1< k+1, where k is an integer, k > 2. We assume that the theorem
is proved for [ — 9 — 1 < k. Then, by the induction hypothesis, yu € ngl(D)g, [ > 4, and
X0z u € Wé‘Q(D)Z C Hp. Since ¥0., f € Wé_?’(D) and 0., 9T € Wé_‘:’/Q(Fi)f, we obtain, by
the induction hypothesis, that x0,,u € Wg_l(D)Z. By the assumptions of the lemma, there are
no eigenvalues of the pencil A(\) in the strip 0 < ReA <1 — 0 — 1. Thus, Lemma 2.6 implies
ou € Wg(D)Z. The proof is complete. m
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Corollary 2.2 Let w € Hp be a solution of problem (2.11), where 1/18%3]“ € WéiQ(D)g and
Yol,g* € W(ﬁ*‘”’/z(ri)‘f for 3 =0,...,k, d is not integer, max(l — 1 — p1,0) < 6 <1 —1. Then
¢pOr,u € WD) and

k k k
S otk ulwsoye < e (32 0L, Ayt + 30 3 0040 sy + 030 ).
j=0 §=0 j=0 +
Proof: Let first { —1 — 6 < 1. Then max(1 — p1,0) <6 —1+2 < 1, Wi *(K) C W, ,(K)
and W;_3/2(Fi) c w2 (I'¥). Consequently, by Theorem 2.1, we have x&%,u € W[;{HQ(IC)@,

0—1+2
where x is a smooth function such that x = 1 in a neighborhood of supp¢ and ¢» = 1 in a

neighborhood of supp x. Applying Lemma 2.3, we get ¢5§63u € Wé(/C)é for j=0,...,k.

Now let I — 1 —6 > 1. Then [ > 3 and, by Theorem 2.2, we obtain yu € Wg(lC)e,
XOpsu € WEHK)® € Hp. Since 0y, f € Wi 2(D)! and ¢y, g% € Wé_3/2(l“i)e, we conclude
again from Theorem 2.2 that ¢d,,u € W}(K)’. Repeating this argument, we get P u € WLK)*
forj=2,... k. m

Example. We consider the Neumann problem

ou

“Au=f inD. ==
ufln,ay

=gF onTI%, (2.22)

Here the eigenvalues of the corresponding operator pencil A()A) are the numbers \; = jn/0,
j=0,£1,+2,.... Consequently, the assertion of Theorem 2.2 with p; = 7/6 holds.
2.5. The Neumann problem to the Lamé system

We consider a special case, where A = 1 is an eigenvalue of the pencil A and the eigenfunctions
corresponding to this eigenvalue are restrictions of linear functions to the unit circle. A necessary
and sufficient condition for this case is given in the following lemma.

Lemma 2.7 Let w # 7, w # 2w. Then the homogeneous boundary value problem
L(0y,0)u=0 in K, B(dy,00u=0 on~*

has a solution of the form u = cxy + dxg, ¢, d € Ct, if and only if the 20 x 20 matriz

A= ()

18 not invertible.

Proof: The linear function © = cxz1 + dxo satisfies the homogeneous boundary conditions
B(0y,0)u = 0 on »* if and only if

() () ()
nl_ TLQ_ ALQ AQ,Q d )
Here the first matrix is invertible for w # m, w # 27. This proves the lemma. m

Let 7" denote the rank of the matrix A’. From the proof of the last lemma it follows that
there are 2¢ — r’ linearly independent eigenvectors of the form ccos ¢ + dsin ¢ corresponding to
the eigenvalue A = 1. Furthermore, the inhomogeneous boundary conditions B(d,,0)u = g+
on y* can be satisfied for a vector function u € WS(K )¢ only if gt and g~ satisfy 2¢ — o/
compatibility conditions at x = 0.

11



Such compatibility conditions must be also satisfied, in general, for the boundary data of the
Neumann problem in the dihedron D. If u € W (D)%, 0 < § < 1, then the restriction of B(d;)u
to the edge M belongs to the space W30 (M)! (see, e.g., [14], [21]), and we obtain

(A11nf + A12n3) Opyular + (A21ni + Azany) Ouyulns + (Asany + Asong) Oyulnr = g5 |ur-

The last system can be written in the form

Op U
n ng Ain Asx Az ey (9
ny ng A1 Azg Asn Owtilnr | = 9 I/
1 2 ) ) ) ax3u|M

From this it follows that 2¢ — 7" compatibility conditions must be satisfied for g and ¢~ on the
edge M, where r” is the rank of the matrix

Ay Agn Azg
Ar = (AL A1 a1
( Ar1p Azz Aszp )

This means, there exist 2¢ — r” constant vectors ¢*) such that
P (gt g ) =0 fork=1,...,20—7". (2.23)

We suppose that ' = r”. Then there are the same compatibility conditions for the Neumann
problem (2.11) in the dihedron and the corresponding Neumann problem (2.20) in the angle K.
This condition is satisfied, e.g., for the Neumann problem in isotropic and anisotropic elasticity.
Furthermore, we assume that the geometric and algebraic multiplicity of the eigenvalue A = 1 is
equal to 2¢ —r’. This means that all eigenvectors corresponding to this eigenvalue have the form
ccos ¢ + dsin ¢ and that there are no generalized eigenvectors corresponding to this eigenvalue.

Lemma 2.8 Suppose that there are no eigenvalues of the pencil A(\) in the strip 0 < Re A < 1
and the line ReA = 1 contains the single eigenvalue A = 1 having geometric and algebraic
multiplicity 20 — r' = 20 — r”. Denote by \o the eigenvalue with smallest real part greater
than 1 and by uo its real part. Furthermore, let ¢, 1 be the same functions as in Theorem
2.1 and let u € Hp be a solution of problem (2.11), where ¢ f € WH(D)¢, yg* € Wg’/Q(Fi)e,
max(2 — u2,0) < § < 1, and g and g~ satisfy the compatibility condition (2.23). Then ¢u €
WE(D)t and

Ioullwgcoye < e (IS lwpoy + 22 I8glyor ey + loullyoy) (2.24)
+

with a constant ¢ independent of u.

Proof: Let x be a smooth function on D such that y¢ = ¢ and yi = x. From Theorem 2.1
it follows that xu € W2(D)* and x9,u € WZ(D)’. Consequently, for almost all z3 we have

L(&E/,O) u(',l‘3) = f(',ﬂfg) - (L(ax’aaﬂcs) - L(ax’>0)) u('7x3) = F(',.Cl)g),

2
B(a:t'a 0) ’U,(',.%'3> = gi<'7$3) - ZA?),]n;t 8$3u('7x3) - Gi<'7$3)7
7=1

where x(-,23)F(-,23) € Wél(K)E, x(-, 23)GE(-, 23) € W§/2(7i)g. Since ' = " and ¢g*,g~
satisfy the compatibility condition (2.23), there exist vectors c(x3),d(x3) € C* such that

nf ng Arn Asn Az c(ws) g7 (0, 3)
( n, No > ( A19 Asog Ass ) d(xg) ( g )
b ’ ’ ’ (0z5u) (0, 3)
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for all x3. From this it follows that p(z) = c(x3) z1 + d(x3) x2 satisfies
B(9,,0)w(-, x3) = GF(0,23) on y*
for all x3. Therefore, for v = u — p we obtain
L(8y,0)v(-,23) = F(-,23) in K, B(8y,0)v(-,z3) = GF(-,23) — GT(0,23) on 7.

Here, according to [7, Th.7.1.1], x(-, z3) (GE (-, 23) —G*(0,23)) € 1/53/2(’yi). By the assumptions
of the theorem, A = 1 is the only eigenvalues of the pencil A in the strip 0 < Re A < 2 — 9, all
eigenfunctions are restrictions of linear functions to the unit circle, and generalized eigenfunctions
corresponding to the eigenvalue A = 1 do not exist. Thus, by [6, Th.1.2] (see also [7, Th.6.1.4]),
¢v admits the representation

o(x)v(x) = O (23) + ¢V (x3) 21 + P (23) 22 + w(2),

where w(-,z3) € V#(K)* and

[t a)lEpue < o (166ma) FCa)y e + D 190,22) GEC, ) s,
+

) ul,20) s ey

< e (Idoma) £l + DI 6 (o)l

+HX('7~"U3)u(',w:a)HWg(K)/z + (s z3) 3131‘('7903)”%[/52(@0

with a constant ¢ independent of 3. Since 9% (¢u) = 05w +0 (¢p) for |a = 3, the last estimate
implies

ot amyutsaa)liguey < e (I S lguor+ 2 InC0) g ol pag

(e 8) (e 2) s ey + (- 23) 8x3u(',953)|’%/vg(1<)zf.)~

Integrating this inequality with respect to x3 and using (2.14), we obtain (2.24). The lemma is
proved. m

Now, analogously to Theorem 2.2, the following statement holds.

Theorem 2.3 Suppose that there are no eigenvalues of the pencil A(X) in the strip 0 < Re A < 1
and the line ReA = 1 contains the single eigenvalue N\ = 1 having geometric and algebraic
multiplicity 20 — v’ = 20 — r”. Furthermore, we assume that v € Hp is a solution of problem
(2.11), where ¥ f € Wi 2(D)Y, gt € W (M), 1> 2, max(l — 1 — u,0) <6 < 1 — 1, and
g*, g~ satisfy the compatibility condition (2.23). Then ¢u € WHD)* and

9ullwgoye < e (S lyi-zope + 3190l 1-s72 gaye + Nullcy o) (2.25)
+

with a constant ¢ independent of u.

