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1 Introduction

The book Kulenović and Ladas [4] contains a large number of open problems and conjec-
tures concerning the dynamics of the rational difference equations

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1

(1.1)

(n ∈ N0) with non-negative parameters and of more general equations. The problems con-
cerning the asymptotic behaviour of the solutions xn of (1.1) can be solved by constructing
two bounds yn, zn with

yn ≤ xn ≤ zn (1.2)

for suitable great n. This construction can be realized in the following way (cf. [2]):
Choose an asymptotic scale ϕk(n) (k ∈ N0), i.e. a sequence of positive functions with
ϕk+1(n) = o(ϕk(n)) for n →∞, such that all shifts ϕk(n + 1), ϕk(n− 1) and all products
ϕlϕm possess asymptotic expansions with respect to this scale. In the case α 6= 0 also the
constant function 1 must possess such an expansion. Then make the ansatz

xnK =
K∑

k=0

ckϕk(n) (1.3)

with a fixed K ≥ 1, determine the coefficients out of

xn+1(A + Bxn + Cxn−1)− α− βxn − γxn−1 = O(ϕL(n)) (1.4)

as n →∞ with xn = xnK and L as great as possible, and put

yn = xn,K−1 + aϕK(n), zn = xn,K−1 + bϕK(n) (1.5)
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with a < cK < b. Simple examples for possible scales are ϕk = 1
nk and ϕk = tkn with

0 < t < 1. After having found the bounds yn, zn it remains to show the existence of a
solution xn of (1.1) with (1.2) which shall be done in Section 2.

If we have no idea how to choose the scale ϕk, we can try the following possibility
(cf. [2]). Replace (1.1) by a differential equation which approximates (1.1) asymptotically
as n →∞ and which can be solved explicitly. Then take this solution (or an asymptotic
approximation of it) as xn,K−1 in (1.5). In the simplest case the approximating differential
equation can be obtained by substituting into (1.1) the first terms of the Taylor expansions
for xn+1 and xn−1. However, this requires that the derivatives with respect to n (considered
as continuous variable) have a smaller order than the functions as it comes true by the
functions 1

nk , but not by the functions tkn. For more complicated possibilities cf. [2].
If asymptotically two-periodic solutions are sought, then put un = x2n−1, vn = x2n

and replace (1.1) by the system

un+1 =
α + βvn + γun

A + Bvn + Cun

, vn+1 =
α + βun+1 + γvn

A + Bun+1 + Cvn

, (1.6)

to which the foregoing procedures can be transferred.
In the following we deal on the one hand with a generalization of (1.1), and on the

other hand with the special cases

xn+1 =
xn−1

1 + xn

, (1.7)

xn+1 = β +
xn−1

xn

, (1.8)

xn+1 =
1 + xn−1

xn

, (1.9)

xn+1 =
α + xn−1

1 + xn

(1.10)

with α > 0. In particular, we verify the following conjectures:

Conjecture ([4]: 4.8.2). Show that (1.7) has a solution which converges to
zero.

Conjecture ([4]: 4.8.3). Show that (1.8) has a solution which remains above
the equilibrium x = β + 1 for all n ≥ −1.

Conjecture ([4]: 5.4.6). Show that (1.9) has a nontrivial positive solution
which decreases monotonically to the equilibrium of the equation.

Conjecture ([4]: 6.10.3). Show that (1.10) has a positive and monotonically
decreasing solution.
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We also deal with asymptotically periodic solutions of (1.7) and we give a partial
answer to the Open Problem [4: 4.8.4], which among other things demands to investigate
the global character of the solution of (1.7) in dependence on their initial values x−1, x0.

Finally, we verify three conjectures of [4] concerning bounded solutions of (1.1), and
we refer to a further conjecture of [4] concerning the rational difference equation

xn+1 =
p + xn−2

xn

(1.11)

(n ∈ N0) which is not of the type (1.1). We shall verify the conjecture for p = 0, whereas
for p > 0 we shall replace it by another.

For some calculations we have used the DERIVE system.

