On the orthogonal product of simplices and
direct products of truncated Boolean lattices

Uwe Leck

Universitdt Rostock, FB Mathematik, 18051 Rostock, Germany

uwe.leck@mathematik.uni-rostock.de

October 23, 2001

Abstract

The initial point of this paper are two Kruskal-Katona type theorems.
The first is the Colored Kruskal-Katona Theorem which can be stated
as follows: Direct products of the form B,il X B,g X +ee X B,%n belong to
the class of Macaulay posets, where B,’é denotes the poset consisting of
the ¢t + 1 lowest levels of the Boolean lattice Bj. The second one is a
recent result saying that also the products B,’jllfl X B,’gfl X oee X B,’j:’l
are Macaulay posets. The main result of this paper is that the natural
common generalization to products of truncated Boolean lattices does not
hold, i.e. that (Bf)" is a Macaulay poset only if ¢ € {0,1,k — 1, k}.

1 Introduction

In two recent papers [11, 12], we studied the poset P(N; Ay, Ao, ..., A,) of all
subsets of a finite set NV which do not contain any of the non-empty, pairwise
disjoint subsets Ay, As,..., A, C N. The elements of P are ordered by inclusion.
The main result presented there is that P belongs to the class of Macaulay posets,
i.e. there an analogue of the Kruskal-Katona Theorem [9, 8] for P. This is closely
related to the well-known Colored Kruskal-Katona Theorem (see below). Here,
we investigate possible common generalizations.

In order to define what we mean by a Macaulay poset, we need a few notions.
Let (P, <), briefly P, be a ranked poset with rank function r such that r(z) =0
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for some minimal element x € P. The i-th level of P is the set N;(P) = P; :=
{r € P | r(x) = i}. The (lower) shadow of an element z € P is the set
Alx) ={ye P|y <z and r(y) =r(z) — 1}, its upper shadow V(z) := {y €
P |z <y and r(y) = r(z) + 1}. The lower and upper shadows of a subset
X C Pare A(X) :=,ex A(z) and V(X) := [U,cx V(2), respectively.

Consider a linear ordering < of the elements of P. For X C P, let C(X)
denote the set of the first | X| elements of P; w.r.t. <. The set C(X) is called
the compression of X, and if X = C(X) holds, then X is called compressed.
For ) ¢ X C P and 1 < m < |X|, the set of the first resp. last m elements
of X wr.t. < is denoted by C(m,X) resp. L(m,X). A subset X C P is
called left-compressed (resp. right-compressed) if C(X N P;)) = X N P; (resp.
L(XNP)=XnNP) for all i. The notation X < Y for X, Y C P is used to
indicate that the last element of X precedes the first element of Y in the linear
order <.

The poset P is said to be a Macaulay poset if the ordering < can chosen such
that for all s € {1,2,...,7(P)} and all X C P; the following inclusion holds:

A(C(X)) cC(A(x)) - (1)

In this case, we also say that (P, <, <) is a Macaulay structure.
It is well-known that (1) holds for all : and X C P; if and only if for i €
{1,2,...,r(P)} and X C P, the two conditions
[A(C(X))] < JA(X)] (2)

and
C(A(C(X))) = A(C(X)) (3)

are satisfied (cf. [3, 5]). By (2), compressed subsets have minimum-sized shadow
among all subsets of the same level with fixed cardinality. That means, the
solutions to the Shadow Minimization Problem (SMP) form a nested structure
since C(m, P;) C C(m+ 1, P;) for 1 <m < |P;|. By (3), shadows of compressed
subsets are compressed as well. Therefore, we speak of the continuity of the
solutions to the SMP.

Assume that the Hasse diagram of P is connected. The dual of P is the poset
P* on the same elements with + <* y whenever y < z holds in P. Obviously, P*
is ranked with the rank-function r*(z) = r(P) — r(z) for z € P. Let further be
<* be the reverse of <, i.e. we have z <* y whenever y < x. The following is
well-known (see [3] or [5] for proof):



Proposition 1 (P*, <* <*) is a Macaulay structure if and only if (P,<,<) is
a Macaulay structure.

By the poset induced by X C P we mean the set X together with the restric-
tion of the order relation < to X. In the sequel, such a poset will also be called
a subposet of P. A subset X C P is an ideal (resp. filter) if y € X is implied
by x € X and y < z (resp. = < y). The ideal generated by x € P and the
filter generated by x € P are defined to be the sets I(x) = {y € P |y < z} and
F(z) = {y € P | x < y}, respectively. In the next section, we will make use
of the following fact which follows from the above definition of Macaulay posets
and Proposition 1.

