On the Asymptotics of Nonlinear Difference Equations

Lothar Berg

Abstract. Solutions of nonlinear difference equations of second order are investigated with respect to their asymptotic behaviour. In particular, seven conjectures of Kulenović and Ladas concerning rational difference equations are verified.

Keywords: Nonlinear difference equations, asymptotic approximations, asymptotically periodic solutions

AMS subject classification: 39 A 11, 41 A 60

1 Introduction

The book Kulenović and Ladas [4] contains a large number of open problems and conjectures concerning the dynamics of the rational difference equations

$$x_{n+1} = \frac{\alpha + \beta x_n + \gamma x_{n-1}}{A + B x_n + C x_{n-1}}$$
(1.1)

 $(n \in \mathbb{N}_0)$ with non-negative parameters and of more general equations. The problems concerning the asymptotic behaviour of the solutions x_n of (1.1) can be solved by constructing two bounds y_n , z_n with

$$y_n \le x_n \le z_n \tag{1.2}$$

for suitable great n. This construction can be realized in the following way (cf. [2]): Choose an asymptotic scale $\varphi_k(n)$ ($k \in \mathbb{N}_0$), i.e. a sequence of positive functions with $\varphi_{k+1}(n) = o(\varphi_k(n))$ for $n \to \infty$, such that all shifts $\varphi_k(n+1)$, $\varphi_k(n-1)$ and all products $\varphi_l \varphi_m$ possess asymptotic expansions with respect to this scale. In the case $\alpha \neq 0$ also the constant function 1 must possess such an expansion. Then make the ansatz

$$x_{nK} = \sum_{k=0}^{K} c_k \varphi_k(n) \tag{1.3}$$

with a fixed $K \geq 1$, determine the coefficients out of

$$x_{n+1}(A + Bx_n + Cx_{n-1}) - \alpha - \beta x_n - \gamma x_{n-1} = O(\varphi_L(n))$$
(1.4)

as $n \to \infty$ with $x_n = x_{nK}$ and L as great as possible, and put

$$y_n = x_{n,K-1} + a\varphi_K(n), \quad z_n = x_{n,K-1} + b\varphi_K(n)$$
 (1.5)

Lothar Berg: FB Math. der Univ., D-18051 Rostock lothar.berg@mathematik.uni-rostock.de

with $a < c_K < b$. Simple examples for possible scales are $\varphi_k = \frac{1}{n^k}$ and $\varphi_k = t^{kn}$ with 0 < t < 1. After having found the bounds y_n , z_n it remains to show the existence of a solution x_n of (1.1) with (1.2) which shall be done in Section 2.

If we have no idea how to choose the scale φ_k , we can try the following possibility (cf. [2]). Replace (1.1) by a differential equation which approximates (1.1) asymptotically as $n \to \infty$ and which can be solved explicitly. Then take this solution (or an asymptotic approximation of it) as $x_{n,K-1}$ in (1.5). In the simplest case the approximating differential equation can be obtained by substituting into (1.1) the first terms of the Taylor expansions for x_{n+1} and x_{n-1} . However, this requires that the derivatives with respect to n (considered as continuous variable) have a smaller order than the functions as it comes true by the functions $\frac{1}{n^k}$, but not by the functions t^{kn} . For more complicated possibilities cf. [2].

If asymptotically two-periodic solutions are sought, then put $u_n = x_{2n-1}$, $v_n = x_{2n}$ and replace (1.1) by the system

$$u_{n+1} = \frac{\alpha + \beta v_n + \gamma u_n}{A + B v_n + C u_n}, \quad v_{n+1} = \frac{\alpha + \beta u_{n+1} + \gamma v_n}{A + B u_{n+1} + C v_n},$$
(1.6)

to which the foregoing procedures can be transferred.

In the following we deal on the one hand with a generalization of (1.1), and on the other hand with the special cases

$$x_{n+1} = \frac{x_{n-1}}{1+x_n} \,, \tag{1.7}$$

$$x_{n+1} = \beta + \frac{x_{n-1}}{x_n} \,, \tag{1.8}$$

$$x_{n+1} = \frac{1+x_{n-1}}{x_n}, \qquad (1.9)$$

$$x_{n+1} = \frac{\alpha + x_{n-1}}{1 + x_n} \tag{1.10}$$

with $\alpha > 0$. In particular, we verify the following conjectures:

Conjecture ([4]: 4.8.2). Show that (1.7) has a solution which converges to zero.

Conjecture ([4]: 4.8.3). Show that (1.8) has a solution which remains above the equilibrium $\overline{x} = \beta + 1$ for all $n \ge -1$.

