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Abstract: In this paper we are concerned with boundary value problems for general
second order elliptic equations and systems in a polyhedral cone. We obtain point
estimates of Green’s matrix in different areas of the cone. The proof of these es-
timates is essentially based on weighted L2 estimates for weak solutions and their
derivatives. As examples, we consider the Neumann problem to the Laplace equation
and the Lamé system.

1. Introduction

We deal with the Dirichlet, Neumann and mixed problems for elliptic systems of second order
equations in a polyhedral cone K. Our main goal is to obtain point estimates for Green’s
matrix. In a forthcoming work we will prove, by means of such estimates, solvability theorems
and regularity assertions in weighted Lp Sobolev and Hölder spaces.

As is well-known, the nonsmoothness of the boundary causes singularities of the solutions
at the edges even if the right-hand side of the differential equation and the boundary data are
smooth. Therefore, Green’s matrix G(x, ξ) is singular not only at the diagonal but also for x or ξ
near the vertex or an edge. For a cone without edges these singularities were described by Maz′ya
and Plamenevskĭı [12] in terms of eigenvalues, eigenfunctions and generalized eigenfunctions of
a certain operator pencil. The presence of edges on the boundary makes the investigation of
Green’s functions more difficult. In [10] Maz′ya and Plamenevskĭı obtained estimates for Green’s
functions of boundary value problems in a dihedral angle. The results in [10] are applicable,
e.g., to the Dirichlet problem for elliptic equations but not to the Neumann problem. Green’s
functions for the Dirichlet problem in polyhedral domains were studied in papers by Maz′ya and
Plamenevskĭı [13] (Lamé and Stokes systems), Maz′ya and Roßmann [15] (strongly elliptic 2m
order equations). Concerning the Neumann problem for the Laplace equation in domains with
edges, we refer to the preprints of Solonnikov [22], Grachev and Maz′ya [5].

We outline the main results of our paper. Let K = {x ∈ R3 : ω = x/|x| ∈ Ω} be a polyhedral
cone with faces Γj = {x : x/|x| ∈ γj} and edges Mj , j = 1, . . . , n. Here Ω is curvilinear polygon
on the unit sphere bounded by the sides γ1, . . . , γn. Suppose that K coincides with a dihedral
angle Dj in a neighborhood of an arbitrary edge point x ∈ Mj . By S we denote the set
M1 ∪ · · · ∪ Mn ∪ {0}. We consider the boundary value problem

L(∂x)u = −
3∑

i,j=1

Ai,j ∂xi∂xju = f in K, (1.1)

u = gj on Γj for j ∈ J0, (1.2)

B(∂x)u =
3∑

i,j=1

Ai,j nj ∂xiu = gk on Γk for k ∈ J1. (1.3)

1



where Ai,j are constant ` × ` matrices such that Ai,j = A∗
j,i, J0 ∪ J1 = {1, . . . , n}, J0 ∩ J1 = ∅,

u, f, g are vector-valued functions, and (n1, n2, n3) denotes the exterior normal to ∂K\S.
Weak solutions of problem (1.1)–(1.3) can be defined by means of the sesquilinear form

bK(u, v) =
∫
K

3∑
i,j=1

Ai,j∂xiu · ∂xjv dx, (1.4)

where u · v is the scalar product in C` of the vectors u and v. We denote by H the closure of
the set {u ∈ C∞

0 (K)` : u = 0 on Γj for j ∈ J0} with respect to the norm

‖u‖H =
( ∫

K

3∑
j=1

|∂xju|2C` dx
)1/2

. (1.5)

Here C∞
0 (K) is the set of all infinitely differentiable functions on K with compact supports.

From the above assumptions on the coefficients Ai,j it follows that bK(u, v) = bK(v, u) for
u, v ∈ H. Throughout this paper, it will be assumed that the form bK is H-coercive, i.e.,

bK(u, u) ≥ c ‖u‖2
H for all u ∈ H. (1.6)

By Lax-Milgram’s lemma, this implies that the variational problem

bK(u, v) = (F, v)K for all v ∈ H (1.7)

is uniquely solvable in H for arbitrary F ∈ H∗. Here (·, ·)K denotes the scalar product in L2(K)`

or its extension to H∗ ×H.

In Section 2 we consider the boundary value problem in a dihedron D = K × R, where
K is an infinite angle in the x1, x2-plane with opening θ. The main goal of this section is the
estimation of Green’s matrix. We give here the estimates in the case of the Neumann problem to
the Laplace equation, which was also considered in [22]. Let α = (α1, α2, α3) and γ = (γ1, γ2, γ3)
be arbitrary multi-indices. Then

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x − ξ|−1−|α|−|γ|

( |x′|
|x − ξ|

)min(0,π/θ−α1−α2−ε) ( |ξ′|
|x − ξ|

)min(0,π/θ−γ1−γ2−ε)

for |x−ξ| ≥ min(|x′|, |ξ′|), where x′ = (x1, x2), ξ′ = (ξ1, ξ2), and ε is an arbitrarily small positive
number. For |x − ξ| < min(|x′|, |ξ′|) there is the estimate

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x − ξ|−1−|α|−|γ|.

The same inequalities hold for Green’s matrix of the Neumann problem to the Lamé system if
θ < π, while in the case θ > π the number π/θ in the exponent has to be replaced by ξ+(θ)/θ,
where ξ+(θ) is the smallest positive root of the equation

sin ξ

ξ
+

sin θ

θ
= 0. (1.8)

For the proof of these inequalities, we use weighted L2 estimates for weak solutions and their
derivatives.

Section 3 concerns the parameter-dependent boundary value problems

L(λ)u = f in Ω, u = gj on γj , j ∈ J0, B(λ)u = gk on γk, k ∈ J1 (1.9)

generated by problem (1.1)–(1.3) on the intersection Ω of the cone K with the unit sphere S2.
Here

L(λ)u = ρ2−λ L(∂x)
(
ρλu(ω)

)
, B(λ)u = ρ1−λ B(∂x)

(
ρλu(ω)

)
, (1.10)
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ρ = |x|, and ω = x/|x|. Let A(λ) be the operator of problem (1.9). We prove that problem
(1.9) is uniquely solvable (in a certain class of weighted Sobolev spaces) for all λ, except finitely
many, in a double angle of the complex plane containing the imaginary axis. Furthermore, we
obtain an a priori estimate of the solution.

In Section 4, by means of these results, solvability theorems for the boundary value problem
(1.1)–(1.3) in weighted Sobolev spaces are obtained. In particular, we prove the existence of
weak solutions u ∈ V 1

β (K)`, where V 1
β (K) is the weighted Sobolev space with the norm

‖u‖V 1
β (K) =

( ∫
K
|x|2β

(|∇u|2 + |x|−2|u|2) dx
)1/2

. (1.11)

Here, for example, by a weak solution of the Neumann problem we mean a vector function
u ∈ V 1

β (K)` satisfying

bK(u, v) = (F, v)K for all v ∈ V 1
−β(K)`,

where F is a given continuous functional on V 1
−β(K)`. We prove that the absence of eigenvalues

of the pencil A on the line Reλ = −β − 1/2 ensures the unique existence of a weak solution
u ∈ V 1

β (K)`. Furthermore, we prove regularity assertions for the solution. For example, we
conclude from our results that the second derivatives of the solution u ∈ H of the Dirichlet
and Neumann problems for the Laplace equation (and other second order differential equations,
including the Lamé system) are square summable if the angles at the edges are less than π and
there are no eigenvalues of the pencil A with positive real part ≤ 1/2. In particular, the W 2

regularity holds for the Dirichlet problem to the Laplace equation and to the Lamé system if K
is convex. This follows from the monotonicity of real eigenvalues of the pencil A in the interval
[0, 1] (see, e.g., the monograph by Kozlov, Maz′ya and Roßmann [8, Ch.2,3]). For the Neumann
problem to the Laplace equation the W 2 regularity was proved by Dauge [3, 4].

The absence of eigenvalues of the pencil A on the line Reλ = −β − 1/2 guarantees also the
existence of a unique solution G(x, ξ) of the problem

L(∂x)G(x, ξ) = δ(x − ξ) I`, x, ξ ∈ K, (1.12)

G(x, ξ) = 0, x ∈ Γj , ξ ∈ K, j ∈ J0, (1.13)

B(∂x)G(x, ξ) = 0, x ∈ Γj , ξ ∈ K, j ∈ J1 (1.14)

(I` denotes the ` × ` identity matrix) such that the function x → ζ
( |x−ξ|

r(ξ)

)
G(x, ξ) belongs to

the space V 1
β (K)`×` for every fixed ξ ∈ K and for every smooth function ζ on (0,∞) equal to

one in (1,∞) and to zero in (0, 1
2). We obtain point estimates for the derivatives of G(x, ξ) in

different areas of K×K. For example, Green’s function of the Neumann problem to the Laplace
equation satisfies the following estimate for |x| < |ξ|/2:

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|Λ−−|α|+ε

∏
j

(rj(x)
|x|

)min(0,π/θj−|α|−ε)

×|ξ|−1−Λ−−|γ|−ε
∏
j

(rj(ξ)
|ξ|

)min(0,π/θj−|γ|−ε)
.

Here Λ− < Re λ < Λ+ is the widest strip in the complex plane containing the line Reλ =
−β − 1/2 which is free of eigenvalues of the pencil A, θj is the angle at the edge Mj , rj is the
distance to Mj , and ε is an arbitrarily small positive number. The same estimate holds for the
Lamé system if θj < π for j = 1, . . . , n. If θj > π, then the number π in the exponent has to
be replaced by ξ+(θj). In the case β = 0, when Λ+ = 0 and Λ− = −1, these estimates can be
improved.
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2. The boundary value problem in a dihedron

Let D be the dihedron {x = (x′, x3) : x′ = (x1, x2) ∈ K, x3 ∈ R}, where K is the angle
{x′ = (x1, x2) : 0 < r < ∞, 0 < ϕ < θ}. Here r, ϕ are the polar coordinates in the (x1, x2)-
plane. Furthermore, let Γ− = {x : ϕ = 0} and Γ+ = {x : ϕ = θ} be the sides of D, M = Γ+∩Γ−
the edge, and d± ∈ {0, 1}. We consider the boundary value problem

L(∂x)u = f in D, d± u + (1 − d±)B(∂x)u = g± on Γ±. (2.1)

This means, for d+ = d− = 1 we are concerned with the Dirichlet problem, for d+ = d− = 0
with the Neumann problem, and for d+ 6= d− with the mixed problem.

We denote by HD the closure of the set {u ∈ C∞
0 (D)` : d±u = 0 on Γ±} with respect to the

norm (1.5), where K is replaced by D, and by bD the sesquilinear form

bD(u, v) =
∫
D

3∑
i,j=1

Ai,j∂xiu · ∂xjv dx. (2.2)

Suppose again that

bD(u, u) ≥ c

∫
D
|∇u|2C` dx for all u ∈ HD. (2.3)

Then the variational problem

bD(u, v) = (F, v)D for all v ∈ HD (2.4)

has a unique solution u ∈ HD for arbitrary F ∈ H∗
D.

A large part of this section deals with the regularity of weak solutions. For the Dirichlet and
mixed problems, which are handled at the end of the section, we give only the formulation of a
theorem which follows from results of Maz′ya and Plamenevskĭı [9], Nazarov and Plamenevskĭı
[18]. The more complicated case of the Neumann problem is studied in Sections 2.2–2.5. The
results here were partially obtained by Zajaczkowski and Solonnikov [23], Nazarov [16, 17],
Roßmann [20], Nazarov and Plamenevskĭı [18].

The proof of point estimates for Green’s matrix in this section is essentially based on weighted
L2 estimates for weak solutions and their derivatives. As examples, we consider the Neumann
problem for the Laplace equation and the Lamé system.

2.1. Weighted Sobolev spaces in a dihedron and in an angle

Let δ > −1. Then Lk
δ (D) denotes the closure of C∞

0 (D) with respect to the norm

‖u‖Lk
δ (D) =

∫
D

∑
|α|=k

r2δ |∂α
x u|2 dx

)1/2
,

where r = |x′| = (x2
1 + x2

2)
1/2. Furthermore, we set

W k
δ (D) =

k⋂
j=0

Lj
δ(D).

For arbitrary real δ let V k
δ (D) be the closure of C∞

0 (D\M) with respect to the norm

‖u‖V k
δ (D) =

∫
D

∑
|α|≤k

r2(δ−k+|α|) |∂α
x u|2 dx

)1/2
. (2.5)
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Analogously, we define the spaces Lk
δ (K), V k

δ (K) and W k
δ (K) for a plane angle K with vertex

in the origin (then in the above norms D has to be replaced by K).
By Hardy’s inequality, every function u ∈ C∞

0 (D) satisfies the inequality
∫
D

r2(δ−1)|u|2 dx ≤ c

∫
D

r2δ |∇u|2 dx (2.6)

for δ > 0 with a constant c depending only on δ . Consequently, the space Lk
δ (D) is continuously

imbedded into Lk−1
δ−1(D) if δ > 0. If δ > k− 1, then Lk

δ (D) = V k
δ (D). Furthermore, from Hardy’s

inequality it follows that
∫
D
|x − x0|−2 |u(x)|2 dx ≤ c ‖∇u‖2

L2(D)` (2.7)

for every u ∈ HD and for an arbitrary point x0 ∈ M . This means that any vector function
u ∈ HD is square integrable on every bounded subset of D. From (2.6) an (2.7) we conclude
that ∫

D
r2δ |φu|2 dx ≤ c ‖∇u‖2

L2(D)` . (2.8)

for δ > −1 if u ∈ HD and φ is a function in C1(D) with compact support.
The spaces of the traces of functions from Lk

δ (D), V k
δ (D) and W k

δ (D), k ≥ 1, on the sides

Γ± = γ± × R of D are denoted by L
k−1/2
δ (Γ±), V

k−1/2
δ (Γ±) and W

k−1/2
δ (Γ±), respectively. The

norm in L
k−1/2
δ (Γ±) is defined as

‖u‖
L

k−1/2
δ (Γ±)

= inf
{‖v‖Lk

δ (D) : v ∈ Lk
δ (D), v|Γ± = u

}
.

Analogously, the norms in V
k−1/2
δ (Γ±) and W

k−1/2
δ (Γ±) are defined. An equivalent norm in

V
k−1/2
δ (Γ±) is given by (see [9, Le.1.4])

‖u‖ =
( ∫

γ±

∫
R

∫
R

r2δ
∣∣∂k−1

x3
u(r, x3) − ∂k−1

y3
(r, y3)

∣∣2 dx3 dy3

|x3 − y3|2 dr

+
∫

R

∫
γ±

∫
γ±

∣∣rδ
1(∂

k−1
r u)(r1, x3) − (∂k−1

r u)(r2, x3)
∣∣2 dr1 dr2

|r1 − r2|2 dx3

+
∫

Γ±

k−1∑
j=0

r2(δ−k+j)+1 |∂j
ru(r, x3)|p dr dx3

)1/2
. (2.9)

For δ > k − 1 this is also an equivalent norm in L
k−1/2
δ (Γ±).

2.2. The operator pencil corresponding to the boundary value problem

Let H(0,θ) = {u ∈ W 1(0, θ)` : d−u(0) = d+u(θ) = 0}, where W 1 denotes the usual Sobolev
space and d± are the numbers introduced in the beginning of this section. Furthermore, let

aK(u, v; λ) =
1

log 2

∫
K

1<|x′|<2

2∑
i,j=1

Ai,j∂xiU · ∂xjV dx′,

where U = rλu(ϕ), V = r−λv(ϕ), u, v ∈ H(0,θ), λ ∈ C. The form aK(·, ·; λ) generates a
continuous operator A(λ) : H(0,θ) → H∗

(0,θ) by

(
A(λ)u, v

)
= aK(u, v; λ), u, v ∈ H(0,θ).
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Here (·, ·) denotes the scalar product in L2((0, θ))`. As is known, the spectrum of the pencil A
consists of isolated points, the eigenvalues. The line Reλ = 0 contains no eigenvalues if d+ 6= d−
or d+ = d− = 1. In the case d+ = d− = 0 (the case of the Neumann problem), the line Reλ = 0
contains the single eigenvalue λ = 0. The eigenvectors corresponding to this eigenvalue are
constant vectors. Every of these eigenvectors has exactly one generalized eigenvector (see [8,
Ch.12]). We set

L(∂x′ , 0) = −
2∑

i,j=1

Ai,j ∂xi ∂xj , B(∂x′ , 0) =
2∑

i,j=1

Ai,j nj ∂xi

and denote by γ± be sides of K.