Proposition 2 Let P be a Macaulay poset, and let I and F be a left-compressed
ideal and a right-compressed filter in P, respectively. Then I and F' are Macaulay
posets.

Let B! denote the Boolean lattice of order n without its minimal element.
The problem to decide whether the direct product O = B}, X Bj, X --- X B
is a Macaulay poset for all 2 < k; < ky < --- < k, was raised by Harper.
He introduced the name orthogonal product of simplices for O because it arises
in geometry that way when trying to extend Lindsey’s Theorem [14] to higher-
dimensional faces. Some partial results toward a solution of the above problem
were obtained by Moghadam [17], Vasta [20] gave a solution to the related easier
Mazimum Rank Ideal Problem (MRI). In the special case n = 2 the poset O
was studied by Sali [18, 19] following a proposal of Katona and Sés. In this
case, O can be interpreted as the poset of submatrices of a matrix, ordered by
containment. Sali proved several theorems corresponding to classical ones like
Sperner’s Theorem and the Erdds-Ko-Rado Theorem. Concerning the SMP, he
determined subsets of a given level with minimum shadow into the first level of

0.

The papers [11] and [12] contain a proof that O indeed is a Macaulay poset
for all ky,...,k,. In fact, a slightly more general class of posets is considered.
Moreover, the dual O* is considered rather than O. Clearly, O* is the direct
product of Boolean lattices without their maximal elements. We allowed the case
that there is another factor which is a complete Boolean lattice. Let us choose the
following representation of this poset: Let IV be a finite set, and let A}, Ay, ..., A,
be mutually disjoint subsets of N such that 2 < ky < ky < --- < k,, where
k; :== |A;| for i = 1,2,...,n. Then our poset P = P(N; A, Ay, ..., A,) consists
of all F C N satisfying A; € F for 1 =1,2,...,n, ordered by inclusion.
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Next, let us introduce the Macaulay order < on P. The definition of < involves
the reverse-lezicographic order <,, on 2V which is defined putting F' <,, G
whenever max(F' \ G) < max(G \ F). It is convenient to use the notations
Ag = N\ (A;UAyU---UA,) and kg := | Ag|, and to assume A4; = {a},da?,...,a}}

with a! < a2 < --- < a for i = 0,1,...,n such that a¥7' < a! for i =
1,2,...,n. Note that ky = 0 is allowed and corresponds to Harper’s original

proposal. Fori =1,2,...,nand F € P define ¢;(F) := max(4;\ F) and A(F) :=
{a1(F),a2(F),...,a,(F)}. The linear order < is established on P putting F' < G
whenever one of the following two conditions is satisfied:

(a) A(F)# A(G) and min(A(F)\ A(G)) > min(A(G) \ A(F)), or
(b) A(F)= A(G) and F <, G.

Theorem 3 (P(N; Ai, Ag, .. A, G, <) 1s a Macaulay structure.

The proof was given in two parts: In [11] we settled the case m < 2 which is
used as the basis for the inductive proof for m > 3 in [12].

In the special case kg =0, ky = ky = --- = k, = 2 the poset P* is isomorphic
to the poset formed by all subcubes of an n-cube ordered by inclusion. In this
case, a linear ordering < for which (1) holds has been introduced by Lindstrém
[15]. His result has been generalized to powers of stars by Leeb [13] and, indepen-
dently, by Bezrukov [1]. Essentially the same, but in the dual version, has been
found in [6]. The colored complexes introduced there are direct products of stars
of almost equal size. This case, however, is somehow covered by the result for
powers of stars because colored complexes occur as left-compressed ideals there,
as one can easily derive from the definition of the corresponding ordering <. The
observation that colored complexes are the duals of the star powers in [13, 1]
is due to Engel [5]. Finally, it has been shown in [10] that products of stars of
arbitrary sizes are Macaulay posets.

To formulate this result in a more detailed way, let us introduce the nota-
tion Col(Ay, A, ..., A,) for the poset in question, where A; = {kn+1i | k =
0,1,....ki — 1}, ky > kg > -+ > k, > 1, and Col(Ay, As, ..., A,) consists of
all subsets F' C J;_, A4; satisfying |[F N A;| < 1 for i = 1,2,...,n, ordered by
inclusion.

Theorem 4 (Colored Kruskal-Katona Theorem)
(Col(Al, Ag, .. An), C, <M) is a Macaulay structure.