2 The inclusion theorem

In order to verify the inequalities (1.2) we consider the equation

xn−1 = f(xn, xn+1) (2.1)

which can be either the solution of (1.1) with respect to xn−1 (in the case γ + C > 0)
or an equation with an arbitrary f (such that (2.1) is uniquely solvable with respect to
xn+1).

Theorem 1. Let the function f be continuous and non-decreasing in both arguments,
and let be yn < zn for n ≥ n0 as well as

yn−1 ≤ f(yn, yn+1) , f(zn, zn+1) ≤ zn−1 (2.2)

for n > n0. Then there exists a solution of (2.1) with (1.2) for n ≥ n0.

Proof. Choosing an arbitrary integer N > n0, then all initial values xN+1, xN with (1.2)
for n = N +1 and n = N can be continued by means of (2.1) to the left. The inequalities
(2.2) and the monotony of f yield the validity of (1.2) for all n with n0 ≤ n ≤ N + 1.
Let AN be the non-empty set of all pairs (xn0 , xn0+1) such that the solutions xn of (2.1)
satisfy (1.2) for n0 ≤ n ≤ N + 1. The continuity of f implies that AN is a closed set, and

the monotony of f that AN ⊃ AN+1. Hence, there exists a non-empty set A =
∞⋂

N=n0+1

AN

of pairs (xn0 , xn0+1) such that all attached solutions xn of (2.1) satisfy (1.2) for all n ≥ n0

¥
As the proof shows, the continuity and the monotony of f are only necessary for such

arguments which satisfy (1.2) for n > n0.
Theorem 1 can be modified in different ways (cf. [1, 2, 3, 5]), but we do not need here

such modifications. Instead of that we come back to the special cases (1.7)-(1.10) of (1.1).
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Example 1. For the example (1.7) the inversion (2.1) yields the function f(xn, xn+1) =
(1+xn)xn+1, which satisfies the assumptions of Theorem 1 for positive arguments. Writing
xn = x and using the approximations xn+1 ≈ x + x′, xn−1 ≈ x − x′, we replace (1.7) by
the differential equation

(2 + x)x′ + x2 = 0

with the solution

x =
2

n + ln x + C
.

In the case x → 0 as n →∞ we find x ∼ 2
n

and therefore iteratively, choosing C = − ln 2,
the asymptotic approximations

x[0] =
2

n
, x[1] =

2

n− ln n
, x[2] =

2

n− ln n + 1
n

ln n
.

Taking into account that x[2] = 2
n

+ 2
n2 ln n + 2

n3 ln2 n + O
(

1
n3 ln n

)
we make the ansatz

yn =
2

n
+

2

n2
ln n +

a

n3
ln2 n , zn =

2

n
+

2

n2
ln n +

b

n3
ln2 n

with a < 2 < b, cf. (1.5) with K = 2. Then we find the asymptotic relation

yn+1(1 + yn)− yn−1 ∼ 2

n4
(2− a) ln2 n ,

and an analogous relation with z and b instead of y and a, respectively. These relations
show that the inequalities (2.2) are satisfied for sufficiently great n.

Hence, Theorem 1 can be applied and it yields, in particular, the existence of a solution
of (1.7) converging to zero, i.e. it verifies the corresponding conjecture from [4].

The next three examples are special cases of

xn+1 =
α + βxn + xn−1

A + xn

. (2.3)

The inversion (2.1) yields the function f(xn, xn+1) = (A + xn)(xn+1− β) + Aβ−α, which
is continuous and increasing for xn > 0 and xn+1 > β. An equilibrium x of (2.3) is a
solution of x2 + (A− β − 1)x = α, here we need the non-negative equilibrium

x =
1

2

(
β + 1− A +

√
(β + 1− A)2 + 4α

)
. (2.4)