Remark 2.1 The vector function u = rλ0

s∑
k=0

1
k!

(log r)k vs−k(ϕ) is a solution of the problem

L(∂x′ , 0)u = 0 in K, p±u + (1 − p±)B(∂x′ , 0)u = 0 on γ±

if and only if λ0 is an eigenvalue of the pencil A(λ) and v0, v1, . . . , vs is a Jordan chain corre-
sponding to this eigenvalue (see [8, Le.12.1.1]).

We denote by λ1 the eigenvalue of the pencil A(λ) with smallest positive real part and by
µ1 its real part.

2.3. Regularity results for the solution of the Neumann problem

Let d+ = d− = 0. We assume that F is a functional on HD which has the form

(F, v)D =
∫
D

f · v dx +
∑
±

∫
Γ±

g± · v dσ± , v ∈ HD , (2.10)

where f ∈ L0
δ(D)`, g± ∈ L

1/2
δ (Γ±)`, 0 < δ < 1. Then the solution of (2.4) belongs to the Sobolev

space W 2
loc(D) and satisfies the equations

L(∂x)u = f in D, B(∂x)u = g± on Γ±. (2.11)

Note that the right-hand side of (2.10) always defines a functional on HD if f ∈ L0
δ(D)`, g± ∈

L
1/2
δ (Γ±)`, and the supports of f and g± are compact. For the first term on the right of (2.10),

this can be easily proved by means of (2.8). Furthermore, we have L
1/2
δ (Γ±) = V

1/2
δ (Γ±) for

δ > 0 and, due to the equivalence of the norm in V
k−1/2
δ (Γ±) to (2.9),

∫
Γ±

r2δ−1|g±|2 dσ± ≤ c ‖g±‖2

V
1/2
δ (Γ±)

.

This implies

∣∣∣
∫

Γ±
g± · v dσ±

∣∣∣2 ≤ c

∫
Γ±

r2δ−1|g±|2 dσ± ·
∫

Γ±
r1−2δ|φv|2 dσ±

≤ c ‖g±‖2

V
1/2
δ (Γ±)`

‖φv‖2

V
1/2
1−δ(Γ±)`

≤ c ‖g±‖2

L
1/2
δ (Γ±)`

‖φv‖2
HD .

The following lemma can be found in [9, Le.3.1].
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Lemma 2.1 Let g± ∈ V
l+d±−3/2
δ (Γ±)`, where l ≥ 1 if d+ = d− = 1, l ≥ 2 else. Then there

exists a vector function u ∈ V l
δ (D)` such that d±u + (1 − d±)Bu = g± on Γ± and

‖u‖V l
δ (D)` ≤ c

∑
±

‖g±‖
V

l+d±−3/2
δ (Γ±)`

with a constant c independent of g+ and g−.

Since V
1/2
δ (Γ±) = L

1/2
δ (Γ±) for δ > 0 and V 2

δ (D) ⊂ L2
δ(D), we conclude that for all g± ∈

L
1/2
δ (Γ±)` there exists a vector function v ∈ L2

δ(D)` such that B(∂x)v = g± on Γ±.
For the proof of the following lemma we refer to [23] and [20] (for general elliptic problems

see also [17, 18]).

Lemma 2.2 Let φ, ψ be infinitely differentiable functions on D with compact supports such
that ψ = 1 in a neighborhood of suppφ. If u ∈ HD is a solution of (2.4) and F is a functional

of the form (2.10), where ψf ∈ L0
δ(D)` and ψg± ∈ L

1/2
δ (Γ±)`, max(1 − µ1, 0) < δ < 1, then

φu ∈ L2
δ(D)` and

‖φu‖L2
δ(D)` ≤ c

(
‖ψf‖L0

δ(D)` +
∑
±

‖ψg‖
L

1/2
δ (Γ±)` + ‖ψu‖HD

)
(2.12)

Corollary 2.1 Let max(1 − µ1, 0) < δ < 1. Then for every u ∈ L2
δ(D)` the estimate

‖u‖L2
δ(D)` ≤ c

(
‖L(∂x)u‖L0

δ(D)` +
∑
±

‖B(∂x)u‖
L

1/2
δ (Γ±)`

)

is valid. Here the constant c is independent of u.

Proof: Due to Lemma 2.1, we may assume, without loss of generality, that B(∂x)u = 0. If
the support of u is contained in the ball |x| ≤ 1, then by Lemma 2.2, we have

‖u‖L2
δ(D)` ≤ c

(
‖L(∂x)u‖L0

δ(D)` + ‖u‖L1
0(D)`

)
. (2.13)

Let suppu be contained in the ball |x| < N . Then the support of the function v(x) = u(Nx) is
contained in the unit ball |x| ≤ 1. Furthermore, B(∂x)v = 0 on Γ±. Therefore, v satisfies (2.13).
From this inequality, by means of the coordinate change x = y/N , one obtains

‖u‖L2
δ(D)` ≤ c

(
‖L(∂x)u‖L0

δ(D)` + N δ−1 ‖u‖L1
0(D)`

)

with the same constant c as in (2.13). The result follows.

The following theorem generalizes Lemma 2.2.

Theorem 2.1 Let φ, ψ be the same functions as in Lemma 2.2. If u ∈ HD is a solution of
(2.4) and the functional F has the form (2.10), where ψ∂j

x3f ∈ L0
δ(D)` and ψ∂j

x3g
± ∈ L

1/2
δ (Γ±)`

for j = 0, . . . , k, max(1 − µ1, 0) < δ < 1, then φ∂j
x3u ∈ L2

δ(D)` for j = 0, . . . , k and

k∑
j=0

‖φ∂j
x3

u‖L2
δ(D)` ≤ c

( k∑
j=0

‖ψ∂j
x3

f‖L0
δ(D)` +

k∑
j=0

∑
±

‖ψ∂j
x3

g±‖
L

1/2
δ (Γ±)` + ‖ψu‖L1

δ(D)`

)
(2.14)

with a constant c independent of u.
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Proof: We prove the theorem by induction in k. For k = 0 the assertion follows from Lemma
2.2 and from the unique solvability of problem (2.4) in HD. Suppose the theorem is proved for
k − 1. Then, under our assumptions on F , we have χ∂j

x3u ∈ L2
δ(D)` for j = 0, . . . , k − 1. Let

v = ∂k−1
x3

u. Then φv ∈ L2
δ(D)`. We consider the vector function

vh(x) = h−1
(
v(x′, x3 + h) − v(x′, x3)

)
,

where h is a sufficiently small real number. Obviously, vh is a solution of the problem Lvh = Φh

in D, Bvh = Ψ±
h on Γ±, where Φ = ∂k−1

x3
f , Ψ± = ∂k−1

x3
g±. Consequently,

‖φvh‖L2
δ(D)` ≤ c

(
‖χΦh‖L0

δ(D)` +
∑
±

‖χΨ±
h ‖L

1/2
δ (Γ±)` + ‖χvh‖L1

δ(D)

)
(2.15)

with a constant c independent of h. Here χΦh = (χΦ)h − χhΦ and, for sufficiently small |h|,

‖(χΦ)h‖2
L0

δ(D)` =
∫
D

r2δ h−2
∣∣(χΦ)(x′, x3 + h) − (χΦ)(x′, x3)

∣∣2 dx

=
∫
D

r2δ
∣∣∣
∫ 1

0

∂(χΦ)
∂x3

(x′, x3 + th) dt
∣∣∣2 dx ≤

∫
D

r2δ
∣∣∂x3(χ(x)Φ(x)

∣∣2 dx

≤ c
(
‖ψ∂k−1

x3
f‖2

L0
δ(D)` + ‖ψ∂k

x3
f‖2

L0
δ(D)`

)
,

‖χhΦ‖2
L0

δ(D)` ≤ c ‖ψ∂k−1
x3

f‖2
L0

δ(D)`

Analogously,

‖χΨ±
h ‖L

1/2
δ (Γ±)` ≤ c

(
‖ψ∂k−1

x3
g±‖2

L
1/2
δ (Γ±)`

+ ‖ψ∂k
x3

g±‖2

L
1/2
δ (Γ±)`

)
.

For the proof of the last inequality one can use the equivalence of the norm in L
1/2
δ (Γ±) with

the norm (2.9). Furthermore,

‖χvh‖L1
δ(D) ≤ c

(
‖η∂k−1

x3
u‖L1

δ(D)` + ‖η∂k
x3

u‖L1
δ(D)`

)
, (2.16)

where η is a smooth function such that η = 1 in a neighborhood of suppχ and ψ = 1 in a
neighborhood of supp η. Since the theorem was assumed to be true for k−1, the right-hand side
of (2.16) is majorized by the right-hand side of (2.14). Consequently, the limit (as h → 0) of the
left-hand side of (2.15) is majorized by the right-hand side of (2.14). This proves the theorem.

Lemma 2.3 Let u be a solution of problem (2.11) such that ψu ∈ W l
δ(D)`, ψf ∈ W l+k−2

δ+k (D)`

and ψg± ∈ W
l+k−3/2
δ+k (Γ±)`, l ≥ 1, δ > −1. Here φ, ψ are the same functions as in Lemma 2.2.

Then φu ∈ W l+k
δ+k(D)` and

‖φu‖W l+k
δ+k(D)` ≤ c

(
‖ψf‖W l+k−2

δ+k (D)` +
∑
±

‖ψg±‖
W

l+k−3/2
δ+k (Γ±)` + ‖ψu‖W l

δ(D)`

)
. (2.17)

Proof: By [21, Cor.2,Rem.2], the vector function φu ∈ W l
δ(D)` admits the representation

φu = v+w, where v ∈ V l
δ (D)` and w ∈ W l+k

δ+k(D)`. Let first k = 1. Then Lv = φf+[L, φ]u−Lw ∈
W l−1

δ+1(D)` ∩ V l−2
δ (D)` ⊂ V l−1

δ+1 (D)` (here [L, φ] = Lφ − φL denotes the commutator of L and

φ) and, analogously, Bv = φg± + [B, φ]u − Bw ∈ V
l−1/2
δ+1 (Γ±)`. Using [9, Th.10.2], we obtain

v ∈ V l+1
δ+1 (D)` and, therefore, φu ∈ W l+1

δ+1(D)`. This proves the lemma for k = 1. Repeating this
argument, we obtain the assertion for k ≥ 2.
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2.4. Higher regularity of the solution to the Neumann problem

We improve the results of the previous subsection for the case µ1 > 1. Let us consider first the
Neumann problem in the plane angle K.

Lemma 2.4 Let the integer k > 0 be not an eigenvalue of the pencil A(λ). Then for arbitrary
homogeneous polynomials pk−2, q±k−1 of degrees k − 2 and k − 1, respectively (pk−2 = 0 if k = 1)
there exists a homogeneous polynomial pk of degree k such that

L(∂x′ , 0) pk = pk−2 in K, B(∂x′ , 0) pk = q±k−1 on γ±. (2.18)

Proof: Let pk−2 =
∑k−2

j=0 bj xj
1 xk−2−j

2 and q±k−1

∣∣
γ± = c± rk−1 with bj , c

± ∈ C` be given.
Inserting

pk =
k∑

j=0

aj xj
1 xk−j

2 (2.19)

into (2.18) and comparing the coefficients of xj
1x

k−2−j
2 and rk−1, respectively, we get a linear

system of k +1 equations with k +1 unknowns a0, a1, . . . , ak. Since k is not an eigenvalue of the
pencil A(λ), the corresponding homogeneous system has only the trivial solution (see Remark
2.1). Therefore, there exists a unique polynomial (2.19) satisfying (2.18).

Lemma 2.5 Let u ∈ W l−1
δ (K)` be a solution of the problem

L(∂x′ , 0)u = f in K, B(∂x′ , 0)u = g± on γ± (2.20)

with f ∈ W l−2
δ (K)`, g± ∈ W

l−3/2
δ (γ±)`, l ≥ 2, 0 < δ < l − 1, δ not integer. Suppose that

the strip l − 2 − δ ≤ Re λ ≤ l − 1 − δ does not contain eigenvalues of the pencil A(λ). Then
u ∈ W l

δ(K)` and

‖u‖W l
δ(K)` ≤ c

(
‖u‖W l−1

δ (K)` + ‖f‖W l
δ(K)` +

∑
±

‖g±‖
W

l−3/2
δ (γ±)`

)

with a constant c independent of u.

Proof: Let k = 〈l − 1 − δ〉 be the greatest integer less than l − 1 − δ. The vector function u
has continuous derivatives up to order k − 1 at the point x = 0 (see [7, Le.7.1.3]). We denote
by pk−1 the Taylor polynomial of degree k − 1 of u and by ζ a smooth cut-off function equal to
one near the origin and to zero outside the unit ball. Then v = u − ζpk−1 belongs to V l−1

δ (K)`

(see [7, Th.7.1.1]). Consequently,

L(∂x′ , 0) v = f − L(∂x′ , 0) (ζpk−1) ∈ W l−2
δ (K)` ∩ V l−3

δ (K)`,

B(∂x′ , 0) v
∣∣
γ± = g± − B(∂x′ , 0) (ζpk−1)

∣∣
γ± ∈ W

l−3/2
δ (K)` ∩ V

l−5/2
δ (K)`.

By [7, Th.7.1.1], there are the representations

L(∂x′ , 0) v = ζp◦k−2 + F in K, B(∂x′ , 0) v = ζq±k−1 + G± on γ±,

where p◦k−2, q±k−1 are homogeneous polynomials of degrees k − 2 and k − 1, respectively, F ∈
V l−2

δ (K)`, G± ∈ V
l−3/2
δ (γ±)`. By Lemma 2.4, there exists a homogeneous polynomial p◦k of de-

gree k such that L(∂x′ , 0)p◦k = p◦k−2 in K and B(∂x′ , 0)p◦k = q±k−1 on γ±. Then v−ζp◦k ∈ V l−1
δ (K)`,

L(∂x′ , 0) (v − ζp◦k) ∈ V l−2
δ (K)`, B(∂x′ , 0) (v − ζp◦k)

∣∣
γ± ∈ V

l−3/2
δ (γ±)`. Applying [11] (in the case

p = 2 see also [7, Th.6.1.4]), we obtain v − ζp◦k ∈ V l
δ (K)` and, therefore, u ∈ W l

δ(K)`. Further-
more, the desired estimate holds.

We prove an analogous result for the problem in the dihedron D.

9



Lemma 2.6 Let u be a solution of problem (2.11), and let φ, ψ be smooth functions on D
with compact supports such that φψ = φ. Suppose that ψu ∈ W l−1

δ (D)`, ψ∂x3u ∈ W l−1
δ (D)`,

ψf ∈ W l−2
δ (D)`, ψg± ∈ W

l−3/2
δ (Γ±)`, 0 < δ < l − 1, δ is not integer, and the strip l − 2 − δ ≤

Re λ ≤ l − 1 − δ does not contain eigenvalues of the pencil A(λ). Then φu ∈ W l
δ(D)` and

‖φu‖W l
δ(D)` ≤ c

( 1∑
j=0

‖ψ∂j
x3

u‖W l−1
δ (D)` + ‖ψf‖W l−2

δ (D)` +
∑
±

‖ψg±‖
W

l−3/2
δ (Γ±)`

)
. (2.21)

Here the constant c depends only on the C l norm of ζ.

Proof: From the equation L(∂x′ , ∂x3)u = f it follows that

L(∂x′ , 0) (φu) = F, where F = φf + φL1∂x3u + [L(∂x′ , 0), φ] u.