Proof: If 0 <l —6 — 1 < 1, then the results holds in the same way as in the first step of the
proof of Theorem 2.2.

Suppose that 1 <1—0—1 < 2. Then max(2 — p2,0) < § —1{+3 < 1, and Lemma 2.8 implies
Xu € ngl +3(D)£, where x is a smooth function such that y = 1 in a neighborhood of supp ¢
and ¥ = 1 in a neighborhood of supp x. Applying Lemma 2.3, we obtain ¢u € Wg (D).
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The proof for the case k < I—d—1 < k+1, where k is an integer, k£ > 2, proceeds analogously
to the third step in the proof of Theorem 2.2. m

Moreover, the assertion of Corollary 2.2 with ue instead of up is valid.

Example. We consider the Neumann problem for the Lamé system

=f inD, o(un=g" onI*. (2.26)

Here o(u) = {0 ;(u)} is the stress tensor connected with the strain tensor

{em(u)} = {% (aﬂﬁjui + a’ﬂz‘uj)}

by the Hooke law
v

oij(u) = 2p (1 — 5,

(e is the shear modulus, v is the Poisson ratio, v < 1/2, and d; ; denotes the Kronecker symbol).
The corresponding problem (2.20) in the angle K is:

() gmer (5)=(]). amen

2 f2
U1,U2 < ), 293 on Vi-

(61,1 + 22 +€33) dij + %)

If the opening 6 of the angle K is greater than m, then the eigenvalue with smallest positive
real part of the pencil A(\) is £4(0)/60, where £ (0) is the smallest positive root of the equation
(1.8). This is shown, e.g., in [8, Sect.4.2]. Note that £, (0) < w for 7 < 6 < 2mw. If § < 7, then
the eigenvalues with smallest positive real parts are A\; = 1 and Ay = 7/6. The eigenvalue \; is
simple, the corresponding eigenvector is (sin ¢, — cos ).

Let n* be the exterior normal to I'=. If u € W$(D)3, § < 1, then it follows from the
Neumann boundary conditions that
|

o(u)n™|,, = g%

and consequently, n~ -anﬂM =n" -gﬂM and nt - Un‘!M =nt.g” ‘M . Here a - b denotes the
scalar product in R3. Since ¢ is symmetric, we have n~ - ont = nT - on~. Consequently, g*
and g~ must satisfy the compatibility condition

Applying Theorem 2.3, we get the following result:

1) Let u € Hp be a solution of problem (2.26), where ¥ f € W(D)?, 1g* € W;/2(Fi)3,
0<d<lford<m, 1—£.(0)/0<8<1 for0>mn. Then pu € WZ(D)3.
2) Let 0 < 7 and let uw € Hp be a solution of problem (2.26), where ¢ f € Wg_2(73)3, >3,

Ygt e Wé_S/Q(Fi):s, n=gt v =n" g7 |m, max(l—1—7/0,0) < § < 1—1. Then ¢pu € WL(D)3.

In particular, ¢u belongs to the Sobolev space W2(D)3 if § < m, f € WE(D)3, ¢* €
WEAME)B, 6 <1, n" gty =n" g |ur.
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2.6. Estimates for Green’s matrix to the Neumann problem

From the unique solvability of the Neumann problem in Hp and from classical results on fun-
damental solutions of elliptic boundary value problems in a half-space we obtain the following
assertions (for the Laplace equation see [22]).

Theorem 2.4 1) There exists a unique solution G(x,§) of the boundary value problem

L(0y) G(x,&) = 6(x — &) Iy for x,& € D, (2.27)
B(0;) G(x,&) =0 forxz € OD\M, £ €D (2.28)

such the function x — C(|¢'|7ta']) G(z,€) belongs to HY for arbitrary fived & = (¢/,&3) € D.
Here Iy is the £ x ¢ identity matriz and ¢ is a smooth function on (0,00) equal to zero in the
interval (3/4,3/2) and to one outside the interval (1/2,2).

2) The function G(x,€) is infinitely differentiable with respect to x,& € D\M, x # £. For
|z — & < min(|2'|,|¢|) there is the estimate

1090¢ G(x, )| < e o — g7 1AL,

where ¢ is independent of x and &.
3) The function G(z,§) is also the unique solution of the problem

L(0¢)G(x,§) =d(x — &) I for x,§ €D,
B(0¢)G(z,&) =0 forxeD, £ € 0OD\M
such that the function & — C(|€'|7Y2'|) G(z, &) belongs to HY for arbitrary fived x € D.

We establish now an estimate for the derivatives of Green’s function G(z,&) in the case
|z — &| > min(|2'],]¢’|). For this we need the following lemma analogous to Lemma 2.2 in [10].

Lemma 2.9 Let B be a ball with radius 1 and center xg such that dist(zo, M) < 4. Furthermore,
let ¢, ¢ be infinitely differentiable functions with supports in B such that ¢ = 1 on supp ¢. If
Yu € Hp, Lu=0 in DN B and Bu=0 on (0D\M) N B, then

sup |2/ [Pt 6(2) 0%0] ()| < eyl , (2:29)
zeD

where € is an arbitrarily small positive number. The constant ¢ in (2.29) is independent of u
and xg.

Proof: Let ¢ be such that y; —e € (k,k+1). Then § = k+1—p3 +¢ € (0,1). Furthermore,
let x be a function from C§°(B) such that ¢x = ¢ and x» = x. From Theorems 2.1 and 2.2 it
follows that 02, (xu) € WD) for j =0,1,... and

"X8£3U‘|W§+2(D)é <c H¢UHHD .

Hence we have 8?,8%3 (xu) € WE(D)* for |a| < k. Since WZ(K) is continuously imbedded into
C(K), we have

sup |02, (xw)| < ¢ sup 19905, (xw) (-, 23) ey
r'eK,x3€R r3€R

Using the continuity of the imbedding W4 (M) C C(M), we obtain

¢ (10205, ez oye + 19303 (xn) 2oy

< cllullng, -

IN

sup (0507, (xu) (- 23) w2 sye
z3€ER

A
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This proves (2.29) for || < k. Now let |a] > k + 1. By Theorems 2.1 and 2.2, we have

&, (xu) € ng';f‘a'(p)@ and, therefore, 6;1,8%3 (xu) € W62—k+\a|<D>€ C V52—k+|al(D)£' Using
Sobolev’s lemma, it can be easily shown that
sup |2'|~FH |u(2')] < ¢ H'UHVﬁk(K) for arbitrary v € V/BI"’(K), k>2 (2.30)
r'eK

with a constant ¢ independent of v and x’. Applying this inequality to 8;3‘,3%3 (xu), we obtain

S—k _ . .
Csup o/ o0 ()| < e sup 000, () (el
z'eK,x3€R r3€R

(K)t
Using again the continuity of the imbedding W, (M) C C(M), we arrive at (2.29). m
Theorem 2.5 For |x — &| > min(|2/|, |€'|) there is the estimate

| g,ag3a§,a§30(x,§)\

<clr-— §|—1—|a|—|ﬁ|—j—k(ﬂ)min(ﬂ,ula|€) < 1€’ )min(O,,u17|/8|75)

|z — ¢ |z — ¢

where € 1s an arbitrarily small positive number.

. (231)

Proof: Since G(Txz,T¢) = T~'G(z,€), we may assume, without loss of generality, that
|z — ¢| = 2. Then max(|2’|, [¢'|) < 4. Let B, and Bg be balls with centers = and &, respectively,
and radius 1. Furthermore, let 7 and v be infinitely differentiable functions with supports in B,
and Bg, respectively.

Applying Lemma 2.9 to the function 8§,B£3G(x, -), we obtain

¢/ a8 t=0) | 90,50 9,08 G (,€)| < ¢ |l (1) 0%, G, )l (2.32)
We consider the solution -
u(z) = (Y() F(), Gz, "))
of problem (2.4), where F' € H},. Since 9 F vanishes in the ball B,, we conclude from Lemma

2.9 that ‘
|/ [mex(lel=mt20) 19000 w(z)| < c|lnulrg, -

Consequently, the mapping

H*D SF - ‘wllmax(|a|fu1+s,0) 830;/ 8%311((1}) _ ’x/|max\a|*ﬂl+6,0) (F()7 w()agé/ 8%3G(33, ))D cC

represents a linear and continuous functional on HY, for arbitrary 2 € D. The norm of this
functional is independent of x. This implies

! rextiel=in =20 14 93 0], G, pp < ¢

what together with (2.32) yields the desired estimate. m

Using Theorem 2.3 instead of Theorem 2.2 in the proof of Lemma 2.9, we obtain the following
result.

Theorem 2.6 Suppose that there are no eigenvalues of the pencil A(X) in the strip 0 < Re A < 1
and the line ReA = 1 contains the single eigenvalue N\ = 1 having geometric and algebraic
multiplicity 20 — ' = 20 — " (' and " were defined in Section 2.5). Then G(z,§) satisfies
(2.31) with pa instead of p1 = 1.

Examples. 1) Green’s matrix of the Neumann problem (2.22) for the Laplace equation
satisfies (2.31) with u; = 7 /6.

