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Abstract. An orthogonal double cover (ODC) is a collection of n spanning sub-
graphs (pages) of the complete graph such that they cover every edge of the complete
graph twice and the intersection of any two of them contains exactly one edge. If
all the pages are isomorphic to some graph G, we speak of an ODC by G. ODCs
have been studied for almost 25 years, and existence results have been derived for
many graph classes. We present an overview of the current state of research along
with some new results and generalizations. As will be obvious, progress made in the
last 10 years is in many ways related to the work of Ron Mullin. So it is natural
and with pleasure that we dedicate this article to Ron, on the occasion of his 65th
birthday.
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1. Introduction

Let K,, be the complete graph on an n-element vertex set V. A collec-
tion O = {Gj : i € V'} of n spanning subgraphs (called pages) of K, is
an orthogonal double cover (briefly ODC) of K, if it has the following
properties:

1. Double cover property
Every edge of K, belongs to exactly two of the pages.

2. Orthogonality property
Any two distinct pages intersect in exactly one edge.

If any two pages of O are isomorphic, i.e. G; = G for all 1 € V', then
O is an 0ODC of K,, by G. Note that double cover and orthogonality
property force every page of an ODC to contain exactly n — 1 edges.

As a first example we present an ODC of K5 by C4U F4 in Figure 1.
(Throughout the paper we will make use of the usual notations C,, for
the cycle of length n, P, for the path on n vertices, E, for the empty
graph on n vertices, S, for the star with n edges on n + 1 vertices, and
K, for the complete bipartite graph with independent sets of sizes
m and 7.)
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Figure 1. An ODC of K5 by Cy U F4

The concept of orthogonal double covers originates in problems
concerning database constraints, statistical combinatorics, and design
theory. In the early 1980s Demetrovics, Fiiredi, and Katona [18, 17]
investigated Armstrong representations of minimum size for key and
functional dependencies. In our terminology, Armstrong representa-
tions of size n are equivalent to ODCs of K, whose pages consist of
distinct cliques. More information on this topic is given in Section 3.2.
Another important origin is the question for ODCs the pages of which
are cycles. This problem was posed first by Hering and Rosenfeld [50]
in 1979. Their question arose from statistical design of experiments.
Section 3.3 presents results in this regard. A variation of the problem
was suggested in 1991 by Chung and West [14] for pages having maxi-
mum degree 2, i.e. pages consisting of cycles and /or a path. They came
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across this problem when studying intersection graphs. Finally, ODCs
are related to several graph decomposition problems [2, 46].

Although the original questions of Demetrovics, Fiiredi and Katona
and Chung and West were completely settled, the story is not quite
over. During the last two decades there has been a steadily growing
interest in the concept of ODCs.

The principal question is the following: Given a graph G, decide
whether there is an ODC of K,, by G. While this problem is far from
being solved in general, it gave rise to a large number of results on
ODCs by particular graphs such as trees [32, 54, 55] or graphs with
maximum degree two [10, 14, 28, 34], in particular paths [4, 43, 47, 51]
and cycles [3, 7, 28, 29]. These results are discussed in Section 3.

There are two major ways to generate ODCs: direct constructions
and recursive constructions. Direct constructions often exploit prop-
erties of finite algebraic structures. For example note that in Figure
1 all pages are generated from page Gy by rotating the edges, i.e. by
mapping edge (a,b) in Gy to edge (a +1,b+ 1) in G; (with calculations
modulo n). We study such cyclically generated ODCs and more gener-
ally group-generated ODCs in detail in Sections 2.1 and 2.3. Figure 2
shows an ODC of Kg by C5 U E; which is not generated cyclically. In
fact, there is no group-generated ODC by Cs U E; at all. Nevertheless,
also this ODC has special properties, it is nearly-cyclic, see Section 2.6.
Recursive constructions exploit for instance pairwise balanced designs
as explained in Section 2.2.
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Figure 2. An ODC of Ks by Cs U E;

There are graphs G which do not admit an ODC by G. The smallest
graph of this kind is the P, which can be verified by the following
argument due to Harborth [35]. Assume, on the contrary, that there is
an ODC of K4 by P;. The first and last edge of any P, form a 1-factor
in K4. But K4 contains exactly three 1-factors. Hence, two of the 4
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pages share at least two edges, in contradiction to the orthogonality
condition.

Let us also mention that there are cases that correspond to difficult
combinatorial problems. For example, if all pages of an ODC consist of
one clique and the proper number of isolated vertices, then the cliques
form a biplane. See Section 3.2 for more information.

In their 1979 paper [50], which initiated the study of orthogonal
double covers, Hering and Rosenfeld actually asked for the directed
analogue of ODCs. For every positive integer n, let D,, denote the
complete (symmetric) digraph on n vertices. A factorization of D
is a collection O of mutually arc-disjoint, spanning subdigraphs of D,
such that every arc of Dy, occurs in exactly one of the subdigraphs
in O. We call such a factorization an orthogonal directed cover of D,
if the union of any two of the subdigraphs in O contains exactly one
pair of oppositely oriented arcs. For convenience, we shall again use the
abbreviation ODC to refer to an orthogonal directed cover. Similarly,
the subdigraphs in O are said to be the pages of O as well.

It is easy to check that an orthogonal directed cover of D,, consists of
n pages, each containing precisely n—1 arcs. If all pages are isomorphic
to some digraph G, then we speak of an ODC' of Dy, by G. Figure 3
exhibits an ODC of D4 by Cg U Ej.

NN A4

Goo Gor Gho Gi

Figure 3. An ODC of D4 by C3 U Ex

Given an orthogonal double cover of the complete graph K,, we
may derive an orthogonal directed cover of D,,: For every edge e of K,
we simply simply assign opposite orientations to e in the two pages
containing e. Vice versa, when deleting all orientations of arcs in an
orthogonal directed cover of D,, we obtain an orthogonal double cover
of K.

In general, when constructing an orthogonal directed cover from
an orthogonal double cover by some graph G, the resulting pages are
no longer mutually isomorphic. Conversely, however, starting with an
orthogonal directed cover by some digraph G, we always derive an
orthogonal double cover whose pages are all isomorphic. In this sense,
the concept of an orthogonal directed cover is more restrictive than the
one of an orthogonal double cover.
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As an example, consider the dipath Ps. It is not_difficult to check
that there is no orthogonal directed cover of D3 by Ps, although there
exists an orthogonal double cover of K3 by the underlying (undirected)
path Ps.

The aim of this paper is to survey the current state of methods and
results on ODCs and common generalizations. In addition we present a
number of new ideas and results.

2. Construction methods

Various techniques for constructing ODCs have been developed. In this
section we will explain the most important and general concepts while
special constructions will be introduced as their need arises.

2.1. GROUP-GENERATED ODCSs

Here we focus on ODCs with large automorphism groups, since they
are usually easier to find than others.

Let an additive group I' of order n be given, and let the vertices
of K,, be denoted by the elements of I'. We call an ODC O of K,
group-generated by I', if we derive the page G; of O from the page
Gy by adding the element i € T' to each vertex of Gy, e.g. E(G;) =
{(a+1i,b+1) | (a,b) € E(Gy)}. This concept also applies to orthogonal
directed covers. Figure 1 presents an ODC generated by Zs, the example
in Figure 3 is generated by Zg X Zo.

A group-generated ODC is determined completely already by one
arbitrary page and the generating group. Throughout this paper, let
G + e denote the graph that arises from a graph G on the elements of
I’ by adding e to each vertex. The collection {G + e | e € T'} is called
the orbit of G under I and we denote it by G 4 T'.

Although an ODC can be generated by any group, we restrict our
attention to abelian groups. Often, we are especially interested in ODCs
generated by cyclic groups. We call them cyclic.

We now characterize the pages of a group-generated ODC, first in
the case of an orthogonal directed cover, later for an orthogonal double
cover. .

Let T" be an additive group of order n and let further G be a simple
digraph with n — 1 arcs on the elements of I'. We define the length
£(a,b) of an arc (a,b) to be b — a. The length of an arc is invariant
under translation, e.g. £(a,b) = £(a + e,b+ e) for all e € I'. Hence, all
pages of G + T contain the same lengths as G. Thus, in order to make
G + T a directed cover, the digraph G has to contain each possible
length exactly once.
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Let e; = (a,b) and ez = (s,t) be two arcs with inverse lengths. We
define the distance dist(e1,es) of the arc e; from es to bet —a = s—b,
that is, the distance is the translation (with respect to I') that moves
e, onto the reverse of e;. Now, let d := dist(e1,e2) and e; € E(G).
Then ey € E(G + d), and hence, in order for G + T to respond to the
orthogonality, all the distances in G must be distinct and thus consist
of all non-zero elements from I'. Note that if #(e) is of order two, then
L(e) = —£(e) = dist(e, e).

In conclusion, we call G an ODC-generating digraph (or ODC-
generator) with respect to the group I if the following conditions are
satisfied:

1. Length condition
For every non-zero element e of I', there is exactly one arc of length

e in G.

2. Distance condition
The set of the distances of all pairs of arcs of inverse lengths in G
consists of all non-zero elements from I'.

Now, the collection G + I is an ODC, if and only if G is an ODC-
generating digraph.

With respect to Zs X Zo, the graph Ggg in Figure 3 has the lengths
£(01,10) = 11, £(10,11) = 01 and £(11,01) = 10. Since all these lengths
have order two, the distance of each arc equals its length. Thus, the set
of lengths as well as the set of distances include all nonzero-elements of
Zo X Lo, and Gog + (Zg X Zs) is an ODC (the one presented in Figure
3).

We now consider group-generated orthogonal double covers. Let G+
I be an ODC. As mentioned earlier, we derive an orthogonal directed
cover from G + I' by assigning each edge of K,, opposite directions
in the two pages which contain it. Since G + I is group-generated we
end up with a group-generated orthogonal directed cover. Hence, the
observations in the directed case apply.

We define the length £({a,b}) of an edge {a,b} to be the set {a —
b,b — a}. Let e; = {a,b} and e; = {s,t} be two edges with the same
lengths. W.lLo.g., let a—t = b—s. The distance dist(e, e2) of the edges
e1 and ey is the set {t — a,a — t}, that is, the distance is the set of the
two translations (with respect to I') that move one edge onto the other.

We call G an ODC-generating graph (or ODC-generator) with
respect to the group T if the following conditions are satisfied:

1. Length condition
For every element e of I of order greater than two, there are exactly
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two edges of length {e, —e} in G. For every element e of order two,
there is exactly one edge of length {e} in G.

2. Distance condition
The union of the distances of all pairs of distinct edges of the same
lengths in G consists of all elements from I' of order greater than
two.

Again, G +T is an ODC, if and only if G is an ODC-generating graph.

The graph Gy in Figure 1 is an ODC-generator with respect to
Zs, since £(1,2) = £(3,4) = {£1}, £(1,3) = £(2,4) = {£2} and
dist({1,2},{3,4}) = {£2}, dist({1,3},{2,4}) = {£1}. The ODC
presented in the figure is Gy + Zs.

The edges the length of which is an element of order 2 play a special
role in an ODC-generating graph. This is, because each such edge moves
onto itself under translation by its length.

The existence of a group-generated ODC has been proven for many
graph classes (see Section 3). The following nonexistence result was
first proved essentially by Ganter, Gronau and Mullin [28].

THEOREM 2.1 ([28, 58]). LetT' be an abelian group of order n, where
n = 2 mod 4. There is no ODC-generating graph G with respect to T,
whose vertices are all of even degree.

In the proof of Theorem 2.1, only the length condition for an ODC-
generating graph is used. It shows that this already does not respond
to the assumptions of the theorem.

Since we explore ODCs by cycles in Sections 3.3 and 3.5, the
following consequence of Theorem 2.1 is especially important.

COROLLARY 2.2. There is no ODC-generating graph with respect to
an abelian group of order n consisting of disjoint cycles, whenever n =
2 mod 4.

2.2. PBD-CLOSURE

In this section we describe a recursive construction method to obtain
ODCs of K,, using pairwise balanced designs. This approach has been
successfully applied in several papers, particularly in [27, 28, 34, 29,
32, 37, 54].

A pairwise balanced design (PBD[n, K]) of order n with block sizes
from K is a pair (V, B), where V is a finite set (the point set) of cardi-
nality n and B is a family of subsets of V' called blocks such that every
2-subset of V' is contained in exactly one block of B, and |B| € K for
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every block B € B. A set S of positive integers is said to be PBD-closed
if the existence of a PBD[n, S| implies that n belongs to S. Further, let
K be a set of positive integers and let B(K) = {n | 3PBD[n, K|}. Then
B(K) is a PBD-closed set called the PBD-closure of K. For a rigorous
treatment of pairwise balanced designs and related topics, the reader
should consult e.g. [6, 15].