Here [L(∂x′ , 0), φ] = L(∂x′ , 0)φ − φL(∂x′ , 0) is the commutator of L(∂x′ , 0) and φ, and L1 is a
first order differential operator with constant coefficients, L1∂x3u =

(
L(∂x′ , 0) − L(∂x′ , ∂x3)

)
u.

An analogous representation holds for G± = B(∂x′ , 0) (φu)
∣∣
Γ± . For almost all x3 we have

φ(·, x3)u(·, x3) ∈ W k+1
δ (K)`. Furthermore, by the conditions of the lemma, F (·, x3) ∈ W l−2

δ (K)`

and G±(·, x3) ∈ W
l−3/2
δ (γ±)3. Consequently, by Lemma 2.5, we obtain φ(·, x3)u(·, x3) ∈ W l

δ(K)`

and ∫
R
‖φ(·, x3)u(·, x3)‖2

W l
δ(K)` dx3 ≤ c

∫
R

(
‖φ(·, x3)u(·, x3)‖2

W l−1
δ (K)` + ‖F (·, x3)‖2

W l−2
δ (K)`

+
∑
±

‖G±(·, x3‖2

W
l−3/2
δ (γ±)`

)
dx3.

Here the right-hand side of the last inequality can be estimated by the right-hand side of (2.21).
This together with the assumption that ψ∂x3u ∈ W l−1

δ (D)` implies the assertion of the lemma.

Theorem 2.2 Let u ∈ HD be a solution of problem (2.11), and let φ, ψ be smooth functions
on D with compact supports such that ψ = 1 in a neighborhood of suppφ. We suppose that
ψf ∈ W l−2

δ (D)`, ψg± ∈ W
l−3/2
δ (Γ±), l ≥ 2, δ is not integer, and max(l − 1− µ1, 0) < δ < l − 1.

Then φu ∈ W l
δ(D)`.

Proof: We prove the theorem by induction in 〈l−1−δ〉. Here 〈s〉 denotes the greatest integer
less than s.

1) If 〈l−1−δ〉 = 0, then max(1−µ1, 0) < δ−l+2 < 1, ψf ∈ W 0
δ−l+2(D)`, ψg± ∈ W

1/2
δ−l+2(Γ

±)`.
Consequently, according to Theorem 2.1, we have χu ∈ W 2

δ−l+2(D)`, where χ is a smooth
function equal to one near suppφ such that ψ = 1 near suppχ. Applying Lemma 2.3, we obtain
φu ∈ W l

δ(D)`.
2) Let 〈l − 1 − δ〉 = 1. Then max(2 − µ1, 0) < δ − l + 3 < 1 < 1 and, by means of Theorem

2.1, we obtain χ∂j
x3u ∈ W 2

δ−l+3(D)` for j = 0, 1. Consequently, it follows from Lemmas 2.6 and
2.3 that φu ∈ W l

δ(D)`.
3) Let k < l − δ − 1 < k + 1, where k is an integer, k ≥ 2. We assume that the theorem

is proved for l − δ − 1 < k. Then, by the induction hypothesis, χu ∈ W l−1
δ (D)`, l ≥ 4, and

χ∂x3u ∈ W l−2
δ (D)` ⊂ HD. Since ψ∂x3f ∈ W l−3

δ (D) and ψ∂x3g
± ∈ W

l−5/2
δ (Γ±)`, we obtain, by

the induction hypothesis, that χ∂x3u ∈ W l−1
δ (D)`. By the assumptions of the lemma, there are

no eigenvalues of the pencil A(λ) in the strip 0 < Re λ ≤ l − δ − 1. Thus, Lemma 2.6 implies
φu ∈ W l

δ(D)`. The proof is complete.
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Corollary 2.2 Let u ∈ HD be a solution of problem (2.11), where ψ∂j
x3f ∈ W l−2

δ (D)` and

ψ∂j
x3g

± ∈ W
l−3/2
δ (Γ±)` for j = 0, . . . , k, δ is not integer, max(l − 1 − µ1, 0) < δ < l − 1. Then

φ∂j
x3u ∈ W l

δ(D)` and

k∑
j=0

‖φ∂j
x3

u‖W l
δ(D)` ≤ c

( k∑
j=0

‖ψ∂j
x3

f‖W l−2
δ (D)` +

k∑
j=0

∑
±

‖ψ∂j
x3

g±‖
W

l−3/2
δ (Γ±)` + ‖ψu‖L1

δ(D)`

)
.

Proof: Let first l − 1 − δ < 1. Then max(1 − µ1, 0) < δ − l + 2 < 1, W l−2
δ (K) ⊂ W 0

δ−l+2(K)

and W
l−3/2
δ (Γ±) ⊂ W

1/2
δ−l+2(Γ

±). Consequently, by Theorem 2.1, we have χ∂j
x3u ∈ W 2

δ−l+2(K)`,
where χ is a smooth function such that χ = 1 in a neighborhood of suppφ and ψ = 1 in a
neighborhood of suppχ. Applying Lemma 2.3, we get φ∂j

x3u ∈ W l
δ(K)` for j = 0, . . . , k.

Now let l − 1 − δ > 1. Then l ≥ 3 and, by Theorem 2.2, we obtain χu ∈ W l
δ(K)`,

χ∂x3u ∈ W l−1
δ (K)` ⊂ HD. Since ψ∂x3f ∈ W l−2

δ (D)` and ψ∂x3g
± ∈ W

l−3/2
δ (Γ±)`, we conclude

again from Theorem 2.2 that φ∂x3u ∈ W l
δ(K)`. Repeating this argument, we get φ∂j

x3u ∈ W l
δ(K)`

for j=2,. . . ,k.

Example. We consider the Neumann problem

−∆u = f in D,
∂u

∂ν
= g± on Γ±. (2.22)

Here the eigenvalues of the corresponding operator pencil A(λ) are the numbers λj = jπ/θ,
j = 0,±1,±2, . . .. Consequently, the assertion of Theorem 2.2 with µ1 = π/θ holds.

2.5. The Neumann problem to the Lamé system

We consider a special case, where λ = 1 is an eigenvalue of the pencil A and the eigenfunctions
corresponding to this eigenvalue are restrictions of linear functions to the unit circle. A necessary
and sufficient condition for this case is given in the following lemma.

Lemma 2.7 Let ω 6= π, ω 6= 2π. Then the homogeneous boundary value problem

L(∂x′ , 0)u = 0 in K, B(∂x′ , 0)u = 0 on γ±

has a solution of the form u = c x1 + d x2, c, d ∈ C`, if and only if the 2` × 2` matrix

A′ =
( A1,1 A2,1

A1,2 A2,2

)

is not invertible.

Proof: The linear function u = c x1 + d x2 satisfies the homogeneous boundary conditions
B(∂x′ , 0)u = 0 on γ± if and only if

( n+
1 n+

2

n−
1 n−

2

) ( A1,1 A2,1

A1,2 A2,2

) ( c
d

)
= 0.

Here the first matrix is invertible for ω 6= π, ω 6= 2π. This proves the lemma.

Let r′ denote the rank of the matrix A′. From the proof of the last lemma it follows that
there are 2`− r′ linearly independent eigenvectors of the form c cos ϕ + d sinϕ corresponding to
the eigenvalue λ = 1. Furthermore, the inhomogeneous boundary conditions B(∂x′ , 0)u = g±

on γ± can be satisfied for a vector function u ∈ W 3
δ (K)` only if g+ and g− satisfy 2` − r′

compatibility conditions at x = 0.
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Such compatibility conditions must be also satisfied, in general, for the boundary data of the
Neumann problem in the dihedron D. If u ∈ W 3

δ (D)`, 0 < δ < 1, then the restriction of B(∂x)u
to the edge M belongs to the space W 1−δ

2 (M)` (see, e.g., [14], [21]), and we obtain

(A1,1n
±
1 + A1,2n

±
2 ) ∂x1u|M + (A2,1n

±
1 + A2,2n

±
2 ) ∂x2u|M + (A3,1n

±
1 + A3,2n

±
2 ) ∂x3u|M = g±|M .

The last system can be written in the form

( n+
1 n+

2

n−
1 n−

2

) ( A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

) 
 ∂x1u|M

∂x2u|M
∂x3u|M


 =

( g+|M
g−|M

)
.

From this it follows that 2`− r′′ compatibility conditions must be satisfied for g+ and g− on the
edge M , where r′′ is the rank of the matrix

A′′ =
( A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

)
.

This means, there exist 2` − r′′ constant vectors c(k) such that

c(k) · (g+|M , g−|M
)

= 0 for k = 1, . . . , 2` − r′′. (2.23)

We suppose that r′ = r′′. Then there are the same compatibility conditions for the Neumann
problem (2.11) in the dihedron and the corresponding Neumann problem (2.20) in the angle K.
This condition is satisfied, e.g., for the Neumann problem in isotropic and anisotropic elasticity.
Furthermore, we assume that the geometric and algebraic multiplicity of the eigenvalue λ = 1 is
equal to 2`−r′. This means that all eigenvectors corresponding to this eigenvalue have the form
c cos ϕ + d sinϕ and that there are no generalized eigenvectors corresponding to this eigenvalue.

Lemma 2.8 Suppose that there are no eigenvalues of the pencil A(λ) in the strip 0 < Re λ < 1
and the line Re λ = 1 contains the single eigenvalue λ = 1 having geometric and algebraic
multiplicity 2` − r′ = 2` − r′′. Denote by λ2 the eigenvalue with smallest real part greater
than 1 and by µ2 its real part. Furthermore, let φ, ψ be the same functions as in Theorem
2.1 and let u ∈ HD be a solution of problem (2.11), where ψf ∈ W 1

δ (D)`, ψg± ∈ W
3/2
δ (Γ±)`,

max(2 − µ2, 0) < δ < 1, and g+ and g− satisfy the compatibility condition (2.23). Then φu ∈
W 3

δ (D)` and

‖φu‖W 3
δ (D)` ≤ c

(
‖ψf‖W 1

δ (D)` +
∑
±

‖ψg‖
W

3/2
δ (Γ±)` + ‖ψu‖L1

δ(D)`

)
(2.24)

with a constant c independent of u.

Proof: Let χ be a smooth function on D such that χφ = φ and χψ = χ. From Theorem 2.1
it follows that χu ∈ W 2

δ (D)` and χ∂x3u ∈ W 2
δ (D)`. Consequently, for almost all x3 we have

L(∂x′ , 0)u(·, x3) = f(·, x3) −
(
L(∂x′ , ∂x3) − L(∂x′ , 0)

)
u(·, x3) = F (·, x3),

B(∂x′ , 0)u(·, x3) = g±(·, x3) −
2∑

j=1

A3,jn
±
j ∂x3u(·, x3) = G±(·, x3),

where χ(·, x3)F (·, x3) ∈ W 1
δ (K)`, χ(·, x3)G±(·, x3) ∈ W

3/2
δ (γ±)`. Since r′ = r′′ and g+, g−

satisfy the compatibility condition (2.23), there exist vectors c(x3), d(x3) ∈ C` such that

( n+
1 n+

2

n−
1 n−

2

) ( A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

) 
 c(x3)

d(x3)
(∂x3u)(0, x3)


 =

( g+(0, x3)
g−(0, x3)

)
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for all x3. From this it follows that p(x) = c(x3)x1 + d(x3)x2 satisfies

B(∂′
x, 0)w(·, x3) = G±(0, x3) on γ±

for all x3. Therefore, for v = u − p we obtain

L(∂x′ , 0) v(·, x3) = F (·, x3) in K, B(∂x′ , 0) v(·, x3) = G±(·, x3) − G±(0, x3) on γ±.

Here, according to [7, Th.7.1.1], χ(·, x3)
(
G±(·, x3)−G±(0, x3)

) ∈ V
3/2
δ (γ±). By the assumptions

of the theorem, λ = 1 is the only eigenvalues of the pencil A in the strip 0 < Re λ ≤ 2 − δ, all
eigenfunctions are restrictions of linear functions to the unit circle, and generalized eigenfunctions
corresponding to the eigenvalue λ = 1 do not exist. Thus, by [6, Th.1.2] (see also [7, Th.6.1.4]),
φv admits the representation

φ(x)v(x) = c(0)(x3) + c(1)(x3)x1 + c(2)(x3)x2 + w(x),

where w(·, x3) ∈ V 3
δ (K)` and

‖w(·, x3)‖2
V 3

δ (K)` ≤ c
(
‖φ(·, x3)F (·, x3)‖2

V 1
δ (K)` +

∑
±

‖φ(·, x3)G±(·, x3)‖2

V
3/2
δ (γ±)`

+‖χ(·, x3)u(·, x3)‖2
W 2

δ (K)`

)

≤ c
(
‖χ(·, x3) f(·, x3)‖2

V 1
δ (K)` +

∑
±

‖χ(·, x3) g±(·, x3)‖2

V
3/2
δ (γ±)`

+‖χ(·, x3)u(·, x3)‖2
W 2

δ (K)` + ‖χ(·, x3) ∂x3u(·, x3)‖2
W 2

δ (K)`

)

with a constant c independent of x3. Since ∂α
x′(φu) = ∂α

x′w+∂α
x′(φp) for |α| = 3, the last estimate

implies

‖φ(·, x3)u(·, x3)‖2
L3

δ(K)` ≤ c
(
‖χ(·, x3) f(·, x3)‖2

V 1
δ (K)` +

∑
±

‖χ(·, x3) g±(·, x3)‖2

V
3/2
δ (γ±)`

+‖χ(·, x3)u(·, x3)‖2
W 2

δ (K)` + ‖χ(·, x3) ∂x3u(·, x3)‖2
W 2

δ (K)`

)
.

Integrating this inequality with respect to x3 and using (2.14), we obtain (2.24). The lemma is
proved.

Now, analogously to Theorem 2.2, the following statement holds.

Theorem 2.3 Suppose that there are no eigenvalues of the pencil A(λ) in the strip 0 < Re λ < 1
and the line Re λ = 1 contains the single eigenvalue λ = 1 having geometric and algebraic
multiplicity 2` − r′ = 2` − r′′. Furthermore, we assume that u ∈ HD is a solution of problem
(2.11), where ψf ∈ W l−2

δ (D)`, ψg± ∈ W
l−3/2
δ (Γ±)`, l ≥ 2, max(l − 1 − µ2, 0) < δ < l − 1, and

g+, g− satisfy the compatibility condition (2.23). Then φu ∈ W l
δ(D)` and

‖φu‖W l
δ(D)` ≤ c

(
‖ψf‖W l−2

δ (D)` +
∑
±

‖ψg‖
L

l−3/2
δ (Γ±)` + ‖ψu‖L1

δ(D)`

)
(2.25)

with a constant c independent of u.

Proof: If 0 < l − δ − 1 < 1, then the results holds in the same way as in the first step of the
proof of Theorem 2.2.

Suppose that 1 < l− δ− 1 < 2. Then max(2−µ2, 0) < δ− l +3 < 1, and Lemma 2.8 implies
χu ∈ W 3

δ−l+3(D)`, where χ is a smooth function such that χ = 1 in a neighborhood of suppφ

and ψ = 1 in a neighborhood of suppχ. Applying Lemma 2.3, we obtain φu ∈ W l
δ(D)`.
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The proof for the case k < l−δ−1 < k+1, where k is an integer, k ≥ 2, proceeds analogously
to the third step in the proof of Theorem 2.2.

Moreover, the assertion of Corollary 2.2 with µ2 instead of µ1 is valid.

Example. We consider the Neumann problem for the Lamé system

∆u +
1

1 − 2ν
∇∇ · u = f in D, σ(u)n = g± on Γ±. (2.26)

Here σ(u) = {σi,j(u)} is the stress tensor connected with the strain tensor

{
εi,j(u)

}
=

{1
2

(∂xjui + ∂xiuj)
}

by the Hooke law

σi,j(u) = 2µ
( ν

1 − 2ν
(ε1,1 + ε2,2 + ε3,3) δi,j + εi,j

)

(µ is the shear modulus, ν is the Poisson ratio, ν < 1/2, and δi,j denotes the Kronecker symbol).
The corresponding problem (2.20) in the angle K is:

∆x′
( u1

u2

)
+

1
1 − 2ν

∇x′∇x′ ·
( u1

u2

)
=

( f1

f2

)
, ∆x′u3 = f3 in K,

σ(u1, u2)n =
( g1

g2

)
,

∂u3

∂n
= g3 on γ±.