2) For 6§ > m Green matrix of the Neumann problem (2.26) for the Lamé system satisfies
(2.31) with p1 = £4(0)/0. In the case § < 7, the number p; has to be replaced by 7/6.
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2.7. Estimates for Green’s matrices to the Dirichlet and mixed problems

We consider problem (2.1) for the case when the Dirichlet condition is given on at least one
of the sides T'T, T~ i.e., not both numbers d*, d~ equal zero. Then Hp C Vj'(D)’. From
Lax-Milgram’s lemma and Lemma 2.1 it follows that the problem

bp(u,v) = (F,v)p forallve Hp, u=g" onT* ford* =1 (2.33)

has a unique solution u € V(D) for arbitrary F € H%, gt € ‘/01/2(Fi)£.
For the following theorem we refer to [9, Th.4.1,7.2] and [18, Ch.11,Prop.1.4].

Theorem 2.7 Let u € V3 (D)t be a solution of problem (2.33), where the functional F has the
form

(Fv U)D = (va)D + Z(l - di) (g:tvv)pi
+

with Y, f € VIT2(D)! and vy g* € VI 3205 for j =01,k I—1—py <5 <1—1.
Here ¢ and 1) are the same cut-off functions as in Theorem 2.2. Then ¢07,u € V(;Z(D)é and

k k k
> 160, ullyipye < e (Z 1007, Fllvi-2oye + D0 D IVOZ G avs 572 sy + ||¢u||vol(p>z)-
§=0 j=0 j=0 *

Analogously to Theorem 2.4, there exists a unique solution G(z, &) of the problem

L(0;) G(z,&) = 0(x — &) Iy for z,£ € D,
dEG(z, &) + (1 — d¥) B(9,) G(x,6) =0 for x €%, £ €D

such that the function x — ¢(|¢'|72/|)G(z, €) belongs to HY% for arbitrary £ € D and for an
arbitrary smooth function ¢ on (0, 00) equal to zero in the interval (3/4,3/2) and to one outside
the interval (1/2,2). We call the matrix-valued function G(z,{) Green’s matrix of problem
(2.11). Using Theorem 2.7, one can prove the following estimates.

Theorem 2.8 The matriz G(x,&) satisfies the estimates
020G, )] < el —g| 711017

for |z — ¢| < min(|z"[, [¢']) and

aaj ab ak el=1—|a|—|8l—j—k |2/| \mi—lel—e &' \m—IBl—e
\8:0/8%386,653G(x,§)|§c|x ¢l ’ (|x—£|) (!m—€|>

for |z — &| > min(|2'|, |€'|), where € is an arbitrarily small positive number.

3. The parameter-dependent problem on a domain of the sphere

In this section we study the parameter-dependent boundary value problem (1.9). We prove that
this problem is uniquely solvable in a certain class of weighted Sobolev spaces for all A, except
finitely many, in a double angle of the complex plane containing the imaginary axis. This result
is essentially known. For a smooth domain € on the sphere (and Sobolev spaces without weight)
it was proved by Agranovich, M. S. and Vishik, M. L. [1].
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3.1. The parameter dependent Neumann problem in an angle

Let again D be the dihedron K x R, where K is the angle {2’ = (z1,22) : ¢ € (0,60)}, and let
bp be the sesquilinear form (2.2). We denote by @ and ¢ the Fourier transforms with respect to
x3 of the vector-functions u and v. Then, by Parseval’s equality, we have

bD(“?”):/RbK(ﬂ('ﬂﬂ?f]("n);n) dn,

where

br (u,v;n) = /K ( Z A; jOp,u - Oy v+mz Agzu O,V — iygﬁxiu-ﬁ) +772A373U-U> dz’.

5,j=1

We consider the variational problem
b (u,v;n) = (F,v)g  for all v e Wi(K)Y, (3.1)

which corresponds to the parameter-depending Neumann problem

L(Oyryin)u = — ZAJ(?IZ@ U — znz 23+A3182;Zu+77A33U—f1HK (3.2)

i,j=1
B(0y,in)u = Z A jOz,un; + iUZA3,jU nj =g+t on %, (3.3)
ij=1 j=1

where 4% are the sides of K.

Theorem 3.1 The boundary value problem (3.2), (3.3) is uniquely solvable in W2(K)* for ar-

bitrary f € W(K)*, g* € Wl/z( Y max(l — p1,0) < 6 <1, n € R, n # 0. The solution
satisfies the inequality

2
S Pl < e (1 g + D2 195 ey + 012D 100 ey ) (34)
§=0 + +

with a constant ¢ independent of f, g& and n.

Proof: Let the functional F' be given by
(Fv)g = / f-vda + Z/ gt -vdr, ve W&(K)Z,
K + ’yi

where f € Lg(K), gt e Wﬁl/Q(’yi), 0 < 6 < 1. It can be easily seen that this functional belongs
to W(K)*. We set u(z) = N~1/2eM%3 ¢(x3/N) v(z’), where v € Wy (K)*, and ¢ € C3°(R) is a
real-valued function such that fj;o ¢(t)dt = 1. Then

3
[ ogurarz [ (19 + ) e [ 1op i,
D K

where c is independent of v and N. Analogously,

bp(u,u) < bg(v,v;n) + c N2 / lv|? dx’.
K
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Consequently, (2.3) yields
b (v,v;m) > ¢ / (|Vm/v|2 +n? |v|2) dz’.
K

Thus, by Lax-Milgram’s lemma, for all real n # 0 there exists a unique solution u € WOI(K )¢ of
problem (3.1) which is also a solution of problem (3.2), (3.3).

We show that u € L3(K )¢. Let x be an arbitrary smooth cut-off function with compact
support equal to one near the vertex of K. Then yu € V(K )¢ with an arbitrary positive € and,
therefore, also xyu € V2 .(K)¢ (see, e.g. [7, Le.6.3.1]). Furthermore, L(0,,in)(xu) € VX(K)-,
B(0,,in)(xu) € V;/Q('yi)g. Hence, according to [7, Th.6.4.1] and [8, Th.12.3.3], the vector-
function xu has the asymptotics

yu=c+dlogr+w, wheree,deCt, we ‘/;52(K)£.

Since u € W3 (K)*, the vector d is equal to zero. This implies xu € L3(K)‘. We consider the
vector-function (1 — x)u. Obviously, (1 — x)u € W ,(K)*, L(8,,in) (1 — x)u) € W(K)*,
while B(d,/,in) ((1 — x)u) € Val/z(’yi)e N W;/Q(’yi)e. Consequently, by [9, Th.4.1’], we obtain
(1 —x)u € VA(K) N WZ(K)*. Thus, we have shown that u € L2(K).

Estimate (3.4) holds by applying the inequality of Corollary 2.1 to the vector function
v(z) = N71/2em3¢(N~las) u(z'), where ¢ € C§°(R) and N is a large number. m

An analogous result holds for the parameter-dependent Dirichlet and mixed problems in the
angle K. Here the spaces Lf; can be replaced by V(;].
3.2. Solvability of problem (1.9)

Let Ho = {u € WHQ)’ : w = 0 on v, for j € Jy}. We introduce the parameter-dependent
sesquilinear form

3
Z Ai’jain . &E]V dl‘,
1,7=1
1<|z|<2

a(u,v; A) = Iog 2

where U(z) = p*(w), V(2) = p~!7 v (w), and define the operator A(\) : Hg — HE, by
(AN, ’U)Q =a(u,v;\), u,v € Hq.

The pencil A has following properties (see [8, Ch.10,12]).

(i) The spectrum of the pencil 2 consists of isolated points, the eigenvalues of this pencil. All
eigenvalues have finite algebraic multiplicity.

(ii) If X\ is an eigenvalue of the pencil 2, then —1 — X is also an eigenvalue with the same
geometric and algebraic multiplicity.

S

1
(iii) The vector function u = 0 Z — (log 7)* us_p(w) satisfies the equality bi(u,v) = 0 for

k!
k=0
all v € 'H equal to zero in a neighborhood of the origin and infinity if and only if A\g is
an eigenvalue of the pencil 2 and uw©, ... u® is a Jordan chain corresponding to this

eigenvalue.

We denote by J the set all j € {1,2,...,n} such that the Dirichlet condition in problem
(1.1)-(1.3) is given on at least one side adjacent to the edge M, i.e. M; C T for at least one
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ke Jy. Let § = (01, . .;,5n) €eR" 6; > —1forj¢ J. Then we define the norm in the weighted
Sobolev space Wé(Q; J) by

_itla) T , /
HuHWl Q) ( / Z H v I+]af) Tj2~6] lagu(x”? dx)l 2,

|t jeg jeJ
1<|z|<2
where u is extended by the equality u(x) = u(z/|z|) to the cone K and r;(z) = dist (x, M;).
Furthermore, we set VgI(Q) = Wé(Q; {1,...,n}) and Wé(Q) = Wg(Q; (). From Hardy’s inequal-
ity it follows that Wg(Q; J) = Vgl(ﬂ) if §; > 1—1 for j ¢ J. Furthermore, Ho C W&(Q; J)t. The
trace spaces for Vi(Q) WL(Q) and WI(Q' J), 1 > 1, on the arc ; are denoted by V;_I/Z('yj),

;:1/2( ;) and Wl 1/2(%'“]) respectively. In particular, Wl Vg d) = ;‘_1/2(%) for j € Jo.