The following result is among the most interesting general theorems
in design theory. It is a powerful tool for investigations of combinatorial
structures, since a finite number of known examples of a certain set of
objects can establish the existence of the entire set of these objects.

THEOREM 2.3 ([66]). Let K be a non-empty PBD-closed set different
from {1}. Then K is eventually periodic with period f(K) = ged{k(k—
1) |k € K}; that is, there ezists a constant co(K) such that for every
ke K,{n|n>c(K),n=k mod (K)} C K.

The main construction idea for ODCs is established in the following
theorem.

THEOREM 2.4 ([27, 32]). Let (V,B) be a PBD[n,K], and for each

block B = {b1,b,....bg} € B, let OF = {G},Gy),....Gf ) be

an ODC of the complete graph K|p| on B. Let Hy = Upep GE be the
graph obtained by amalgamating, at z, all graphs having index x. Then
H={Hy:z€V}isan ODC of K,.

Proof. To verify the double cover property, note that for every edge
{u,w} € E(K,) there is a unique block B € B which contains both u
and w. Thus, there are exactly two pages in OF, say GZ and Gf , which
contain {u,w}. Therefore, the edge {u,w} belongs to H; and H;. It is
also easily seen that the orthogonality condition is satisfied. Every edge
belonging to both H; and H is contained in GB and Gf , where B is the
unique block containing z and y. Clearly, we have |E(Gf)ﬂE(G5)| =1
which implies |E(H;) N E(Hy)| = 1. O

Note that the graphs H, are in general neither mutually isomorphic
nor of special structure. But a careful and judicious use of the ingredient
ODCs may ensure mutually isomorphic pages in the ODC obtained.
Consider the following example where all ingredients in Theorem 2.4
are ODCs by comets M, (m-stars with all edges replaced by a path
of length two). If in the ingredient ODCs every page is indexed by its
central vertex, then it is easily checked that the page H is also a comet
with central vertex z. As an immediate consequence of Theorem 2.4 we
have:
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PROPOSITION 2.5. Let n = 2m + 1 be an odd integer. Then there
exists an ODC of K, by a comet M,y,.

1 1 2

2 4 3
Figure 4. ODC-generators M; and M> with respect to Z3 and Zs

Proof. ODC-generators for ODCs of K3 and K5 by M; and Mos,
respectively, are illustrated in Figure 4. These two ODCs are sufficient
to establish the existence of all the ODCs by comets, since the PBD-
closure of the set K = {3,5} contains all positive integers congruent to
1 modulo 2. [l

2.3. ODCS FROM RINGS AND QUASIGROUPS

Direct constructions often exploit properties of finite groups, rings or
fields. For convenience, we present the ideas for the directed case only.

Let R be a finite ring with unity 1 and let I' denote its additive
group. Given some r € R, we consider the digraph G with V(G) = R
and E(G) = {(z,7-z) | z € R\ {0}}. According to Section 2.1, G is an
ODC-generator with respect to I' if and only if

{r=1)-z]zeR\{0}} ={(r+1)-z |z € R\{0}} = R\ {0}

i.e. if and only if both, r — 1 and r + 1, are invertible.

Applying this construction to appropriate rings R and elements r €
R, we obtain ODCs by digraphs G of special structure. For instance,
let R = Zgo with integers k > 2, a > 1, and choose r = k. Then r — 1
and r + 1 are invertible for —(k —1)(k+ 1) = 1, and G is an k-ary tree
augmented by the arc (k% !,0), see Figure 5.

THEOREM 2.6.  For all integers k > 2 and o > 1, there is a cyclic
ODC of Dya by a k-ary tree augmented by an arc at its root.

Let ¢ > 4 be a prime power, and let R be the field GF(q). If r is a
primitive k-th root of unity, then 7 — 1 and r + 1 are invertible. The
corresponding digraph G consists of (¢ — 1)/k copies of Cy and the
isolated vertex 0.
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Figure 5. An almost-binary ODC-generating tree on 8 vertices

THEOREM 2.7 ([28]). For all integers k > 3 and prime powers q =
1 mod k, there is an ODC of Dy by the digraph consisting of (¢ —1)/k

disjoint copies of Cy and an isolated vertex, generated by the additive
group of GF(q).

Similar results can be obtained for certain other rings. These and
the ODCs given in Theorem 2.7 are often used as starting points for
further construction, see [53, 42] and Section 3.5.

Another approach uses quasigroups.

THEOREM 2.8 (Ganter and Gronau [27]). Let o be a quasigroup op-
eration on an n-element set P satisfying for all z,y € P:

(i) tox =z, and
(i) (uoz)oy =u has a unique solution u € P.

Then the digraphs G; (i € P) on the verter set P with E(G;) = {(z,z0
i) | i # x € P} form an ODC of D,,.

Several results obtained by other constructions can be restated as
applications of the above theorem, using special quasigroups.

2.4. ApDING ODCs

In constructing ODCs a natural approach is to try to put two given
ODCs somehow together in order to obtain an ODC of a larger com-
plete graph. More precisely, let O = {G1,G3,...,Gp} and O =
{G1,G3,...,Gr} be ODCs of the complete graphs on the (disjoint)
vertex sets V = {1,2,...,m} and V = {1,2,...,7m}, respectively. We
are seeking graphs Hy, H»,..., Hy,, and Hy, Hs,..., Hy such that

P = {GlUHl, GQUHQ,..., GmUHm, GTUHT’ GEUH§,..., GﬁUHﬁ}
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is an ODC of K;4p. Clearly, the conditions ensuring this are the
following:

(1) Hi,Hy, ..., Hy and Hy, Hs, ..., Hy are spanning subgraphs of the
complete bipartite graph K, , on the vertex set V UV, where the
independent sets are V and V,

(2) |E(H;)| =nfori=1,2,...,m and |[E(H;)| =m fori=1,2,...,n,

(3) E(H;) N E(Hj) =0 for 1 <i<j<m and E(H;) N E(H;) = 0 for
1<i<j<n,and

(4) |E(H;) N E(H;)|=1for 1<i<m,1<j<n.

In other words, the graphs Hi, H»,...,Hy, and Hy, Hs,..., Hy form
an ODC of K, ,, (see also Sections 5.2 and 5.3).

Moreover, usually we want to make sure that the pages of P are all
isomorphic to some graph F. Obviously, F' must have two (not neces-
sarily disjoint) independent sets of size m and n, respectively, which
are separated from their complements in V (F') by cuts of size m and n,
respectively. This rather strong condition explains that this addition
construction can only be used to find ODCs by graphs with many
isolated vertices or graphs (in particular, trees) with many pendant
vertices.

A first application of the above method is due to Gronau, Mullin,
and Rosa:

THEOREM 2.9 ([32]). Let G be a graph on n ¢ {2,6} wvertices. Fur-
ther, let G* be the graph on 2n wvertices obtained from G by adding n
new disjoint edges, one at each verter of G, joining this and a new
vertex. If there is an ODC of K, by G, then there is an ODC of Ko,
by G*.
Proof. We use the above construction, where (9 and O are both
ODCs of K, by G. Furthermore we choose E(H;) = {{aij,bij} | j =
.,n} and E(H;) = {{aj;, ]z} |7 = .,n}, Where A = (ai;) and
B = (bw) are two orthogonal Latin squares of order n on {1,2,...,n}.
It is immediately clear that the resulting collection P is an ODC of Ky,
by G*. a

Let O = {G4,...,G,} be an ODC of K,, by some graph G. A vertex
v € V(Q) is called rotating vertex of O if there are isomorphisms ¢; :
G — G; (1 = 1,2,...,n) such that {p;(v) | i = 1,...,n} = V(K,).
Note that in a group-generated ODC all vertices of G are rotating
vertices of O.

The following lemma turned out to be very useful in constructing
ODCs by trees (see Section 3.4).
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LEMMA 2.10 (Leck and Leck [55]). Let F' be a graph on m + n ver-
tices, and let G and G' be subgraphs of F on m and on n wvertices,
respectively, such that the following conditions are satisfied:

(1) G can be obtained from F by deleting exactly n pendant vertices, all
adjacent to some v € V(G), and the n edges joining these vertices
and v.

(2) There exist vertices vi,va,...,vx € V(G) such that G' can be ob-
tained from F deleting exactly m pendant vertices, each adjacent to
one of the vertices v1,...,v, and the m edges joining these vertices
and the v;’s.

(8) There exists an ODC O of K, by G such that v is a rotating vertex
of O.

(4) There exists an ODC O of K, by G' such that vy, ..., vy are rotating
vertices of O.

Then there is an ODC of K4y by F.

To show the lemma, use the above construction, and choose the H;’s
and H;’s in the obvious way such that G; U H; = GJ—- U H; >~ F. It is
easy to check that the conditions for the resulting collection P to be
an ODC are satisfied by the H;’s and H;’s.

As an example, an ODC of Ky by a graph F' is given in Figure 6.
Consider the m = 5 pages on the left-hand side. The subgraphs of
these pages which are induced by the vertices 1,2, 3,4,5 form an ODC
O of K5 by a graph G. The corresponding edges are printed bold. In
all the 5 pages the vertices 1,2, 3, 4 are joined to the same vertex of G,
and this is a rotating vertex of . The corresponding thin edges form
the stars Hy,..., Hs. Similarly, the subgraphs of the n = 4 pages on
the right-hand side of Figure 6 induced by 1,2,3,4 form an ODC O of
K, by G'. Again, the corresponding edges are drawn bold. The thin
edges in these 4 pages form the graphs Hr, ..., Hy each of which is a
collection of disjoint stars.

REMARK 2.11. Lemma 2.10 can be applied recursively, due to the
following simple observation: If F,G,G',0,0 are like in the lemma
and u € V(G)NV(G') is a rotating vertex of O as well as of O, then
u 15 a rotating vertezx of the resulting ODC of K4y by F'.

In Figure 6, for instance, the ODCs O and O are cyclic. Hence, in
the resulting ODC of Kg the three vertices forming the only triangle in
F are rotating.
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oW N R
P N W

P N Wb

AW N

B W N F
=N W b

B W NP
=N W b

AW N E

Figure 6. Adding two ODCs

Under certain circumstances it is even possible to add up group-
generated ODCs to a new group-generated ODC. The following theorem
covers just the very basic case of a coset construction where we have
only stars between different cosets. More sophisticated applications of
the same idea can be found as well (see [55]).

THEOREM 2.12. Let O be an ODC of K,, by some graph G which is
generated by a group I'. Further let Vi,..., Vi1 be mutually disjoint
sets of size n such that V; NV (G) = 0 for i = 1,2,...,m — 1, and
let G* be obtained from G joining some v; € V(G) to all v € V; for
i =1,2,...,m — 1. (Note that the v;’s are not necessarily distinct.)
Then there is an ODC of Ky by G* which is generated by I’ X Zp,.
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Proof. The conditions in Section 2.1 for G* to be an ODC-generator
w.r.t. I' X Z,, are obviously satisfied if we label the vertices of G* as
follows: For ¢ = 0,1,...,m — 1 the vertices of V; are labeled by (z,1)
(z € T'), where Vj := V(G). On Vj, this is done in such a way that we
obtain a generator of a solution generated by I' if we remove the second
entry from all labels in G. O

2.5. STARTERS, HALFSTARTERS AND THEIR TRANSLATES

Starters have been proven useful in the construction of a variety of
combinatorial structures. We use this concept and the related notion of
a halfstarter to construct ODC-generating graphs consisting of disjoint
cycles and/or a path.

Let I' be an abelian group of odd order 2n + 1. A starter with
respect to I' is a set of unordered pairs S := {{s;,%;} : 1 < i < n}
which satisfies:

1.{s;:1<i<n}U{t;:1<i<n}=T)\{0}

A translate S + e of a starter S is the set {{s; +e,t; +e}:1<i<n}
for some fixed e € I'. The element e is called the isolated point of the
translate.

Usually, we will view a starter or translate S as a graph on the
elements of I'. The edges of this graph are given by the unordered pairs.
Hence, the graph consists of disjoint edges and exactly one isolated
vertex.

EXAMPLE 2.13. The set of unordered pairs {{1,3},{2,6},{4,5}} is
a starter with respect to Zz.

For any group I' of odd order, the set S, = {{a,—a} :a €T\ {0}}
is a starter with respect to I'. It is called the patterned starter.

Now, let S = {{s;,ti} : 1 <i<n}and T = {{us,v;} : 1 <3 <n}
be starters or (more generally) translates with respect to I'. We may
assume, w.l.o.g., that s; —¢; = u; — v; for all . Then S and T are said
to be skew-orthogonal, if u; — s; = +(u; — s;) implies that ¢ = j, and if
u; # s; for all 4.

EXAMPLE 2.14. The  sets  {{1,3},{2,6},{4,5}}  and
{{1,6},{2,5},{3,4}} are skew-orthogonal starters with respect to
Zy. Note that the latter one is a patterned starter.
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Skew-orthogonal starters were first used by Stanton and Mullin [64] to
construct Room squares. They are useful in the construction of ODCs
because of the following fact.