Making with an unknown t ∈ (0, 1) the ansatz

xn = x + tn + ct2n + o(t2n) (2.5)
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as n →∞, we find, according to (1.4),

x =
1 + βt− At2

(1 + t)t
, c =

(1 + t)t3

(1− t)(1 + t + t2 + (A + β)t3)
, (2.6)

provided that the first equation has a solution t ∈ (0, 1). In this case the ansatz

yn = x + tn + at2n , zn = x + tn + bt2n

leads to the asymptotic representation

f(yn, yn+1)− yn−1 ∼
(
1− a

c

)
t2n+1

and an analogous one with z and b instead of y and a, respectively. These representations
show that the inequalities (2.2) are satisfied for sufficiently great n, since c > 0, and
Theorem 1 yields the existence of a solution of (2.3) with the asymptotic behaviour (2.5)
which will verify the corresponding conjectures from [4]. However, it remains to prove
that t ∈ (0, 1).

Example 2. Choosing in (2.3) α = A = 0 we get example (1.8). The equations (2.4)
and (2.6) specialize to

x = β + 1 =
1 + βt

(1 + t)t
, c =

t3

(1− t)(1 + t− t2)
,

and one solution of the first equation is t = 1
2(β+1)

(√
4β + 5− 1

)
, which satisfies t ∈ (0, 1)

even for β > −1. Hence, there exists a solution of (1.8) with (2.5), i.e. in particular, a
solution of (1.8) with xn > x = β + 1 when β > −1 and n ≥ n0. But there exists also
such a solution when n ≥ −1, namely xn+n0+1.

Example 3. Choosing in (2.3) α = 1 and β = A = 0 we get example (1.9). The equations
(2.4) and (2.6) specialize to

x =
1

2

(
1 +

√
5
)

=
1

(1 + t)t
, c =

(1 + t)t3

1− t3
,

and t = 1
2

(√
2
√

5− 1− 1
)
≈ 0.4317 is the solution of the first equation contained in

(0, 1). Hence, there exists a solution of (1.9) with (2.5). This asymptotic relation shows
that xn is eventually monotonically decreasing to x, and a suitable shift of xn is decreasing
for all n ≥ −1.

Example 4. Choosing in (2.3) β = 0 and A = 1 we get example (1.10). The equations
(2.4) and (2.6) specialize to

x =
√

α =
1− t

t
, c =

(1 + t)t3

1− t4
,

and the first equation implies t = 1√
α+1

∈ (0, 1). Hence, there exists a solution of (1.10)

with (2.5). The validity of the corresponding conjecture of [4] follows as in the foregoing
examples.
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3 Asymptotically two-periodic solutions

Equation (1.7) possesses the two-periodic solution x2n−1 = 0, x2n = p with an arbitrary
constant p. Looking for an asymptotically two-periodic solution, we put un = x2n−1 and
vn = x2n as before and make the ansatz

un =
∞∑

ν=1

aνc
νtνn , vn =

∞∑
ν=0

bνc
νtνn (3.1)

with b0 = p and arbitrary c, since (1.6) is an autonomous equation. We choose c > 0. In
the case (1.6) the equations (1.5) specialize to

(1 + vn)un+1 = un , (1 + un+1)vn+1 = vn . (3.2)

Substitution of (3.1) into these equations and comparing the coefficients yields t = 1
p+1

,
a1 = b1 undetermined, and

aν =
1

(p + 1)ν−1 − 1

ν−1∑
µ=1

bµaν−µ(p + 1)µ−1 , bν =
1

(p + 1)ν − 1

ν−1∑
µ=0

bµaν−µ (3.3)

for ν ≥ 2. In view of the presence of the arbitrary constant c we can choose a1 = b1 = 1.
The next coefficients read

a2 =
1

2
, b2 =

2

p(p + 2)
, a3 =

3p + 4

p2(p + 2)2
, b3 =

p2 + 9p + 12

p2(p + 2)2(p2 + 3p + 3)
.

For positive p it is 0 < t < 1, and the coefficients aν , bν are also positive. It can easily be
proved by induction that the further coefficients allow the estimates

aν ≤ 1

pν−1
, bν ≤ 1

pν−1

for all ν ≥ 1. This means that the series (3.1) are not only asymptotic ones as n → ∞,
but that they even converge for tn < p

c
, i.e. for suitable great n.