Let D; be the dlhedron which coincides with K near the pomt M;n S2. The boundary value
problem for the system (1.1) in D; is connected with a pencil A;(\) on an interval (0, 6;), where

0; is the interior angle at the edge M; (see the definition of the pencil A()) in Section 2). We
g

denote by )\gj ) the eigenvalue with smallest positive real part and set p1; = Re )\1] ), Furthermore,
let the operator A¢(\) be defined as

W§(97 j)z Su— (‘CO‘)U {u|’Yj}j€J0 ’ {B( )u‘Wj}jGJl)
€W~ XHW?)/Q’Y], ><1_[W1/2

Jj€Jo jeN

where £ and B are given by (1.10).

Theorem 3.2 Let 1 —p; <d; <1 forj e J and max(1 —15,0) <85 <1 forj & J.
1) Then the spectra of the pencils 20 and > coincide.
2) There exist positive real constants N and € such that for all X in the set

{AxeC: |A| >N, Re)| < e[ImA[} (3.5)

the operator 2g(\) is an isomorphism. Furthermore, every solution u € Wg(ﬂ)z of the problem
(1.9) with X in the set (3.5) satisfies the inequality

2— 3/2
E AP lells e < € <Hf”v0 et > (lglly, 22,0+ A l9llvec,e)
7=0 j€Jo

30 (Mgl o+ lalhvac ) (3.6)

JjeJ

where c is independent of u and A.

Proof: 1) We consider the differential operators £()\) and B(\) in a neighborhood of M; N S2.
Without loss of generality, we may assume that M; coincides with the x3-axis and D is the
dihedron K x R. By w; = x1/p, we = x2/p we denote local coordinates on the unit sphere near
the north pole N = M; N S%. Since

2
— wy 5. _ wiw9 wWiw9 1—wj

1
Opy = w10, + — 0, +

Ouwys Oy = w20) — O s

Opy = (1 —wf —w})V2 (9, ——awl—?awg),
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the operator £(A) has the form

2 2
L) = =D Aij0u0s,— A=1)> (Aiz+ As;) 0w, — A(A11+ Az2) — AMA—1) Ag3
+A2Py(w) + AP1(w, D) + Pa(w, b,),

where P; are differential operators of order j with coefficients vanishing at the point (wq,ws) = 0.
Analogously,

2 2
B()\) = Z Ai,j n; 8%. + A ZA:;,J'TL]' + A QO(W) + Ql(w,aw)

3,j=1 J=1

near N, where Q; are differential operators of order j with coefficients vanishing at (w,ws) = 0.
Furthermore €2 coincides with the wedge K in the coordinate system wy,ws near M;NS?. Hence
we conclude, analogously to the proof of Theorem 3.1, that every weak solution u € W3 (Q)E of

problem (1.9) with support near N belongs to the space W;(Q; JLif f e Vgo(Q)e, gj € Vg,/g(%)@

for j € Jp and g; € ‘/:;}/2(7]-)3 for j € J1. By means of a partition of unity on €2, we obtain this
result for arbitrary weak solutions. This implies, in particular, that every eigenfunction of the
pencil 2 is an eigenfunction of 2y corresponding to the same eigenvalue. The same is true for
generalized eigenfunctions.

2) We prove the second assertion first for purely imaginary A = in. Let (o,(1,...,(, be
a partition of unity on {2 such that (; = 1 near M; N S? and supp ¢j is sufficiently small
for j = 1,...,n. We consider the vector-function (;u and assume, as above, that the edge
M, coincides with the x3-axis. The difference of the operator £(A) (in the coordinates wi, wo
introduced above) and the operator (3.2) is small for large |\| and small wf + w3. This means,
there is the inequality

2
H (L()‘) — L(Owy s Ouso )\)) (Clu)”Lgl(K)‘f <e ZO |)\|2—3||C1U||L§1(K)z ;
=

where ¢ is small if supp (7 is small and |)\| is large. The same is true for the difference of the
operators B(A) and (3.3). Hence in the case of the Neumann problem it follows from Theorem
3.1 that

2—j n
> NP Gl sy < e (IEOulwaay + 32 (Bl o + A2 1B ullwece,y0))
i= =1

for sufficiently large |A|. The same inequality is true for the vector-functions (ju, j =1,...,n.

The validity of this inequality for {yu follows from a result of Agranovich and Vishik [1] (see also
[7, Th.3.6.1]). An analogous estimate holds for the Dirichlet and mixed problems. This implies
(3.6) for purely imaginary A, |[A\| > N. For A in the set (3.5) this estimate can be proved in the
same way as in [1, 7]. m

4. The boundary value problem in a polyhedral cone

In the last section we consider problem (1.1)—(1.3) in the cone K. We prove the existence of
strong and weak solutions, obtain regularity assertions for the solutions and point estimates
for Green’s matrices. As in Section 2 we concentrate on the case of the Neumann problem.
Analogous assertions for the Dirichlet and mixed problem are formulated at the end of the
section and can by obtained by obvious modifications in the proofs. For the Dirichlet problem
we refer also to the papers by Maz'ya and Plamenevskii [13] (Lamé and Stokes systems), Maz'ya
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and Rofimann [15] (scalar 2m order elliptic equations) which include solvability theorems in
weighted Sobolev and Holder spaces and estimates for Green’s functions. The solvability of the
Neumann problem for diagonalizable second order equations in Sobolev spaces without weight
was studied by Dauge [3, 4].

4.1. 'Weighted Sobolev space in K

For an arbitrary point x € K let p(z) = |z| be the distance to the vertex of the cone and r;(z)
the distance to the edge M;. Furthermore, we denote by 7(x) the regularized distance to S, i.e.,
an infinitely differentiable function in I which coincides with dist(z,S) in a neighborhood of S.

Let I be a nonnegative integer, J the same subset of {1,2,...,n} as in Section 3, § € R,
5= (01,...,0p) € R™, 6; > —1 for j & J. By Wé’g(lC; J) we denote the weighted Sobolev space

with the norm

||U||Wl b= / SO e T (%)2(5j—l+|a|) 11 (%)25]- |8§‘u|2dg;)1/2.

|| <l jeJ jeJ
Furthermore, we define Vl 5(K) = l 5K {1,...,n}) and Wl 5K = Wl 5(K;0). Passing to
spherical coordinates p,w, one obtalns the following equlvalent norm in W;), é(lC, J ):
 aB-111) : 1/2
lull= ([ o0 S 1000 wlps Vv 5, 0)
k=0
Lemma 4.1 Let 6 = (81,...,0,), 0 = (0} ...5’)besuchthaté}—éj§1f07’j:1,...,nand

6j>—1,0,>—1 forj ¢ J. Then Wg:ll g/(/C, J) is continuously imbedded into W/é 5 J).

Proof: 1t suffices to note that, by Hardy’s inequality, the space W{l;l_k(Q; J ) is continuously
imbedded into W(l{k(Q; J),k=0,...,l.m

Obviously, Vﬁl g(lC) C WZB g(IC; J). I §; >1—1for all j & J, then, according to Lemma 4.1,
! Wl (K T ’
Vﬁ,S(IC) = W@g(IC, J).
We denote the trace spaces for Vﬁl g(IC), W/é g(IC) and Wg g(IC; J),1>1,onT; by Vl 1/2( Iy,

W[l;gl/ 2(Fj) and Wlﬁ_gl/ 2 (Tj; J), respectively. Using Lemma 2.1, we obtain the followmg assertlon.

Lemma 4.2 Let g; € Vl 1/2( L) for j € Jy and g; € Vl 3/2( L) for j € Ji. Herel > 2 if
J1 £ 0 and 1 > 1 else. Then there exists a vector functzon u € Vﬁl g(lC)Z such that u = gj on I';
for j € Jo, Bu=gj onT'; for j € Ji, and 7

ey e < € (22 Naallyivaqeyye + 3 Nl s ) (4.1)

j€Jo jeJ1

with a constant c independent of g;, 7 =1,...,n.

Proof: Let (i be smooth functions depending only on p = |z| such that

+oo
supp G € (271,250, N Go=1, (09, G(p)] < ¢ (4.2)

k=—00
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with constants ¢; independent of k and p. We set hy ;(z) = (x(28z) g(2Fz) for j € Jo, hij(z) =
2% ¢, (2%2) g(2kz) for j € Ji. These functions vanish for [z| < 3 and |z| > 2. Consequently, by
Lemma 2.1, there exist vector functions vy € Vﬁl S(IC)K such that vy, = hy; on I'; for j € Jy,

Buy = hyj on I'; for j € Jp,

HkaVéyg(K)Z <c < ; Hhk,jHV;—gl/Q(F],)é + ; Hhk,jHV;—;/Q(Fj)e)a (43)
J<Jdo ’ JEN ’

and vg(z) = 0 for |z| < 1 and |z| > 4. Hence for the functions ug(z) = vgx(27%z) we obtain

ug = Crg;j on T'j for j € Jo, Buy, = (rgj on T for j € Jy, u(x) = 0 for |z| < 2572 and |z| > 2k+2.
Furthermore, uy, satisfies (4.3) with (,g; instead of hy ; and a constant ¢ independent of k and
gj. Consequently, for u =) uj we have u = g; on I'; for j € Jy and Bu = g; on I'; for j € Ji.