PROPOSITION 2.15. Let S and T be two skew-orthogonal starter
translates with respect to some odd order group I'. Then, the graph
SUT is an ODC-generator with respect to T.

If the two starter translates share the same isolated point the result-
ing graph consists of disjoint cycles and exactly one isolated vertex.
Otherwise, the graph includes a path and the vertices not on this path
form mutually disjoint cycles. We are especially interested in the two
extremal cases, i.e. the graph consists of one almost-hamiltonian cycle
and an isolated vertex or the graph is a path.

EXAMPLE 2.16. The starters in FEzample 2.1/ yield an ODC-
generating almost-hamiltonian cycle with respect to Zr.

A starter translate S = {{s;,#;} : 1 < i < n} with respect to some
abelian group I is said to be skew if {£(s; +1;): 1 <i <n} =T)\{0},
that is s; + t; = £(s; + t;) implies i = j, and s; + t; # 0 for all
i. Skew translates are an important tool in the construction of ODC-
generating graphs because of the following fact, observed first in the
case of starters, by Mullin and Nemeth [61].

LEMMA 2.17 ([61]). If there ezists a skew translate S with respect to
some group I', then the translates S, —S and the patterned starter S,
with respect to T are pairwise skew-orthogonal.

Mullin and Nemeth [61] present a first class of skew starters, later
called Mullin-Nemeth starters. Let ¢ be a prime power of the form
g = 2Ft + 1, where ¢t > 1 is odd. Let w be a primitive element in the
finite field GF(q). Further, define Sy to be the multiplicative subgroup
of GF(q)\ {0} of order t. Then, Sy has the cosets S; = w'Sy for 1 < i <
2 — 1. With A := 2¥=1 and H := U2,' S;, the Mullin-Nemeth starter
is defined by M = {{z,w™z} : x € H}.

The starter in Example 2.13 is a Mullin-Nemeth starter in GF(7)
with Sp = {1,2,4}, A=1and w = 3.

The Mullin-Nemeth construction yields a skew starter in any field
GF(q) when q is odd, except when ¢ = 9 or when ¢ is a Fermat prime.
Chong and Chan [13] give a construction of a skew starter in GF(q)
when ¢ is a Fermat prime greater than 5. This construction is general-
ized by Dinitz [19] to work in the ring Z4;2, 1. Lins and Schellenberg
[69] give a short proof of this generalization. Thus, for all odd prime
powers ¢, there exists an abelian group that admits a skew starter, with
the exceptions ¢ = 3,5, and 9 where no skew starter exists.
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Mullin-Nemeth starters have been generalized in many ways, e.g. to
quotient coset starters [20] and to Dinitz starters [19].

The concept of halfstarters, introduced by Anderson and Leonard [4]
and strongly related to starters, turns out to be useful for our purposes
as well.

Let I" be an abelian group of order 4n+ 1. A halfstarter with respect
to I' is a set of unordered pairs H := {{s;,t;} : 1 < i < 2n}, which
satisfies

1.{s; : 1 <i<2n}U{t;: 1 <i<2n} =T)\{0},

2. the set of lengths {%(s; —t;) : 1 < i < 2n} contains exactly half the
nonzero elements of I' and each such element occurs exactly twice
as a length.

As in the case of a starter, we define a translate H + e of the halfstarter
H to be the set {{s; +e,t; + e} : 1 < i < 2n} for some fixed e € T
Again, the element e is called the isolated point of the translate.

Usually, we will view a halfstarter as a graph on the elements of
the group I'. Similar to the starter case, the resulting graph consists of
disjoint edges and exactly one isolated vertex.

EXAMPLE 2.18. The set
H = {{2,10},{1,4},{0,3},{5,9},{6,11}, {8,12}}

s a halfstarter translate with respect to Zis.

Two halfstarter translates H and K with respect to I' are said to be
supplementary if their sets of lengths are disjoint. This means that the
graph H U K fulfills the length condition for an ODC-generating graph.

Since every occurring length in a halfstarter H appears exactly
twice, a halfstarter induces a set Dy of distances of edges of the same
length. If, for two supplementary halfstarters (or translates) H and
K, the union of Dy and Dg is T'\ {0}, we call the halfstarters (or
translates) complementary.

PROPOSITION 2.19. Let H and K be complementary halfstarter
translates with respect to I'. Then, the graph HUK is an ODC-generator
with respect to T'.

As in the case of starters, two halfstarter translates form a graph that
consists of disjoint cycles and exactly one isolated vertex or a graph that
includes a path and disjoint cycles. Again, we are especially interested
in the two extremal cases, i.e. the graph consists of one almost-hamil-
tonian cycle and an isolated vertex or the graph is a path. For example,
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the translate

K = {{5,12},{9,11},{4,6},{0,1},{7,8},{3,10}}

with respect to Z13 is complementary to the translate H from Example
2.18. Their union H U K is an ODC-generating path with respect to
Z3.

An important property of a halfstarter H is the invariance of its
distance set Dy under translation. Clearly, for all translates H + e, e €
[, the set D4 equals Dg. Hence, for two complementary halfstarters
H and K, not only the graph H U K is ODC-generating, but also
(H+e) UK for any e €T

PROPOSITION 2.20. Let H and K be complementary halfstarter
translates with respect to T'. Then, the graph (H + e) U K is an
ODC-generator with respect to I' for any e € T.

The next theorem presents a class of complementary halfstarters in
a finite field of order ¢ = 4mt + 1.

THEOREM 2.21. Let GF(q) be a finite field of order ¢ = 1 mod 4.
Furthermore, let S denote the multiplicative subgroup of GF(q)* gen-
erated by an element e with multiplicative order 4m. Let {ry,...,ri} be
a coset representation of GF(q)* modulo S. Then, the sets

Hy = {{ri,er1}, {627‘1,637“1}, ... ,{e4m72r1,e4m*1r1},

e4m—2 4m

{7‘2,67"2},{62’)"2,637‘2},...,{ T9,€ _17"2},

{Tka eTk}, {62,’_k’ 63""k}, [ {64m727‘k’ 64m71rk}}

and
Hy = {{er, 62?"1}, {e3r1,e4r1}, cen {e4m71r1,7“1},
{era, 627‘2}, {e3r2, e4r2}, een, {e4m71r2, T2},
{erk, e’ri}, { i, etred, . {e g, i} = eHy

are complementary halfstarters with respect to the additive group of

GF(q).



On Orthogonal Double Covers of Graphs 19
2.6. NEARLY-CYCLIC ODCS AND EXTENDABILITY

Hering [48] introduces a class of ODCs by almost-hamiltonian cycles in
which all but one page are generated cyclically from a given cycle.

Let g € Z, be an element of order n. An ODC O of K, 1 by an
almost-hamiltonian cycle is called nearly-cyclic, if it consists of cycles
Go,-..,Gp—1 and G on the vertex set Z, U {oo} such that, for i € Z,,
G; = Gy + i where the addition in Z, is extended by oo + i = oc.
Furthermore, G, is the almost-hamiltonian cycle (0, g, 2g, 3¢, ... , (n —
1)g) generated by the multiples of g with the isolated vertex oc. We
say, the pair (Gy, g) generates O.

EXAMPLE 2.22. If we choose g = 1 in Z5 and let Gy = (00,0, 3,4, 2),
then the pair (Go, g) generates a nearly-cyclic ODC of K¢ consisting of
the almost-hamiltonian cycles Gy = (0,0, 3,4,2), G1 = (00, 1,4,0,3),
G2 = (0,2,0,1,4), G3 = (0, 3,1,2,0), G4 = (00,4,2,3,1) and G =
(0,1,2,3,4).

In non-cyclic groups there are no generating elements. Hence, for those
groups the graph G is not an almost-hamiltonian cycle. Therefore,
we focus on cyclic groups.

Next, we describe necessary and sufficient conditions on a pair to
generate a nearly-cyclic ODC.

LEMMA 2.23 (Hering [48]). Let G be an almost-hamiltonian cycle on
the elements of Z, U {oo} with the edges {oc0,a} and {oco,b}. Further-
more, let Pg denote the path arising from G by deleting the edges {o0,a}
and {00,b}. The pair (G,g), where g € Zy, is of order n, generates a
nearly-cyclic ODC by an almost-hamiltonian cycle, if and only if the
following conditions hold:

1. For all elements z € Zy \ {0,9} of order not 2, there are ezactly
two edges of length {£z} in Pg.

If n is even, then there is exactly one edge of length {3} in Pg.
There is ezactly one edge of length {£+g} in Pg.

The order of the element a — b is not 2, e.g. a — b # 3.

AR S R

The union of the distances of edges of the same length includes all
elements from Zy \ {0,a — b, —a + b} of order not 2.

In the cycle G = (,0,3,4,2) from Example 2.22, we have that
Pg =0,3,4,2. In Zs, £({0,3}) = {£2}, £({3,4}) = {1}, £({4,2}) =
{2} and dist({0,3},{4,2}) = {£1}. Clearly, there is no element of
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order 2 in Zs. Hence, the pair (G, 1) fulfills the conditions of Lemma
2.23.

The path 0,6,2,7,1,4,5 contains with respect to Zg the lengths
{1} and {%4} once, and the lengths {£2} and {£3} twice. The
distances of the edges of the latter lengths are {£2} and {£1}. Fur-
thermore, 0 — 5 = 3 is of order 8. Thus, with G = (00,0,6,2,7,1,4,5),
the pair (G,3) generates a nearly-cyclic ODC of Kg by an almost-
hamiltonian cycle.

We observe that the conditions on a pair (G,g) to generate a
nearly-cyclic ODC in Lemma 2.23 are similar to those for an ODC-
generator. Hence, it is natural to construct such a pair from a cyclic
ODC-generator.

Let us consider an ODC-generator H with respect to Z,. By deleting
one edge of H, we want to generate the path P; of an almost-
hamiltonian cycle G on the vertex set Z, U co. Hence, H can be a
path or an almost-hamiltonian cycle.

We investigate almost-hamiltonian cycle s. Let the cycle H =
(v1,--.,Up—1) be an ODC-generator with respect to Z,. We obtain a
cycle G on the vertex set Z, U {oo} after replacing an edge {v;,vi+1}
in H by the path v;, 00, v;4+1. If there is an edge {v;,v;+1} in H and an
element g € Z,, such that the pair (G, g) generates a nearly-cyclic ODC
of K, 11 by an almost-hamiltonian cycle, then we call H exztendable at
g-

There are necessary and sufficient conditions on a cyclic ODC-
generating cycle to be extendable.

LEMMA 2.24. An ODC-generating almost-hamiltonian cycle H with
respect to Zy, is extendable, if and only if there is an element g € Z,, of
order n such that the two edges of length {£g} in H have also distance
{£g}.

The two edges of length {+¢g} have a common vertex. Hence, they are
neighboring edges on the cycle.

EXAMPLE 2.25. The cycle (1,5,2,3,4,6) is an ODC-generator with
respect to Zy. Furthermore, £({2,3}) = £({3,4}) = {£1}. Thus, by
Lemma 2.24, the cycle is extendable, and the pair ((c0,3,4,6,1,5,2),1)
generates a nearly-cyclic ODC of Kg by an almost-hamiltonian cycle.

Leck [57] constructs extendable ODC-generating cycles consisting of
two skew-orthogonal starters. Using a hill-climbing algorithm due to
Dinitz and Stinson [21] he derives the following result.

LEMMA 2.26 ([57]). Let 7 <2n+1 <101, 2n+ 1 # 9. There exists
an extendable ODC-generating almost-hamiltonian cycle with respect to
Lian+1-
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COROLLARY 2.27 ([57]). Let 8 < 2n < 102, 2n # 10. There is a
nearly-cyclic ODC of Koy by an almost-hamiltonian cycle.

The unique ODC-generating cycle with respect to Zs is not extendable.
There is no ODC-generating cycle with respect to Zg [49].

The cycle in Example 2.25 is extendable at any g € Z7 \ {0}, i.e. it
is super-extendable. More general, we call an almost-hamiltonian cycle
on the elements of some odd order abelian group I' super-extendable,
if, for every a € I"\ {0}, there are exactly two edges of length {+a},
and these two edges are adjacent.

Figure 7. A super-extendable cycle with respect to Z1g

A super-extendable almost-hamiltonian cycle consists of two skew-
orthogonal starters. Hence, super-extendability implies the property
of being ODC-generating. The resulting cycle can even be oriented
alternately to supply an ODC-generating anti-directed cycle.

Since in a cyclic group Z, of prime order every non-zero element
generates the group, a super-extendable cycle with respect to Z, is
extendable at any of its edges.

For example, the cycle (1,4,7,5,3,12,8,2,9,10,11,6) generates an
ODC with respect to Zi3 and is super-extendable.