Conjecture ([4]: 5.4.6). Show that (1.9) has a nontrivial positive solution which decreases monotonically to the equilibrium of the equation.

Conjecture ([4]: 6.10.3). Show that (1.10) has a positive and monotonically decreasing solution.

We also deal with asymptotically periodic solutions of (1.7) and we give a partial answer to the Open Problem [4: 4.8.4], which among other things demands to investigate the global character of the solution of (1.7) in dependence on their initial values x_{-1} , x_0 .

Finally, we verify three conjectures of [4] concerning bounded solutions of (1.1), and we refer to a further conjecture of [4] concerning the rational difference equation

$$x_{n+1} = \frac{p + x_{n-2}}{x_n} \tag{1.11}$$

 $(n \in \mathbb{N}_0)$ which is not of the type (1.1). We shall verify the conjecture for p = 0, whereas for p > 0 we shall replace it by another.

For some calculations we have used the DERIVE system.

2 The inclusion theorem

In order to verify the inequalities (1.2) we consider the equation

$$x_{n-1} = f(x_n, x_{n+1}) \tag{2.1}$$

which can be either the solution of (1.1) with respect to x_{n-1} (in the case $\gamma + C > 0$) or an equation with an arbitrary f (such that (2.1) is uniquely solvable with respect to x_{n+1}).

Theorem 1. Let the function f be continuous and non-decreasing in both arguments, and let be $y_n < z_n$ for $n \ge n_0$ as well as

$$y_{n-1} \le f(y_n, y_{n+1}), \quad f(z_n, z_{n+1}) \le z_{n-1}$$
(2.2)

for $n > n_0$. Then there exists a solution of (2.1) with (1.2) for $n \ge n_0$.

Proof. Choosing an arbitrary integer $N > n_0$, then all initial values x_{N+1} , x_N with (1.2) for n = N + 1 and n = N can be continued by means of (2.1) to the left. The inequalities (2.2) and the monotony of f yield the validity of (1.2) for all n with $n_0 \le n \le N + 1$. Let A_N be the non-empty set of all pairs (x_{n_0}, x_{n_0+1}) such that the solutions x_n of (2.1) satisfy (1.2) for $n_0 \le n \le N + 1$. The continuity of f implies that A_N is a closed set, and the monotony of f that $A_N \supset A_{N+1}$. Hence, there exists a non-empty set $A = \bigcap_{N=n_0+1}^{\infty} A_N$ of pairs (x_{n_0}, x_{n_0+1}) such that all attached solutions x_n of (2.1) satisfy (1.2) for all $n \ge n_0$

As the proof shows, the continuity and the monotony of f are only necessary for such arguments which satisfy (1.2) for $n > n_0$.

Theorem 1 can be modified in different ways (cf. [1, 2, 3, 5]), but we do not need here such modifications. Instead of that we come back to the special cases (1.7)-(1.10) of (1.1).

Example 1. For the example (1.7) the inversion (2.1) yields the function $f(x_n, x_{n+1}) = (1+x_n)x_{n+1}$, which satisfies the assumptions of Theorem 1 for positive arguments. Writing $x_n = x$ and using the approximations $x_{n+1} \approx x + x'$, $x_{n-1} \approx x - x'$, we replace (1.7) by the differential equation

$$(2+x)x' + x^2 = 0$$

with the solution

$$x = \frac{2}{n + \ln x + C}$$

In the case $x \to 0$ as $n \to \infty$ we find $x \sim \frac{2}{n}$ and therefore iteratively, choosing $C = -\ln 2$, the asymptotic approximations

$$x^{[0]} = \frac{2}{n}, \quad x^{[1]} = \frac{2}{n - \ln n}, \quad x^{[2]} = \frac{2}{n - \ln n + \frac{1}{n} \ln n}$$

Taking into account that $x^{[2]} = \frac{2}{n} + \frac{2}{n^2} \ln n + \frac{2}{n^3} \ln^2 n + O\left(\frac{1}{n^3} \ln n\right)$ we make the ansatz

$$y_n = \frac{2}{n} + \frac{2}{n^2} \ln n + \frac{a}{n^3} \ln^2 n$$
, $z_n = \frac{2}{n} + \frac{2}{n^2} \ln n + \frac{b}{n^3} \ln^2 n$

with a < 2 < b, cf. (1.5) with K = 2. Then we find the asymptotic relation

$$y_{n+1}(1+y_n) - y_{n-1} \sim \frac{2}{n^4}(2-a)\ln^2 n$$

and an analogous relation with z and b instead of y and a, respectively. These relations show that the inequalities (2.2) are satisfied for sufficiently great n.