If the opening θ of the angle K is greater than π, then the eigenvalue with smallest positive
real part of the pencil A(λ) is ξ+(θ)/θ, where ξ+(θ) is the smallest positive root of the equation
(1.8). This is shown, e.g., in [8, Sect.4.2]. Note that ξ+(θ) < π for π < θ < 2π. If θ < π, then
the eigenvalues with smallest positive real parts are λ1 = 1 and λ2 = π/θ. The eigenvalue λ1 is
simple, the corresponding eigenvector is (sinϕ,− cos ϕ).

Let n± be the exterior normal to Γ±. If u ∈ W 3
δ (D)3, δ < 1, then it follows from the

Neumann boundary conditions that

σ(u)n±∣∣
M

= g±
∣∣
M

and consequently, n− · σ n+
∣∣
M

= n− · g+
∣∣
M

and n+ · σ n−∣∣
M

= n+ · g−∣∣
M

. Here a · b denotes the
scalar product in R3. Since σ is symmetric, we have n− · σ n+ = n+ · σ n−. Consequently, g+

and g− must satisfy the compatibility condition

n− · g+ = n+ · g− on M.

Applying Theorem 2.3, we get the following result:

1) Let u ∈ HD be a solution of problem (2.26), where ψf ∈ W 0
δ (D)3, ψg± ∈ W

1/2
δ (Γ±)3,

0 < δ < 1 for θ < π, 1 − ξ+(θ)/θ < δ < 1 for θ > π. Then φu ∈ W 2
δ (D)3.

2) Let θ < π and let u ∈ HD be a solution of problem (2.26), where ψf ∈ W l−2
δ (D)3, l ≥ 3,

ψg± ∈ W
l−3/2
δ (Γ±)3, n− ·g+|M = n+ ·g−|M , max(l−1−π/θ, 0) < δ < l−1. Then φu ∈ W l

δ(D)3.

In particular, φu belongs to the Sobolev space W 2(D)3 if θ < π, f ∈ W 1
δ (D)3, g± ∈

W
3/2
δ (Γ±)3, δ < 1, n− · g+|M = n+ · g−|M .
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2.6. Estimates for Green’s matrix to the Neumann problem

From the unique solvability of the Neumann problem in HD and from classical results on fun-
damental solutions of elliptic boundary value problems in a half-space we obtain the following
assertions (for the Laplace equation see [22]).

Theorem 2.4 1) There exists a unique solution G(x, ξ) of the boundary value problem

L(∂x)G(x, ξ) = δ(x − ξ) I` for x, ξ ∈ D, (2.27)

B(∂x)G(x, ξ) = 0 for x ∈ ∂D\M, ξ ∈ D (2.28)

such the function x → ζ(|ξ′|−1|x′|)G(x, ξ) belongs to H`
D for arbitrary fixed ξ = (ξ′, ξ3) ∈ D.

Here I` is the ` × ` identity matrix and ζ is a smooth function on (0,∞) equal to zero in the
interval (3/4, 3/2) and to one outside the interval (1/2, 2).

2) The function G(x, ξ) is infinitely differentiable with respect to x, ξ ∈ D\M , x 6= ξ. For
|x − ξ| < min(|x′|, |ξ′|) there is the estimate

|∂α
x ∂β

ξ G(x, ξ)| ≤ c |x − ξ|−1−|α|−|β|,

where c is independent of x and ξ.
3) The function G(x, ξ) is also the unique solution of the problem

L(∂ξ)G(x, ξ) = δ(x − ξ) I` for x, ξ ∈ D,

B(∂ξ)G(x, ξ) = 0 for x ∈ D, ξ ∈ ∂D\M
such that the function ξ → ζ(|ξ′|−1|x′|)G(x, ξ) belongs to H`

D for arbitrary fixed x ∈ D.

We establish now an estimate for the derivatives of Green’s function G(x, ξ) in the case
|x − ξ| ≥ min(|x′|, |ξ′|). For this we need the following lemma analogous to Lemma 2.2 in [10].

Lemma 2.9 Let B be a ball with radius 1 and center x0 such that dist(x0, M) ≤ 4. Furthermore,
let φ, ψ be infinitely differentiable functions with supports in B such that ψ = 1 on suppφ. If
ψu ∈ HD, Lu = 0 in D ∩ B and Bu = 0 on (∂D\M) ∩ B, then

sup
x∈D

|x′|max(|α|−µ1+ε,0)
∣∣φ(x) ∂α

x′∂j
x3

u(x)
∣∣ ≤ c ‖ψu‖HD , (2.29)

where ε is an arbitrarily small positive number. The constant c in (2.29) is independent of u
and x0.

Proof: Let ε be such that µ1 − ε ∈ (k, k + 1). Then δ = k + 1−µ1 + ε ∈ (0, 1). Furthermore,
let χ be a function from C∞

0 (B) such that φχ = φ and χψ = χ. From Theorems 2.1 and 2.2 it
follows that ∂j

x3(χu) ∈ W k+2
δ (D)` for j = 0, 1, . . . and

‖χ∂j
x3

u‖W k+2
δ (D)` ≤ c ‖ψu‖HD .

Hence we have ∂α
x′∂

j
x3(χu) ∈ W 2

δ (D)` for |α| ≤ k. Since W 2
δ (K) is continuously imbedded into

C(K), we have

sup
x′∈K, x3∈R

∣∣∂α
x′∂j

x3
(χu)

∣∣ ≤ c sup
x3∈R

‖∂α
x′∂j

x3
(χu)(·, x3)‖W 2

δ (K)` .

Using the continuity of the imbedding W 1
2 (M) ⊂ C(M), we obtain

sup
x3∈R

‖∂α
x′∂j

x3
(χu)(·, x3)‖W 2

δ (K)` ≤ c
(
‖∂α

x′∂j
x3

(χu)‖W 2
δ (D)` + ‖∂α

x′∂j+1
x3

(χu)‖W 2
δ (D)`

)

≤ c ‖ψu‖HD .
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This proves (2.29) for |α| ≤ k. Now let |α| ≥ k + 1. By Theorems 2.1 and 2.2, we have

∂j
x3(χu) ∈ W

|α|+2
δ−k+|α|(D)` and, therefore, ∂α

x′∂
j
x3(χu) ∈ W 2

δ−k+|α|(D)` ⊂ V 2
δ−k+|α|(D)`. Using

Sobolev’s lemma, it can be easily shown that

sup
x′∈K

|x′|β−k+1 |v(x′)| ≤ c ‖v‖V k
β (K) for arbitrary v ∈ V k

β (K), k ≥ 2 (2.30)

with a constant c independent of v and x′. Applying this inequality to ∂α
x′∂

j
x3(χu), we obtain

sup
x′∈K, x3∈R

|x′|δ−k+|α|−1
∣∣∂α

x′∂j
x3

(χu)
∣∣ ≤ c sup

x3∈R
‖∂α

x′∂j
x3

(χu)(·, x3)‖W 2
δ−k+|α|(K)` .

Using again the continuity of the imbedding W 1
2 (M) ⊂ C(M), we arrive at (2.29).

Theorem 2.5 For |x − ξ| ≥ min(|x′|, |ξ′|) there is the estimate∣∣∂α
x′∂j

x3
∂β

ξ′∂
k
ξ3G(x, ξ)

∣∣
≤ c |x − ξ|−1−|α|−|β|−j−k

( |x′|
|x − ξ|

)min(0,µ1−|α|−ε) ( |ξ′|
|x − ξ|

)min(0,µ1−|β|−ε)
, (2.31)

where ε is an arbitrarily small positive number.

Proof: Since G(Tx, Tξ) = T−1 G(x, ξ), we may assume, without loss of generality, that
|x − ξ| = 2. Then max(|x′|, |ξ′|) ≤ 4. Let Bx and Bξ be balls with centers x and ξ, respectively,
and radius 1. Furthermore, let η and ψ be infinitely differentiable functions with supports in Bx

and Bξ, respectively.
Applying Lemma 2.9 to the function ∂α

x′∂
j
x3G(x, ·), we obtain

|ξ′|max(|β|−µ1+ε,0)
∣∣∂α

x′∂j
x3

∂β
ξ′∂

k
ξ3G(x, ξ)

∣∣ ≤ c ‖ψ(·)∂α
x′∂j

x3
G(x, ·)‖HD . (2.32)

We consider the solution
u(x) =

(
ψ(·)F (·) , G(x, ·))D

of problem (2.4), where F ∈ H∗
D. Since ψF vanishes in the ball Bx, we conclude from Lemma

2.9 that
|x′|max(|α|−µ1+ε,0) |∂α

x′∂j
x3

u(x)| ≤ c ‖ηu‖HD .

Consequently, the mapping

H∗
D 3 F → |x′|max(|α|−µ1+ε,0) ∂α

x′ ∂j
x3

u(x) = |x′|max |α|−µ1+ε,0)
(
F (·) , ψ(·)∂α

x′ ∂
j
x3G(x, ·))D ∈ C

represents a linear and continuous functional on H∗
D for arbitrary x ∈ D. The norm of this

functional is independent of x. This implies

|x′|max(|α|−µ1+ε,0) ‖ψ(·) ∂α
x′ ∂j

x3
G(x, ·)‖HD ≤ c

what together with (2.32) yields the desired estimate.

Using Theorem 2.3 instead of Theorem 2.2 in the proof of Lemma 2.9, we obtain the following
result.

Theorem 2.6 Suppose that there are no eigenvalues of the pencil A(λ) in the strip 0 < Re λ < 1
and the line Re λ = 1 contains the single eigenvalue λ = 1 having geometric and algebraic
multiplicity 2` − r′ = 2` − r′′ (r′ and r′′ were defined in Section 2.5). Then G(x, ξ) satisfies
(2.31) with µ2 instead of µ1 = 1.

Examples. 1) Green’s matrix of the Neumann problem (2.22) for the Laplace equation
satisfies (2.31) with µ1 = π/θ.

2) For θ > π Green matrix of the Neumann problem (2.26) for the Lamé system satisfies
(2.31) with µ1 = ξ+(θ)/θ. In the case θ < π, the number µ1 has to be replaced by π/θ.
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2.7. Estimates for Green’s matrices to the Dirichlet and mixed problems

We consider problem (2.1) for the case when the Dirichlet condition is given on at least one
of the sides Γ+, Γ−, i.e., not both numbers d+, d− equal zero. Then HD ⊂ V 1

0 (D)`. From
Lax-Milgram’s lemma and Lemma 2.1 it follows that the problem

bD(u, v) = (F, v)D for all v ∈ HD, u = g± on Γ± for d± = 1 (2.33)

has a unique solution u ∈ V 1
0 (D)` for arbitrary F ∈ H∗

D, g± ∈ V
1/2
0 (Γ±)`.

For the following theorem we refer to [9, Th.4.1,7.2] and [18, Ch.11,Prop.1.4].

Theorem 2.7 Let u ∈ V 1
0 (D)` be a solution of problem (2.33), where the functional F has the

form
(F, v)D = (f, v)D +

∑
±

(1 − d±)
(
g±, v

)
Γ±

with ψ∂j
x3f ∈ V l−2

δ (D)` and ψ∂j
x3g

± ∈ V
l+d±−3/2
δ (Γ±)` for j = 0, 1, . . . , k, l− 1−µ1 < δ < l− 1.

Here φ and ψ are the same cut-off functions as in Theorem 2.2. Then φ∂j
x3u ∈ V l

δ (D)` and

k∑
j=0

‖φ∂j
x3

u‖V l
δ (D)` ≤ c

( k∑
j=0

‖ψ∂j
x3

f‖V l−2
δ (D)` +

k∑
j=0

∑
±

‖ψ∂j
x3

g±‖
V

l+δ±−3/2
δ (Γ±)`

+ ‖ψu‖V 1
0 (D)`

)
.

Analogously to Theorem 2.4, there exists a unique solution G(x, ξ) of the problem

L(∂x)G(x, ξ) = δ(x − ξ) I` for x, ξ ∈ D,

d±G(x, ξ) + (1 − d±)B(∂x)G(x, ξ) = 0 for x ∈ Γ±, ξ ∈ D

such that the function x → ζ
(|ξ′|−1|x′|)G(x, ξ) belongs to H`

D for arbitrary ξ ∈ D and for an
arbitrary smooth function ζ on (0,∞) equal to zero in the interval (3/4, 3/2) and to one outside
the interval (1/2, 2). We call the matrix-valued function G(x, ξ) Green’s matrix of problem
(2.11). Using Theorem 2.7, one can prove the following estimates.

Theorem 2.8 The matrix G(x, ξ) satisfies the estimates

|∂α
x ∂β

ξ G(x, ξ)| ≤ c |x − ξ|−1−|α|−|β|

for |x − ξ| < min(|x′|, |ξ′|) and

∣∣∂α
x′∂j

x3
∂β

ξ′∂
k
ξ3G(x, ξ)

∣∣ ≤ c |x − ξ|−1−|α|−|β|−j−k
( |x′|
|x − ξ|

)µ1−|α|−ε ( |ξ′|
|x − ξ|

)µ1−|β|−ε

for |x − ξ| > min(|x′|, |ξ′|), where ε is an arbitrarily small positive number.

3. The parameter-dependent problem on a domain of the sphere

In this section we study the parameter-dependent boundary value problem (1.9). We prove that
this problem is uniquely solvable in a certain class of weighted Sobolev spaces for all λ, except
finitely many, in a double angle of the complex plane containing the imaginary axis. This result
is essentially known. For a smooth domain Ω on the sphere (and Sobolev spaces without weight)
it was proved by Agranovich, M. S. and Vishik, M. I. [1].
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3.1. The parameter dependent Neumann problem in an angle

Let again D be the dihedron K × R, where K is the angle {x′ = (x1, x2) : ϕ ∈ (0, θ)}, and let
bD be the sesquilinear form (2.2). We denote by ũ and ṽ the Fourier transforms with respect to
x3 of the vector-functions u and v. Then, by Parseval’s equality, we have

bD(u, v) =
∫

R
bK

(
ũ(·, η), ṽ(·, η); η

)
dη,

where

bK(u, v; η) =
∫

K

( 2∑
i,j=1

Ai,j∂xiu · ∂xjv + iη
2∑

i=1

(
A3,iu · ∂xiv − Ai,3∂xiu · v)

+ η2A3,3u · v
)

dx′.

We consider the variational problem

bK(u, v; η) = (F, v)K for all v ∈ W 1
2 (K)`, (3.1)

which corresponds to the parameter-depending Neumann problem

L(∂x′ , iη)u = −
2∑

i,j=1

Ai,j∂xi∂xju − iη
2∑

i=1

(
Ai,3 + A3,i

)
∂xiu + η2A3,3u = f in K, (3.2)

B(∂x′ , iη)u =
2∑

i,j=1

Ai,j∂xiu nj + iη
2∑

j=1

A3,ju nj = g± on γ±, (3.3)

where γ± are the sides of K.

Theorem 3.1 The boundary value problem (3.2), (3.3) is uniquely solvable in W 2
δ (K)` for ar-

bitrary f ∈ W 0
δ (K)`, g± ∈ W

1/2
δ (γ±)`, max(1 − µ1, 0) < δ < 1, η ∈ R, η 6= 0. The solution

satisfies the inequality

2∑
j=0

|η|2−j‖u‖
Lj

δ(K)` ≤ c
(
‖f‖L0

δ(K)` +
∑
±

‖g±‖
L

1/2
δ (γ±)` + |η|1/2

∑
±

‖rδg±‖L2(γ±)`

)
(3.4)

with a constant c independent of f , g± and η.