Bey, Hartmann, Leck and Leck [7] use quotient coset starters in
finite fields to construct super-extendable cycles.

THEOREM 2.28 (Bey, Hartmann, Leck and Leck [7]). Let GF(q) be a
finite field of order ¢ = 2¢t 4+ 1 where t is odd. There exists a super-
extendable almost-hamiltonian cycle with respect to the additive group
of GF(q) if t > to(e). Moreover ty(1) = 3 and t,(2) = 3.

COROLLARY 2.29. Let p =5 or 7mod 8 be a prime. There exists a
nearly-cyclic ODC of Kp11 by an almost-hamiltonian cycle.



22 Gronau, Griittmiiller, Hartmann, Leck and Leck

3. Existence results for special graph classes
In this section, we present ODCs for several classes of graphs.

3.1. SMALL GRAPHS

Using exhaustive search methods, the existence of an ODC by a graph
G has been determined for all graphs with at most 10 vertices, up to
two possible exceptions [56]. It turns out that most of these graphs
even admit a cyclic ODC-generator.

Table I. ODCs for graphs with at most 10 vertices

ODCs
vertices no. graphs cyclic non-cyclic none
2 1 1 - -
3 1 1 - -
4 3 2 - 1
5 6 4 1 1
6 15 13 1 1
7 41 30 7 4
8 115 95 11 9
9 345 321 17 7
10 1103 1059 36+1 8F1

All but 23 of the graphs with up to 9 vertices admit an ODC. All
but 60 of them even have a cyclic ODC-generator. There are 44 graphs
on 10 vertices without a cyclic ODC-generator.

3.2. CLIQUE GRAPHS

Figure 3 in the introduction shows an ODC of K4 by the complete graph
K3 augmented by an isolated vertex, provided we omit the orientation
of all the arcs. It is natural to ask for ODCs by other complete graphs,
but this question turns out to be hard. For every n = (g) +1, an ODC
of K, by K;, U E,,_; corresponds to a biplane with block size k, that
is, to a symmetric (n,k,2) block design (see [15] for definition). So
far, biplanes are only known for kK = 1,2,3,4,5,6,9,11, 13. Conversely,
biplanes do not exist for infinitely many values of k¥ due to the Bruck-
Ryser-Chowla theorem, cf. [15]. In particular there is no biplane with
block size 7. In fact, it is widely believed that there exist only finitely
many biplanes.
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THEOREM 3.1. There exists an ODC of K, by K U E,,_ for n =
%) +1 and k=1,2,3,4,5,6,9,11 and 13.

Every vertex-disjoint union of complete graphs is called a clique
graph. In particular, let mK; denote the union of m copies of Kj.
Motivated by problems from combinatorial database theory, Demetro-
vics, Fiiredi and Katona [17] got interested in orthogonal double covers
whose pages are clique graphs. In particular, they constructed ODCs of
K, by mK3UE; for every m = 0,1 mod 4 and n = 3m+ 1. In addition,
they found an ODC of K; by 2K3 U Eq1: A cyclic ODC-generator of
this ODC consists of an isolated vertex 0 and two copies of K3 with
vertex sets {1,2,4} and {3,5,6}. This motivated them to conjecture
the existence of an ODC by mK3 U E; for every m.

Gronau and Ganter [27] were the first who observed that the set of all
integers n = 3m+1 admitting an ODC of K,, by mK3UE; is PBD-closed.
Note that the PBD-closure of {4,7} is {n : n = 1 mod 3,n # 10, 19}. For
n = 19 there exists a cyclic ODC whose ODC-generator consists of the
isolated vertex 0 and six copies of K3 whose vertex sets are {1,7,11},
{2,14,3}, {4,9,6}, {5,16,17}, {8,18,12} and {10, 13,15}. For n = 10,
however, Rausche [62] excluded an ODC by 3K3 U Ej.

THEOREM 3.2 ([27]). There ezists an ODC of K,, with n = 3m + 1
by mKs U Ey if and only if m # 3, that is, n # 10.

Surprisingly, one cannot find more than seven mutually orthogonal
subgraphs of Kiy. The same result was also obtained by Bennett and
Wu [5] who analyzed all nearly-resolvable (10, 3,2) block designs.

In [17], Demetrovics, Fiiredi and Katona actually conjectured the
existence of an ODC of K,, by clique graphs for every n > 9. The
preceding results verify the conjecture for n = 2,11,56 and for all
n = 1 mod 3 apart from n = 10. Conversely, for n = 3 and 6 there does
not even exist a clique graph with n vertices and n — 1 edges, which is a
necessary property of the pages in an ODC of K,,. For n = 5 the single
clique graph is K3 U Ks. Suppose there is an ODC of K5 by K3 U Ko.
It must contain two pages which have their copy of Ko in common.
This, however, forces the two pages under inspection to share a second
edge. Consequently, there is no suitable ODC of K5. For n = 8 the only
clique graphs are 2K3 U Ky and K4 U K9 U E5. A complete computer
search [27] showed that there is no ODC of Kg by clique graphs, not
even if we allow non-isomorphic pages.

Eventually, the conjecture of Demetrovics, Furedi and Katona was
settled by Bennett and Wu [5] and, independently, by Gronau and
Mullin [30].
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THEOREM 3.3 ([5, 30]). There exists an ODC of K, by a clique graph
if and only if n # 3,5,6,8.

The proof is much more laborious than the previous one. Below we
sketch the approach of Gronau and Mullin [30]. For n = 9 there is a
cyclic ODC by K4 U 2Ky U Eq, whose ODC-generator consists of the
isolated vertex 0 and the cliques with vertex sets {1,2,4,5}, {3,7} and
{6,8}. Starting with this solution and the ODC of Ki; arising from
the biplane with block size 5, suitable ODCs can be found for every
n < 142, n # 3,5,6,8,10 by PBD-closure or direct constructions. Put
Sq:={n <gq:n#3,5,6,8,10}. Exploiting group divisible designs we
obtain the following result:

LEMMA 3.4. Let g > 13 be a prime power. If there are ODCs of K,
by clique graphs for all n € S114—1, then there are such ODCs for all
n € Sy(g+1), too.

Due to Bertrand’s postulate (see [24]) on primes, this lemma enables
us to complete the proof of Theorem 3.3 for all n apart from n = 10.
However there is a cyclic ODC of K19 by K4U3K5 whose ODC-generator
consists of the cliques with vertex sets {0,1,3,5}, {2,9}, {4,8} and
{6,7}.

The direct constructions used in [30] for n < 142 yield suitable ODCs
whose pages consist of one large clique, copies of K5, and many isolated
vertices. Of course, ODCs whose pages contain small cliques only would
be of interest as well. Although this question seems to be a difficult one
in general, a first result was given by Gronau, Mullin and Schellenberg.

THEOREM 3.5 ([34]). Let n = 6m + 2 with n # 8. Then there exists
an ODC of K, by 2mKs U K>.

Proof. Due to Brouwer, Hanani and Schrijver [9] there is a group
divisible design of type 2° and with blocks of size 4 whenever s =
1mod 3, s > 7. Therefore we may apply the PBD-construction using
the well-known ODC of K; by K3 U E; and the trivial ODC of K, by
K> as ingredients. This gives the claimed ODC for every n = 2s = 2
mod 6 with the exception n = 8. O

Further results on ODCs by clique graphs are presented in Section 4
below.

3.3. CYCLE FAMILIES

Clearly, the triangles in Theorem 3.2 can also be looked at as cycles.
This leads to the existence problem for ODCs whose pages consist of
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vertex disjoint C’s. This was first posed by Hering [49]. Recall that a
necessary condition is n = 1 mod k.
Granville, Gronau and Mullin proved the following results.

THEOREM 3.6 ([29]). There ezists an ODC of K,, with n = 4m + 1
by mCy U E1 for all m > 1.

Proof. Theorem 2.7 shows the existence of the required ODCs for n =
5,9,13,17,25,29. The generating set for PBDs of order {n = 1 mod 4}
is {5,9,13,17,25,29,33}, see [15]. Hence, it suffices to give an ODC-
generating graph for the case n = 33 to establish the theorem. Here
we take an isolated vertex 0 and 8 copies of C4, namely (1,2,4,3),
(5,8,12,19), (6,28,20,16), (7,31,15,25),(9,22,10,30), (11,27,24,17),
(13,21, 26, 32), (14,23,18,29). O

Note that this construction also works for cyclically oriented C}’s.
Moreover, the PBD-construction yields similar results for larger k.
Unfortunately, the sizes of the generating sets increase rapidly.

However, using Theorem 2.3 together with ODCs from Theorem 2.7
for prime powers we have:

THEOREM 3.7 ([29]). Let k > 3 be an integer. Then there ezists a
constant ny such that there is an ODC of K, by mCy U Eq for all
n=km+1>n.

The important case of ODCs by almost-hamiltonian cycles, i.e. ODCs
of K,, by C,,_1 U E, is treated in Section 3.5.

In [28] the existence of ODCs of K, by pages consisting of short
cycles was investigated. The following result is a typical one. (For
definition of idempotent ODC see Section 4.1.)

THEOREM 3.8 ([28]). An idempotent ODC of K,, by pages consisting
of an isolated vertex and vertex disjoint cycles of length 3, 4, or 5 exists
if and only if n >4, n # 8.

An interesting case is n = 10. There is no solution if every page is
isomorphic to G = 3C3 U E; or if every page is isomorphic to G' =
Cs U Cy U Eq. But there exists an ODC with all pages isomorphic to
either G or G'.

Theorem 3.8 solves a problem of Chung and West [14] who conjec-
tured that for all n > 4 there is an ODC of K,, whose pages have all
maximum degree 2. (A solution for n = 8 can be derived from Theorem
3.20.) A simple proof of this conjecture, due to Bryant and Khodkar
[10], uses mutually orthogonal Latin squares.
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Figure 8. An ODC of K10 whose pages are cycle families

3.4. TREES

Since every page of an ODC of K, has exactly n — 1 edges it is natural
to study ODCs by trees. As mentioned already in the introduction, one
tree not admitting an ODC is the Py, the path with four vertices. In
fact, this makes the P, exceptional, at least within a class of small
trees:

THEOREM 3.9. Let T # Py be a tree on n vertices, where 2 < n < 14.
Then there is an ODC of K,, by T.

This was found by computer and generalizes previous results pub-
lished in [32] (n < 10) and [54] (n < 13). It turns out that exactly
5418 of the 5445 trees in question even admit cyclic solutions (see
Table II). 19 of the remaining 27 trees are of diameter three, they are
characterized by Theorem 3.13 below and admit non-cyclic solutions
according to Theorem 3.12. Another 5 trees without cyclic solutions are
caterpillars of diameter four, the (2,2,2)-, (2,2,3)-, (3,3,2)-, (4,2,4)-,
and (3, 3,4)-trees, where by (p1,p2,...,pt)-tree (p1,pr # 0) we mean
the caterpillar consisting of a path z1,x2,.. ., z; and exactly p; pendant
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Table II. ODCs by trees

ODCs
vertices trees cyclic non-cyclic
2 1 1 -

3 1 1 -
4 2 1 -
5 3 2 1
6 6 6 _
7 11 8 3
8 23 20 3
9 47 45 2
10 106 103 3
11 235 230 5
12 551 550 1
13 1301 1294 7
14 3159 3157 2
vertices adjacent to z; (i = 1,2,...,t) (see Figure 9). The 3 remaining

trees not admitting a cyclic ODC are the path P, the graph Y3 con-
sisting of three copies of the star S3 on four vertices glued together at
a pendant vertex, and the (1,0, 0, 3)-tree.

Figure 9. The (p1,p2,...,pt)-tree

Theorem 3.9 supports the following conjecture of Gronau, Mullin,
and Rosa:

CONJECTURE 3.10 ([32]). Let T be an arbitrary tree on n > 2
vertices, different from Py. Then there exists an ODC of K, by T.

This has been confirmed for certain classes of trees of small diameter.
Clearly, every assignment of Z,, to the vertices of a star with n vertices
results in an ODC-generator. Thus, we have the following fact about
trees of diameter two:
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PROPOSITION 3.11. There exists a cyclic ODC of K, by S,_1, the
star with n — 1 edges.

Using the construction described in Section 2.4 to add two ODCs by
Sp+1 and Sy 1, respectively, solves the problem for all trees of diameter
three:

THEOREM 3.12. [Gronau, Mullin and Rosa [32]] Let T be the (p,q)-
tree, where pq > 1, and let n = p+ q+ 2. Then there is an ODC of K,
by T.

For this class of trees it is also known which of its members allow
a cyclic solution. As pointed out in Section 2.4 for instance, these are
often appropriate starting points for recursive constructions.

THEOREM 3.13 (Leck and Leck [54]). Let T be the (p,q)-tree onn =
p + q + 2 vertices. There is a cyclic ODC of K,, by T if and only if n
and pq are not relatively prime.