2 Products of truncated Boolean lattices

The Colored Kruskal-Katona Theorem and Theorem 3 suggest that there might
be a common generalization to products of truncated Boolean lattices. More
precisely, for 1 < ¢ < k let the truncated Boolean lattice B} be the subposet of
the Boolean lattice By formed by the levels No(By), N1(By), -.. , Niy(Bg), and
consider posets of the form B,?l X B,ﬁ'; X e X B,tc’; Theorem 4 covers the case
ty =ty = --- =1t, =1, and Theorem 3 corresponds to k1 —t; = ky — ty =
«oo =k, —t, = 1. It is natural to ask for generalizations to t; = -+ = ¢, or to
ki—t,=---=k, —t,, or at least to powers of truncated Boolean lattices.

A closer inspection of the Macaulay orders on colored complexes and on the
duals of orthogonal products of simplices, respectively, shows that it could be
problematic to find a common generalization. For instance: In a colored complex
the last element of the first level comes from the largest factor, whereas it is
in the smallest factor of P(N; Ay, ..., A,). In fact, it turns out that this is the
right intuition. In the sequel, we will prove that all powers of truncated Boolean
lattices which are Macaulay posets are already given by Theorems 4 and 3.

First we study the product of two factors one of which is a star. This turns
out to be an important special case with further consequences.

Lemma 5 Let 1 <t < k and 2 < m be integers. P = Bl x B} is a Macaulay
poset if and only if t € {1,k — 1}.

Proof. Throughout the proof, P will be looked at as the collection of all subsets
F C AUB with |[FNA| <tand |FNB| <1, where A = {ay,as,...,a;} and
B ={by,bs,...,by} are disjoint. These subsets are ordered by inclusion.

1. Let t ¢ {1,k — 1}. We have to show that P is not a Macaulay poset.
Assume on the contrary that there exists a Macaulay order < on P.

Obviously, all elements of the level P, are of the form FFU{b}, where F C A
and b € B. Without loss of generality, let G := {by,a1,as,...,a;} be the first
element of P,y w.r.t. <. Now by the continuity condition (3), we obtain

Cit+1,P) = {{bl}, {a:},{as}, ..., {at}} )

Consider an element F' € P;. By Proposition 1 and

k+m—1 if FCA,
|V(F)|_{ k if FC B,



the last element of P, w.r.t. < is a subset of B, without loss of generality it is
{bm}-

Let F({bm}) denote the filter generated by {b,}, and consider P’ := P\
F({bm})- Clearly, P is a left-compressed ideal in P consisting of all FF C A U
(B\ {bm}) with |[FNA| < tand |[FN(B\ {bn})| <1, ordered by inclusion.
By Proposition 2, P' is a Macaulay poset with the Macaulay order given by the
restriction of < to P’. If m > 3, then we can argue exactly like in the previous
paragraph to show that the last element of P is in B\ {b,,}. Further iteration
gives

L(m—1,P) =B\ {b}

Without loss of generality we assume

{ari1} <{ape} < <{an} < {bo} < {bs} < --- < {bw}
for the last kK +m — t — 1 elements of P; w.r.t. <.

Now by Proposition 1, for Fy, Fy € Py with Fi C G U {ay1} and Fy ¢
G U{a;;1} we have F; < F,. Consequently,

GU {at+1}) \{(G\ {b:}) U{ar1}}

t+1
holds which yields [A(C(t + 1, Py1))| = (*57).

Consider the segment S := C(2t+2, P,11) \ C(t + 1, Pyy1). All members of S
must be of the form FU{a;;2} with F' C GU{as41} and [FNA| < t—1. Therefore,
there is no set S of size t + 1 such that S is the collection of all F' U {a;;2} with
F e (f) Using this, one easily observes that |[A(S) \ A(C(t + 1, Py1))| > (5))
(which also follows from more general results due to Bezrukov [2], Mérs [16], and

Ot +1, Pay) = (

Fiiredi & Griggs [7] who, independently, characterized all parameters leading to
unique solutions of the corresponding SMP in Boolean lattices). By this, we have

IA(C(2t +2,P1))| > (t+1)?

On the other hand, consider the collection F of all F' € P, with F C
{b1,b2,a1,0a9,...,a;,a;.11}. Using (2), a contradiction is implied by the trivial
observations |F| = 2t + 2 and |A(F)| = (¢t + 1)%

2. Let t € {1,k — 1}. We have to show that P is a Macaulay poset. This
follows for t = 1 by Theorem 4. So let us assume that t = k£ — 1.

First we establish the Macaulay order on P. Suppose that

hh<agi<ap<---<aqp<b<by<---<b,
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We are going to prove that the reverse-lexicographic order <,, as introduced for
finite sets in Section 1 is a Macaulay order on P.