Hence, Theorem 1 can be applied and it yields, in particular, the existence of a solution of (1.7) converging to zero, i.e. it verifies the corresponding conjecture from [4].

The next three examples are special cases of

$$x_{n+1} = \frac{\alpha + \beta x_n + x_{n-1}}{A + x_n} \,. \tag{2.3}$$

The inversion (2.1) yields the function $f(x_n, x_{n+1}) = (A + x_n)(x_{n+1} - \beta) + A\beta - \alpha$, which is continuous and increasing for $x_n > 0$ and $x_{n+1} > \beta$. An equilibrium \overline{x} of (2.3) is a solution of $\overline{x}^2 + (A - \beta - 1)\overline{x} = \alpha$, here we need the non-negative equilibrium

$$\overline{x} = \frac{1}{2} \left(\beta + 1 - A + \sqrt{(\beta + 1 - A)^2 + 4\alpha} \right) \,. \tag{2.4}$$

Making with an unknown $t \in (0, 1)$ the ansatz

$$x_n = \overline{x} + t^n + ct^{2n} + o(t^{2n}) \tag{2.5}$$

as $n \to \infty$, we find, according to (1.4),

$$\overline{x} = \frac{1 + \beta t - At^2}{(1+t)t}, \quad c = \frac{(1+t)t^3}{(1-t)(1+t+t^2+(A+\beta)t^3)}, \quad (2.6)$$

provided that the first equation has a solution $t \in (0, 1)$. In this case the ansatz

$$y_n = \overline{x} + t^n + at^{2n}, \qquad z_n = \overline{x} + t^n + bt^{2n}$$

leads to the asymptotic representation

$$f(y_n, y_{n+1}) - y_{n-1} \sim \left(1 - \frac{a}{c}\right) t^{2n+1}$$

and an analogous one with z and b instead of y and a, respectively. These representations show that the inequalities (2.2) are satisfied for sufficiently great n, since c > 0, and Theorem 1 yields the existence of a solution of (2.3) with the asymptotic behaviour (2.5) which will verify the corresponding conjectures from [4]. However, it remains to prove that $t \in (0, 1)$.

Example 2. Choosing in (2.3) $\alpha = A = 0$ we get example (1.8). The equations (2.4) and (2.6) specialize to

$$\overline{x} = \beta + 1 = \frac{1 + \beta t}{(1+t)t}, \quad c = \frac{t^3}{(1-t)(1+t-t^2)}$$

and one solution of the first equation is $t = \frac{1}{2(\beta+1)} \left(\sqrt{4\beta+5}-1\right)$, which satisfies $t \in (0,1)$ even for $\beta > -1$. Hence, there exists a solution of (1.8) with (2.5), i.e. in particular, a solution of (1.8) with $x_n > \overline{x} = \beta + 1$ when $\beta > -1$ and $n \ge n_0$. But there exists also such a solution when $n \ge -1$, namely x_{n+n_0+1} .

Example 3. Choosing in (2.3) $\alpha = 1$ and $\beta = A = 0$ we get example (1.9). The equations (2.4) and (2.6) specialize to

$$\overline{x} = \frac{1}{2} \left(1 + \sqrt{5} \right) = \frac{1}{(1+t)t}, \quad c = \frac{(1+t)t^3}{1-t^3},$$

and $t = \frac{1}{2} \left(\sqrt{2\sqrt{5} - 1} - 1 \right) \approx 0.4317$ is the solution of the first equation contained in (0, 1). Hence, there exists a solution of (1.9) with (2.5). This asymptotic relation shows that x_n is eventually monotonically decreasing to \overline{x} , and a suitable shift of x_n is decreasing for all $n \geq -1$.

Example 4. Choosing in (2.3) $\beta = 0$ and A = 1 we get example (1.10). The equations (2.4) and (2.6) specialize to

$$\overline{x} = \sqrt{\alpha} = \frac{1-t}{t}, \quad c = \frac{(1+t)t^3}{1-t^4},$$

and the first equation implies $t = \frac{1}{\sqrt{\alpha}+1} \in (0, 1)$. Hence, there exists a solution of (1.10) with (2.5). The validity of the corresponding conjecture of [4] follows as in the foregoing examples.