It is easy to find an ODC-generating (p, q)-tree (gcd(n,pq) > 2)
w.r.t. Zy,. Let d > 2 be a common divisor of n and p, and put ¢ :=
n/d. Furthermore, let z and y be the two non-pendant vertices. The
following two conditions are necessary and sufficient for such an ODC-
generator:

(1) z and y lie in the same coset modulo ¢ - Z,,.

(2) If two pendant vertices u and v are contained in the same coset
modulo t - Z,, then they are both adjacent to z, or they are both
adjacent to y.

A similar statement holds for a special class of trees of diameter
four.

LEMMA 3.14 ([55]). Let T be the (p,q,r)-tree, where ¢ < p —r, and
letn=p+q+r+3. Then there is a cyclic ODC of K, by T'.

The corresponding ODC-generator is given in [55]. Note that Lemma
3.14 does not describe all (p, g, r)-trees which have a cyclic solution.
For instance, ODC-generating (2p, 1, 2p)-trees w.r.t. the corresponding
cyclic group were given by Gronau, Mullin, and Rosa [32]. An ODC-
generating (2p + 1, 1,2p + 1)-tree is obtained if we assign the elements
of Zup+6 to the vertices such that its edges are {0,2p+3},{2p+3,2p+
4}, {2p+3,1}, {0,241} (4 € Zapr6\{0,p+1,2p+3,3p+4}), {2p+4, 2i}
(i € Zapye \ {0,p + 2,2p+ 3,4p + 5}).

Using the above lemma and Lemma 2.10, it is not hard to verify the
following;:
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THEOREM 3.15 (Leck and Leck [55]). Let T be the (p,q,r)-tree on
n=p+q+r+ 3 vertices. Then there exists an ODC of K, by T.

To address arbitrary trees of diameter four we introduce one more
notation. Let t > 2 and p1 > po > --- > p; > 0, where py > 0. The the
(p1, D2, - - -, p1; 4)-tree is the tree on Y f_; p; +t + 1 vertices z, x;, T j
(e =1,2,...,t;5 = 1,2,...,p;) with the edges {z,z;}, {zi,z;;} (see
Figure 10).

Figure 10. The (p1,p2,..., pt;4)-tree

The case t = 3 can be settled completely essentially by an iterated
application of Lemma, 2.10, where one of the “summands” is an ODC
of K4 by 53.

THEOREM 3.16 (Leck and Leck [55]). Let T' be the (p1,p2,ps;4)-tree
on n = p1 + p2 + ps + 4 vertices. Then there is an ODC of K, by T.

A more careful use of basically the same technique yields:

THEOREM 3.17 (Leck and Leck [55]). Let T' be the (p1,p2,-.-,p1;4)-
tree, where p1 > 4t + 3 and p; > t+ 1 for i = 2,3,...,t, and let
n=Yt_ p;+t+1. Then there is an ODC of K, by T.

Actually, the results in [55] cover a slightly more general class of
trees of diameter 4 than the one given in Theorem 3.17. Another class
of diameter 4 trees not covered by the theorem are the comets for which
the PBD-construction yields solutions as shown in Section 2.2. In fact,
there is even a cyclic ODC by any comet, the corresponding generators
were given by Gronau, Mullin, Rosa [32]. Again using PBD-closure, this
can be generalized to (k,k,...,k;4)-trees as follows. For brevity, TX
denotes the (k,k, ..., k;4)-tree.

~——

m times
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THEOREM 3.18. There ezists an ODC of Kyykq1)41 by TE for all
k > 1 with only finitely many possible exceptions.

Proof. The cases k = 2 and k = 3 were investigated in [32] and [54],
respectively. To prove the general case, we show that the set of integers
n = m(k+1)+1 (k fixed) for which an ODC of K,, by T exists is PBD-
closed. We take as ingredients in Theorem 2.4 a PBD[n, {k + 2,2k +
3,3k+4)}]. The PBD-closure of {k+2, 2k+3,3k+4} includes all integers
n = 1 (mod k + 1) with finitely many exceptions (see [66]). Finally,
we give ODCs by TF,T§ and TF which are to be amalgamated at an
end vertex of TF and the central vertices of T4 and T:f, respectively.
These vertices are rotating vertices of the original ODCs. The first is
a (k + 1)-star. Hence, there is a cyclic ODC by Proposition 3.11. The
required ODCs by T¥ and T¥ are obtained from Lemma 3 and Theorem
5, respectively, in [55]. O

Similarly, solutions can be found for several other trees of diameter
4.

So far, there is not much knowledge about ODCs by trees of diam-
eter at least 5. For diameter 5 basically the same constructions as for
diameter 4 can be applied. An initial lemma providing ingredients for
the adding construction is given below.

LEMMA 3.19. For even n > 12 there is a cyclic ODC of K,, by the
(3,0,0,n — 7)-tree.

Proof. The (3,0,0,n—7)-tree with edges {i,n/2} (i € {n/2+2,n/2—
1a1})7 {n/QaO}a {Oan/2 - 3}7 {n/2 —3,n — 1}7 and {n - 172} (’L €
{0,1,...,mn—1}\{0,1,n/2 = 3,n/2 —1,n/2,n/2 4+ 2,n — 1}) is easily
verified to be a generator of a cyclic ODC. ]

An example of a class of trees of larger diameter ODCs by which can
be constructed is given by Theorem 2.6. Solutions for a similar class of
trees can be derived applying Theorem 2.12 repeatedly (starting with
a star). Finally, a class of trees studied very intensively with respect to
ODCs are hamiltonian paths, see Section 3.5.

3.5. ALMOST-HAMILTONIAN CYCLES AND HAMILTONIAN PATHS

The existence question for ODCs by almost-hamiltonian cycle s is one of
the earliest problems in this area. It was posed by Hering and Rosenfeld
[50] in 1979. Despite some efforts in the past 20 years, this question is
far from being answered completely.

We give an overview of progress made towards settling the existence.
Since ODCs by hamiltonian paths turn out to be a crucial tool in the
construction we also focus on their existence.
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Alspach, Heinrich and Rosenfeld [3] introduce a construction of an
ODC-generating almost-hamiltonian cycle with respect to the additive
group of a finite field. They prove the following theorem.

THEOREM 3.20 (Alspach, Heinrich and Rosenfeld [3]). Let GF(q) be
a finite field of order q, q > 3. Furthermore, let w be a primitive
element. Then, the cycle (1,w,w?,...,w972) is an ODC-generating
almost-hamiltonian cycle with respect to the additive group of GF(q).

This construction was found, independently, also by Hering [48]. It even
yields an ODC-generating dicycle. Alspach, Heinrich and Rosenfeld [3]
also consider anti-directed cycles in finite fields, i.e. dicycles where no
two consecutive arcs have the same orientation. They construct ODC-
generating anti-directed cycles in finite fields of odd order.

We observe that the cycle of Theorem 3.20 is the union of the sets

H, = {{1,w}, {wQ,w?’}, ... ,{wq_3,wq_2}}
and

Hy = {{w,w?}, {wd, 0w}, ... {wi2,1}}).

Hence, by Theorem 2.21, when ¢ = 1 mod 4, it is the union of two
complementary halfstarters. In the case ¢ = 3 mod 4, the sets H; and
H, are Mullin-Nemeth starters (and thus skew) and it holds H; = —H.
Thus, by Lemma 2.17, they are skew-orthogonal.

In GF(5), 2 is a primitive element. The cycle (1,2,4,3) is ODC-
generating with respect to Zs, the sets Hy = {{1,2},{3,4}} and Hy =
{{1,3},{2,4}} are complementary halfstarters. In GF(7), 3 is a primi-
tive element. The ODC-generating cycle (1, 3,2,6,4,5) with respect to
Z7 consists of the skew-orthogonal starters Hy = {{1,3},{2,6},{4,5}}
and Hy = —H; = {{65 4}5 {55 1}5 {31 2}}

Besides settling the existence for prime powers, Alspach, Heinrich
and Rosenfeld presented ODCs of K, by an almost-hamiltonian cycle
for n =6,10,12,14 and 15.

Recall that, by Corollary 2.2, there is no ODC-generating almost-
hamiltonian cycle with respect to an abelian group of order 2 mod
4,

Using the Dinitz/Stinson hill-climbing algorithm [21] to construct
skew-orthogonal starters, Leck [57] establishes the following existence.

LEMMA 3.21 (Leck [57]). Let 7 <2n+1<101, 2n+ 1 # 9. There
exists an ODC-generating almost-hamiltonian cycle with respect to the
cyclic group Zoyy1 consisting of two starters.

The ODC-generating almost-hamiltonian cycle with respect to Zs ob-
tained from Theorem 3.20 is unique [49] and, because 5 = 1 mod 4
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consists of two complementary halfstarters. In Zg, there is no ODC-
generating almost-hamiltonian cycle [49]. But, by Theorem 3.20, there
is one with respect to Zs x Zs. Since 9 = 1 mod 4, this cycle consists
of two complementary halfstarters.

Heinrich and Nonay [47] give a construction of an ODC by an almost-
hamiltonian cycle from an ODC of a hamiltonian path on a smaller
vertex set. In fact, it even yields an ODC by an almost-hamiltonian
dicycle. A generalization was given by Leck [58].

THEOREM 3.22 ([47, 58]). If there is an ODC of K,, by a hamiltonian

path, then there exist ODCs of 134n and 516n by almost-hamiltonian
dicycles.

Theorem 3.22 lets us focus on the existence of ODCs of K,, by hamil-
tonian paths. Heinrich and Nonay [47] present such ODCs for 2 < n <
20,n # 4. For n # 7, the solutions are cyclic. They also introduce
a "multiplication” construction, which is generalized by Horton and
Nonay [51] and utilizes a class of solutions with the additional property
to be 2-colorable. An ODC by a hamiltonian path is called 2-colorable,
if the edges of each of its paths can be colored alternately with two
colors, such that every edge of the complete graph is covered twice by
the same color. Note that there is no 2-colorable ODC by a path P,
with n = 3 mod 4. We say an ODC-generating path is 2-colorable, if it
generates a 2-colorable ODC.

An ODC-generating path is 2-colorable, if and only if the two edges
of the same length are equally colored. That means that there is an odd
number of edges on the path between any two edges of the same length.
The path 0,3,7,2,4,1,5,6,8,9, for example, is a 2-colorable ODC-
generator with respect to Zig. There are 1,3,3 and 3 edges between
the edges of length {£1}, {£2}, {3} and {£4}, respectively.

THEOREM 3.23 (Horton and Nonay [51]). Let g be a prime power,
q > 5, and let m > 3. If there are an ODC by P,, and a 2-colorable
ODC by Py, then there is an ODC by the path Py,.

For n = 5,9,10,12,13,17,29, Horton and Nonay [51] give 2-colorable
ODCs by P,. For n # 9, these solutions are cyclic, the ODC by Py
is generated by Zs x Zsz. We remark that the ODCs by Py and by
Py5 are not applicable to Theorem 3.23. Note that, by the repeated
application of Theorem 3.23, we derive an ODC by a hamiltonian path
on ¢* vertices for all integers k from a single 2-colorable ODC by p,.

Leck [57] observes that a 2-colorable ODC-generator on 4n + 1 ver-
tices consists of two complementary halfstarter translates. These can
be constructed efficiently using hill-climbing techniques of Dinitz and
Stinson [21].
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LEMMA 3.24 (Leck [58]). There is a 2-colorable ODC by the hamil-
tonian path P,, 2 < n < 101, if and only if n Z 3mod 4 and n #
4,6.

Hartmann, Leck and Leck [43] use the halfstarters of Theorem 2.21
to construct 2-colorable ODC-generators in finite fields of order 4n + 1.
They conjecture their construction to work in every such field and prove
the following existence result.

LEMMA 3.25 ([43]). Let p be a prime, p =1 mod 4, 5 < p < 100000.
There exists a primitive element w in GF(p) such that the graph Hy(w)U
(Hy(w) 4+ 1) is a path. This path is ODC-generating with respect to Z,.

Leck [53] gives large infinite classes of solutions.

THEOREM 3.26 (Leck [53]). Let n = m?, where m > 3 is odd. Then,

(a) there is a 2-colorable ODC-generating path with respect to Ly, X
L,

(b) there is a 2-colorable ODC-generating path with respect to Zyy, X
Zm X ZQ.

Combining the results discussed in this section and applying Corol-
lary 2.29 and Lemma 2.26 we derive the following existence result.

THEOREM 3.27. Let n > 4 be an integer, and let n = 2°p$* - - pi¥,
e; > 1, be its decomposition into prime factors. Furthermore, suppose
that, for odd e;, the prime p; < 100000 and p; = 1 mod 4.

(a) If 2 < e # 3, then there exist ODCs of K,, and K, by almost-
hamiltonian cycle s, where 3 < z < 101, z # 4.