Clearly, (3) is satisfied for P and <, it remains to show (2). Let i €
{1,2,...,k} and § € F C P,. We have to prove |A(C(F))| < |A(F)|. Since
several steps of the proof are more or less routine, in order to keep it short, we
omit detailed proofs of some statements which are (really) easy to verify.

First define a partition of P by

P=P0O)UP(1)UP2)U---UP(m)

Y

where P(0) := {F € P | FNB = 0} and P(j) :== {F € P | b; € F} for
j=1,2,...,m. Together with the set inclusion, P(0) U P(1) is a Boolean lattice
of order k£ + 1 without its two last elements w.r.t. <., (A and AU{b;}), whereas
each of the subposets P(2), P(3), ..., P(m) is isomorphic to Bf'. Moreover,

(P(0) U P(1)) =pe P(2) <p¢ + -+ <pe P(m)

holds.
The corresponding partition of F is given by

F=FOUFQ)U---UF(m) |,
where F(j) := FNP(j) for j = 0,1,...,m. Without loss of generality, we assume

FO)I = [FQ) == |F(m)| . (4)

By means of the Kruskal-Katona Theorem (i.e. the fact that <,, is a Macaulay
order for B,), | A(F)| does not increase when replacing F () by C (| F(4)|, N;(P(j)))
for all j € {0,1,...,m} (simultaneously). Hence, we assume

F(5) = C(IF ()], Ni(P(5))) for j=0,1,....m . ()

If N;(P(0)U P(1)) C F, then the claim follows by P(j) & By~ for j =
2,3,...,m and the well-known fact (see [5] for example) that Boolean lattices
are little-submodular, i.e. that for all 1 < m; < my < (Zfl) the inequality

|A(C(ma, Ni1(Br)))| + [A(C (g, Ni—1(By)))|

{ A(C(my +mg, Ni1(By)))] if my +my < (F),
(%) +1AC(m1 +ma = (5), Nioa(B))] else
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holds.

Hence, we assume N;(P(0) U P(1)) € F. Observe that for F € N;(P(0))
every element of A(F) is also contained in A(F") for some F' € N;(P(1)) with
F' <,¢ F. Therefore, we can suppose that the first element of P, \ F w.r.t. <,
is in P(1). Using this, (4), (5), and the Kruskal-Katona Theorem (applied to
P(0)U P(1)), we can even assume that F(0) UF(1) is a compressed subset of P;.

We conclude by induction on m. If m = 2, then the claim is implied by
Theorem 3. (Note that for m = 2 the Macaulay order from Theorem 3 coincides
with <., on P.) Assume that m > 3 and that the assertion holds for m' < m.

If F(m) = (0, then we are done by the induction hypothesis. Let F(m) # .
By the fact that F(0) U F(1) is already compressed together with (4), (5), and
Theorem 3 (applied to P(0)UP(1)UP(m) = Bf ' x B}), |A(F)| does not increase
when replacing F(0) U F(1) U F(m) by

C(IF(0) U F@)UF(m)|, Ni(P(0) U P(1) U P(m)))

After this replacement we have N;(P(0)UP(1)) C F or F(m) = (). This completes
the proof since in both cases we are done by the preceding arguments. |

Lemma 5 yields a consequence for the case of two factors in general:

Corollary 6 Let 2 < t < k and 2 < s < m be integers such that s < t.
Furthermore, suppose that s =t implies k < m. If P = B} x BS, is a Macaulay
poset, thent = k — 1 holds.

Proof. Let A and B be disjoint sets with |A| = k£ and |B| = m. We consider P
as the collection of all subsets F' C AU B satisfying |[FNA| <t and [FNB| <s,
ordered by inclusion.

Suppose that P is a Macaulay poset, and let < denote the corresponding
Macaulay order. If F' € Py, then

k if F'C B,
IV(F)|=¢ m if s=¢t and F C A,
k+m—s else

holds. Let G be the last element of P, w.r.t. <. By the above equality and
Proposition 1, G C B must hold if s <t or kK <m. If s =t and £ = m, then we
have either G C A or G C B. Without loss of generality, we assume G C B in
this case, too.



Let H denote the last element of P;,_; w.r.t. <. According to Proposition 1,
G € V(H) holds. Hence, we have H C B.

Finally, consider F(H), the filter generated by H. Clearly, F(H) is right-
compressed and, consequently, is a Macaulay poset by Proposition 2. On the
other hand, F(H) is the set of all HU F with FF C AU(B\ H) and |[FNA| <t,
|FN(B\ H)| <1, ordered by inclusion. Consequently, F(H) is isomorphic to
B} x B},_, ., and the claim follows by Lemma 5. |

In particular, this means to the case of two isomorphic factors:

Corollary 7 Let 1 <t < k be integers. P = (B!)? is a Macaulay poset if and
only if t € {1,k — 1}.