3 Asymptotically two-periodic solutions

Equation (1.7) possesses the two-periodic solution $x_{2n-1} = 0$, $x_{2n} = p$ with an arbitrary constant p. Looking for an asymptotically two-periodic solution, we put $u_n = x_{2n-1}$ and $v_n = x_{2n}$ as before and make the ansatz

$$u_n = \sum_{\nu=1}^{\infty} a_{\nu} c^{\nu} t^{\nu n}, \quad v_n = \sum_{\nu=0}^{\infty} b_{\nu} c^{\nu} t^{\nu n}$$
(3.1)

with $b_0 = p$ and arbitrary c, since (1.6) is an autonomous equation. We choose c > 0. In the case (1.6) the equations (1.5) specialize to

$$(1+v_n)u_{n+1} = u_n$$
, $(1+u_{n+1})v_{n+1} = v_n$. (3.2)

Substitution of (3.1) into these equations and comparing the coefficients yields $t = \frac{1}{p+1}$, $a_1 = b_1$ undetermined, and

$$a_{\nu} = \frac{1}{(p+1)^{\nu-1} - 1} \sum_{\mu=1}^{\nu-1} b_{\mu} a_{\nu-\mu} (p+1)^{\mu-1}, \quad b_{\nu} = \frac{1}{(p+1)^{\nu} - 1} \sum_{\mu=0}^{\nu-1} b_{\mu} a_{\nu-\mu}$$
(3.3)

for $\nu \geq 2$. In view of the presence of the arbitrary constant c we can choose $a_1 = b_1 = 1$. The next coefficients read

$$a_2 = \frac{1}{2}$$
, $b_2 = \frac{2}{p(p+2)}$, $a_3 = \frac{3p+4}{p^2(p+2)^2}$, $b_3 = \frac{p^2+9p+12}{p^2(p+2)^2(p^2+3p+3)}$.

For positive p it is 0 < t < 1, and the coefficients a_{ν} , b_{ν} are also positive. It can easily be proved by induction that the further coefficients allow the estimates

$$a_{\nu} \le \frac{1}{p^{\nu-1}}, \quad b_{\nu} \le \frac{1}{p^{\nu-1}}$$

for all $\nu \geq 1$. This means that the series (3.1) are not only asymptotic ones as $n \to \infty$, but that they even converge for $t^n < \frac{p}{c}$, i.e. for suitable great n.

- **Remark.** 1. By positive initial values u_0 , v_0 it follows from (3.2) that all solutions are also positive and decreasing, hence converging to a non-negative limit. At least one limit equals zero (cf. [4]).
 - 2. By elimination it can be shown that both solutions of (3.2) are also solutions of the rational difference equation

$$w_{n+1} = \frac{w_n + w_n^2}{w_{n-1} + w_n^2} w_n$$

which is not of the type (1.1).

4 Dependence on the initial values

Next, we want to study the solution of (1.7) in dependence on their initial values x_{-1}, x_0 .

Proposition 1. For $n \in \mathbb{N}_0$ and positive x_{-1} , x_0 the solution of (1.6) satisfies the estimates

$$x_{2n} \le x_0 t^n, \quad x_{2n-1} \ge p + (x_{-1} - p)t^n$$
(4.1)

with $t = \frac{1}{\sqrt{x_{-1}+1}}$, $p = \sqrt{x_{-1}+1} - 1$ when

$$x_0 \le \frac{1}{2} \left(\sqrt{y_{-1} + 1} - 1 \right) \,, \tag{4.2}$$

and the estimates

$$x_{2n+1} \le x_1 t^n, \quad x_{2n} \ge p + (x_0 - p) t^n$$
(4.3)

with $t = \frac{1}{\sqrt{x_0+1}}, \ p = \sqrt{x_0+1} - 1$ when

$$x_1 \le \frac{1}{2} \left(\sqrt{x_0 + 1} - 1 \right) \,. \tag{4.4}$$

Proof. We use the foregoing notations $u_n = x_{2n-1}$, $v_n = x_{2n}$ for which the estimates (4.1) read

$$v_n \le v_0 t^n$$
, $u_n \ge p + (u_0 - p)t^n$. (4.5)

Since these estimates are valid for n = 0 we shall prove them by induction. Hence, according to (3.2), we have to show

$$\frac{v_0 t^n}{1+p+(u_0-p)t^{n+1}} \le v_0 t^{n+1}, \quad \frac{p+(u_0-p)t^n}{1+v_0 t^n} \ge p+(u_0-p)t^{n+1}$$

for $n \in \mathbb{N}_0$, i.e. (for t > 0, $v_0 > 0$ and 0)

$$1 \le (1+p)t + (u_0 - p)t^{n+2}, \quad (u_0 - p)(1-t) \ge v_0 \left(p + (u_0 - p)t^{n+1} \right).$$