(b) If e = 3 and e; > 2 for some i, then there exists an ODC of K,
by an almost-hamiltonian cycle.

Moreover, let m be an integer.

(c¢) If m is a prime power and m > 4, then there is an ODC of K,
by an almost-hamiltonian cycle.

(d) If m = p+ 1, where p is a prime and p = 5 or 7 mod 8, then
there is an ODC of K, by an almost-hamiltonian cycle.

(e) For 4 < m < 102, there is an ODC of K., by an almost-hamil-
tonian cycle.
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4. ODCs by graph families and related results

In preceding sections we discussed ODCs by clique graphs and by cycle
families. In fact, the conjecture of Demetrovics, Fiiredi and Katona
[17] on the existence of ODCs by families of 3-cycles was one of the
motivating forces behind the study of orthogonal double covers. Though
the original conjecture was completely settled in [27], it gave rise to the
investigation of ODCs by other graph and digraph families. Let H be
a digraph with 1)( 7) vertices and e(H) arcs. The vertex disjoint union
of m copies of H is denoted by mH , and called an H -family.

In every page of an ODC the vertex number exceeds the arc num-
ber by one. A digraph family mH rarely meets this condition, since
m(v(H)—e(H)) = 1 immediately implies m = 1 and v(H) = e(H) + 1.
In general, it will be necessary to augment mH by a suitable number of
isolated vertices to satisfy the requirement under inspection. For sim-
plicity, we still call a digraph mH U E; an H-family. In the subsequent
sections we are going to survey various results on ODCs by graph and
digraph families and discuss a couple of consequences.

4.1. IDEMPOTENT ODCS BY GRAPH AND DIGRAPH FAMILIES

Throughout, let H be a digraph with v(H) < e(H). Every page of
an ODC by an I;T—family contains at least one isolated vertex. This
motivates the study of idempotent ODCs [29, 34]. Let V be the vertex
set of the digraph D,. An orthogonal directed cover of D,, with pages
G,, 1 € V, is said to be idempotent if every page G contains the vertex
1 as an isolated vertex. Clearly, a similar concept may be introduced in
the undirected case.

The property of being idempotent is of special value when we con-
struct ODCs recursively by the help of pairwise balanced designs as
shown in Section 2.2. If all the ingredient ODCs are idempotent then
the resultant ODC is idempotent again. This observation was used in
[29] to establish ODCs by Cy-families. More generally, the set of all
integers n admitting an idempotent ODC of D, by an H -family is
PBD-closed for every digraph H. A crucial observation to determine
the spectrum of ODCs by digraph families is the following result:

THEOREM 4.1 (Hartmann [37]). Let H be a digraph with v(H) <
e(H). The set of all integers n such that D, admits an idempotent
ODC by an H-family is eventually periodic with period e(H).

To derive the specified period, we suggested a construction of group-
generated ODCs with respect to the additive group of finite fields
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GF(g). This method turned out to work for all sufficiently large prime
powers ¢ = 1 mod e(H ) A major tool to prove the claimed correctness
was Weil’s theorem [65] on upper bounds for the absolute value of
certain character sums over finite fields. As a result we settled the
eventual existence of ODCs by digraph families.

THEOREM 4.2 (Hartmann [37]). Let H be a digraph with e(H) <
v(H). There ezists an idempotent ODC of D,, by an H-family for almost
every n satisfying the necessary condition n =1 mod e(H ).

Clearly, the same result holds for orthogonal double covers, too:
We simply omit all orientations of arcs in the orthogonal directed
covers and derive the eventual existence of orthogonal double covers
by H-families for every suitable graph H. As mentioned in the intro-
duction, ODCs by clique graphs are of special interest in connection
with problems from database theory. While ODCs by complete graphs
Ky, i.e. k-biplanes are known so far only for finitely many values of k,
Theorem 4.2 yields the existence of an ODC by the clique graph mKjy,
for every k > 3 and sufficiently large m.

To continue with we extend the notion of digraph families, among
others to derive further results on clique graphs comprising cliques of
various sizes. Let H be a given set of digraphs. A digraph G is called
an H-family if G is the vertex-disjoint union of digraphs which all
are copies of some member of H. Again we allow G to be extended
by a suitable number of isolated vertices to ensure v(G) = e(G) + 1
which is necessary for the existence of an ODC by G. A straightforward
calculation shows that the arc number of every H-family is a multiple
of the greatest common divisor of the arc numbers e(H), H € .

THEOREM 4.3 (Hartmann [41]). Let H be a set of digraphs such that
v(H) < e(H) holds for all digraphs H € H. Then there ezists an

idempotent ODC' of ﬁn by an H-family for almost every n satisfying
the necessary condition n =1 mod ged{e(H) : H € H}.

The preceding result is useful even if 7 contains some 'bad’ mem-
bers, that is, digraphs B with v(B) > e(B). All we require is that there
is at least one dlgraph Ho € H satlsfymg U(H()) < e(Hy). For each
bad member B we choose a digraph B = SH() U B with sufﬁc1ently
large s to ensure v(B') < e( ). On replacing the bad members B in
H by the chosen digraphs B’ we obtain a new set H’ of digraphs which
satisfies the assumption of Theorem 4.3. Since every 7—g-family is also
an H-family, and ged{e(H) : H € H} = ged{e(H') : H' € H'} holds,
we conclude the following consequence.
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COROLLAR\_{ 4.4. Let H be a set of digraphs, among them at least
one digraph Hy with v(Hg) < e(Hy). Then there exists an idempotent

ODC of 5n by an H-family for almost every n satisfying the necessary
condition n = 1 mod ged{e(H) : H € H}.

The discussion above enables us to derive new results on families of
dicycles and on cliques graphs. As an example, we include the following
two consequences which generalize earlier observations from Section 3.3
and 3.2. Further results on orthogonal double covers by clique graphs
and their application to problems from database theory are presented
in [41].

CQRQLLARY 4.5. Given k > 3, there exists an ODC of ﬁn by a
{Ck, Cxy1}-family for almost every n.

COROLLARY 4.6. Given k > 3, there exist

(i) an idempotent ODC of K, by a { Ky, K11 }-family for almost every
n satisfying the necessary condition n =1 mod k, and

(i) an idempotent ODC of K, by a {Ky_1, K, Kr+1}-family for almost
every n.

The previous result does not cover { Ky, K3 }-families. In Section 3.2
we studied ODCs whose pages consist of several copies of K3 and just a
single copy of K5. Evidently these ODCs are not idempotent. Whenever
there exists an idempotent ODC by a { Ky, K3}-family G, then G will
not contain a copy of K, i.e. G actually is a K3-family. Thus an idem-
potent ODC of K,, by a {K», K3}-family exists only for n = 1 mod 3
and n # 10. Conversely, if k exceeds 3, we find { K9, K} }-families which
contain a copy of K9 and admit an idempotent ODC. In fact, such an
idempotent ODC of K, exists for almost every n.

4.2. RooTED ODCS BY GRAPH AND DIGRAPH FAMILIES

Suppose we have a digraph H with v(ﬁ) = e(I;T)—H. As soon as we take
m > 2 copies of H the resultant digraph mH has too many vertices
to admit an ODC. To overcome this limitation we study amalgamated
digraph families. Consider a digraph H and some vertex z in H. Now
we take m copies of H which are mutually vertex-disjoint apart from
the vertex x which lies in each of the copies and, in fact, is a fixpoint
under the corresponding isomorphism. The resultant digraph is called
an amalgamated H-family with root z. It has m(v(H) — 1) + 1 vertices
and m - e(H) arcs which is just the right number for an ODC supposed
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we have v(H) = e(H) + 1. As an example consider the digraph in
Figure 11 which is an amalgamated Ps-family. If v(H) < e(H) holds,
we allow the digraph family to be augmented as usual by a suitable
number of isolated vertices. Figure 12 shows an amalgamated Cy-family
augmented by two isolated vertices.

Throughout let A be a digraph with v(H) < e(H)+1. When looking
for ODCs by amalgamated H -families, it is again profitable to concen-
trate on a particular class of ODCs. Let V_ be the vertex set of D, and
consider an orthogonal directed cover of Dy, by some digraph G. Every
page G;, 1 € V, in this ODC is a copy of G’ under an isomorphism ¢;.
We speak of a rooted ODC' if G contains a vertex = such that ¢;(z) =1
holds for every ¢ € V. The vertex x under inspection is called the root
of this ODC. .

It is natural to ask for rooted ODCs by amalgamated H-families
such that the root of the ODC coincides with the root of the H-family.
The set of all integers n admitting such an ODC of D_'ﬂ is PBD-closed
again. Clearly every n in this set is congruent 1 mod e(H). Surprisingly
however, this condition is not eventually sufficient. In fact there are
suitable digraphs H allowing infinitely many exceptions. As an example
consider the dipath 133. Whenever we take an even number of copies and
glue them together in their non-pendant vertex, the resultant digraph
admits an ODC. Conversely, this observation does not hold for any odd

number of copies.

Figure 11. An amalgamated Ps-family not admitting an ODC

THEOREM 4.7 (Hartmann [39]). Let = be non-pendant vertez of the
digraph Ps. An ODC of D,, by an amalgamated Ps3-family with root x
exists if and only if n = 1 mod 4.

Fortunately this example is not the usual case. For the large majority
of suitable digraphs the necessary conditions detailed above happen to
be eventually sufficient.

THEOREM 4.8 (Hartmann [39]) Let H be a digraph with v(H) <
e(H)+1. Fiz a vertez z in H such that, when e(H) = 2 mod 4, neither
its indegree nor its outdegree equal 2e(H ). Then there exists a rooted
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ODC of D, by an amalgamated ﬁ—family with root z for almost every
n satisfying the necessary condition n =1 mod e(H).

The notion of rooted ODCs by an amalgamated digraph families
is easily transmitted to the undirected case. Suppose we are given a
suitable graph H and a fixed vertex z. In order to apply the preceding
theorem we simply assign every edge of H an orientation. Attention is
called for only in the case e(H) = 2 mod 4, where it is easy to guarantee
that z obtains neither indegree nor outdegree %e(H )

COROLLARY 4.9 (Hartmann [39]). Let H be a graph with v(H) <
e(H) + 1, and let = be some vertex in H. Then there exists a rooted
ODC of K,, by an amalgamated H-family with root x for almost every
n =1mod e(H).

The preceding result is of particular interest for trees. If H is a tree
then every amalgamated H-family is a tree again. Whenever we take
sufficiently many copies of an arbitrary tree and glue them together in
some root x we come up with a new tree which admits an ODC.

Figure 12. An ODC-generating digraph with respect Zg

As an example for Theorem 4.8, consider the dicycle C_"k._‘Choose
some vertex z on the dicycle and consider the amalgamated H-family
with root z. We call the resultant digraph a directed k-flower and
denote it by Fj ,,. Figure 12 particularly shows the directed 4-flower
ﬁ4’2 obtained by gluing together two copies of (:"4 in the vertex £ = 0.
Of course, the dicycle Cp satisfies the presumption of Theorem 4.8,

since every potential root has indegree 1 and outdegree 1, whereas
B(Ck) =k > 3.

COROLLARY 4.10. Given k > 3, there exists an ODC of D, by a k-
flower for almost every n satisfying the necessary condition n = 1 mod

k.

We continue with some results for small values of k, for details see
[39]. Let Ny(;) denote the set of all positive integers congruent 1 mod k.
Group-generated ODCs by directed 3-flowers turned out to exist for all



On Orthogonal Double Covers of Graphs 39

prime powers ¢ = 1 mod 3, ¢ # 7. The PBD-closure of {4,19,31,43}
equals Nj3y\{7,10,22,34,46,55}. For n = 7 it was not too difficult

to check the non-existence of an ODC by the directed 3-flower [7"3,2.
There does not even exist an orthogonal double cover in the undirected
case. For n = 10 an exhaustive computer search shows that there is no
ODC by the directed 3-flower ﬁg,g. For the remaining values of n, the
existence problem is still open.

THEOREM 4.11. An ODC of ﬁn by a directed 3-flower exists for all
n = 1mod 3 apart from n = 7,10, and with the possible exceptions
n = 22,34,46 and 55.

At this point a short remark is called for. Though there is no ODC
of 1310 by ﬁg’g, we found an orthogonal double cover of Kiy by the
undirected 3-flower F33. Since the PBD-closure of {4,10,19} equals
Ni(3)\{7,22}, this yields n = 22 as the only open value in the undirected
case.

For k = 4, however, we are able to determine the complete spectrum.
With respect to the additive group of the finite field GF(q), a group-
generated ODC by a directed 4-flower exists for every prime power g =
1 mod 4, g # 9. Moreover, for n = 9 and 33 we found ODCs generated
by the cyclic group. A solution for n = 9 is shown in Figure 12. Since the
PBD-closure of {5,9, 13, 17,29, 33} equals N;(4) we conclude as follows:

THEOREM 4.12. An ODC of ﬁn by a directed 4-flower exists if and
only if n =1 mod 4.