Inequality (4.1) follows from the equivalence of the norms in Vé g(lC) and Vﬁl;}/ 2(Fj) with the
norms ’ ’

+o0 ) 1/2 +o00 ) 1/2
bl = (X Gl o) and llggl = ( D2 16gil2isny) 0 (44)
k=—o0 g0 k=—o00 8,8 7
respectively (cf. [7, Sect.6.1]). m

4.2. Solvability of the boundary value problem
The following results can be proved in a standard way (cf. [6], [7, Th.6.1.1,6.1.4]) by means of
Theorem 3.2.

Theorem 4.1 Suppose that there are no eigenvalues of the pencil A on the line Re A = -+ 1/2
and that the components of 6 satisfy the inequalities 1—p; < 6; <1 for j € J and max(1—p;, O)~<
0; <1 forj & J. Then the boundary value problem (1.1)—(1.3) is uniquely solvable in W; (KC; J)f

for arbitrary f € VﬂOg(IC)e, gj € V;’{;(Fj)g, jeJo, gr € V;{;(Fk), kelJ.

§

Theorem 4.2 Let u € W; g(lC;JN)E be a solution of the boundary value problem (1.1)—(1.3),

where [ € V[;), 5/(1C)€, g; € V;/;(I‘j)Z forj e Jy, gr € V;/;(Fk)f for k € Ji. Suppose that the
components ofg and &' satisfy the inequalities 1—p; < 5} <d;<1forje J and max(1—p;,0) <
53- <0j<1forj¢ J. If there are no eigenvalues of the pencil A on the lines ReA = —3 + 1/2
and Re\ = ="+ 1/2, then

N
1 s
u= g Cujs P g = (log p)? w9~ (w) + w, (4.5)
v=1j=1 s=0 o=0

where w € W2, _ (K; J)¢ is a solution of problem (1.1)~(1.3), \, are the eigenvalues of the pencil

/3,)5,
2A between the lines ReA = — + 1/2 and ReA = —f' +1/2 and u¥3) qre eigenvectors and
generalized eigenvectors corresponding to the eigenvalue A, .

Proof: In the case § = & the theorem can be proved in the same way as for smooth € (cf.
[6, Th.1.2], [7, Th.6.1.4]), since the spectra of the pencils 2 and 2 coincide.
29 1-1/2 1-1/2 )
Let 6 # ¢'. Since Vﬁ(),E/(IC) C VﬁOIE(IC) and Vﬂ’,g’/ (I';) C Vﬁ’ﬁ/ (I';) for &; < &;, we obtain
(4.5) with w € W;l S(IC)K. We have to show that w € W;, g,(IC; J)!. Let ¢ be as in the proof of
Lemma 4.2 and n = (-1 + Ck + Cgy1. Furthermore, we set Cr(x) = Gu(2F2), Tk(x) = np(2Fx),
and v(x) = w(2%r). The support of (; is contained in {z : 1/2 < |z| < 2}. Therefore,
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due to Theorem 2.1 and the analogous result for the Dirichlet and mixed problems, we have

Cpv € Wél 5 (K J)t and

> 2 ~ 2
HCkaW;/ 5,(IC;j)4 < ¢ (”UkL”HV;/’ )¢ + z; ”77ka 3/2 (T;)*
’ J€Jo

+ 2 Bl e F)ﬁunkvuwa i)
jeN 4

with a constant ¢ independent of k. Multiplying this inequality by 22k(F'=2)+3 and substituting
2Fr = y, we obtain the same estimate with Ckﬂ?k instead of (i, nx for w. Now the assertion
follows from the equivalence of the norm in Wé 5(IC, J) with the norm

/
= (3 Gl )

k=—00

and the analogous result for the trace spaces. m

The following statement is an analogon to Theorem 2.1.

Lemma 4.3 Let u € VV2 a(IC; J)¢ be a solution of problem (1.1)~(1.3) with (pd,)" f € V[_(})E(IC)‘/Z
forv=0,1,....k, (p0, ) g; € V3/2( L) forj € Jy andv =0,...,k, (pd,)"g; € V1/2( L)t for

Jje€h andv =0,1,... k. Suppose that the components of 5 satisfy the mequalztzes 1—p; <
6; <1 forj € J, max(l—p;,0) <d; <1 forj¢&J and that the line Re A = —( +1/2 is free of
eigenvalues of the pencil A. Then (p0,)"u € W; g(/C; Nt forv=1,....k and

k
> 0, e i <€ 2 (1603 s e+ 3 102 03l 2,
v=0

v=0 Jj€Jo
+ 31600 5l 72 )
Jj€Jo
u(z) — u(tz) . :
Proof: We set u(x) = — 1 where ¢ is an arbitrary real number 1/2 < ¢ < 1. It

can be easily verified that

Lug(z) = fo(z) + (1 + 1) f(tz) in K,
u(z) = (gj)e(x) on Ty for j € Jy, Bu(x) = (gj)c(z) + gj(tx) on I for j € Jy.

Furthermore, u;(z) — Z;’:l 1;0;;u(x) = pOyu(x) as t — 1. By Theorem 4.1, we have

||“t‘|wgg(;c;j)é < (llftl\vo e+ (L) f(E )||v0 v+ D gl VAT, )
' Jj€Jo

3 M@l + 2105 i) (4.6)

JE JE€J1

Using the equality

1T 1
fi(x) = /0 ij(azjf)((t + 7 — tT)m) dr = /0 (papf)((t + 7 — tT)a:) dr,
i=1
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it can be easily shown that
< 0
HftHV[g,g(IC)é <cllp pf”vﬁg?g(lc)t’

with ¢ independent of ¢. Analogously,

||(gj)t||V;:§.1/2(Fj)e <c ||Papgj||V;%1/Q(Fj)e :

For the proof of the last inequality one can use the equivalence of the norm in Vﬁlgl/ 2( ;) with the
second norm in (4.4) and an expression analogous to (2.9) for the norm of (jg;. Consequently,
from (4.6) it follows that pd,u € W2 (/C J)¢. Repeating this procedure, we obtain (pd,u)”

W; §(IC, Hforv=2 ...k together Wlth the desired estimate. m

4.3. Existence of weak solutions to the Neumann problem

In this and in the following two subsections we restrict ourselves to the Neumann problem, i.e.,
Jo=0.
Let Vﬁ1 (K) = Wg 5(K) be the space with the norm (1.11). From Hardy’s inequality it follows

that Vj} (K)* coincides with H. By V:BI(IC) we denote the dual space of Vﬂ1 (K) with respect to
the scalar product in Ly(K). Let ¢ be smooth functions depending only on p = |x| satisfying
(4.2). It can be easily shown (see [7, Sect.6.1]) that the norm in Vﬂﬂ(lC) is equivalent to

Jull = (Z Gl 1) (4.7)

We consider weak solutions u € Vﬁ1 (K)¢ of problem (1.1), (1.3). Obviously, the sesquilinear form
bic(-,-) is continuous on Vﬁ1 (K)t x V1 ﬂ(IC)e. Consequently, it generates a linear and continuous
operator Ag : Vﬁl (K)t — Vﬁfl(lC)g by the equality

(Agu, v) . = bi(u,v), u € Vﬁl(lC)E, vE VEB(IC)K.

Lemma 4.4 For every u € VBI(IC)Z the inequality

vy ey < e (IM4sully g0 + lullvg ey (4.8)
s satisfied.

Proof: Let (; = (x(p) be smooth functions satisfying (4.2), and let np = Cx—1 + (& + Cht1-
We show that

HCkUH%/BI()C)Z <c HCkABUH%/ﬁ—l(;C)z +e anUH‘Z/Bl(;c)Z +C(e) anUH\Z/g_l(/c)l ) (4.9)
where ¢, € and C(g) depend only on the constants co, ¢1, ¢2 in (4.2) and & can be chosen arbitrarily
small.

Let first k = 0. Integrating by parts, we get
a(Gou,v) = (CoApu,v) . + c1(u, v) — ca(u, v),

where

(u,v) / ZAJ (02,C0) u - Oy Jvd, co(u,v) / ZA’J O%QO Oz, u - vdx.

,j=1 1,j=1
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Since problem (1.7) is uniquely solvable in H = Vi (K) for arbitrary F € V; '(K)", we obtain
ol oy < e (IGoAgullyrgoe +  sup fer(u,v) = ea(u,v)]).

”Ullv()l(;c)Z:l

Here
lex(w, v)| < cllnovllLyiye lvllve oy

and

3
/ Z A”uﬁm ’Ua C() dx+/ ZAM(&EJ.CO)mu-Eda.

Py oK\S /52

The last equality implies

ea(, ) < e (Imoully ey Iollvg oy + Inotl oamcrsye 10l zacaisy )
< (lInoull gy + Imoullwssageye ) ol e
< (= lnoullv oy + CCe) Inoul zageye ) ol ey

Therefore,
sup ez (u, )| < llnoullyaoye + C ) lmoull Ly
Hv‘lvol(;c)ézl

which implies (4.9) for k = 0. By means of the transformation 2 = 2%y, we obtain (4.9) with
the same constants ¢, € and C(e) for k # 0. Summing up in (4.9) and using the equivalence of
the norms in Vﬁil(lC) to (4.7), we obtain (4.8). m

Theorem 4.3 Suppose that there are no eigenvalues of the pencil A on the line Re A = —3—1/2.
Then the operator Ag is an isomorphism.