The optimal solution of the first inequality for $n \in N_0$ is $t = \frac{1}{p+1}$, so that 0 < t < 1. The second inequality is valid, if it is valid for n = 0, i.e. if

$$(u_0 - p)p \ge v_0(p^2 + u_0).$$
(4.6)

For $p = \sqrt{u_0 + 1} - 1$ this inequality turns over into

$$v_0 \le \frac{1}{2} \left(\sqrt{u_0 + 1} - 1 \right)$$
 (4.7)

Hence, (4.7) implies (4.5), i.e. in view of $u_0 = x_{-1}$ and $v_0 = x_0$, (4.2) implies (4.1).

Writing $\eta_n = x_{2n}$, $\xi_n = x_{2n+1}$ then (1.6) is equivalent to

$$(1 + \xi_n) \eta_{n+1} = \eta_n$$
, $(1 + \eta_{n+1})\xi_{n+1} = \xi_n$.

For $u_n = \eta_n$ and $v_n = \xi_n$ these equations coincide with (3.2) so that (4.5) turns over into

$$\xi_n \le \xi_0 t^n, \quad \eta_n \ge p + (\eta_0 - p) t^n \tag{4.8}$$

with $t = \frac{1}{p+1}$, $p = \sqrt{\eta_0 + 1} - 1$, and (4.8) is valid for $n \in N_0$ when

$$0 < \xi_0 \le \frac{1}{2} \left(\sqrt{\eta_0 + 1} - 1 \right)$$

According to $\eta_n = x_{2n}$, $\xi_n = x_{2n+1}$ this means that (4.3) is valid when (4.4) **Remark.** 1. In view of (1.7) condition (4.4) can be written as

$$x_{-1} \le \frac{1}{2}(x_0+1)\left(\sqrt{x_0+1}-1\right) \tag{4.9}$$

and (4.2) by inversion as

$$4x_0(x_0+1) \le x_{-1}. \tag{4.10}$$

Hence, by positive initial values, Proposition 1 implies $x_{2n} \to 0$, $\lim_{n \to \infty} x_{2n-1} \ge \sqrt{x_{-1}+1} - 1 > 0$ when (4.9), and $x_{2n-1} \to 0$, $\lim_{n \to \infty} x_{2n} \ge \sqrt{x_0+1} - 1 > 0$ when (4.10).

2. The choice of p in the proof of Proposition 1 is optimal, since the domain (4.6) in the first quadrant of the (u, v)-plane has the *envelope*

$$(v+1)p^2 - up + uv = 0$$
, $2(v+1)p - u = 0$,

so that

$$p = \frac{u}{2(v+1)}, \quad u = 4v(v+1),$$

i.e.

$$p = 2v$$
, $v = \frac{1}{2} \left(\sqrt{u+1} - 1 \right)$

5 Asymptotically three-priodic solutions

Looking for a three-periodic solution of (1.7) generated by $x_{-1} = p$, $x_0 = q$, $x_1 = r$, we have to solve the equations

$$p = (1+q)r, \quad q = (1+r)p, \quad r = (1+p)q.$$
 (5.1)

Not all solutions of (5.1) can be positive, because every positive solutions of (1.7) converges to a two-periodic solution (cf. [4]). The non-trivial solutions of (5.1) are solutions of the polynomial equation

$$z^3 + 3z^2 = 3,$$

and if p = z is one solution then

$$q = \frac{3}{z^2 - 3}, \quad r = \frac{3(z+1)}{z^2 - 3}.$$

Hence, e.g.

$$p = 2\cos\left(\frac{\pi}{9}\right) - 1 \approx 0.879385, q = -2\sin\left(\frac{\pi}{18}\right) - 1 \approx -1.347296, r = -2\cos\left(\frac{2\pi}{9}\right) - 1 \approx -2.532089.$$

For the first terms of an asymptotically three-periodic solutions we expect, as in Section 3, the structure

$$x_{3n-1} = p + at^n$$
, $x_{3n} = q + bt^n$, $x_{3n+1} = r + ct^n$ (5.2)

up to an $O(t^{2n})$ where the coefficients must satisfy the equations

$$\begin{array}{ll} p+at^n &= (1+q+bt^n)(r+ct^n)\,,\\ q+bt^n &= (1+r+ct^n)(p+at^{n+1})\,,\\ r+ct^n &= (1+p+at^{n+1})(q+bt^{n+1})\,. \end{array}$$

again up to an $O(t^{2n})$, i.e. besides of (5.1),

$$(1+q)c + rb = a$$
, $(1+r)ta + pc = b$, $(1+p)tb + qta = c$. (5.3)