Proof. By Theorems 4 and 3, P is a Macaulay poset if t € {1,k — 1}. On the
other hand, Corollary 6 immediately implies that P is not a Macaulay poset if
t¢{l,k—1}. [ |

Finally, it is not hard to show the generalization to powers of truncated
Boolean lattices.

Theorem 8 Let 1 <t < k and n > 2 be integers. P = (B})" is a Macaulay
poset if and only if t € {1,k — 1}.

Proof. Let Ay, Ay, ..., A, be mutually disjoint sets of size k. Clearly, we can
consider P to be the collection of all subsets FF C N :=Ji—, A; with [FNA;| <t
for:=1,2,...,n, ordered by inclusion.

By Theorems 3 and 4, P is a Macaulay poset if t € {1,k — 1}. Consequently,
it suffices to show the following implication: If P is a Macaulay poset, then
t € {1,k — 1} holds.

The proof is by induction on n. If n = 2, then we are done by Corollary 7.
Let n > 3, and for 2 < n’ < n assume that (B})" is a Macaulay poset if and
only if ¢t € {1,k — 1}. Furthermore, suppose that P is a Macaulay poset, and let
< denote the corresponding Macaulay order.

Consider an element F' € P;. Trivially,

n— 1k if FCA; forsome i€ {1,2,...,n},
|V(F)|:{ fzk—t) else { }



holds. By this and by Proposition 1, if G denotes the last element of P; w.r.t.
<, then G C A; for some i € {1,2,...,n}. Without loss of generality, we assume
G CA,.

Let F(G) denote the filter generated by G. By the choice of G, the filter F(G)
is right-compressed. Hence, by Proposition 2, F(G) is a Macaulay poset. On the
other hand, F(G) consists of all G U F such that FF C N\ 4, with [FFNA4;| <t
fori =1,2,...,n — 1, ordered by inclusion. Consequently, F(G) is isomorphic
to (Bi)" !, and t € {1,k — 1} is implied by the induction hypothesis. [ |

Here we concentrated on powers of truncated Boolean lattices, and formulated
just some initial observations for two non-isomorphic factors. In general, the
following is still open:

Problem 9 Characterize all parameters k;,t; (i = 1,2,...,n) such that the direct
product B,?l X B,’g X e X B,’i’; 15 a Macaulay poset.

Let us conclude mentioning that there are indeed products of the above kind
containing factors which are not stars or equal to B,'j’l for some k. For instance,
it is not hard to find a Macaulay order for B? x B2.

3 Products of truncated chain products

Another natural question suggested by Theorem 3 is: Is there a multiset version
of the theorem, i.e. a similar statement for products each factor of which is a chain
product that is truncated in some sense? First candidates are products of chain
products whose maximal elements have been removed, but it is not complicated
to figure out that, unfortunately, in general these are not Macaulay posets.

We suggest to generalize B" ! in a different way: Let S} denote the direct
product of n chains of length k, i.e. S consists of all vectors (zy, o, ..., z,) with
integer entries 0 < x; < k which are partially ordered by

(@1, oyTn) < (Y1, Yn) = z; <y; for i=1,2,... n.

Furthermore, let 1, denote the n-ary vector (1,1,...,1), and let F(1,) be the
filter generated by 1, in SP. As an example, S5 is shown in Figure 1, where the
dashed part is the filter F'(13). In the Boolean case k = 1 the filter F'(1,,) consists
of just the maximal element.
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Figure 1: S3\ F(13) (solid) and F(13) (dashed).

Problem 10 Let P = S} \ F(1,). Decide whether the cartesian power P™ is a
Macaulay poset for all m > 1.

Although we conjecture that Problem 10 gives the “right” extension of The-
orem 3 to multisets, the problem is completely open, even the case m = 1 so far
has not been studied seriously.

Obviously, Theorem 3 and the Colored Kruskal-Katona Theorem coincide for
factors Bi, i.e. in Lindstrém’s subcubes-of-a-cube case. Similarly, an affirmative
answer to Problem 10 for n = 2 would coincide with the special case ¢ = 2 of
the following result due to Bezrukov and Elsésser [4]: Cartesian powers of the
spider poset Qg (k,£ > 1) are Macaulay posets, where (), denotes the poset
whose Hasse diagram is obtained by identifying the minimal elements of ¢ chains
of length k.
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