4.3. EMBEDDING RESULTS FOR ODCSs

During our study of ODCs we came across a considerable number of
graphs and digraphs which do not admit an ODC. For n < 10 details
were given in Section 3.1. It is natural to ask whether these graphs and
digraphs may be characterized by forbidden substructures. However,
Theorem 4.3 indicates that such a characterization does not exist.

THEOREM 4.13. Let H be a given digraph. For almost every n there
ezists a suitable digraph G™ which admits an idempotent ODC of 13n
by the vertex-disjoint union HuGm,

Proof. The idea is to find two digraphs H} and H) such that the set
H containing the vertex-disjoint unions A U H} and H U H) satisfies
the assumption of Theorem 4.3. That is, we require

— —

() —v(H]) > v(H) ~ o(H)
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for j = 1,2. If the arc numbers e(H U H!) and e(H U H}) are relatively
prime, Theorem 4.3 guarantees an ODC of ﬁn by an H-family for every
sufficiently large n. Due to our choice of H every non-trivial H-family
contains a copy of H "and, in fact, may be regarded as the vertex-disjoint
union of a copy of H and some dlgraph Gm.
Given a positive integer €' let H' be a digon-free digraph with
(H ") = ¢ arcs and as few vertices as possible. Clearly, we have

(v(;‘jl)) S (v(ﬁ'z) — 1>’

and thus 2ve' + 2 > U(I-_I" ). For our purposes here we choose two
different integers ¢!, e} such that e(H )+ej is a prime and € —2, /e;—2 >

v(H) — e(H) holds for j = 1,2. Tt is straightforward to check that the
corresponding digraphs H{ and H) have all the desired properties. This
enables us to apply Theorem 4.3 as suggested. O

Suppose we are given a digraph H with v(H) = e(H) +1 = n.
Even if there is no ODC of D, by H it is usually possible to find
some copies of H in D,, which are pairwise orthogonal. Generally, every
packing of 13n by mutually orthogonal spanning subdigraphs is called
a partial ODC. Clearly, there are partial ODCs of D, which cannot
be extended to ODCs of D,. This raises the question whether every
partial ODC may at least be embedded into an ODC of some complete
digraph of larger size. Traditionally much effort has been expended
in discrete mathematics towards producing embedding theorems for
partial algebraic or combinatorial structures. Let W and V' C W be
the vertex sets of the complete digraphs Dy, and D,. Suppose we are
given a partial ODC P = {H; : i € U C V} of D, and an ODC
O ={G,:ie W} of D,,. For every i € U we consider the subdigraph
é; of G; induced by the vertices from V. We say that P is embedded
into O if é; is isomorphic to H; for every i € U. The following result
verifies that every partial ODC actually appears as a part of some ODC
of a sufficiently large complete digraph.

THEOREM 4.14. Let P be a partial ODC of D, Then there ezists a
cyclic ODC O ofD for some m > n such that P is embedded into O.

Proof. Put m = 4-2" + 1. Suppose W = Z,, and V = {2Z D=
0,...,n—1} C W are the vertex sets of the complete digraphs D,, and
ﬁn, and let P consist of digraphs ﬁy with 2t € U C V. Our aim is to
embed P into a cyclic ODC O. Thus O will be the orbit G+ Zm of a
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digraph G to be constructed. Note that within this proof all calculation

is performed with respect to Zp,. . .
For every 2 € U, let H!; be the copy Hy: + 2 of the digraph Hy:

in P. It is noteworthy that the new digraphs ﬁél are mutually vertex-

disjoint By A we denote the union of the digraphs ﬁw 2t € U, and
by V(A) its vertex set. The idea is to derive the desired digraph G as
the union of A and a second digraph B with vertex set W\V (A).

As mentioned we want G to be the generator of a cyclic ODC, that
is, G has to satisfy the conditions assembled in Section 2.1 with respect
to Zy,. Consider an arc (2%,2%) in one of the digraphs Hy:. Its image
in A is the arc (2" 4 24, 2" 4 2%) whose length is 2° — 2¢. Since P is
a packing of l_jn, the arcs in _{‘I have mutually distinct lengths. It easy
to see that any two arcs in A having inverse lengths arise from a pair
of reverse arcs covered by P, say (2%,2%) in I;TQi and (2°,2%) in ﬁQj.
Their images in A have the inverse lengths 2° — 2% and 2% — 2%, and the
distance between them is 4-(2/" — 2).

In summary, the arcs in A comprise all lengths in Ly = {2° — 2% :
(2“ 2%) is covered by P} and all distances in Dy = {:l:(2j" 2y
Hm and HQJ are orthogonal}. It suffices to find a digraph B such that
its arcs settle all the remaining lengths and distances. Clearly, the
permitted lengths are just the values in Lp = Z,,\({0} U L), and
the permitted distances are the values in D = Z;,\ ({0} U Dy).

Now we are going to generate the arc set of B. We start with the
empty digraph on the vertex set W\V (4) and insert its arcs incremen-
tally. Suppose the size of Dp exceeds the size of Lg. Then there must be
some £ € L whose inverse —/ lies not in L. Hence A contains no arc of
length £, but an arc e of length £(e) = —¢, say e = (2 4 29,2 4+ 29),
This happens whenever P covers (2%,2°) but not (2°,2%). We take a
distance which is still permitted, that is, some § € Dpg, and insert the
new arc (642" 2%, 642 42) into B. Of course, 6 has to be chosen such
that both vertices of the new arc belong to W\V (A). This is possible
since |[Dp| > |Lp| > (m —1) — (n — 1)n > 2n? > 2n|P| = 2|V (A)|
holds. Moreover, e and the new arc have inverse lengths, and the
distance between them is +4. Thus we delete ¢ from the set Lp of
permitted lengths, and +6 from the set Dp of permitted distances.
Then we continue with the next value £ € Lp satisfying —¢ & Lp.

Afterwards we have —¢ € Lp for every £ € Lp, and the sets L and
Dpg are of equal size. We select some £ € Ly as well as some é§ € Dg,
and insert the new arcs (z,x+¥¢) and (z +£+ 0,z + §) into B. Herein x
is chosen from W such that all four vertices z, z+¢, z+£+6 and 2+
belong to W\V(A). This is possible since |W| = m > 4n? = 4n|P| =
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4|V (A)| holds. Clearly, the new arcs have length ¢ and distance 4.
Thus we delete £¢ from the set Lp of permitted lengths, and £6 from
the set Dp of permitted distances. Then we choose the next values
from Lg and Dpg, and repeat the whole procedure, until both Lg and
Dp are empty. . L

Due to our construction, the resultant digraph G = AU B is an
ODC-generator with respect to the cyclic group Z,. The orbit G + Z,
is the claimed ODC. In every page G — 2" with 2i€ U, the subset V of
W = Z,, induces just the digraph H'; — 2™ = H,:. Hence the partial
ODC P is embedded in the ODC O as claimed. O

5. Generalizations

The notion of an ODC has been generalized in various directions, like
suborthogonal double covers, ODCs of general graphs or generalized
orthogonal covers.

5.1. SUBORTHOGONAL DOUBLE COVERS

A A-fold decomposition of a complete graph K,, is a collection O of
subgraphs of K, such that every edge of K, occurs in exactly A of
these subgraphs. As usual, the subgraphs in O shall be called the pages
of 0. If, in particular, all pages are isomorphic copies of some graph G,
we speak of a A-fold decomposition of K,, by G.

Evidently, ODCs are 2-fold decompositions of K, with the additional
property that any two pages have exactly one edge in common. In [32],
Gronau, Mullin and Rosa conjectured the existence of an ODC of K,
by every tree on n vertices with one genuine exception, namely the path
P, on 4 vertices.

The suspected exceptional case Py inspired the following question:
Does there exist a 2-fold decomposition of the complete graph K,, where
any two pages have at most one edge in common?

A 2-fold decomposition S satisfying this relaxed condition will be
called a suborthogonal double cover (SODC) of K,,. Again, we speak of
an SODC by G if all pages are isomorphic to some graph G. Note, that
this time the number of pages in § does not necessarily coincide with
the vertex number of K,,. However, if S consists of exactly n pages then
it is just an ODC.

Suborthogonal double covers have first been studied by Hartmann
and Schumacher [45]. An SODC of the complete graph K, by the path
P, exists if and only if n > 6 and n = 0,1 mod 3. Hence, the non-
existence of an ODC by P4, i.e. of an SODC of the complete graph K4
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by P, is indeed an exception when dealing with suborthogonal double
covers.

Given a graph G, let e(G) denote its edge number and d(G) the
greatest common divisor of its vertex degrees. The existence of an SODC
of K,, by G immediately implies the following two conditions:

n(n—1) = 0 mod e(G), (1)
2(n—1) = 0 mod d(QG). (2)

Note that these two conditions are well-known to be necessary for every
2-fold decomposition of K.

THEOREM 5.1 ([45]). Let G be a graph on at most 4 vertices. There
exists an SODC of K, by G if and only if n > e(G)+1 and the necessary
conditions (1), (2) hold, with the well-known exzception G = Py and
n = 4.

Let Sy be the star with k£ vertices and & — 1 edges. For stars
the existence problem of SODCs has been completely settled by
Schumacher.

THEOREM 5.2 ([63]). There is an SODC of K, by the star Sk if and
only if the necessary conditions (1), (2) hold, and n ezceeds (k—1)t—(3),
where t == [1=1

Again, we may study the directed analogue of the question under
inspection. Formally, a suborthogonal directed cover (SODC) is decom-
position of the complete (symmetric) digraph ﬁn into subdigraphs
(called pages) such that the union of any two different pages contains
exactly one pair of oppositely directed arcs. If all pages are isomorphic
copies of some digraph G we speak of an SODC by G.

In the directed case, necessary conditions for the existence of decom-
positions are slightly more involved. Consider a digraph G. For each
vertex w of G, let deg™ (w) and deg’ (w) denote the indegree and the
outdegree of w, respectively. Further, let d(é) be the smallest positive
integer in the set

{yeZ : Ywe G Iz, € Zsit. D zpdeg (w) = Y mydegt(w) =y}
weG weG

Whenever l_jn admits an decomposition into copies of é, we have
n(n—1) = 0 mod e(G), (3)

G
n—1 = 0modd(G). (4)
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A well-known result by Wilson [67] shows that these two conditions
are eventually sufficient for the existence of a decomposition of D,, into
copies of G. In general, the obtained decompositions are not SODCs.
However, Hartmann [36] proved the same two conditions to be sufficient
even for the existence of a suborthogonal directed cover of D, by G for
almost all n. On applying this result, a similar observation has been
verified for suborthogonal double covers of K, by a given (undirected)
graph G.

THEOREM 5.3 ([36, 45)).

(i) There ezists an SODC of K, by a given graph G for almost all n
satisfying the necessary conditions (1) and (2).

(ii) There exists an SODC of D, by a given digraph G for almost all n
satisfying the necessary conditions (3) and (4).

A (n,k,\) block design with index A is a pair (V, B), where V is an
n-element set and B is a collection of k-element subsets of V' (called
blocks) such that every 2-element subset of V' occurs in exactly A blocks.
Well-known necessary conditions for the existence of a (n,k,A) block
design are:

An(n—1) = 0mod k(k — 1), (5)
A(n—1) = Omod k — 1. (6)

A block design is said to be simple if it does not contain repeated
blocks. Motivated by the repeated block issue in design theory, Gronau
and Mullin [31] asked for supersimple block designs, i.e. block designs
where any two different blocks share at most two vertices. It is easy
to check, that every supersimple (n, k,2) design corresponds to a sub-
orthogonal double cover of K,, by the complete graph K. The blocks
of the design are just the pages of the SODC.

THEOREM 5.4 ([31], see also [38, 52]).  There is a supersimple
(n,4,2)-block design if and only if n > 7 and n = 0,1 mod 3.

Evidently, for £ = 3, every simple block design is also supersimple.
The existence problem for simple triple systems has been completely
settled by Dehon [16] who proved a simple (7, 3, A) block design to exist
exactly when n > A+ 2 and the necessary conditions (5) and (6) hold.

Since then, a number of further results on supersimple designs with
block size 4 and index larger than 2 have been established by Khodkar
[562], Chen [12] as well as Adams, Bryant and Khodkar [1].
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THEOREM 5.5 ([1, 12, 52]). There is a supersimple (n,4, \)-block de-
sign with A = 3,4 if and only if n > 2A+2 and the necessary conditions
(5) and (6) hold.

An asymptotic existence result for supersimple block designs was
presented by Hartmann [40]. This paper also contains similar results on
graph and digraph designs where every two blocks are almost disjoint.

THEOREM 5.6 ([40]). There is a supersimple (n,k,\) block design for
almost all positive integers n satisfying the necessary conditions (5) and

(6).