Remark. 1. By positive initial values u0, v0 it follows from (3.2) that all solutions are
also positive and decreasing, hence converging to a non-negative limit. At least one
limit equals zero (cf. [4]).

2. By elimination it can be shown that both solutions of (3.2) are also solutions of the
rational difference equation

wn+1 =
wn + w2

n

wn−1 + w2
n

wn

which is not of the type (1.1).
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4 Dependence on the initial values

Next, we want to study the solution of (1.7) in dependence on their initial values x−1, x0.

Proposition 1. For n ∈ N0 and positive x−1, x0 the solution of (1.6) satisfies the
estimates

x2n ≤ x0t
n , x2n−1 ≥ p + (x−1 − p)tn (4.1)

with t = 1√
x−1+1

, p =
√

x−1 + 1− 1 when

x0 ≤ 1

2

(√
y−1 + 1− 1

)
, (4.2)

and the estimates
x2n+1 ≤ x1t

n , x2n ≥ p + (x0 − p)tn (4.3)

with t = 1√
x0+1

, p =
√

x0 + 1− 1 when

x1 ≤ 1

2

(√
x0 + 1− 1

)
. (4.4)

Proof. We use the foregoing notations un = x2n−1, vn = x2n for which the estimates (4.1)
read

vn ≤ v0t
n , un ≥ p + (u0 − p)tn . (4.5)

Since these estimates are valid for n = 0 we shall prove them by induction. Hence,
according to (3.2), we have to show

v0t
n

1 + p + (u0 − p)tn+1
≤ v0t

n+1 ,
p + (u0 − p)tn

1 + v0tn
≥ p + (u0 − p)tn+1

for n ∈ N0, i.e. (for t > 0, v0 > 0 and 0 < p < u0)

1 ≤ (1 + p)t + (u0 − p)tn+2 , (u0 − p)(1− t) ≥ v0

(
p + (u0 − p)tn+1

)
.

The optimal solution of the first inequality for n ∈ N0 is t = 1
p+1

, so that 0 < t < 1. The
second inequality is valid, if it is valid for n = 0, i.e. if

(u0 − p)p ≥ v0(p
2 + u0) . (4.6)

For p =
√

u0 + 1− 1 this inequality turns over into

v0 ≤ 1

2

(√
u0 + 1− 1

)
. (4.7)

Hence, (4.7) implies (4.5), i.e. in view of u0 = x−1 and v0 = x0, (4.2) implies (4.1).
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Writing ηn = x2n, ξn = x2n+1 then (1.6) is equivalent to

(1 + ξn) ηn+1 = ηn , (1 + ηn+1)ξn+1 = ξn .

For un = ηn and vn = ξn these equations coincide with (3.2) so that (4.5) turns over into

ξn ≤ ξ0t
n , ηn ≥ p + (η0 − p)tn (4.8)

with t = 1
p+1

, p =
√

η0 + 1− 1, and (4.8) is valid for n ∈ N0 when

0 < ξ0 ≤ 1

2

(√
η0 + 1− 1

)
.

According to ηn = x2n, ξn = x2n+1 this means that (4.3) is valid when (4.4) ¥
Remark. 1. In view of (1.7) condition (4.4) can be written as

x−1 ≤ 1

2
(x0 + 1)

(√
x0 + 1− 1

)
(4.9)

and (4.2) by inversion as
4x0(x0 + 1) ≤ x−1 . (4.10)

Hence, by positive initial values, Proposition 1 implies x2n → 0, lim
n→∞

x2n−1 ≥
√

x−1 + 1 − 1 > 0 when (4.9), and x2n−1 → 0, lim
n→∞

x2n ≥
√

x0 + 1 − 1 > 0 when

(4.10).

2. The choice of p in the proof of Proposition 1 is optimal, since the domain (4.6) in
the first quadrant of the (u, v)-plane has the envelope

(v + 1)p2 − up + uv = 0 , 2(v + 1)p− u = 0 ,

so that
p =

u

2(v + 1)
, u = 4v(v + 1) ,

i.e.

p = 2v , v =
1

2

(√
u + 1− 1

)
.