Proof: Let u be an arbitrary vector-function from Vﬂ1 (K)¢. Since Vﬁ1 (K) C W,g—1 (a_l)T(IC),

where ¢ is an arbitrarily small positive number (see Lemma 4.1) and T = (1,...,1), the vector

function d s 1)
e 26 1) H (e—
J

belongs to Wf, (K)¢. From the absence of eigenvalues of the pencil 2 on the line Re A =

ﬁv(lfg)]_:
—0 —1/2 it follows that the line Re A = 5 — 1/2 is also free of eigenvalues. Consequently, by
Theorem 4.1, there exists a solution v € W12 B, (1-0)i (IC)Z of the problem

Lv=w in K, Bv =0 on 0K\S

which satisfies the inequality

v <cl|lw < |u ¢ 4.10
lollws | oor Sclolwe  or < lulwn |y (1.10)
with a constant ¢ independent of u. This implies
l[ul[0 L = /u@dm‘:/umdm‘:b;@(u,v): (Agu, v)
B—1,(e— K K
< elldgully e Tl < eldsully o ol | oy
<

I sl Nualws | e

(e=DT
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From the last inequality we conclude that

lullve  goye < ellullno

1, (e—1y1)* = C”Aﬁunvﬂ_l(’qg'

This estimate together with Lemma 4.4 yields

lullvieye < ellAsully -1y (4.11)

Therefore, the kernel of Ag is trivial and its image is closed.
We prove that for every F € Vﬁfl(lC)Z there exists a solution of the equation Agu = F. Let

{fx}r>0 C C(K)¢ be a sequence which converges to F' in Vﬁ_l(lC)Z . By Theorem 4.1, for every

k there exists a solution uy, € W2+1 (1o (IC)E C VBI(IC)Z of the problem Luy = f; in K, Buy, =0

on OK\S. Since, according to (4.11),
e = wllvoe < cllfie = filly e

with a constant ¢ independent of k and [, the functions u; form a Cauchy sequence in Vﬁl(lC)e .
Its limit w is the solution of the equation Agu = F. The proof is complete. m

4.4. Regularity of weak solutions to the Neumann problem

Using Theorem 2.2, we can prove the following theorem.

Theorem 4.4 Let u € Vﬁlflﬂ(lC)e be a solution of the equation Ag_j1u = F, where the
functional F € Vﬂflﬂ(lC)Z has the form

(F,o)g = /’Cf-ﬁdl‘—i-Z/F g; -vdo, v E V_lﬁ(IC)Z, (4.12)
j=1"13

with f € W;;(/C) ;€ Wl 3/2( T,)¢, 6; is not integer, and max(l — 1 — p,0) < 6; <1 —1 for
j=1,...,n. ThenuEWéé(lC) and

n
Hu||wéﬂg(;c)e <c (HfHWé?(K)e + Z:l ||9j||W;—53/2(Fj)z + HUHVK}JH(KV)-
p= ,

Proof: Under our assumptions on F, the vector function u is a solution of problem (1.1),
(1.3). We define by Cg, 7k, Ck, 7k the same functions as in the proof of Theorem 4.2 and set
v(x) = u(2¥z). Then, by Theorem 2.2, the vector functions (xu and (xv belong to Wé g(IC)é for

k =0,%£1,.... Furthermore,

1wl e < € (L0 ﬁlenkaH sy Wty o)
J

Due to (4.2), the constant c¢ is independent of k. Multiplying the last estimate by 22k(B=1)+3 and
substituting 2¥z = y, we arrive at the inequality

2 2
Gl gy < € (Lo oz e+2\|77kBUH oy Il o)
J

Using the equivalence of the norms in W' (K) and Wl M 2( I';) with norms analogous to (4.4),

8.8
we obtain the assertion of the theorem. m

The following statement is an immediate consequence of Theorems 4.3 and 4.4.
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Corollary 4.1 Suppose that 0; is not integer, max(l —1 — u;,0) < 6; <l —1 forj=1,...,n
and that the line Re A = 1 — 3 — 3/2 does not contain eigenvalues of the pencil A. Then the
Neumann problem (1.1), (1.3) is uniquely solvable in Wé g(lC)g for arbitrary f € Wé%Q(K)Z and

e Wl 3/2 ) =1,
Furthermore, we get the following generalization of Lemma 4.3.

Corollary 4.2 Letu € Vﬂl_lH(lC)e be a solution of problem (1.1),(1.3) with (pd,)" f € Wé‘;(lC)e,

(p0,)" g5 € Wl 3/2( L) forv =0,1,...,k, j = 1,...,n, where the components of & are not

integer and satzsfy the inequalities max(l — 1 — p;,0) < 0; < | — 1. Suppose that there are
no eigenvalues of the pencil 2A on the line ReA =1 — § —3/2. Then (p0,)"u € W;} g(IC)z for

v=0,1,...,k and

k k n
> 25 sl oy < e 3 (10000)" e+ 1000 53y, )
V= v= Jj= ’

Proof: Let first | —1—9; < 1 and, therefore, max(1 —p;,0) < d; —l+2<1lforj=1,...,n

Then, by Lemma 4.3, (,08) u € Wg 2.5 2)T(IC)Z C Vﬁl_ZH(IC)E for v = 1,...,k. Using

Theorem 4.4 and the equalities
Lpoyu = (pd, + 2)Lu, Bpd,u = (pd, + 1)Bu

we obtain (pd,)"u € W/éj(lC)g forv=1,... k.

Now let [ =1 —0; > 1 for j =1,...,n. By Theorem 4.4, u € Wl (IC)Z and, consequently,
pOyu € Wl_1 (IC)Z C Vﬁl_Hl(lC)e. Since L pdyu = pd,f + 2f € Wl 2(IC) and B pdyulr; =
p0,gj + g; € Wl 3/ 2( ) , it follows from Theorem 4.4 that pd,u € Wl (IC) Analogously, we
obtain (pd,)"u 6 Wl (IC)(Z forv=2,... k.

Finally, let [ — 1 — 0; > 1 for some, but not all, j. Then let 1, ..., be smooth functions
on (2 such that P >0, wj =1 near M; N 52 and > 1; = 1. We extend 9; to K by the equality

¥;i(x) = ¥j(x/|z]). Then 9%;(z) < clz|~lel. Consequently, the assumptions of the corollary
are satisfied for ¢;u, and from what has been shown above it follows that (pd,)"v;u € Wl (IC)

for j = 1,...,n. This completes the proof. m

Corollary 4.3 Let u € Vé (K)¢ be a solution of the equation Agu = F, where F' € Vﬂfl(lC)Z N
Vﬁ71(lC)£, If there are no eigenvalues of the pencil A on the lines ReA = —3 —1/2 and Re A =
-3 —1/2, then u admaits the decomposition (4.5) with w € Vg, .

Ik h d he d 4 h Vi (K)*

Proof: By Theorem 4.3, there exists a solution w € Vﬁl,(lC)Z of the equation Agw = F. Let

x be a smooth cut off function equal to one near the vertex of K. We assume, without loss of
generality, that 3’ < 3. Then x(u —w) € Vﬁl(lC)e. Integrating by parts, we obtain

bic (x(u — w),v) :b;c(u—w,xv)—l—/ f-de—l—/ g-vdo,
K IK\S

for arbitrary v € V! B(IC)é, where

3
Z A; ,] :E X arlu + 8:2 (&vﬁ()u)’ g = Z Ai,j (aa:ZX) n;u
1,j=1 3,j=1
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Obviously, f € WS;(IC) and g|r, € W1/2( ;)¢ with arbitrary -, 5, max(1 — pi,0) < 6; <1
for j = 1,...,n. Since xv € V,B (K)'n Vlﬁ,(lC)Z, we have bi(u — w, xv) = 0. Consequently,

from Theorem 4.4 it follows that x(u —w) € W62+ ) E(IC)K Applying Theorem 4.2, we obtain the

decomposition (4.5) for x(u — w) with a remainder v’ € Wg, . 6(IC)£ C Vﬂl, (). Furthermore,

since ' < 3, the function (1 — x)u belongs to Vﬁ’ (K)¢. The result follows. m

Remark 4.1 Let for the Neumann problem in the dihedron D; (i.e., in the dihedron which
coincides with the cone K in a neighborhood of the edge point () = M; N S?) the assumptions
of Theorem 2.3 be valid. Then in the condition on d; in Theorem 4.4 and Corollaries 4.1-4.3 the
number p; = 1 can be replaced by the real part u§-2) of the first eigenvalue of the pencil A;(\)
on the right of the line Re A = 1. To show this, one has to use Theorem 2.3 instead of Theorem

2.2 in the proof of Theorem 4.4.

Examples. Let us consider, for example, the solution u € H = Vi (K)* of problem (1.7),
where F' has the form (4.12) with f € Wl 2(IC) g; € Wl 3/2( I';), 1 — B > 1, 4; is not integer,

max(0,l — 1 — p;) < d; <1 —1. Suppose that addltlonally to (1.6), the inequality
3 3
S (Aijfis £i)ee = e 1A (4.13)
ij=1 i=1

is satisfied for all fi, fo, f3 € C¢. Then the strip 0 < Re A < 1/2 contains only the eigenvalues A =
0 of the pencil 2. The corresponding eigenvectors are constants, while generalized eigenvectors
do not exist (see [8, Ch.12]). The same is true, for example, for the Neumann problem to
the Lamé system (see [8, Ch.4]). Consequently, there exists a constant vector ¢ such that
u—ce Wl (IC) if | — 3 —3/2 < ReAsg, where Ay is the eigenvalue of 2 with smallest positive
real part, and d; are noninteger numbers such that max(0,/ —1 — p;) < d; <1 —1.