This homogeneous system has a non-trivial solution, if its determinant

$$\begin{vmatrix} -1 & r & 1+q \\ (1+r)t & -1 & p \\ qt & (1+p)t & -1 \end{vmatrix} = t^2 + 9t - 1$$
(5.4)

vanishes. Since it must be |t| < 1 we expect the existence of an asymptotically threeperiodic solution with the asymptotic approximations (5.2) and

$$t = \frac{1}{2} \left(-9 + \sqrt{85} \right) \approx 0.109772 \,.$$

The corresponding solution of (5.3) reads up to a constant factor

$$a = 11z^{2} + 5z - 14$$
, $b = -z^{2}(t+5) - 2z + t + 6$, $c = z^{2}(2-t) + z(1-t) - 2$.

Now, we could proceed as in Section 3, but we resign from doing this. Note that the existence of a second zero of (5.4) with t < -1 indicates that the three-periodic solution p, q, r is unstable.

6 Bounded solutions

Next, we verify a generalization of three conjectures concerning bounded solutions.

Conjecture ([4]: 11.4.1). Assume that all coefficients of (1.1) are positive. Show that every positive solution is bounded.

Even in the case that all coefficients of (1.1) are non-negative an analogous conjecture comes true if there exists a constant M satisfying

$$\alpha \leq MA$$
, $\beta \leq MB$, $\gamma \leq MC$,

because then every non-negative solution of (1.1) satisfies $x_n \leq M$ for $n \in \mathbb{N}$. If all coefficients in the denominator of (1.1) are positive whereas the coefficients in the numerator can remain non-negative, then we can choose

$$M = \max\left(\frac{\alpha}{A}, \frac{\beta}{B}, \frac{\gamma}{C}\right)$$

This means in particular, that the preceding conjecture comes true.

The case $\gamma = 0$ was already treated in [4: Theorem 9.2.2]. The case $\beta = 0$ verifies Conjecture [4: 9.5.2], and the case $\alpha = 0$ Conjecture [4: 9.5.3].

7 Global behaviour

Finally, we refer to

Conjecture ([4]: 11.4.11). Show that the difference equation (1.11) has the following trichotomy character:

- (i) When p > 1 every positive solution converges to the positive equilibrium.
- (ii) When p = 1 every positive solution converges to a period-five solution.
- (iii) When p < 1 there exist positive unbounded solutions.

In the elementary case p = 0 the conjecture turns out to be true. Otherwise for p > 0 we only can replace it by another one.

Preliminarily, we make the ansatz

$$x_n = \sum_{j=0}^{\infty} c_j a^j z^{nj} \tag{7.1}$$

with an arbitrary a and put it into equation (1.11) in the form

$$x_n = x_{n+3}x_{n+2} - p. (7.2)$$

Comparing coefficients we obtain

$$c_0 = c_0^2 - p$$
, $ac_1(1 - c_0(z^3 + z^2)) = 0$ (7.3)

and for $k \geq 2$ the recursions

$$c_k = \frac{z^{2k}}{1 - c_0 z^{2k} (z^k + 1)} \sum_{j=1}^{k-1} c_j c_{k-j} z^j , \qquad (7.4)$$

provided that the denominator is different from zero. The first equation of (7.3) means that c_0 is an equilibrium of (7.2), we choose the solution

$$c_0 = \frac{1}{2} \left(1 + \sqrt{1+4p} \right) \,. \tag{7.5}$$

As a function of p it is strictly increasing with $c_0 \ge \frac{1}{2}$ for $p \ge -\frac{1}{4}$. The second equation yields either $ac_1 = 0$ which leads to the stationary solution $y_n = c_0$, or it leaves ac_1 undetermined. Without loss of generality we choose $c_1 = 1$, and it remains to study the solutions of the equation

$$z^3 + z^2 = \frac{1}{c_0} \tag{7.6}$$

for $c_0 \geq \frac{1}{2}$, which is the characteristic equation of the linearized equation associated with (7.2). The solution z = 1 of (7.6) with $c_0 = \frac{1}{2}$ is useless since then all denominators in (7.4) vanish. For $c_0 > \frac{1}{2}$ there exists always a positive solution with z < 1. For $c_0 = \frac{27}{4}$, i.e. for $p = \frac{621}{16}$, there exists also the twofold negative solution $-\frac{2}{3}$, and for $c_0 > \frac{27}{4}$ there exist two different solutions with -1 < z < 0. For $\frac{1}{2} < c_0 < \frac{27}{4}$ there exist two conjugate complex solutions to which we come back later on. In particular, for $c_0 = \frac{1}{2} (\sqrt{5} + 1)$, i.e. for p = 1, the solutions of (7.6) are

$$z_1 = e^{\frac{4\pi i}{5}}, \quad z_2 = e^{\frac{6\pi i}{5}}, z_3 = \frac{1}{2}\left(\sqrt{5} - 1\right).$$
 (7.7)