5 Asymptotically three-priodic solutions

Looking for a three-periodic solution of (1.7) generated by x−1 = p, x0 = q, x1 = r, we
have to solve the equations

p = (1 + q)r , q = (1 + r)p , r = (1 + p)q . (5.1)
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Not all solutions of (5.1) can be positive, because every positive solutions of (1.7) converges
to a two-periodic solution (cf. [4]). The non-trivial solutions of (5.1) are solutions of the
polynomial equation

z3 + 3z2 = 3 ,

and if p = z is one solution then

q =
3

z2 − 3
, r =

3(z + 1)

z2 − 3
.

Hence, e.g.

p = 2 cos
(π

9

)
− 1 ≈ 0.879385 ,

q = −2 sin
( π

18

)
− 1 ≈ −1.347296 ,

r = −2 cos

(
2π

9

)
− 1 ≈ −2.532089 .

For the first terms of an asymptotically three-periodic solutions we expect, as in Section
3, the structure

x3n−1 = p + atn , x3n = q + btn , x3n+1 = r + ctn (5.2)

up to an O(t2n) where the coefficients must satisfy the equations

p + atn = (1 + q + btn)(r + ctn) ,
q + btn = (1 + r + ctn)(p + atn+1) ,
r + ctn = (1 + p + atn+1)(q + btn+)

again up to an O(t2n), i.e. besides of (5.1),

(1 + q)c + rb = a , (1 + r)ta + pc = b , (1 + p)tb + qta = c . (5.3)

This homogeneous system has a non-trivial solution, if its determinant∣∣∣∣∣∣

−1 r 1 + q
(1 + r)t −1 p

qt (1 + p)t −1

∣∣∣∣∣∣
= t2 + 9t− 1 (5.4)

vanishes. Since it must be |t| < 1 we expect the existence of an asymptotically three-
periodic solution with the asymptotic approximations (5.2) and

t =
1

2

(
−9 +

√
85

)
≈ 0.109772 .

The corresponding solution of (5.3) reads up to a constant factor

a = 11z2 + 5z − 14 , b = −z2(t + 5)− 2z + t + 6 , c = z2(2− t) + z(1− t)− 2 .

Now, we could proceed as in Section 3, but we resign from doing this. Note that the
existence of a second zero of (5.4) with t < −1 indicates that the three-periodic solution
p, q, r is unstable.
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6 Bounded solutions

Next, we verify a generalization of three conjectures concerning bounded solutions.

Conjecture ([4]: 11.4.1). Assume that all coefficients of (1.1) are positive. Show
that every positive solution is bounded.

Even in the case that all coefficients of (1.1) are non-negative an analogous conjecture
comes true if there exists a constant M satisfying

α ≤ MA , β ≤ MB , γ ≤ MC ,

because then every non-negative solution of (1.1) satisfies xn ≤ M for n ∈ N. If all coef-
ficients in the denominator of (1.1) are positive whereas the coefficients in the numerator
can remain non-negative, then we can choose

M = max

(
α

A
,
β

B
,
γ

C

)
.

This means in particular, that the preceding conjecture comes true.
The case γ = 0 was already treated in [4: Theorem 9.2.2]. The case β = 0 verifies

Conjecture [4: 9.5.2], and the case α = 0 Conjecture [4: 9.5.3].

7 Global behaviour

Finally, we refer to

Conjecture ([4]: 11.4.11). Show that the difference equation (1.11) has the fol-
lowing trichotomy character:

(i) When p > 1 every positive solution converges to the positive equilibrium.

(ii) When p = 1 every positive solution converges to a period-five solution.

(iii) When p < 1 there exist positive unbounded solutions.

In the elementary case p = 0 the conjecture turns out to be true. Otherwise for p > 0
we only can replace it by another one.