Proof: Let the functional F be given by

(F, v)K =
∫

K
f · v dx′ +

∑
±

∫
γ±

g± · v dr, v ∈ W 1
0 (K)`,

where f ∈ L0
δ(K), g± ∈ W

1/2
δ (γ±), 0 < δ < 1. It can be easily seen that this functional belongs

to W 1
0 (K)∗. We set u(x) = N−1/2eiηx3 φ(x3/N) v(x′), where v ∈ W 1

2 (K)`, and φ ∈ C∞
0 (R) is a

real-valued function such that
∫ +∞
−∞ φ(t) dt = 1. Then

∫
D

3∑
j=1

|∂xju|2 dx ≥
∫

K

(
|∇x′v|2 +

|η|2
2

|v|2
)

dx′ − c N−2

∫
K
|v|2 dx′,

where c is independent of v and N . Analogously,

bD(u, u) ≤ bK(v, v; η) + c N−2

∫
K
|v|2 dx′.
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Consequently, (2.3) yields

bK(v, v; η) ≥ c

∫
K

(|∇x′v|2 + η2 |v|2) dx′.

Thus, by Lax-Milgram’s lemma, for all real η 6= 0 there exists a unique solution u ∈ W 1
0 (K)` of

problem (3.1) which is also a solution of problem (3.2), (3.3).
We show that u ∈ L2

δ(K)`. Let χ be an arbitrary smooth cut-off function with compact
support equal to one near the vertex of K. Then χu ∈ V 1

ε (K)` with an arbitrary positive ε and,
therefore, also χu ∈ V 2

1+ε(K)` (see, e.g. [7, Le.6.3.1]). Furthermore, L(∂x′ , iη)(χu) ∈ V 0
δ (K)`,

B(∂x′ , iη)(χu) ∈ V
1/2
δ (γ±)`. Hence, according to [7, Th.6.4.1] and [8, Th.12.3.3], the vector-

function χu has the asymptotics

χu = c + d log r + w, where c, d ∈ C`, w ∈ V 2
δ (K)`.

Since u ∈ W 1
2 (K)`, the vector d is equal to zero. This implies χu ∈ L2

δ(K)`. We consider the
vector-function (1 − χ)u. Obviously, (1 − χ)u ∈ W 0

δ−2(K)`, L(∂x′ , iη)
(
(1 − χ)u

) ∈ W 0
δ (K)`,

while B(∂x′ , iη)
(
(1 − χ)u

) ∈ V
1/2
δ (γ±)` ∩ W

1/2
δ (γ±)`. Consequently, by [9, Th.4.1’], we obtain

(1 − χ)u ∈ V 2
δ (K)` ∩ W 2

δ (K)`. Thus, we have shown that u ∈ L2
δ(K).

Estimate (3.4) holds by applying the inequality of Corollary 2.1 to the vector function
v(x) = N−1/2eiηx3φ(N−1x3)u(x′), where φ ∈ C∞

0 (R) and N is a large number.

An analogous result holds for the parameter-dependent Dirichlet and mixed problems in the
angle K. Here the spaces Lj

δ can be replaced by V j
δ .

3.2. Solvability of problem (1.9)

Let HΩ = {u ∈ W 1(Ω)` : u = 0 on γj for j ∈ J0}. We introduce the parameter-dependent
sesquilinear form

a(u, v; λ) =
1

log 2

∫
K

1<|x|<2

3∑
i,j=1

Ai,j∂xiU · ∂xjV dx,

where U(x) = ρλ(ω), V (x) = ρ−1−λv(ω), and define the operator A(λ) : HΩ → H∗
Ω by

(
A(λ)u, v

)
Ω

= a(u, v; λ), u, v ∈ HΩ .

The pencil A has following properties (see [8, Ch.10,12]).

(i) The spectrum of the pencil A consists of isolated points, the eigenvalues of this pencil. All
eigenvalues have finite algebraic multiplicity.

(ii) If λ is an eigenvalue of the pencil A, then −1 − λ is also an eigenvalue with the same
geometric and algebraic multiplicity.

(iii) The vector function u = rλ0

s∑
k=0

1
k!

(log r)k us−k(ω) satisfies the equality bK(u, v) = 0 for

all v ∈ H equal to zero in a neighborhood of the origin and infinity if and only if λ0 is
an eigenvalue of the pencil A and u(0), . . . , u(s) is a Jordan chain corresponding to this
eigenvalue.

We denote by J̃ the set all j ∈ {1, 2, . . . , n} such that the Dirichlet condition in problem
(1.1)–(1.3) is given on at least one side adjacent to the edge Mj , i.e. Mj ⊂ Γk for at least one
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k ∈ J0. Let ~δ = (δ1, . . . , δn) ∈ Rn, δj > −1 for j 6∈ J̃ . Then we define the norm in the weighted
Sobolev space W l

~δ
(Ω; J̃) by

‖u‖Wl
~δ
(Ω;J̃) =

( ∫
K

1<|x|<2

∑
|α|≤l

∏
j∈J̃

r
2(δj−l+|α|)
j

n∏
j 6∈J̃

r
2δj

j |∂α
x u(x)|2 dx

)1/2
,

where u is extended by the equality u(x) = u(x/|x|) to the cone K and rj(x) = dist (x, Mj).
Furthermore, we set V l

~δ
(Ω) = W l

~δ
(Ω; {1, . . . , n}) and W l

~δ
(Ω) = W l

~δ
(Ω; ∅). From Hardy’s inequal-

ity it follows that W l
~δ
(Ω; J̃) = V l

~δ
(Ω) if δj > l− 1 for j 6∈ J̃ . Furthermore, HΩ ⊂ W1

~0
(Ω; J̃)`. The

trace spaces for V l
~δ
(Ω), W l

~δ
(Ω) and W l

~δ
(Ω; J̃), l ≥ 1, on the arc γj are denoted by V

l−1/2
~δ

(γj),

W
l−1/2
~δ

(γj) and W l−1/2
~δ

(γj ; J̃), respectively. In particular, W l−1/2
~δ

(γj ; J̃) = V
l−1/2
~δ

(γj) for j ∈ J0.

Let Dj be the dihedron which coincides with K near the point Mj ∩S2. The boundary value
problem for the system (1.1) in Dj is connected with a pencil Aj(λ) on an interval (0, θj), where
θj is the interior angle at the edge Mj (see the definition of the pencil A(λ) in Section 2). We

denote by λ
(j)
1 the eigenvalue with smallest positive real part and set µj = Re λ

(j)
1 . Furthermore,

let the operator A~δ
(λ) be defined as

W2
~δ
(Ω; J̃)` 3 u → (L(λ)u , {u|γj}j∈J0 , {B(λ)u|γj}j∈J1

)
∈ W 0

~δ
(Ω)` ×

∏
j∈J0

W3/2
~δ

(γj ; J̃)` ×
∏
j∈J1

W1/2
~δ

(γj ; J̃)`,

where L and B are given by (1.10).

Theorem 3.2 Let 1 − µj < δj < 1 for j ∈ J̃ and max(1 − µj , 0) < δj < 1 for j 6∈ J̃ .
1) Then the spectra of the pencils A and A~δ

coincide.
2) There exist positive real constants N and ε such that for all λ in the set

{
λ ∈ C : |λ| > N, |Re λ| < ε |Imλ|} (3.5)

the operator A~δ
(λ) is an isomorphism. Furthermore, every solution u ∈ W 2

~δ
(Ω)` of the problem

(1.9) with λ in the set (3.5) satisfies the inequality

2∑
j=0

|λ|2−j ‖u‖Wj
~δ
(Ω;J̃)` ≤ c

(
‖f‖V 0

~δ
(Ω)` +

∑
j∈J0

(‖g‖
V

3/2
~δ

(γj)` + |λ|3/2 ‖g‖V 0
~δ

(γj)`

)

+
∑
j∈J1

(‖g‖
V

1/2
~δ

(γj)` + |λ|1/2 ‖g‖V 0
~δ

(γj)`

))
, (3.6)

where c is independent of u and λ.

Proof: 1) We consider the differential operators L(λ) and B(λ) in a neighborhood of M1∩S2.
Without loss of generality, we may assume that M1 coincides with the x3-axis and D1 is the
dihedron K × R. By ω1 = x1/ρ, ω2 = x2/ρ we denote local coordinates on the unit sphere near
the north pole N = M1 ∩ S2. Since

∂x1 = ω1∂ρ +
1 − ω2

1

ρ
∂ω1 −

ω1ω2

ρ
∂ω2 , ∂x2 = ω2∂ρ − ω1ω2

ρ
∂ω1 +

1 − ω2
2

ρ
∂ω2 ,

∂x3 = (1 − ω2
1 − ω2

2)
1/2

(
∂ρ − ω1

ρ
∂ω1 −

ω2

ρ
∂ω2

)
,
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the operator L(λ) has the form

L(λ) = −
2∑

i,j=1

Ai,j∂ωi∂ωj − (λ − 1)
2∑

i=1

(
Ai,3 + A3,i

)
∂ωi − λ (A1,1 + A2,2) − λ(λ − 1)A3,3

+λ2P0(ω) + λP1(ω, ∂ω) + P2(ω, ∂ω),

where Pj are differential operators of order j with coefficients vanishing at the point (ω1, ω2) = 0.
Analogously,

B(λ) =
2∑

i,j=1

Ai,j nj ∂ωi + λ
2∑

j=1

A3,jnj + λQ0(ω) + Q1(ω, ∂ω)

near N , where Qj are differential operators of order j with coefficients vanishing at (ω1, ω2) = 0.
Furthermore Ω coincides with the wedge K in the coordinate system ω1, ω2 near M1∩S2. Hence
we conclude, analogously to the proof of Theorem 3.1, that every weak solution u ∈ W 1

2 (Ω)` of

problem (1.9) with support near N belongs to the space W2
~δ
(Ω; J̃)` if f ∈ V 0

~δ
(Ω)`, gj ∈ V

3/2
~δ

(γj)`

for j ∈ J0 and gj ∈ V
1/2
~δ

(γj)` for j ∈ J1. By means of a partition of unity on Ω, we obtain this
result for arbitrary weak solutions. This implies, in particular, that every eigenfunction of the
pencil A is an eigenfunction of A~δ

corresponding to the same eigenvalue. The same is true for
generalized eigenfunctions.

2) We prove the second assertion first for purely imaginary λ = iη. Let ζ0, ζ1, . . . , ζn be
a partition of unity on Ω such that ζj = 1 near Mj ∩ S2 and supp ζj is sufficiently small
for j = 1, . . . , n. We consider the vector-function ζ1u and assume, as above, that the edge
M1 coincides with the x3-axis. The difference of the operator L(λ) (in the coordinates ω1, ω2

introduced above) and the operator (3.2) is small for large |λ| and small ω2
1 + ω2

2. This means,
there is the inequality

∥∥(L(λ) − L(∂ω1 , ∂ω2 , λ)
)
(ζ1u)‖L0

δ1
(K)` ≤ ε

2∑
j=0

|λ|2−j‖ζ1u‖Lj
δ1

(K)` ,

where ε is small if supp ζ1 is small and |λ| is large. The same is true for the difference of the
operators B(λ) and (3.3). Hence in the case of the Neumann problem it follows from Theorem
3.1 that

2−j∑
j=0

|λ|2−j‖ζ1u‖Lj
~δ
(Ω)` ≤ c

(
‖L(λ)u‖W 0

~δ
(Ω)` +

n∑
j=1

(‖B(λ)u‖
W

1/2
~δ

(γj)` + |λ|1/2 ‖B(λ)u‖W 0
~δ
(γj)`

))

for sufficiently large |λ|. The same inequality is true for the vector-functions ζju, j = 1, . . . , n.
The validity of this inequality for ζ0u follows from a result of Agranovich and Vishik [1] (see also
[7, Th.3.6.1]). An analogous estimate holds for the Dirichlet and mixed problems. This implies
(3.6) for purely imaginary λ, |λ| > N . For λ in the set (3.5) this estimate can be proved in the
same way as in [1, 7].

4. The boundary value problem in a polyhedral cone

In the last section we consider problem (1.1)–(1.3) in the cone K. We prove the existence of
strong and weak solutions, obtain regularity assertions for the solutions and point estimates
for Green’s matrices. As in Section 2 we concentrate on the case of the Neumann problem.
Analogous assertions for the Dirichlet and mixed problem are formulated at the end of the
section and can by obtained by obvious modifications in the proofs. For the Dirichlet problem
we refer also to the papers by Maz′ya and Plamenevskĭı [13] (Lamé and Stokes systems), Maz′ya
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and Roßmann [15] (scalar 2m order elliptic equations) which include solvability theorems in
weighted Sobolev and Hölder spaces and estimates for Green’s functions. The solvability of the
Neumann problem for diagonalizable second order equations in Sobolev spaces without weight
was studied by Dauge [3, 4].

4.1. Weighted Sobolev space in K
For an arbitrary point x ∈ K let ρ(x) = |x| be the distance to the vertex of the cone and rj(x)
the distance to the edge Mj . Furthermore, we denote by r(x) the regularized distance to S, i.e.,
an infinitely differentiable function in K which coincides with dist(x,S) in a neighborhood of S.

Let l be a nonnegative integer, J̃ the same subset of {1, 2, . . . , n} as in Section 3, β ∈ R,
~δ = (δ1, . . . , δn) ∈ Rn, δj > −1 for j 6∈ J̃ . By W l

β,~δ
(K; J̃) we denote the weighted Sobolev space

with the norm

‖u‖Wl
β,~δ

(K;J̃) =
( ∫

K

∑
|α|≤l

ρ2(β−l+|α|) ∏
j∈J̃

(rj

ρ

)2(δj−l+|α|) ∏
j 6∈J̃

(rj

ρ

)2δj |∂α
x u|2 dx

)1/2
.

Furthermore, we define V l
β,~δ

(K) = W l
β,~δ

(K; {1, . . . , n}) and W l
β,~δ

(K) = W l
β,~δ

(K; ∅). Passing to

spherical coordinates ρ, ω, one obtains the following equivalent norm in W l
β,~δ

(K; J̃):

‖u‖ =
( ∫ ∞

0
ρ2(β−l+1)

l∑
k=0

‖(ρ∂ρ)
ku(ρ, ·)‖2

Wl−k
~δ

(Ω;J̃)
dρ

)1/2
.

Lemma 4.1 Let ~δ = (δ1, . . . , δn), ~δ′ = (δ′1, . . . , δ′n) be such that δ′j − δj ≤ 1 for j = 1, . . . , n and

δj > −1, δ′j > −1 for j 6∈ J̃ . Then W l+1

β+1,~δ′
(K; J̃) is continuously imbedded into W l

β,~δ
(K; J̃).

Proof: It suffices to note that, by Hardy’s inequality, the space W l+1−k
~δ′

(Ω; J̃) is continuously

imbedded into W l−k
~δ

(Ω; J̃), k = 0, . . . , l.

Obviously, V l
β,~δ

(K) ⊂ W l
β,~δ

(K; J̃). If δj > l − 1 for all j 6∈ J̃ , then, according to Lemma 4.1,

V l
β,~δ

(K) = W l
β,~δ

(K; J̃).

We denote the trace spaces for V l
β,~δ

(K), W l
β,~δ

(K) and W l
β,~δ

(K; J̃), l ≥ 1, on Γj by V
l−1/2

β,~δ
(Γj),

W
l−1/2

β,~δ
(Γj) and W l−1/2

β,~δ
(Γj ; J̃), respectively. Using Lemma 2.1, we obtain the following assertion.

Lemma 4.2 Let gj ∈ V
l−1/2

β,~δ
(Γj)` for j ∈ J0 and gj ∈ V

l−3/2

β,~δ
(Γj)` for j ∈ J1. Here l ≥ 2 if

J1 6= ∅ and l ≥ 1 else. Then there exists a vector function u ∈ V l
β,~δ

(K)` such that u = gj on Γj

for j ∈ J0, Bu = gj on Γj for j ∈ J1, and

‖u‖V l
β,~δ

(K)` ≤ c
( ∑

j∈J0

‖gj‖V
l−1/2

β,~δ
(Γj)` +

∑
j∈J1

‖gj‖V
l−3/2

β,~δ
(Γj)`

)
(4.1)

with a constant c independent of gj, j = 1, . . . , n.