In order to construct further solutions of (7.2) we extend the ansatz (7.1) to

$$x_n = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} c_{jk} a^j z^{nj} b^k w^{nk}$$
(7.8)

with $w \neq z$. The recursions for the coefficients are the two-dimensional generalizations of (7.4). It turns out that w must be also a solution of (7.6), that $c_{j0} = c_j$, and replacing z by w, we obtain c_{0k} from c_k . More generally, c_{jk} arises from c_{kj} by exchanging z and w. Hence $c_{jk} = \overline{c}_{kj}$ when $w = \overline{z}$. Some special cases are

$$c_{20} = \frac{z^5}{1 - c_0 z^4 (z^2 + 1)}, \quad c_{11} = \frac{z^2 w^2 (z + w)}{1 - c_0 z^2 w^2 (zw + 1)}, \quad c_{02} = \frac{w^5}{1 - c_0 w^4 (w^2 + 1)},$$

$$c_{30} = \frac{c_{20} z^2 (z + 1)}{1 - c_0 z^6 (z^3 + 1)}, \quad c_{21} = \frac{z^4 w^2 (c_{20} (z^2 + w) + c_{11} z (w + 1))}{1 - c_0 z^4 w^2 (z^2 w + 1)}.$$

The most general ansatz for a solution of (7.2) reads

$$x_n = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} c_{jkl} a^j z^{nj} b^k w^{nk} c^l t^{nl}$$
(7.9)

with three different solutions z, w, t of (7.6), where for a twofold solution z = w, which appears only for $p = \frac{621}{16}$, we have to replace w^n by nz^n . There are analogous recursions, symmetries and relations as before, in particular $c_{ij0} = c_{ij}$. In the case $p \neq \frac{621}{16}$ the recursions for c_{jkl} contain the denominator

$$D = 1 - c_0 z^{2j} w^{2k} t^{2l} (z^j w^k t^l + 1)$$
(7.10)

which has the following property:

Lemma. Let z, w, t be three pairwise different solutions of (7.6), let be $c_0 > \frac{1}{2} (\sqrt{5} + 1)$ and $j + k + l \ge 2$ (j, k, $l \in \mathbb{N}_0$). Then D from (7.10) is different from zero.

Proof. For j + k + l = 1 it is D = 0 in view of (7.6). If the solutions z, w, t are real, then they have absolute values less then 1, and the powers of these values diminish. Hence, D > 0 for $j + k + l \ge 2$.

Now, let z be complex and $w = \overline{z}$, and assume that D = 0. For fixed j, k, l we introduce the notation

$$z^j w^k t^l = \rho e^{i\vartheta} \,.$$

The assumption D = 0 implies

$$\frac{1}{c_0} = \rho^3 \cos 3\vartheta + \rho^2 \cos 2\vartheta \,, \quad \rho^3 \sin 3\vartheta + \rho^2 \sin 2\vartheta = 0 \,,$$

and elimination of ϑ yields

$$c_0 = \frac{1}{2\rho^4} \left(1 + \sqrt{1 + 4\rho^2} \right) \,. \tag{7.11}$$

Since the right-hand side of (7.11) is strictly decreasing, there exists exactly one ρ satisfying (7.11) for given c_0 , namely $\rho = |z|$. For $c_0 > \frac{1}{2}(\sqrt{5}+1)$ it is $\rho < 1$, and the powers of |z|, |w| and t again diminish, so that $D \neq 0$

The lemma implies that all coefficients c_{jkl} exist for $c_0 > \frac{1}{2}(\sqrt{5}+1)$, i.e. for p > 1, where |z| < 1 for all solutions of (7.6). However, for $\frac{1}{2} < c_0 \leq \frac{1}{2}(\sqrt{5}+1)$, i.e. for $-\frac{1}{4} , we have <math>|z| = |w| \geq 1$, t < 1, so that D = 0 is possible. E.g. for $z = z_1$, $w = z_2$ from (7.7) it is zw = 1 and therefore D = 0 in (7.10) for j = 2, k = 1, l = 0, but then the numerator in c_{21} also vanishes, and $c_{21} = c_{210}$ exists nevertheless.