For the Neumann problem to the Laplace equation, we obtain u € Wé g(IC) if —1/2 <
-3 —3/2 <Ay and max(0,l —1 —7/6;) < 6; <l — 1, where 6; is the angle at the edge M;.
If K is convex, then Ay > (v/5 — 1)/2 (see [4]), and we can choose | =3, 3 =1,d; = 1 —¢

with sufficiently small positive . Thus, u — ¢ € W13(1 o (IC) - W(i(-j(lC) if fe Wi(l_g)T(IC),
3/2

g;j S W 1,(1— )1(Pj)

In the case of the Lamé system, we make the following assumptions: —1/2 < 1—F—3/2 < Aq,
max(0,l —1—7/0;) <0; <l—1if §; <7, and max(0,l —1—&,(0;)/6;) <0; <l—1if §; >,
where &4 (6) is the smallest positive root of (1.8). Furthermore, we assume that the boundary
data g; satisfy the compatibility conditions

5 95— ‘Mj ="n5_9j, ‘M]-

where I';_ and I'j, are the sides adjacent to the edge M;. Under these conditions, we get
u € Wé E(IC)?’.

4.5. Estimates for Green’s matrix to the Neumann problem

We consider the Neumann problem (1.1), (1.3) with J; = {1,...,n}. Suppose that the line
Re A = —f — 1/2 (and, consequently, also the line Re A = 5 — 1/2) does not contain eigenvalues
of the pencil 2. Then the following theorem holds analogously to [12, Th.2.1].

Theorem 4.5 1) There exists a unique solution G(x,€) of the boundary value problem (1.12),
(1.14) such that the function x — C('x 5') G(x,€) belongs to the space Vﬂl (K)! for every fized

¢ € K and for every smooth function ¢ on (0,00) equal to one in (1,00) and to zero in (0, %)
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2) The function G is infinitely differentiable with respect to x,& € K\S, = # €.
3) The function G(z,-) is the unique solution of the problem

L(0¢) G(,8) =6(x — &) Iy forz, & € K, B(0¢) G(x,£) =0 forxz € OK\S, £ € K,
such that the function & — ((%) G(z, &) belongs to the space V_lﬁ(lC)eXz for every fized x € K.

Theorem 4.6 Green’s function G introduced in Theorem 4.5 satisfies the following estimates
for |x|/2 < [£] < 2|x|:

|020{G(x,€)|

IN

clz — &7 if |z — €] < min(r(z), 7 (€)),

n

clz — g 1-lal-h H( ﬂ)”g(é{féo
if |z — &| > min(r (l’)ﬂ”(f))-

Here §; o = min(0, puj — || — €) with an arbitrarily small positive .

IN

|070{G(x,¢)]|

Proof: Since G(Tz,T¢) = T-'G(z,€), we may assume, without loss of generality that
|z —&| = 1. Then 3min(|x|, |£]) > |x| +|£] > | —&| = 1. Therefore, we can apply Theorems 2.4
and 2.5 and obtain the desired estimates. m

For the proof of point estimates for G(z,§) in the cases 2 |z| < |£| and |z| > 2|{| we need
the following lemma.

Lemma 4.5 If u € Wég(lC), popyu € Wé S(K)’ d; #1—1 for j = 1,...,n, then there is the
estimate 7 7

B—1+3/2 & T'j ymax(§;—141,0)
(i u(@)] < e (llulls o) + Nodpulls )

with a constant ¢ independent of u and x.

Proof: 1) Applying the estimate

swp o) < e [T (o) + 1))

0<p<oo

(which is an immediate consequence of Sobolev’s lemma) to the function p®~'+3/24(p,w), one
obtains

PO p) <o [T (o) o+ o0l )P dp. (414)

Let 41, ..., 1, be smooth functions on § such that ;= 1 near M; N 52, 1 >0, and Y ¢; = 1.
Furthermore, let v be an arbitrary function from Wé(Q) If 6; < 1 —1, then 9;v is continuous

on , and the supremum of ;v can be estimated by its norm in Wé(Q) If 0; > 1 —1, then ¥;v
belongs to VSI(Q) (see, e.g., [7, Th.7.1.1]). Therefore,

()™ () o) < e igolhwygay

(cf. (2.30)). This implies

n

[1(

_j max(d; —141,0) |’U( )
J=1 p

w)| < CHUHW(%(Q)‘
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The last inequality together with (4.14) implies

pg(g_l)_,_g H (ﬁ)Qmax(67l+1,0) |u(p,w)\2

=1 P

< C/O PQ(ﬁiHl) (Hu(p, )H%/V(;_(Q) + [l pdpulp; )H%{/{é(ﬂ)) dp.
The result follows. m

Let again 3 be a fixed number such that no eigenvalues of the pencil 2 lie on the line
Re A = —f —1/2. Furthermore let
A_ <Red <Ay

be the widest strip in the complex plane which is free of eigenvalues and contains the line
Red=—-p—1/2.

Theorem 4.7 Let G(z,§) be Green’s function introduced in Theorem 4.5. If |x| < |£]/2, then

n

o —Jal—e |¢|—1—As—|yl+e ri(@)\de 77 (15 (6) %
207G, €)] < o) lol=e g m1he bl jHl( o) TIGE) T

j=1
where 6o = min(0, p; — || —€) and € is an arbitrarily small positive number. Analogously, for
|x| > 2| there is the estimate

n

fe! _—|al+e —1—-A_—|y|—¢ T'(.I') S T 7’(5) 8.
0207 G(a,€)] < eaflotte fg =1 =A—T E(J\T) 11 (%)™

Jj=1

Proof: Suppose that |z| = 1. We denote by ¢, ¥ smooth functions on K such that ¢(n) = 1
for |n| < 1/2, ¢ =1 in a neighborhood of supp ¢, and 1(n) = 0 for || > 3/4. Furthermore, let
[ be an integer, [ > max u; + 1. The vector function 03G(z, ) is a solution of the problem

L(0¢) 03G(x,&) = 036(x — &) I in K, B(0¢)0;G(x,§) =0 on OK\S

r(@)
4.5, ¢ is an arbitrary smooth function on (0,00) equal to one in (1,00) and to zero in (0, %)
In particular, ¥(-)0%G(z,-) € V_l/@(lC)e, Y(-)L(0¢)0¢G (2, -) = 0 and 9(-) B(0g) 905G (,-)|ox\s =
0. Thus, we conclude from Corollaries 4.2 and 4.3 that the functions ¢(-)8g8‘;G(ac,-) and

. Y o . l V4 / _ o . _
€101 () O¢ 03 G(z, -) belong to M/l—1—5/+\7\,§+|7|f(’c) , where 3’ < —A_ —1/2 and §; are non

integer numbers, | —1 — p; < 0; <1 —1for j = 1,...,n. The norms of (b(-)@gagG(a:, -) and
€19)¢19(+) 8?8?6’(:6, -) can be estimated by the norm of ¢(-)0¢G(x,-) in V_lﬁ(lC)é. Hence, by

means of Lemma 4.5, we obtain

, n max(d;+|y|—141,0)
p(é)“'”'“”Hl(ﬂ) T e G, )] < e () 05 G,y ey (415)
J:

such that the function £ — ((lm_a) 9%G(x, &) belongs to V_lﬁ(/C)er. Here, as in Theorem
(

p(§)

for || < 1/2, where c¢ is independent of = and ¢&.
According to Theorem 4.3, the problem

be(u,v) = (VF,v)c, veV2i(K),

has a unique solution u € Vﬂ1 (K)¢ for arbitrary F € Vﬁfl(lC)é. This solution can be written as
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Let x1, x2 be a smooth cut-off function, xs = 1 near z, xy1 = 1 in a neighborhood of supp xa2,
x1(y) = 0 for |z —y| > 1/4. Since supp ¢ Nsupp x1 = @, we have x1Lu = 0 and x1Bu|p\s =

0. Hence, by Corollaries 4.2 and 4.3, we obtain y20%u € WB” 5t H(g)f and x200,00u €
Wé,, Filo H(g)ﬁ with arbitrary 8”. Consequently, Lemma 4.5 yields

n
8;+|al—14+1,0
[T (i)™ fapu(a) | < elaullv e < ¢ 1Py 2
Thus, the mapping

V ( BF _ HT max5+\a| H—lO)aa()

- ( ﬁ rj ()OO 90 G e, )y (1), F)

j=1

K

represents a linear and continuous functional on Vﬁf1 with norm independent of . Therefore,
the function

n— HT max (6;+]o|—14+1,0) 1/}(77) agG(.%',n)

has a finite norm independent of z in V1 ﬁ(lC)e . This together with (4.15) yields

050 G(x,€)| < ¢ Hr] ymin(i=1-0;~lal.0)| |6~ ||~ 1/2H (7“]
7=0

)min<z—1—6j—|v|,o>

(€)

Setting §; =1 —1—p;+ec and ' = —A_ —1/2—¢, we arrive at the desired estimate for |z| =1,
€| < 1/2. Using the equality G(Tz, T¢) = T~ G(x,£), we obtain this estimate for arbitrary z
and [¢] < |z|/2. The proof for the case |z| < |£|/2 proceeds analogously. m

Remark 4.2 The estimates in Theorems 4.6 and 4.7 for the derivatives of Green’s function can
be improved if the direction of the derivatives is tangential to edges. In particular, we have

8,G(.6)| < elw—& if Jal/2 < €] < 2],
9,0(2.6)| < elef™ 7 g Mt o] < g2,
8,G(.6)] < elal 1 At Ja| > 20,

The first estimate follows immediately from Theorems 2.4 and 2.5, while the last two estimates
can be proved analogously to Theorem 4.7.