Proof: Let ζk be smooth functions depending only on ρ = |x| such that

supp ζk ⊂ (2k−1, 2k+1),
+∞∑

k=−∞
ζk = 1, |(ρ∂ρ)

jζk(ρ)| ≤ cj (4.2)

22



with constants cj independent of k and ρ. We set hk,j(x) = ζk(2kx) g(2kx) for j ∈ J0, hk,j(x) =
2k ζk(2kx) g(2kx) for j ∈ J1. These functions vanish for |x| < 1

2 and |x| > 2. Consequently, by
Lemma 2.1, there exist vector functions vk ∈ V l

β,~δ
(K)` such that vk = hk,j on Γj for j ∈ J0,

Bvk = hk,j on Γj for j ∈ J1,

‖vk‖V l
β,~δ

(K)` ≤ c
( ∑

j∈J0

‖hk,j‖V
l−1/2

β,~δ
(Γj)` +

∑
j∈J1

‖hk,j‖V
l−3/2

β,~δ
(Γj)`

)
, (4.3)

and vk(x) = 0 for |x| < 1
4 and |x| > 4. Hence for the functions uk(x) = vk(2−kx) we obtain

uk = ζkgj on Γj for j ∈ J0, Buk = ζkgj on Γj for j ∈ J1, uk(x) = 0 for |x| < 2k−2 and |x| > 2k+2.
Furthermore, uk satisfies (4.3) with ζkgj instead of hk,j and a constant c independent of k and
gj . Consequently, for u =

∑
uk we have u = gj on Γj for j ∈ J0 and Bu = gj on Γj for j ∈ J1.

Inequality (4.1) follows from the equivalence of the norms in V l
β,~δ

(K) and V
l−1/2

β,~δ
(Γj) with the

norms

‖u‖ =
( +∞∑

k=−∞
‖ζku‖2

V l
β,~δ

(K)

)1/2
and ‖gj‖ =

( +∞∑
k=−∞

‖ζkgj‖2

V
l−1/2

β,~δ
(Γj)

)1/2
, (4.4)

respectively (cf. [7, Sect.6.1]).

4.2. Solvability of the boundary value problem

The following results can be proved in a standard way (cf. [6], [7, Th.6.1.1,6.1.4]) by means of
Theorem 3.2.

Theorem 4.1 Suppose that there are no eigenvalues of the pencil A on the line Re λ = −β+1/2
and that the components of ~δ satisfy the inequalities 1−µj < δj < 1 for j ∈ J̃ and max(1−µj , 0) <
δj < 1 for j 6∈ J̃ . Then the boundary value problem (1.1)–(1.3) is uniquely solvable in W2

β,~δ
(K; J̃)`

for arbitrary f ∈ V 0
β,~δ

(K)`, gj ∈ V
3/2

β,~δ
(Γj)`, j ∈ J0, gk ∈ V

1/2

β,~δ
(Γk), k ∈ J1.

Theorem 4.2 Let u ∈ W2
β,~δ

(K; J̃)` be a solution of the boundary value problem (1.1)–(1.3),

where f ∈ V 0
β′,~δ′

(K)`, gj ∈ V
3/2

β′,~δ′
(Γj)` for j ∈ J0, gk ∈ V

1/2

β′,~δ′
(Γk)` for k ∈ J1. Suppose that the

components of ~δ and ~δ′ satisfy the inequalities 1−µj < δ′j ≤ δj < 1 for j ∈ J̃ and max(1−µj , 0) <

δ′j ≤ δj < 1 for j 6∈ J̃ . If there are no eigenvalues of the pencil A on the lines Re λ = −β + 1/2
and Re λ = −β′ + 1/2, then

u =
N∑

ν=1

Iν∑
j=1

κν,j−1∑
s=0

cν,j,s ρλν

s∑
σ=0

1
σ!

(log ρ)σ u(ν,j,s−σ)(ω) + w, (4.5)

where w ∈ W2
β′,~δ′

(K; J̃)` is a solution of problem (1.1)–(1.3), λν are the eigenvalues of the pencil

A between the lines Re λ = −β + 1/2 and Re λ = −β′ + 1/2 and u(ν,j,s) are eigenvectors and
generalized eigenvectors corresponding to the eigenvalue λν .

Proof: In the case ~δ = ~δ′ the theorem can be proved in the same way as for smooth Ω (cf.
[6, Th.1.2], [7, Th.6.1.4]), since the spectra of the pencils A and A~δ

coincide.

Let ~δ 6= ~δ′. Since V 0
β′,~δ′

(K) ⊂ V 0
β′,~δ

(K) and V
l−1/2

β′,~δ′
(Γj) ⊂ V

l−1/2

β′,~δ
(Γj) for δ′j ≤ δj , we obtain

(4.5) with w ∈ W 2
β′,~δ

(K)`. We have to show that w ∈ W2
β′,~δ′

(K; J̃)`. Let ζk be as in the proof of

Lemma 4.2 and ηk = ζk−1 + ζk + ζk+1. Furthermore, we set ζ̃k(x) = ζk(2kx), η̃k(x) = ηk(2kx),
and v(x) = w(2kx). The support of ζ̃k is contained in {x : 1/2 < |x| < 2}. Therefore,
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due to Theorem 2.1 and the analogous result for the Dirichlet and mixed problems, we have
ζ̃kv ∈ W2

β′,~δ′
(K; J̃)` and

‖ζ̃kv‖2
W2

β′,~δ′(K;J̃)` ≤ c
(
‖η̃kLv‖2

V 0
β′,~δ′ (K)` +

∑
j∈J0

‖η̃kv‖2

V
3/2

β′,~δ′ (Γj)`

+
∑
j∈J1

‖η̃kBv‖2

V
1/2

β′,~δ′ (Γj)`
+ ‖η̃kv‖2

W2
β′,~δ(K;J̃)`

)

with a constant c independent of k. Multiplying this inequality by 22k(β′−2)+3 and substituting
2kx = y, we obtain the same estimate with ζ̃k, η̃k instead of ζk, ηk for w. Now the assertion
follows from the equivalence of the norm in W l

β,~δ
(K; J̃) with the norm

‖u‖ =
( +∞∑

k=−∞
‖ζku‖2

Wl
β,~δ

(K,J̃)

)1/2

and the analogous result for the trace spaces.

The following statement is an analogon to Theorem 2.1.

Lemma 4.3 Let u ∈ W2
β,~δ

(K; J̃)` be a solution of problem (1.1)–(1.3) with (ρ∂ρ)νf ∈ V 0
β,~δ

(K)`

for ν = 0, 1, . . . , k, (ρ∂ρ)νgj ∈ V
3/2

β,~δ
(Γj)` for j ∈ J0 and ν = 0, . . . , k, (ρ∂ρ)νgj ∈ V

1/2

β,~δ
(Γj)` for

j ∈ J1 and ν = 0, 1, . . . , k. Suppose that the components of ~δ satisfy the inequalities 1 − µj <
δj < 1 for j ∈ J̃ , max(1− µj , 0) < δj < 1 for j 6∈ J̃ and that the line Re λ = −β + 1/2 is free of
eigenvalues of the pencil A. Then (ρ∂ρ)νu ∈ W2

β,~δ
(K; J̃)` for ν = 1, . . . , k and

k∑
ν=0

‖(ρ∂ρ)
νu‖W2

β,~δ
(K;J̃)` ≤ c

k∑
ν=0

(
‖(ρ∂ρ)

νf‖V 0
β,~δ

(K)` +
∑
j∈J0

‖(ρ∂ρ)
νgj‖V

3/2

β,~δ
(Γj)`

+
∑
j∈J0

‖(ρ∂ρ)
νgj‖V

1/2

β,~δ
(Γj)`

)
.

Proof: We set ut(x) =
u(x) − u(tx)

1 − t
, where t is an arbitrary real number 1/2 < t < 1. It

can be easily verified that

Lut(x) = ft(x) + (1 + t)f(tx) in K,

ut(x) = (gj)t(x) on Γj for j ∈ J0, But(x) = (gj)t(x) + gj(tx) on Γj for j ∈ J1.

Furthermore, ut(x) → ∑3
j=1 xj∂xju(x) = ρ∂ρu(x) as t → 1. By Theorem 4.1, we have

‖ut‖W2
β,~δ

(K;J̃)` ≤ c
(
‖ft‖V 0

β,~δ
(K)` + (1 + t) ‖f(t·)‖V 0

β,~δ
(K)` +

∑
j∈J0

‖(gj)t‖V
3/2

β,~δ
(Γj)`

+
∑
j∈J1

‖(gj)t‖V
1/2

β,~δ
(Γj)` +

∑
j∈J1

‖gj(t·)‖V
1/2

β,~δ
(Γj)`

)
. (4.6)

Using the equality

ft(x) =
∫ 1

0

r∑
j=1

xj(∂xjf)
(
(t + τ − tτ)x

)
dτ =

∫ 1

0
(ρ∂ρf)

(
(t + τ − tτ)x

)
dτ,
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it can be easily shown that
‖ft‖V 0

β,~δ
(K)` ≤ c ‖ρ∂ρf‖V 0

β,~δ
(K)`

with c independent of t. Analogously,

‖(gj)t‖V
l−1/2

β,~δ
(Γj)` ≤ c ‖ρ∂ρgj‖V

l−1/2

β,~δ
(Γj)` .

For the proof of the last inequality one can use the equivalence of the norm in V
l−1/2
β,δ (Γj) with the

second norm in (4.4) and an expression analogous to (2.9) for the norm of ζkgj . Consequently,
from (4.6) it follows that ρ∂ρu ∈ W2

β,~δ
(K; J̃)`. Repeating this procedure, we obtain (ρ∂ρu)ν ∈

W2
β,~δ

(K; J̃)` for ν = 2, . . . , k together with the desired estimate.

4.3. Existence of weak solutions to the Neumann problem

In this and in the following two subsections we restrict ourselves to the Neumann problem, i.e.,
J0 = ∅.

Let V 1
β (K) = W 1

β,~0
(K) be the space with the norm (1.11). From Hardy’s inequality it follows

that V 1
0 (K)` coincides with H. By V −1

−β (K) we denote the dual space of V 1
β (K) with respect to

the scalar product in L2(K). Let ζk be smooth functions depending only on ρ = |x| satisfying
(4.2). It can be easily shown (see [7, Sect.6.1]) that the norm in V ±1

β (K) is equivalent to

‖u‖ =
( +∞∑

k=−∞
‖ζku‖2

V ±1
β (K)

)1/2
. (4.7)

We consider weak solutions u ∈ V 1
β (K)` of problem (1.1), (1.3). Obviously, the sesquilinear form

bK(·, ·) is continuous on V 1
β (K)` × V 1

−β(K)`. Consequently, it generates a linear and continuous

operator Aβ : V 1
β (K)` → V −1

β (K)` by the equality

(Aβu, v
)
K = bK(u, v), u ∈ V 1

β (K)`, v ∈ V 1
−β(K)`.

Lemma 4.4 For every u ∈ V 1
β (K)` the inequality

‖u‖V 1
β (K)` ≤ c

(
‖Aβu‖V −1

β (K)` + ‖u‖V 0
β−1(K)`

)
(4.8)

is satisfied.

Proof: Let ζk = ζk(ρ) be smooth functions satisfying (4.2), and let ηk = ζk−1 + ζk + ζk+1.
We show that

‖ζku‖2
V 1

β (K)` ≤ c ‖ζkAβu‖2
V −1

β (K)` + ε ‖ηku‖2
V 1

β (K)` + C(ε) ‖ηku‖2
V 0

β−1(K)` , (4.9)

where c, ε and C(ε) depend only on the constants c0, c1, c2 in (4.2) and ε can be chosen arbitrarily
small.

Let first k = 0. Integrating by parts, we get

a(ζ0u, v) =
(
ζ0Aβu, v

)
K + c1(u, v) − c2(u, v),

where

c1(u, v) =
∫
K

3∑
i,j=1

Ai,j (∂xiζ0)u · ∂xjv dx, c2(u, v) =
∫
K

3∑
i,j=1

Ai,j(∂xjζ0) ∂xiu · v dx.

25



Since problem (1.7) is uniquely solvable in H = V 1
0 (K)` for arbitrary F ∈ V −1

0 (K)`, we obtain

‖ζ0u‖V 1
0 (K)` ≤ c

(
‖ζ0Aβu‖V −1

0 (K)` + sup
‖v‖

V 1
0 (K)`

=1
|c1(u, v) − c2(u, v)|

)
.

Here
|c1(u, v)| ≤ c ‖η0u‖L2(K)` ‖v‖V 1

0 (K)`

and

c2(u, v) = −
∫
K

3∑
i,j=1

Ai,ju ∂xi(v∂xjζ0) dx +
∫

∂K\S

3∑
i,j=1

Ai,j(∂xjζ0)ni u · v dσ.

The last equality implies

|c2(u, v)| ≤ c
(
‖η0u‖L2(K)` ‖v‖V 1

0 (K)` + ‖η0u‖L2(∂K\S)` ‖v‖L2(∂K\S)`

)

≤ c
(
‖η0u‖L2(K)` + ‖η0u‖W 3/4(K)`

)
‖v‖V 1

0 (K)`

≤
(
ε ‖η0u‖V 1

0 (K)` + C(ε) ‖η0u‖L2(K)`

)
‖v‖V 1

0 (K)` .

Therefore,
sup

‖v‖
V 1
0 (K)`

=1

∣∣c2(u, v)
∣∣ ≤ ε ‖η0u‖V 1

0 (K)` + C(ε) ‖η0u‖L2(K)`

which implies (4.9) for k = 0. By means of the transformation x = 2ky, we obtain (4.9) with
the same constants c, ε and C(ε) for k 6= 0. Summing up in (4.9) and using the equivalence of
the norms in V ±1

β (K) to (4.7), we obtain (4.8).

Theorem 4.3 Suppose that there are no eigenvalues of the pencil A on the line Re λ = −β−1/2.
Then the operator Aβ is an isomorphism.

Proof: Let u be an arbitrary vector-function from V 1
β (K)`. Since V 1

β (K) ⊂ W 0
β−1,(ε−1)~1

(K),

where ε is an arbitrarily small positive number (see Lemma 4.1) and ~1 = (1, . . . , 1), the vector
function

w
def
= ρ2(β−1)

∏
j

(rj

ρ

)2(ε−1)
u

belongs to W 0
1−β,(1−ε)~1

(K)`. From the absence of eigenvalues of the pencil A on the line Reλ =

−β − 1/2 it follows that the line Reλ = β − 1/2 is also free of eigenvalues. Consequently, by
Theorem 4.1, there exists a solution v ∈ W 2

1−β,(1−ε)~1
(K)` of the problem

Lv = w in K, Bv = 0 on ∂K\S

which satisfies the inequality

‖v‖W 2
1−β,(1−ε)~1

(K)` ≤ c ‖w‖W 0
1−β,(1−ε)~1

(K)` ≤ c′ ‖u‖W 0
β−1,(ε−1)~1

(K)` (4.10)

with a constant c independent of u. This implies

‖u‖2
W 0

β−1,(ε−1)~1
(K)` =

∫
K

u w dx =
∫
K

u Lv dx = bK(u, v) =
(Aβu, v

)
K

≤ c ‖Aβu‖V −1
β (K)` ‖v‖V 1

−β(K)` ≤ c ‖Aβu‖V −1
β (K)` ‖v‖W 2

1−β,(1−ε)~1
(K)`

≤ c ‖Aβ‖V −1
β (K)` ‖u‖W 0

β−1,(ε−1)~1
(K)` .
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From the last inequality we conclude that

‖u‖V 0
β−1(K)` ≤ c ‖u‖W 0

β−1,(ε−1)~1
(K)` ≤ c ‖Aβu‖V −1

β (K)` .

This estimate together with Lemma 4.4 yields

‖u‖V 1
β (K)` ≤ c ‖Aβu‖V −1

β (K)` . (4.11)

Therefore, the kernel of Aβ is trivial and its image is closed.
We prove that for every F ∈ V −1

β (K)` there exists a solution of the equation Aβu = F . Let

{fk}k≥0 ⊂ C∞
0 (K)` be a sequence which converges to F in V −1

β (K)`. By Theorem 4.1, for every

k there exists a solution uk ∈ W 2
β+1,(1−ε)~1

(K)` ⊂ V 1
β (K)` of the problem Luk = fk in K, Buk = 0

on ∂K\S. Since, according to (4.11),

‖uk − ul‖V 1
β (K)` ≤ c ‖fk − fl‖V −1

β (K)`

with a constant c independent of k and l, the functions uk form a Cauchy sequence in V 1
β (K)`.