In the case p = 0 it can easily be seen that

$$x_n = e^{az^n + b\overline{z}^n + ct^n} \,,$$

where z is a complex and t the real solution of (7.6) with $c_0 = 1$, is the general complex solution of (7.2) when a, b, c are arbitrary, and the general positive solution when c is real and $b = \overline{a}$ (cf. [4: Section 3.3]). For $a \neq 0$ it is indeed unbounded as conjectured in (iii), and obviously, it can be expanded into the form (7.9) with $c_{jkl} = \frac{1}{i!k!l!}$.

After these preparations we make the following new

Conjecture. The coefficients c_{jkl} exist also for 0 , for <math>0 < p the series (7.10) (including its modification for $p = \frac{621}{16}$) converges for all $n \in \mathbb{Z}$, and the parameters a, b, c can be determined uniquely out of given positive initial values x_{-2}, x_{-1}, x_0 .

If this conjecture comes true, then (7.10) is the general positive solution of (1.11) and, in view of the behaviour of the solutions of (7.6) described before, the sub-conjectures (i) and (ii) are valid, and we can expect that (iii) is also valid. For $p \ge 1$ the series (7.9) are simultaneously asymptotic expansions as $n \to \infty$.

In the case p = 1 we can modify the ansatz (7.9) for the solutions (7.7) of (7.6) in the following way. With the notations $z = z_1$, $t = z_3$ it is $w = z_2 = \overline{z}$ so that $z^j w^k = z^{j+4k}$, and in view of $z^5 = 1$, we can replace (7.9) by

$$x_n = \sum_{m=0}^{4} \sum_{l=0}^{\infty} b_{ml} z^{nm} c^l t^{nl}$$
(7.12)

with

$$b_{ml} = \sum_{j+4k \equiv m \mod 5} c_{jkl} a^j b^k .$$
 (7.13)

The special case of (7.12) with c = 0, i.e.

$$x_n = \sum_{m=0}^{4} b_{m0} z^{nm} , \qquad (7.14)$$

yields the 5-periodic solution of (7.2) with p = 1 generated by

$$x_0 = r$$
, $x_1 = s$, $x_2 = \frac{r+1}{rs-1}$, $x_3 = rs-1$, $x_4 = \frac{s+1}{rs-1}$. (7.15)

Here r, s are arbitrary positive parameters satisfying rs > 1, if we look for positive x_n .

Since (7.14) is a discrete Fourier-transform we easily find by inversion

$$b_{m0} = \frac{1}{5} \sum_{k=0}^{4} x_m z^{-mk}$$

with x_m from (7.15). The coefficients contain the arbitrary parameters r, s instead of a, b in (7.13), they determine the further coefficients b_{ml} in (7.12) recursively. For r = s =

 $\frac{1}{2}(\sqrt{5}+1)$ the 5-periodic solution degenerates to the equilibrium, to which the solution (7.9) converges in the case a = b = 0. For the initial values $x_{-2} = x_0$, $x_{-1} = \frac{1}{x_0}$ the solution of (7.2) with p = 1 continuous to the left by

$$x_{2-5n} = x_{1-5n} = 0$$
, $x_{-5n} = x_{-1-5n} = x_{-2-5n} = -1$ $(n \in \mathbb{N})$.

For p < 0 it is not possible to choose the initial values for the solutions of (7.2) arbitrarly, cf. [4]. Moreover, for $-\frac{1}{4} besides of (7.5) also the second equilibrium <math>c_0 = \frac{1}{2}(1 - \sqrt{1 + 4p})$ is positive and must be taken into consideration.

References

- 1 Agarwal, R. P., O'Regan, D. and P. J. Y. Wong: Positive Solutions of Differential, Difference and Integral Equations. Dordrecht-Boston-London: Kluwer Acad. Publ. 1999.
- 2 Berg, L.: Asymptotische Darstellungen und Entwicklungen. Berlin: Dt. Verlag Wiss. 1968.
- 3 Krause, U. and T. Nesemann: Differenzengleichungen und diskrete dynamische Systeme. Stuttgart-Leipzig: Teubner 1999.
- 4 Kulenović, M. R. S. and G. Ladas: Dynamics of Second Order Rational Difference Equations. Boca Raton et al.: Chapman & Hall/CRC 2002.
- 5 Pachpatte, B.G.: Inequalities for Finite Difference Equations. New York-Basel: Marcel Dekker 2002.