Finally, we consider Green’s matrix for the case 3 = 0. This means that G(z, &) is a solution

of problem (1.12), (1.14) such that the function z — C(‘x 5') G(w, &) belongs to H = Vi (K). If

condition (4.13) is satisfied, then the strip —1/2 < Re A < 0 contains only the eigenvalue A; =0
(see [8, Th.12.3.2,12.3.3]). The eigenvectors corresponding to this eigenvalue are the constant
vectors in C’, while generalized eigenvectors do not exist. By [8, Th.4.3.1], the same is true
for the Neumann problem to the Lamé system. In this case, we denote by Ao the eigenvalue
with smallest positive real part. Using the following lemma, we can improve the estimates in
Theorem 4.7.
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Lemma 4.6 Let ¢, 1 be smooth functions on K with compact supports such that ¢ = 1 in a
neighborhood of the origin and ¢ = 1 in a neighborhood of supp ¢. Furthermore, let Yu € V' (K)*,
YLu = 0 and YBulg\s = 0. Suppose that the strip —1/2 < ReX < 0 contains only the
eigenvalue A1 = 0, the eigenvectors corresponding to this eigenvalue are the constant vectors in
C* and generalized eigenvectors for Ay do not exist. Then ¢u = co + v, where cg is a constant
vector, v € Wéyg(IC)e, 0<l—0F-3/2<Rels, max(l —1—p;,0) < J; <l —1, d; not integer,
and
|col + Hvaé S < cllvullya ey -

Proof: Let x be a smooth function such that x = 1 in a neighborhood of supp ¢ and ¢y = 1 in
a neighborhood of supp x. Since the derivatives of y vanish in a neighborhood of the origin and

of infinity, we have L(xu) = [L, x]u € Wg_l+2 G(IC)‘Z (here [L,x] = Lx — xL is the commutator
of L and x) and B(xu)|r; € Wﬁ1£21+2 6(Fj)g. Thus, it follows from Theorems 4.2 and 4.4 that

xu = ¢ + w, where w € W? (K),0<1—3—3/2<ReAs, max(0,1 —py) <95 <1,

B—142,5

|co| + ||U||W§75(IC)‘3 < cllvullyageye -

(K)* and B(¢u) = [B, ¢] (w—co) € W% (T)".
Using again Theorems 4.2 and 4.4, we obtain ¢u = ¢y + v, where v € Wg—l+3,§' (K)¢, max(0,2 —
pj) < 0% < 2. Repeating this argument, we get the same representation with v € WZ; S(IC)Z,

max(l —1—p,0)<d;<l—1. m

This implies L(¢u) = [L, ¢] (w—co) € W}_, . -

Using the last lemma, we can prove the following statement analogously to Theorem 4.7.

Theorem 4.8 Let G(x,&) be Green’s matriz introduced in Theorem 4.5 for f = 0. Suppose that
the strip —1/2 < Re XA < 0 contains only the eigenvalue A1 = 0, the eigenvectors corresponding
to this eigenvalue are the constant vectors in C* and generalized eigenvectors for Ay do not exist.

If |z < [€]/2, then

- j 9y
107G, &)| < clg ] (%) |
j=1

n

o e Ao—|a|—e —1—ReAx— € r(x) 0, e T(S) 95y
0207 G, )| < cfa|ferzmlol—s |¢|71-Redamhl+ 311(77) I1( " )

Jj=1

for |a] # 0, where 6j, = min(0, p; — |a| — €) and € is an arbitrarily small positive number.
Analogously for |x| > 2|£| there are the estimates

102G (2, 6)| < cla| ﬁ (MY
j=1

]

0200 G(x,€)| < cla| 1 Retemhlte g Refomlal== TT (m(x)>%

o1 1 j

)51',7

r; ()
( €]

n
=1

for Iyl # 0.

Remark 4.3 If for the Neumann problem in the dihedron D; the assumptions of Theorem 2.3
are valid (i.e., in particular, p1; = 1 is the eigenvalue of A;(\) with smallest positive real part),
then G(z,§) satisfies the estimates in Theorems 4.6-4.8 with §; , = min(0, ,u§-2
M;g) is the real part of the first eigenvalue of the pencil A;(\) on the right of the line ReA =1
(cf. Remark 4.1).

) |a| — €), where
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Examples. Let G(z,£) be Green’s function for problem (1.1), (1.3) such that the function

r — T, elongs to the space = or every fixe S and for ever
¢(1551) Gl €) belongs to the space H = Vi (K)" for every fixed € € K and for every

smooth function ¢ on (0, 00) equal to one in (1,00) and to zero in (0, 3).

1) If L = —A, then G(z,§) satisfies the estimates in Theorems 4.6 and 4.8 with 6;, =
min(0,7/6; — |a| — ), where 6; is the angle at the edge M; and ¢ is an arbitrarily small positive
number. Here A is the smallest positive eigenvalue of the pencil 2. Note that the eigenvalues
of the pencil & are given by Ay; = —1/2 4+ /N; + 1/4, where N; are the eigenvalues of the
Beltrami operator on 2 with Neumann boundary conditions.

2) Green’s matrix for the Neumann problem to the Lamé system satisfies the estimates in
Theorems 4.6 and 4.8, where ;o = min(0, 7/6; —|a|—¢) for §; < 7 and §; o = min(0, £, (0;)/0;—
la| —€) for 6; > m. Here {1 (0) is the smallest positive root of (1.8).

4.6. Estimates for Green’s matrix of the Dirichlet and mixed problems

Let
= U I'; and Vb(IC;FO) ={ue Vﬁl(lC) :u=0onI"}.
Jj€do
Analogously to Theorem 4.3, it can be proved that the problem

bic(u,v) = (F,v) for all v EI;I_ﬁ(IC;FO)E, u=g; onI'; for j € Jy

has a unique solution u € Vﬁl(lC)g for arbitrary F € (1;%(IC;F°)*)Z and g; € V;/Q(Fj)z, Jj € Jo,
if the line Re A = —(3 — 1/2 is free of eigenvalues of the pencil 2(\). We call this solution weak
solution of problem (1.1)—(1.3).

For weak solutions of the Dirichlet and mixed problems we can prove analogous regularity
assertions as for weak solutions of the Neumann problem. In particular, the following statement
holds (cf. Corollary 4.2).

Theorem 4.9 Let u € Vﬂl_lH(lC)é be a weak solution of problem (1.1)—(1.3) with (p0,)"f €
WZ_Z(IC' j)g forv=0,1,...,k, (p0,)"g; € Vl l/2( j)f forjeJo,v=0,1,....k, (p0,)"g; €

W[g 53/2(F J) forje i, v=0,...,k. Suppose that the components ofg satisfy the inequalities

I —1—pj <9 <l—1forjel, max(l —1 — p;,0) < 6 <l71f0rj¢j(mdthatthe~re are
no eigenvalues of the pencil A on the line ReX =1 — 3 —3/2. Then (p0,)"u € Wé S(IC; J)¢ for
v=0,1,...,k and ’

k
Zou<pap>”u||wzﬁyg(,c;j)e < cz(n P00 Ttz + 2 160" il o172

j€Jo
+ 3100 Gilhytor, )
Jj€Jdo

Suppose that there are no eigenvalues of the pencil 20 on the line ReA = —5 — 1/2. We
denote by A_ < Re A < A, the widest strip in the complex plane which is free of eigenvalues of
the pencil 2(\) and contains the line Re A = —3 — 1/2. Furthermore, let G(x,&) be the unique

solution of the boundary value problem (1.12)—(1.14) such that the function z — (= o= §|> G(x,§)

belongs to Vﬁl(lC)exg. The following estimates follow immediately from Theorem 2. 8

0000G(2,)| < clo—¢7 P E [2]/2 < ¢ < 20, o — €] < min(r(x),r(E),

‘8;"82(1(%5)’ < clo— g7t lelh H<|az—£|> ﬁ<‘;j£52|>6j’”
=1

if |z|/2 < |€| < 2|z|, |x —&| > min(r(z),r(§)).
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Here 8;, = pj — |a| — ¢ for j € J, §;4 = min(0, uj — |a| — ) for j & J, and ¢ is an arbitrarily
small positive number. Estimates for Green’s function in the cases |z| < [£|/2 and |z| > 2[¢|
can be proved analogously to Theorem 4.7 by means of Theorem 4.9. In the case |z| < [£|/2 we
obtain

|0207G(x,6)] < claf+ Il g7t Ae b= (Tj(ﬂf))(sjva

P j

i T‘j(f) 5]',7
()

while for |z| > 2|¢| there is the estimate

0200 G(x,€)| < claf-lolte g 71A-—hle ﬁ (Tj(x))‘%va ﬁ (rj(f))% '

ol j
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