Its limit u is the solution of the equation Aβu = F . The proof is complete.

4.4. Regularity of weak solutions to the Neumann problem

Using Theorem 2.2, we can prove the following theorem.

Theorem 4.4 Let u ∈ V 1
β−l+1(K)` be a solution of the equation Aβ−l+1u = F , where the

functional F ∈ V −1
β−l+1(K)` has the form

(F, v)K =
∫
K

f · v dx +
n∑

j=1

∫
Γj

gj · v dσ, v ∈ V 1
−β(K)`, (4.12)

with f ∈ W l−2

β,~δ
(K)`, gj ∈ W

l−3/2

β,~δ
(Γj)`, δj is not integer, and max(l − 1 − µj , 0) < δj < l − 1 for

j = 1, . . . , n. Then u ∈ W l
β,~δ

(K)` and

‖u‖W l
β,~δ

(K)` ≤ c
(
‖f‖W l−2

β,~δ
(K)` +

n∑
j=1

‖gj‖W
l−3/2

β,~δ
(Γj)` + ‖u‖V 1

β−l+1(K)`

)
.

Proof: Under our assumptions on F , the vector function u is a solution of problem (1.1),
(1.3). We define by ζk, ηk, ζ̃k, η̃k the same functions as in the proof of Theorem 4.2 and set
v(x) = u(2kx). Then, by Theorem 2.2, the vector functions ζku and ζ̃kv belong to W l

β,~δ
(K)` for

k = 0,±1, . . .. Furthermore,

‖ζ̃kv‖2
W l

β,~δ
(K)` ≤ c

(
‖η̃kLv‖2

W l−2

β,~δ
(K)` +

n∑
j=1

‖η̃kBv‖2

W
l−3/2

β,~δ
(Γj)`

+ ‖η̃kv‖2
V 1

β−l+1(K)`

)
.

Due to (4.2), the constant c is independent of k. Multiplying the last estimate by 22k(β−l)+3 and
substituting 2kx = y, we arrive at the inequality

‖ζku‖2
W l

β,~δ
(K)` ≤ c

(
‖ηkLu‖2

W l−2

β,~δ
(K)` +

n∑
j=1

‖ηkBu‖2

W
l−3/2

β,~δ
(Γj)`

+ ‖ηku‖2
V 1

β−l+1(K)`

)
.

Using the equivalence of the norms in W l
β,~δ

(K) and W
l−1/2

β,~δ
(Γj) with norms analogous to (4.4),

we obtain the assertion of the theorem.

The following statement is an immediate consequence of Theorems 4.3 and 4.4.
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Corollary 4.1 Suppose that δj is not integer, max(l − 1 − µj , 0) < δj < l − 1 for j = 1, . . . , n
and that the line Re λ = l − β − 3/2 does not contain eigenvalues of the pencil A. Then the
Neumann problem (1.1), (1.3) is uniquely solvable in W l

β,~δ
(K)` for arbitrary f ∈ W l−2

β,~δ
(K)` and

gj ∈ W
l−3/2

β,~δ
(Γj)`, j = 1, . . . , n.

Furthermore, we get the following generalization of Lemma 4.3.

Corollary 4.2 Let u ∈ V 1
β−l+1(K)` be a solution of problem (1.1),(1.3) with (ρ∂ρ)νf ∈W l−2

β,~δ
(K)`,

(ρ∂ρ)νgj ∈ W
l−3/2

β,~δ
(Γj)` for ν = 0, 1, . . . , k, j = 1, . . . , n, where the components of ~δ are not

integer and satisfy the inequalities max(l − 1 − µj , 0) < δj < l − 1. Suppose that there are
no eigenvalues of the pencil A on the line Re λ = l − β − 3/2. Then (ρ∂ρ)νu ∈ W l

β,~δ
(K)` for

ν = 0, 1, . . . , k and

k∑
ν=0

‖(ρ∂ρ)
νu‖W l

β,~δ
(K)` ≤ c

k∑
ν=0

(
‖(ρ∂ρ)

νf‖W l−2

β,~δ
(K)` +

n∑
j=1

‖(ρ∂ρ)
νgj‖W

l−3/2

β,~δ
(Γj)`

)
.

Proof: Let first l− 1− δj < 1 and, therefore, max(1−µj , 0) < δj − l + 2 < 1 for j = 1, . . . , n.
Then, by Lemma 4.3, (ρ∂ρ)νu ∈ W 2

β−l+2,~δ−(l−2)~1
(K)` ⊂ V 1

β−l+1(K)` for ν = 1, . . . , k. Using

Theorem 4.4 and the equalities

Lρ∂ρu = (ρ∂ρ + 2)Lu, Bρ∂ρu = (ρ∂ρ + 1)Bu,

we obtain (ρ∂ρ)νu ∈ W l
β,~δ

(K)` for ν = 1, . . . , k.

Now let l − 1 − δj > 1 for j = 1, . . . , n. By Theorem 4.4, u ∈ W l
β,~δ

(K)` and, consequently,

ρ∂ρu ∈ W l−1

β−1,~δ
(K)` ⊂ V 1

β−l+1(K)`. Since L ρ∂ρu = ρ∂ρf + 2f ∈ W l−2

β,~δ
(K)` and B ρ∂ρu|Γj =

ρ∂ρgj + gj ∈ W
l−3/2

β,~δ
(Γj)`, it follows from Theorem 4.4 that ρ∂ρu ∈ W l

β,~δ
(K)`. Analogously, we

obtain (ρ∂ρ)νu ∈ W l
β,~δ

(K)` for ν = 2, . . . , k.

Finally, let l − 1 − δj > 1 for some, but not all, j. Then let ψ1, . . . , ψn be smooth functions
on Ω such that ψj ≥ 0, ψj = 1 near Mj ∩S2, and

∑
ψj = 1. We extend ψj to K by the equality

ψj(x) = ψj(x/|x|). Then ∂α
x ψj(x) ≤ c |x|−|α|. Consequently, the assumptions of the corollary

are satisfied for ψju, and from what has been shown above it follows that (ρ∂ρ)νψju ∈ W l
β,~δ

(K)`

for j = 1, . . . , n. This completes the proof.

Corollary 4.3 Let u ∈ V 1
β (K)` be a solution of the equation Aβu = F , where F ∈ V −1

β (K)` ∩
V −1

β′ (K)`, If there are no eigenvalues of the pencil A on the lines Re λ = −β − 1/2 and Re λ =

−β′ − 1/2, then u admits the decomposition (4.5) with w ∈ V 1
β′(K)`.

Proof: By Theorem 4.3, there exists a solution w ∈ V 1
β′(K)` of the equation Aβ′w = F . Let

χ be a smooth cut off function equal to one near the vertex of K. We assume, without loss of
generality, that β′ < β. Then χ(u − w) ∈ V 1

β (K)`. Integrating by parts, we obtain

bK
(
χ(u − w), v

)
= bK(u − w, χv) +

∫
K

f · v dx +
∫

∂K\S
g · v dσ,

for arbitrary v ∈ V 1
−β(K)`, where

f = −
3∑

i,j=1

Ai,j

(
(∂xjχ) ∂xiu + ∂xj (∂xiχ)u

)
, g =

3∑
i,j=1

Ai,j (∂xiχ)nju
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Obviously, f ∈ W 0
γ,~δ

(K)` and g|Γj ∈ W
1/2

γ,~δ
(Γj)` with arbitrary γ, ~δ, max(1 − µj , 0) < δj < 1

for j = 1, . . . , n. Since χv ∈ V 1
β (K)` ∩ V 1

−β′(K)`, we have bK(u − w, χv) = 0. Consequently,

from Theorem 4.4 it follows that χ(u−w) ∈ W 2
β+1,~δ

(K)`. Applying Theorem 4.2, we obtain the

decomposition (4.5) for χ(u − w) with a remainder w′ ∈ W 2
β′+1,~δ

(K)` ⊂ V 1
β′(K)`. Furthermore,

since β′ < β, the function (1 − χ)u belongs to V 1
β′(K)`. The result follows.

Remark 4.1 Let for the Neumann problem in the dihedron Dj (i.e., in the dihedron which
coincides with the cone K in a neighborhood of the edge point x(j) = Mj ∩S2) the assumptions
of Theorem 2.3 be valid. Then in the condition on δj in Theorem 4.4 and Corollaries 4.1–4.3 the

number µj = 1 can be replaced by the real part µ
(2)
j of the first eigenvalue of the pencil Aj(λ)

on the right of the line Reλ = 1. To show this, one has to use Theorem 2.3 instead of Theorem
2.2 in the proof of Theorem 4.4.

Examples. Let us consider, for example, the solution u ∈ H = V 1
0 (K)` of problem (1.7),

where F has the form (4.12) with f ∈ W l−2

β,~δ
(K), gj ∈ W

l−3/2

β,~δ
(Γj), l − β ≥ 1, δj is not integer,

max(0, l − 1 − µj) < δj < l − 1. Suppose that, additionally to (1.6), the inequality

3∑
i,j=1

(
Ai,jfi , fj

)
C` ≥ c

3∑
i=1

|fi|2 (4.13)

is satisfied for all f1, f2, f3 ∈ C`. Then the strip 0 ≤ Re λ ≤ 1/2 contains only the eigenvalues λ =
0 of the pencil A. The corresponding eigenvectors are constants, while generalized eigenvectors
do not exist (see [8, Ch.12]). The same is true, for example, for the Neumann problem to
the Lamé system (see [8, Ch.4]). Consequently, there exists a constant vector c such that
u − c ∈ W l

β,~δ
(K)` if l − β − 3/2 < Re Λ2, where Λ2 is the eigenvalue of A with smallest positive

real part, and δj are noninteger numbers such that max(0, l − 1 − µj) < δj < l − 1.
For the Neumann problem to the Laplace equation, we obtain u ∈ W l

β,~δ
(K) if −1/2 <

l − β − 3/2 < Λ2 and max(0, l − 1 − π/θj) < δj < l − 1, where θj is the angle at the edge Mj .
If K is convex, then Λ2 > (

√
5 − 1)/2 (see [4]), and we can choose l = 3, β = 1, δj = 1 − ε

with sufficiently small positive ε. Thus, u − c ∈ W 3
1,(1−ε)~1

(K) ⊂ W 2
0,~0

(K) if f ∈ W 1
1,(1−ε)~1

(K),

gj ∈ W
3/2

1,(1−ε)~1
(Γj).

In the case of the Lamé system, we make the following assumptions: −1/2 < l−β−3/2 < Λ2,
max(0, l − 1− π/θj) < δj < l − 1 if θj < π, and max(0, l − 1− ξ+(θj)/θj) < δj < l − 1 if θj > π,
where ξ+(θ) is the smallest positive root of (1.8). Furthermore, we assume that the boundary
data gj satisfy the compatibility conditions

nj+gj−
∣∣
Mj

= nj−gj+

∣∣
Mj

where Γj− and Γj+ are the sides adjacent to the edge Mj . Under these conditions, we get
u ∈ W l

β,~δ
(K)3.

4.5. Estimates for Green’s matrix to the Neumann problem

We consider the Neumann problem (1.1), (1.3) with J1 = {1, . . . , n}. Suppose that the line
Re λ = −β − 1/2 (and, consequently, also the line Reλ = β − 1/2) does not contain eigenvalues
of the pencil A. Then the following theorem holds analogously to [12, Th.2.1].

Theorem 4.5 1) There exists a unique solution G(x, ξ) of the boundary value problem (1.12),

(1.14) such that the function x → ζ
( |x−ξ|

r(ξ)

)
G(x, ξ) belongs to the space V 1

β (K)` for every fixed

ξ ∈ K and for every smooth function ζ on (0,∞) equal to one in (1,∞) and to zero in (0, 1
2).
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2) The function G is infinitely differentiable with respect to x, ξ ∈ K\S, x 6= ξ.
3) The function G(x, ·) is the unique solution of the problem

L(∂ξ)G(x, ξ) = δ(x − ξ) I` for x, ξ ∈ K, B(∂ξ)G(x, ξ) = 0 for x ∈ ∂K\S, ξ ∈ K,

such that the function ξ → ζ
( |x−ξ|

r(x)

)
G(x, ξ) belongs to the space V 1

−β(K)`×` for every fixed x ∈ K.

Theorem 4.6 Green’s function G introduced in Theorem 4.5 satisfies the following estimates
for |x|/2 < |ξ| < 2|x|:

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x − ξ|−1−|α|−|γ| if |x − ξ| < min(r(x), r(ξ)),

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x − ξ|−1−|α|−|γ|

n∏
j=1

( rj(x)
|x − ξ|

)δj,α
n∏

j=1

( rj(ξ)
|x − ξ|

)δj,γ

if |x − ξ| > min(r(x), r(ξ)).

Here δj,α = min(0, µj − |α| − ε) with an arbitrarily small positive ε.

Proof: Since G(Tx, Tξ) = T−1 G(x, ξ), we may assume, without loss of generality that
|x− ξ| = 1. Then 3 min(|x|, |ξ|) > |x|+ |ξ| > |x− ξ| = 1. Therefore, we can apply Theorems 2.4
and 2.5 and obtain the desired estimates.

For the proof of point estimates for G(x, ξ) in the cases 2 |x| < |ξ| and |x| > 2 |ξ| we need
the following lemma.

Lemma 4.5 If u ∈ W l
β,~δ

(K), ρ∂ρu ∈ W l
β,~δ

(K), δj 6= l − 1 for j = 1, . . . , n, then there is the

estimate

ρβ−l+3/2
n∏

j=1

(rj

ρ

)max(δj−l+1,0) |u(x)| ≤ c
(
‖u‖W l

β,~δ
(K) + ‖ρ∂ρu‖W l

β,~δ
(K)

)

with a constant c independent of u and x.

Proof: 1) Applying the estimate

sup
0<ρ<∞

|v(ρ)|2 ≤ c

∫ ∞

0

(|v(ρ)|2 + |ρv′(ρ)|2) dρ

ρ

(which is an immediate consequence of Sobolev’s lemma) to the function ρβ−l+3/2u(ρ, ω), one
obtains

ρ2(β−l)+3 |u(ρ, ω)|2 ≤ c

∫ ∞

0
ρ2(β−l+1)

(|u(ρ, ω)|2 + |ρ∂ρu(ρ, ω)|2) dρ. (4.14)

Let ψ1, . . . , ψn be smooth functions on Ω such that ψj = 1 near Mj ∩S2, ψj ≥ 0, and
∑

ψj = 1.
Furthermore, let v be an arbitrary function from W l

~δ
(Ω). If δj < l − 1, then ψjv is continuous

on Ω, and the supremum of ψjv can be estimated by its norm in W l
~δ
(Ω). If δj > l − 1, then ψjv

belongs to V l
~δ
(Ω) (see, e.g., [7, Th.7.1.1]). Therefore,

(rj

ρ

)δj−l+1 |ψj(ω) v(ω)| ≤ c ‖ψjv‖W l
~δ
(Ω)

(cf. (2.30)). This implies

n∏
j=1

(rj

ρ

)max(δj−l+1,0) |v(ω)| ≤ c ‖v‖W l
~δ
(Ω) .
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The last inequality together with (4.14) implies

ρ2(β−l)+3
n∏

j=1

(rj

ρ

)2 max(δ−l+1,0) |u(ρ, ω)|2

≤ c

∫ ∞

0
ρ2(β−l+1)

(
‖u(ρ, ·)‖2

W l
~δ
(Ω)

+ ‖ρ∂ρu(ρ, ·)‖2
W l

~δ
(Ω)

)
dρ.

The result follows.