Preliminarily, we make the ansatz

xn =
∞∑

j=0

cja
jznj (7.1)

with an arbitrary a and put it into equation (1.11) in the form

xn = xn+3xn+2 − p . (7.2)
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Comparing coefficients we obtain

c0 = c2
0 − p , ac1(1− c0(z

3 + z2)) = 0 (7.3)

and for k ≥ 2 the recursions

ck =
z2k

1− c0z2k(zk + 1)

k−1∑
j=1

cjck−jz
j , (7.4)

provided that the denominator is different from zero. The first equation of (7.3) means
that c0 is an equilibrium of (7.2), we choose the solution

c0 =
1

2

(
1 +

√
1 + 4p

)
. (7.5)

As a function of p it is strictly increasing with c0 ≥ 1
2

for p ≥ −1
4
. The second equation

yields either ac1 = 0 which leads to the stationary solution yn = c0, or it leaves ac1

undetermined. Without loss of generality we choose c1 = 1, and it remains to study the
solutions of the equation

z3 + z2 =
1

c0

(7.6)

for c0 ≥ 1
2
, which is the characteristic equation of the linearized equation associated with

(7.2). The solution z = 1 of (7.6) with c0 = 1
2

is useless since then all denominators in
(7.4) vanish. For c0 > 1

2
there exists always a positive solution with z < 1. For c0 = 27

4
,

i.e. for p = 621
16

, there exists also the twofold negative solution −2
3
, and for c0 > 27

4
there

exist two different solutions with −1 < z < 0. For 1
2

< c0 < 27
4

there exist two conjugate

complex solutions to which we come back later on. In particular, for c0 = 1
2

(√
5 + 1

)
, i.e.

for p = 1, the solutions of (7.6) are

z1 = e
4πi
5 , z2 = e

6πi
5 , z3 =

1

2

(√
5− 1

)
. (7.7)

In order to construct further solutions of (7.2) we extend the ansatz (7.1) to

xn =
∞∑

j=0

∞∑

k=0

cjka
jznjbkwnk (7.8)

with w 6= z. The recursions for the coefficients are the two-dimensional generalizations of
(7.4). It turns out that w must be also a solution of (7.6), that cj0 = cj, and replacing z
by w, we obtain c0k from ck. More generally, cjk arises from ckj by exchanging z and w.
Hence cjk = ckj when w = z. Some special cases are

c20 =
z5

1− c0z4(z2 + 1)
, c11 =

z2w2(z + w)

1− c0z2w2(zw + 1)
, c02 =

w5

1− c0w4(w2 + 1)
,

c30 =
c20z

2(z + 1)

1− c0z6(z3 + 1)
, c21 =

z4w2(c20(z
2 + w) + c11z(w + 1))

1− c0z4w2(z2w + 1)
.
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The most general ansatz for a solution of (7.2) reads

xn =
∞∑

j=0

∞∑

k=0

∞∑

l=0

cjkla
jznjbkwnkcltnl (7.9)

with three different solutions z, w, t of (7.6), where for a twofold solution z = w, which
appears only for p = 621

16
, we have to replace wn by nzn. There are analogous recursions,

symmetries and relations as before, in particular cij0 = cij. In the case p 6= 621
16

the
recursions for cjkl contain the denominator

D = 1− c0z
2jw2kt2l(zjwktl + 1) (7.10)

which has the following property:

Lemma. Let z, w, t be three pairwise different solutions of (7.6), let be c0 > 1
2

(√
5 + 1

)
and j + k + l ≥ 2 (j, k, l ∈ N0). Then D from (7.10) is different from zero.

Proof. For j + k + l = 1 it is D = 0 in view of (7.6). If the solutions z, w, t are
real, then they have absolute values less then 1, and the powers of these values diminish.
Hence, D > 0 for j + k + l ≥ 2.

Now, let z be complex and w = z, and assume that D = 0. For fixed j, k, l we
introduce the notation

zjwktl = ρeiϑ .