In [40], the reader will also find a discussion of possible generaliza-
tions of the concept of suborthogonality to A-fold decompositions of
complete graphs and digraphs where A is larger than two.

e 2 3 2

4 1 4o 1

0 0

Figure 13. Two copies of P4 generating a suborthogonal 3-cover of K3

As an example consider the complete graph K5 and the cyclic group
7Zs acting on its vertex set. Figure 13 shows two copies P’ and P of the
path P,. The union of the orbits P’ + Z5 and P" + Z5 gives us a 3-fold
decomposition of K5 where any two pages share at most one edge, i.e.
a suborthogonal 3-cover of K5 by Pj.

5.2. ODCS OF GENERAL GRAPHS

In Section 2.4 we briefly touched double covers of K, ,, with a certain
orthogonality property. This motivates some interest in a generalization
of ODCs to arbitrary graphs H as the underlying graphs instead of K,.
An orthogonal double cover (ODC) of H is a collection O of spanning
subgraphs G;, i € V(H), of the graph H such that every edge of H
occurs in exactly two subgraphs, and any two subgraphs G;,G; share
an edge if and only if 4, j are adjacent in H. Again, if all the pages are
isomorphic to some graph G we speak of an ODC by G.

Note that this definition is consistent with the one in the introduc-
tion for H = K.

A necessary condition for the existence of an ODC by G has been
established by Hartmann and Schumacher:
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PROPOSITION 5.7 ([44]). There is an ODC of a given graph H by
some graph G if and only if H is regular.

Obviously, the graph K, ,, is regular if and only if n = m and,
therefore, does not admit an ODC by some graph G for n # m. For
n = m several results were obtained which are put in the following
section.

Hartmann and Schumacher observed that there does not exist a
restriction as in Proposition 5.7 of the graphs that are able to play the
role of G in an ODC of H by G.

PROPOSITION 5.8 ([44]). For every graph G there is some graph H
admitting an ODC of H by G.

Among the graph classes for H considered in [44] are r-dimensional
cube graphs covered by forests containing r edges. We remark that in
this paper the equivalent to Conjecture 3.10 has been proved to be
true for cube graphs. The authors also described all almost all graphs
H which admit an ODC of H by P;. Moreover, they studied ODCs
whose pages are isomorphic sets of independent edges and obtained
the following result.

THEOREM 5.9 ([44]). Ewvery r-regular graph H with vertex number
2
v(H) > M admits an ODC by rKs.

Furthermore, clique graphs G have been investigated. Hartmann and
Schumacher were able to characterize all graphs H admitting an ODC
by K3 or by Kj.

If we do not demand all pages to be isomorphic, then also non-
regular graphs H are of interest as for example K, ,,,. The thin edges
in Figure 6 represent an ODC of K, 5 whose pages are isomorphic to
either Sy U E4 or S4 U Ko U Es. In general, not much is known about
ODCs of Ky for n # m.

5.3. ODCS OF COMPLETE BIPARTITE GRAPHS

In this section, ODCs of K, , by G will be studied. In the sequel, we
will label the vertices of K, , by I' x {0,1} such that T' x {0} and
I' x {1} are independent sets of vertices. As an immediate consequence
of the double cover property, G contains exactly n edges. Moreover,
the orthogonality property forces the graphs G, for all a € I' and the
graphs G, 1 for all a € I' to form two orthogonal edge-decompositions
of Ky . See Figure 14 for an example.
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0 1 % Bl 0l 0l

R4 \IO\T 00>10<20 LX< X N
05 é1 61 L2 0 il 2, 0 il 2 01 é1 61 1, 2
Goo Gio G, Goa G Go1

Figure 14. An ODC of K33 by G = S2 U K> U E;

To each of the two edge decompositions we may associate bijectively
an n X n-square with entries belonging to I" by L; = L;(k,l) i =
0,1;k,l € T with L;(k,l) = m if and only if {ko,l1} € E(Gp,;). For
the squares, the orthogonality condition reads as |{(Lo(k,1), L1(k,1)) :
k,l € T} = n?. Obviously, a 1-factorization (G = nKj3) corresponds
bijectively to a Latin square. As a consequence of the existence of
mutually orthogonal Latin squares, see [15], we have the following fact.

THEOREM 5.10 ([23, 44]). Let n # 2,6 be a positive integer and G =
nKy. Then there exists an ODC of K, by G.

Actually, we can take any pair of n X n-squares with every entry of
I" occurring exactly n times, as long as we can ensure that the graphs
described are mutually isomorphic. For example, define Ly(k,l) = k
and L;(k,l) = l. The graphs associated with these squares are stars
and we obtain an ODC of K, ,, by S, for all positive integers n.

With a certain kind of blowing-up construction (a variation of Mc-
Neish’s recursive construction [60] for orthogonal Latin squares) we may
obtain larger ODCs from small ingredient ODCs. Starting with an ODC
O of K, ;m by mKs we replace every point by n new points and every
edge by an ODC of K, ,,. The verification that this construction works
as claimed will be given in the forthcoming paper of El-Shanawany and
Gronau [22]. We just state the theorem.

THEOREM 5.11. Let m # 2,6 be a positive integer, and assume that
there exzist ODCs O; of Ky, by G; for 1 =0,1,...,m — 1. Then there
exists an ODC of Ky mn by GoUG1 U ... UGy 1.

To make the blowing-up construction work, one needs ingredient
ODCs. For small graphs, ODCs of K, , have been studied by EI-
Shanawany, Gronau and Grittmiller who established the following
result.

THEOREM 5.12 ([23]). There exists an ODC of Ky, ,, by all spanning
subgraphs G' of Ky, , with n edges for 1 <n <9, except when G = 2K3
or G = 6Kos.
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The main construction tool for that result has been called ODC-
generating graph, in analogy to Section 2.1 (symmetric starter in [23]).
By this, we mean a graph G such that the translates G;o (i € I") with
E(Gip) = {{(k +1%)o,(l +19)1} : {ko,l1} € E(G)} form an edge decom-
position of K, , which is orthogonal to its symmetric decomposition
(G is symmetric to G’ if {ko,l1} is an edge in G if and only if {lo, k1 }
is an edge in G'). Necessary and sufficient conditions for a graph G to
be an ODC-generating graph are {l — k : {ko,l1} € E(G)} =T and
{l — K {ko,ll}, {k‘é,lll} S E(G),ll — ko= —(lll — k‘())} =T.

The authors of [23] also proved the existence of an ODC K, , by G
for certain infinite classes of graphs G . These classes are mentioned in
the following.

PROPOSITION 5.13. Let n > 3 be an odd integer and G = So U S, _o
or G =8S2U(n—2)Ky, orlet n > 3 be an integer and G = Ko U Sy, 1.
Then there exists an ODC of K,, , by G.

Given an ODC of K, ;, generated by G we can construct a group-
generated ODC of D, by G': For every edge {ko,l1} in G with k # 1
put an arc (k,[) in G'. Since G is an ODC-generating graph, it contains
exactly one edge {ko,k1} and, therefore, we obtain exactly n — 1 arcs
in G'. The construction also works in the opposite direction with an
additional edge {ko,k1} (for some fixed £k € I') added to the edges
obtained from G'. This allows us to use results from Section 2.6.

THEOREM 5.14. Let n = 2t + 1 be a prime power, where t > ty(e)
is an odd integer. Then there exists an ODC of K,, , by P,.

Proof. Start with an almost-hamiltonian cycle from Theorem 2.28
and give opposite directions to consecutive edges, in order to obtain a
group-generated ODC of ﬁn The anti-directed cycle has the property
that edges with inverse lengths occur consecutively. Take one such
pair of edges and flip their directions. The resulting directed graph
still is an ODC-generator which can be used to construct, as described
above, a subgraph of K, ; consisting of two disjoint paths. Adding an
edge {ko,k1} (ko, k1 are endpoints of the two paths) provides an ODC
generating P, . O

5.4. GENERALIZED ORTHOGONAL COVERS

As pointed out earlier, biplanes give rise to ODCs by complete graphs
(augmented by a suitable number of isolated vertices). Biplanes are also
known as symmetric block designs of index A = 2. In this subsection we
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shall investigate a common generalization of symmetric block designs
of arbitrary index and orthogonal double covers. This generalization is
due to Gronau, Mullin, Rosa and Schellenberg [33].

A X-fold factorization of a complete graph K, is a collection O of
spanning subgraphs of K, such that every edge of K,, occurs in exactly
A of these subgraphs. As usual, the subgraphs in O shall be called the
pages of O. If, in particular, all pages are isomorphic copies of some
graph G, we speak of a A-fold factorization of K,, by G.

Let G and F be given graphs on n vertices. A A-fold factorization O
of K,, by G is said to be a generalized orthogonal cover (n,G, \; F)-GOC
if O has exactly n pages and the intersection of any two of the pages
is isomorphic to F. Generalized orthogonal covers are better known
as symmetric graph designs due to a proposal of Alex Rosa. Later,
however, he suggested to rename them and brought in the notion of a
generalized orthogonal cover.

Clearly, every (n, Ky UE, g, A\; F')-GOC corresponds to a symmetric
(n, k, ) block design.

An easy calculation shows that in an GOC of K, the graph G has
exactly A(n — 1)/2 edges, whereas the graph F' has A(A — 1)/2 edges.

For A = 1, F has to be the empty graph on n vertices. Hence an
(n,G,1; E,)-GOC is just a factorization of K, by some graph G with
(n—1)/2 edges. This problem has been widely studied in literature. For
example, Ringel’s conjecture can be restated as the question whether
there exists an (n, TUE(;,_1)/2, 1; Ep,)-GOC for any tree T’ with (n—1) /2
edges. The interested reader may consult e.g. Bosdk’s book [8] for an
overview of existing results on graph factorizations. Moreover, cyclic
GOCs with A = 1 lead to p-labelings of graphs. Here we refer to the
dynamic survey of Gallian [26].

For A\ = 2, F consists of n vertices and exactly one edge. Evidently,
GOC with A = 2 correspond to ODCs. In this sense, GOCs may be
regarded as an extension of the concept of orthogonal double covers.

The investigation of proper GOCs starts with A = 3. Here we have
various possibilities to choose the graph F', i.e. the intersection of the
pages of the GOC. However, the complete graph K, augmented by
n — ) isolated vertices seems to be the most natural choice. Examples
of GOCs may be found almost immediately as we shall see below.

Recall that an amalgamated H-family is a graph consisting of m
copies of H glued together at some vertex x. The well-chosen vertex z is
also said to be the root of the amalgamated H-family under discussion.
Now, let H be the complete graph K} augmented by k(k—2)/2 isolated
vertices. For this graph, the augmented H-family is also known as the
friendship graph Fy .
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A simple observation provides GOCs by friendship graphs: Take an
(n,k,1) block design (V,B) and replace every block by an complete
graph on k vertices. Let GG, be the graph with vertex set V which
consists of the edges of all the blocks in B containing the element
v. Then the collection O of the arising graphs G,, v € V, form an
(n, Fiyym, k; Ky UE,_1)-GOC where m equals (n—1)/(k—1). Note that,
conversely, every GOC of this kind yields an (n, k, 1) block design.

Due to this correspondence, for A = k = 3, Steiner triple systems
yield (n, F3m,3; K3 U E,,_3)-GOCs and vice versa. Hence, these GOCs
exist precisely for all n =1 or 3 mod 6.

As mentioned earlier, K3 U E,,_3 is not the only possibility for F'. In
fact, we may select any graph with 3 edges. Let V be the vertex set of
the complete graph K,,. Suppose, there exists an (n, F3 5,,, 3; F)-GOC O
with pages G, v € V. Without loss of generality, we may assume that
the vertex v is the root of the page G,. Then any two pages G, and Gy,
share the edge {v,w}. Since G, is a copy of the friendship graph F3 ,,,
it contains some triangle {v,w,z,}. Analogously, G,, contains some
triangle {v,w, z,, }. We treat two cases: If z, equals z,,, the two pages
under consideration intersect in the triangle {v, w, z,}. Otherwise, if
x, differs from z,,, the two pages intersect in a 4-path with vertices
Ty, U, W and Ty,.

Thus, rather surprisingly, it turns out that an (n, F3 ,,, 3; F)-GOC
exists only if F' is either K3 U E,_3 or P, U E,_4, as pointed out by
Fronc¢ek and Rosa [25]. In the same paper, they determine the complete
spectrum for GOCs by friendship graphs with A = 3:

THEOREM 5.15 ([25]). There ezists an (n, F3 m,3; PAU E,_4)-GOC if
and only if n is odd and n > 5.

Further results on GOCs have been obtained by Gronau, Mullin,
Rosa and Schellenberg [33] who provide a triplication construction for
GOCs with A = 3, and by Cameron [11] who gives a classification of
GOCs with a 2-transitive automorphism group.
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