Let again β be a fixed number such that no eigenvalues of the pencil A lie on the line
Re λ = −β − 1/2. Furthermore let

Λ− < Re λ < Λ+

be the widest strip in the complex plane which is free of eigenvalues and contains the line
Re λ = −β − 1/2.

Theorem 4.7 Let G(x, ξ) be Green’s function introduced in Theorem 4.5. If |x| < |ξ|/2, then

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|Λ+−|α|−ε |ξ|−1−Λ+−|γ|+ε

n∏
j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

,

where δj,α = min(0, µj − |α| − ε) and ε is an arbitrarily small positive number. Analogously, for
|x| > 2|ξ| there is the estimate

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|Λ−−|α|+ε |ξ|−1−Λ−−|γ|−ε

n∏
j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

.

Proof: Suppose that |x| = 1. We denote by φ, ψ smooth functions on K such that φ(η) = 1
for |η| ≤ 1/2, ψ = 1 in a neighborhood of suppφ, and ψ(η) = 0 for |η| > 3/4. Furthermore, let
l be an integer, l > max µj + 1. The vector function ∂α

x G(x, ·) is a solution of the problem

L(∂ξ) ∂α
x G(x, ξ) = ∂α

x δ(x − ξ) I` in K, B(∂ξ) ∂α
x G(x, ξ) = 0 on ∂K\S

such that the function ξ → ζ
( |x−ξ|

r(x)

)
∂α

x G(x, ξ) belongs to V 1
−β(K)`×`. Here, as in Theorem

4.5, ζ is an arbitrary smooth function on (0,∞) equal to one in (1,∞) and to zero in (0, 1
2).

In particular, ψ(·)∂α
x G(x, ·) ∈ V 1

−β(K)`, ψ(·)L(∂ξ)∂α
x G(x, ·) = 0 and ψ(·)B(∂ξ)∂α

x G(x, ·)|∂K\S =
0. Thus, we conclude from Corollaries 4.2 and 4.3 that the functions φ(·) ∂γ

ξ ∂α
x G(x, ·) and

|ξ|∂|ξ|φ(·) ∂γ
ξ ∂α

x G(x, ·) belong to W l
l−1−β′+|γ|,~δ+|γ|~1(K)`, where β′ < −Λ− − 1/2 and δj are non-

integer numbers, l − 1 − µj < δj < l − 1 for j = 1, . . . , n. The norms of φ(·) ∂γ
ξ ∂α

x G(x, ·) and

|ξ|∂|ξ|φ(·) ∂γ
ξ ∂α

x G(x, ·) can be estimated by the norm of ψ(·)∂α
x G(x, ·) in V 1

−β(K)`. Hence, by
means of Lemma 4.5, we obtain

ρ(ξ)−β′+|γ|+1/2
n∏

j=1

(rj(ξ)
ρ(ξ)

)max(δj+|γ|−l+1,0) ∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c ‖ψ(·) ∂α

x G(x, ·)‖V 1
−β(K)` , (4.15)

for |ξ| < 1/2, where c is independent of x and ξ.
According to Theorem 4.3, the problem

bK(u, v) = (ψF, v)K , v ∈ V 1
−β(K)`,

has a unique solution u ∈ V 1
β (K)` for arbitrary F ∈ V −1

β (K)`. This solution can be written as

u(y) =
(
ψ(·)F (·) , G(y, ·))K .
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Let χ1, χ2 be a smooth cut-off function, χ2 = 1 near x, χ1 = 1 in a neighborhood of suppχ2,
χ1(y) = 0 for |x − y| > 1/4. Since suppψ ∩ suppχ1 = ∅, we have χ1Lu = 0 and χ1Bu|∂K\S =
0. Hence, by Corollaries 4.2 and 4.3, we obtain χ2∂

α
x u ∈ W l

β′′,~δ+|α|~1(G)` and χ2ρ∂ρ∂
α
x u ∈

W l
β′′,~δ+|α|~1(G)` with arbitrary β′′. Consequently, Lemma 4.5 yields

n∏
j=1

(
rj(x)

)max(δj+|α|−l+1,0) ∣∣∂α
x u(x)

∣∣ ≤ c ‖χ1u‖V 1
β (K)` ≤ c′ ‖F‖V −1

β (K)`

Thus, the mapping

V −1
β (K)` 3 F →

n∏
j=1

rj(x)max(δj+|α|−l+1,0) ∂α
x u(x)

=
( n∏

j=1

rj(x)max(δj+|α|−l+1,0) ∂α
x G(x, ·)ψ(·), F

)
K

represents a linear and continuous functional on V −1
β with norm independent of x. Therefore,

the function

η →
n∏

j=1

rj(x)max(δj+|α|−l+1,0) ψ(η) ∂α
x G(x, η)

has a finite norm independent of x in V 1
−β(K)`. This together with (4.15) yields

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c

n∏
j=0

rj(x)min(l−1−δj−|α|,0)|ξ|β′−|γ|−1/2
n∏

j=0

(rj(ξ)
ρ(ξ)

)min(l−1−δj−|γ|,0)
.

Setting δj = l− 1−µj + ε and β′ = −Λ−− 1/2− ε, we arrive at the desired estimate for |x| = 1,
|ξ| < 1/2. Using the equality G(Tx, Tξ) = T−1G(x, ξ), we obtain this estimate for arbitrary x
and |ξ| < |x|/2. The proof for the case |x| < |ξ|/2 proceeds analogously.

Remark 4.2 The estimates in Theorems 4.6 and 4.7 for the derivatives of Green’s function can
be improved if the direction of the derivatives is tangential to edges. In particular, we have

∣∣∂ρG(x, ξ)
∣∣ ≤ c |x − ξ|−2 if |x|/2 < |ξ| < 2|x|,∣∣∂ρG(x, ξ)
∣∣ ≤ c |x|Λ+−1−ε |ξ|−1−Λ++ε if |x| < |ξ|/2,∣∣∂ρG(x, ξ)
∣∣ ≤ c |x|Λ−−1+ε |ξ|−1−Λ−−ε if |x| > 2|ξ|.

The first estimate follows immediately from Theorems 2.4 and 2.5, while the last two estimates
can be proved analogously to Theorem 4.7.

Finally, we consider Green’s matrix for the case β = 0. This means that G(x, ξ) is a solution

of problem (1.12), (1.14) such that the function x → ζ
( |x−ξ|

r(ξ)

)
G(x, ξ) belongs to H = V 1

0 (K)`. If

condition (4.13) is satisfied, then the strip −1/2 ≤ Re λ ≤ 0 contains only the eigenvalue Λ1 = 0
(see [8, Th.12.3.2,12.3.3]). The eigenvectors corresponding to this eigenvalue are the constant
vectors in C`, while generalized eigenvectors do not exist. By [8, Th.4.3.1], the same is true
for the Neumann problem to the Lamé system. In this case, we denote by Λ2 the eigenvalue
with smallest positive real part. Using the following lemma, we can improve the estimates in
Theorem 4.7.
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Lemma 4.6 Let φ, ψ be smooth functions on K with compact supports such that φ = 1 in a
neighborhood of the origin and ψ = 1 in a neighborhood of suppφ. Furthermore, let ψu ∈ V 1

0 (K)`,
ψLu = 0 and ψBu|∂K\S = 0. Suppose that the strip −1/2 ≤ Re λ ≤ 0 contains only the
eigenvalue Λ1 = 0, the eigenvectors corresponding to this eigenvalue are the constant vectors in
C` and generalized eigenvectors for Λ1 do not exist. Then φu = c0 + v, where c0 is a constant
vector, v ∈ W l

β,~δ
(K)`, 0 < l − β − 3/2 < Re Λ2, max(l − 1 − µj , 0) < δj < l − 1, δj not integer,

and
|c0| + ‖v‖W l

β,~δ
(K)` ≤ c ‖ψu‖V 1

0 (K)` .

Proof: Let χ be a smooth function such that χ = 1 in a neighborhood of suppφ and ψ = 1 in
a neighborhood of suppχ. Since the derivatives of χ vanish in a neighborhood of the origin and
of infinity, we have L(χu) = [L, χ]u ∈ W 0

β−l+2,~0
(K)` (here [L, χ] = Lχ − χL is the commutator

of L and χ) and B(χu)|Γj ∈ W
1/2

β−l+2,~0
(Γj)`. Thus, it follows from Theorems 4.2 and 4.4 that

χu = c0 + w, where w ∈ W 2
β−l+2,~δ

(K)`, 0 < l − β − 3/2 < Re Λ2, max(0, 1 − µj) < δj < 1,

|c0| + ‖v‖W 2
β,~δ

(K)` ≤ c ‖ψu‖V 1
0 (K)` .

This implies L(φu) = [L, φ] (w−c0) ∈ W 1
β−l+3,~δ

(K)` and B(φu) = [B, φ] (w−c0) ∈ W
3/2

β−l+3,~δ
(Γj)`.

Using again Theorems 4.2 and 4.4, we obtain φu = c0 + v, where v ∈ W 3
β−l+3,~δ′

(K)`, max(0, 2−
µj) < δ′j < 2. Repeating this argument, we get the same representation with v ∈ W l

β,~δ
(K)`,

max(l − 1 − µj , 0) < δj < l − 1.

Using the last lemma, we can prove the following statement analogously to Theorem 4.7.

Theorem 4.8 Let G(x, ξ) be Green’s matrix introduced in Theorem 4.5 for β = 0. Suppose that
the strip −1/2 < Re λ ≤ 0 contains only the eigenvalue Λ1 = 0, the eigenvectors corresponding
to this eigenvalue are the constant vectors in C` and generalized eigenvectors for Λ1 do not exist.
If |x| < |ξ|/2, then

∣∣∂γ
ξ G(x, ξ)

∣∣ ≤ c |ξ|−1−|γ|
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

,

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|ReΛ2−|α|−ε |ξ|−1−ReΛ2−|γ|+ε

n∏
j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

for |α| 6= 0, where δj,α = min(0, µj − |α| − ε) and ε is an arbitrarily small positive number.
Analogously for |x| > 2|ξ| there are the estimates

∣∣∂α
x G(x, ξ)

∣∣ ≤ c |x|−1−|α|
n∏

j=1

(rj(x)
|x|

)δj,α

,

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|−1−ReΛ2−|γ|+ε |ξ|ReΛ2−|α|−ε

n∏
j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

for |γ| 6= 0.

Remark 4.3 If for the Neumann problem in the dihedron Dj the assumptions of Theorem 2.3
are valid (i.e., in particular, µj = 1 is the eigenvalue of Aj(λ) with smallest positive real part),

then G(x, ξ) satisfies the estimates in Theorems 4.6–4.8 with δj,α = min(0, µ
(2)
j − |α| − ε), where

µ
(2)
j is the real part of the first eigenvalue of the pencil Aj(λ) on the right of the line Reλ = 1

(cf. Remark 4.1).
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Examples. Let G(x, ξ) be Green’s function for problem (1.1), (1.3) such that the function

x → ζ
( |x−ξ|

r(ξ)

)
G(x, ξ) belongs to the space H = V 1

0 (K)` for every fixed ξ ∈ K and for every

smooth function ζ on (0,∞) equal to one in (1,∞) and to zero in (0, 1
2).

1) If L = −∆, then G(x, ξ) satisfies the estimates in Theorems 4.6 and 4.8 with δj,α =
min(0, π/θj −|α|− ε), where θj is the angle at the edge Mj and ε is an arbitrarily small positive
number. Here Λ2 is the smallest positive eigenvalue of the pencil A. Note that the eigenvalues
of the pencil A are given by Λ±j = −1/2 ± √

Nj + 1/4, where Nj are the eigenvalues of the
Beltrami operator on Ω with Neumann boundary conditions.

2) Green’s matrix for the Neumann problem to the Lamé system satisfies the estimates in
Theorems 4.6 and 4.8, where δj,α = min(0, π/θj−|α|−ε) for θj < π and δj,α = min(0, ξ+(θj)/θj−
|α| − ε) for θj > π. Here ξ+(θ) is the smallest positive root of (1.8).

4.6. Estimates for Green’s matrix of the Dirichlet and mixed problems

Let
Γ◦ =

⋃
j∈J0

Γj and
◦
V

1
β(K; Γ◦) = {u ∈ V 1

β (K) : u = 0 on Γ◦}.

Analogously to Theorem 4.3, it can be proved that the problem

bK(u, v) = (F, v) for all v ∈ ◦
V

1
−β(K; Γ◦)`, u = gj on Γj for j ∈ J0

has a unique solution u ∈ V 1
β (K)` for arbitrary F ∈ (

◦
V 1

β(K; Γ◦)∗)` and gj ∈ V
1/2
β (Γj)`, j ∈ J0,

if the line Reλ = −β − 1/2 is free of eigenvalues of the pencil A(λ). We call this solution weak
solution of problem (1.1)–(1.3).

For weak solutions of the Dirichlet and mixed problems we can prove analogous regularity
assertions as for weak solutions of the Neumann problem. In particular, the following statement
holds (cf. Corollary 4.2).

Theorem 4.9 Let u ∈ V 1
β−l+1(K)` be a weak solution of problem (1.1)–(1.3) with (ρ∂ρ)νf ∈

W l−2

β,~δ
(K; J̃)` for ν = 0, 1, . . . , k, (ρ∂ρ)νgj ∈ V

l−1/2

β,~δ
(Γj)` for j ∈ J0, ν = 0, 1, . . . , k, (ρ∂ρ)νgj ∈

W l−3/2

β,~δ
(Γj ; J̃)` for j ∈ J1, ν = 0, . . . , k. Suppose that the components of ~δ satisfy the inequalities

l − 1 − µj < δj < l − 1 for j ∈ J̃ , max(l − 1 − µj , 0) < δj < l − 1 for j 6∈ J̃ and that there are
no eigenvalues of the pencil A on the line Re λ = l − β − 3/2. Then (ρ∂ρ)νu ∈ W l

β,~δ
(K; J̃)` for

ν = 0, 1, . . . , k and

k∑
ν=0

‖(ρ∂ρ)
νu‖Wl

β,~δ
(K;J̃)` ≤ c

k∑
ν=0

(
‖(ρ∂ρ)

νf‖Wl−2

β,~δ
(K;J̃)` +

∑
j∈J0

‖(ρ∂ρ)
νgj‖V

l−1/2

β,~δ
(Γj)`

+
∑
j∈J0

‖(ρ∂ρ)
νgj‖Wl−3/2

β,~δ
(Γj ;J̃)`

)
.

Suppose that there are no eigenvalues of the pencil A on the line Reλ = −β − 1/2. We
denote by Λ− < Re λ < Λ+ the widest strip in the complex plane which is free of eigenvalues of
the pencil A(λ) and contains the line Reλ = −β − 1/2. Furthermore, let G(x, ξ) be the unique

solution of the boundary value problem (1.12)–(1.14) such that the function x → ζ
( |x−ξ|

r(ξ)

)
G(x, ξ)

belongs to V 1
β (K)`×`. The following estimates follow immediately from Theorem 2.8.∣∣∂α

x ∂γ
ξ G(x, ξ)

∣∣ ≤ c |x − ξ|−1−|α|−|γ| if |x|/2 < |ξ| < 2|x|, |x − ξ| < min(r(x), r(ξ)),

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x − ξ|−1−|α|−|γ|

n∏
j=1

( rj(x)
|x − ξ|

)δj,α
n∏

j=1

( rj(ξ)
|x − ξ|

)δj,γ

if |x|/2 < |ξ| < 2|x|, |x − ξ| > min(r(x), r(ξ)).
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Here δj,α = µj − |α| − ε for j ∈ J̃ , δj,α = min(0, µj − |α| − ε) for j 6∈ J̃ , and ε is an arbitrarily
small positive number. Estimates for Green’s function in the cases |x| < |ξ|/2 and |x| > 2|ξ|
can be proved analogously to Theorem 4.7 by means of Theorem 4.9. In the case |x| < |ξ|/2 we
obtain

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|Λ+−|α|−ε |ξ|−1−Λ+−|γ|+ε

n∏
j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

,

while for |x| > 2|ξ| there is the estimate

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|Λ−−|α|+ε |ξ|−1−Λ−−|γ|−ε

n∏
j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

.
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