The assumption D = 0 implies

1

c0

= ρ3 cos 3ϑ + ρ2 cos 2ϑ , ρ3 sin 3ϑ + ρ2 sin 2ϑ = 0 ,

and elimination of ϑ yields

c0 =
1

2ρ4

(
1 +

√
1 + 4ρ2

)
. (7.11)

Since the right-hand side of (7.11) is strictly decreasing, there exists exactly one ρ satis-
fying (7.11) for given c0, namely ρ = |z|. For c0 > 1

2
(
√

5 + 1) it is ρ < 1, and the powers
of |z|, |w| and t again diminish, so that D 6= 0 ¥

The lemma implies that all coefficients cjkl exist for c0 > 1
2
(
√

5+1), i.e. for p > 1, where

|z| < 1 for all solutions of (7.6). However, for 1
2

< c0 ≤ 1
2
(
√

5+1), i.e. for −1
4

< p ≤ 1, we
have |z| = |w| ≥ 1, t < 1, so that D = 0 is possible. E.g. for z = z1, w = z2 from (7.7) it
is zw = 1 and therefore D = 0 in (7.10) for j = 2, k = 1, l = 0, but then the numerator
in c21 also vanishes, and c21 = c210 exists nevertheless.

In the case p = 0 it can easily be seen that

xn = eazn+bzn+ctn ,

12



where z is a complex and t the real solution of (7.6) with c0 = 1, is the general complex
solution of (7.2) when a, b, c are arbitrary, and the general positive solution when c is
real and b = a (cf. [4: Section 3.3]). For a 6= 0 it is indeed unbounded as conjectured in
(iii), and obviously, it can be expanded into the form (7.9) with cjkl = 1

j!k!l!
.

After these preparations we make the following new

Conjecture. The coefficients cjkl exist also for 0 < p ≤ 1, for 0 < p the series (7.10)
(including its modification for p = 621

16
) converges for all n ∈ Z, and the parameters a, b,

c can be determined uniquely out of given positive initial values x−2, x−1, x0.

If this conjecture comes true, then (7.10) is the general positive solution of (1.11) and,
in view of the behaviour of the solutions of (7.6) described before, the sub-conjectures (i)
and (ii) are valid, and we can expect that (iii) is also valid. For p ≥ 1 the series (7.9) are
simultaneously asymptotic expansions as n →∞.

In the case p = 1 we can modify the ansatz (7.9) for the solutions (7.7) of (7.6) in the
following way. With the notations z = z1, t = z3 it is w = z2 = z so that zjwk = zj+4k,
and in view of z5 = 1, we can replace (7.9) by

xn =
4∑

m=0

∞∑

l=0

bmlz
nmcltnl (7.12)

with
bml =

∑

j+4k≡m mod 5

cjkla
jbk . (7.13)

The special case of (7.12) with c = 0, i.e.

xn =
4∑

m=0

bm0z
nm , (7.14)

yields the 5-periodic solution of (7.2) with p = 1 generated by

x0 = r , x1 = s , x2 =
r + 1

rs− 1
, x3 = rs− 1 , x4 =

s + 1

rs− 1
. (7.15)

Here r, s are arbitrary positive parameters satisfying rs > 1, if we look for positive xn.
Since (7.14) is a discrete Fourier-transform we easily find by inversion

bm0 =
1

5

4∑

k=0

xmz−mk

with xm from (7.15). The coefficients contain the arbitrary parameters r, s instead of a,
b in (7.13), they determine the further coefficients bml in (7.12) recursively. For r = s =

13



1
2
(
√

5 + 1) the 5-periodic solution degenerates to the equilibrium, to which the solution
(7.9) converges in the case a = b = 0. For the initial values x−2 = x0, x−1 = 1

x0
the

solution of (7.2) with p = 1 continuous to the left by

x2−5n = x1−5n = 0 , x−5n = x−1−5n = x−2−5n = −1 (n ∈ N) .

For p < 0 it is not possible to choose the initial values for the solutions of (7.2)
arbitrarly, cf. [4]. Moreover, for −1

4
< p < 0 besides of (7.5) also the second equilibrium

c0 = 1
2
(1−√1 + 4p) is positive and must be taken into consideration.
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