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Abstract. In the present paper we will prove that every partial latin square L = (lij)
of odd order n with 2 cyclically generated diagonals (li+t,j+t = lij+t if lij is not empty;
with calculations modulo n) can be cyclically completed.

1. Introduction

A partial latin square L of order n is an n × n array in which each cell is either
empty or contains a single element from an n-set S of symbols, such that each element
occurs at most once in each row and at most once in each column. If every cell is filled,
then L is a latin square. If not explicitly stated differently, we assume the elements of
S to be the integers 0, 1, . . . , n− 1 and also that the rows and columns are indexed by
0, 1, . . . , n− 1. A partial transversal of a partial latin square of order n is a set of filled
cells, at most one in each row, at most one in each column, and such that no two of the
cells contain the same symbol. A partial transversal with n cells is called a transversal.
We refer the reader to [4, 5] for undefined terms as well as a general overview of latin
squares.

Completion of partial latin squares has been investigated in a number of papers. Best
known is Evans’ conjecture [6] that an n× n partial latin square which has n− 1 cells
occupied can always be completed to a latin square of order n. Based on work by Marica
and Schönheim [10] and Lindner [9] this conjecture was proved to be true by Häggkvist
[8] for n ≥ 1111 and independently by Smetaniuk [12] and by Andersen and Hilton
[2] for all n. We also like to mention a still unsolved conjecture stated by Daykin and
Häggkvist [3] that says that if L is a partial n×n latin square where each row, column
and symbol is used at most un times (where u is some constant, e.g. u = 1

4
), then L

can be completed. Daykin and Häggkvist proved this for n = 16k and un =
√

k/32
where k ∈ N.

In connection with questions from design theory the following problem was posed by
Alspach and Heinrich in 1990 [1]: Does there exist an N(k) such that if k transversals
of a partial latin square of order n ≥ N(k) are prescribed, the square can always be
completed? For k = 1 one has N(1) = 3 since there exists an idempotent latin square
for every order n 6= 2. A more specific version of their question was posed by Rees [11]:
Does there exist an N such that if four cyclically generated transversals li+t,j+t = lij + t
(mod n) of a partial latin square of order n ≥ N are prescribed, the square can always
be completed to one which contains a further five transversals? Grüttmüller [7] proved
that if N(k) exists, then N(k) ≥ 4k − 1.
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0 ∗ ∗ 4 ∗ 0 3 1 4 2
∗ 1 ∗ ∗ 0 3 1 4 2 0
1 ∗ 2 ∗ ∗ 1 4 2 0 3
∗ 2 ∗ 3 ∗ 4 2 0 3 1
∗ ∗ 3 ∗ 4 2 0 3 1 4

Figure 1. A partial latin square of order 5 with 2 prescribed diagonals
and its unique completion

Figure 1 shows as an example a partial latin square with 2 cyclically generated
diagonals (an asterisk indicates an empty cell) together with its unique completion.
Notice that the remaining 3 diagonals in the completed latin square are also cyclically
generated. Therefore, it seems natural to try a completion to a cyclically generated
latin square. Such a cyclic completion is impossible if n is even. But for odd n it
suggests the following question. Does there exist an odd constant C(k) such that if
k cyclically generated diagonals li+t,j+t = lij + t (mod n) of a partial latin square of
odd order n ≥ C(k) are prescribed, the square can always be cyclically completed?
Among all these constants let C(k) denote the smallest one. For example, a cyclically
generated idempotent latin square L = (lij) can be constructed for all odd n by defining
lij = 2i− j (mod n). This implies that C(1) = 1.

In [7] Grüttmüller found lower bounds for C(k) stating that C(2) ≥ 3 (the trivial
bound) and C(k) ≥ 3k − 1 for k ≥ 3. Completing all possible partial latin squares of
odd order n with k cyclically generated diagonals (briefly PLS(n, k)) with k in the range
2 ≤ k ≤ 7 and 3k − 1 ≤ n ≤ 21 he provided some evidence that the lower bounds for
C(k) mentioned above might be the best possible bounds.

In support of this we shall prove:

Theorem 1.1. Every partial latin square of odd order n with 2 cyclically generated
diagonals can be cyclically completed. This means C(2) = 3.

Section 2 introduces some terminology and notation. In Section 3 we investigate
direct constructions for latin squares of prime order or order nine which contain two
prescribed diagonals and a special class of latin squares with a certain cut-and-paste
property. These latin squares will be used in Section 4 as ingredients for recursive
constructions. In Section 5 we combine the results obtained and prove the main result
Theorem 1.1.

2. Preliminaries

We begin by introducing some terminology and notation. Clearly, a cycli-
cally generated square L of order n is completely described by its first row R =
(l0,0, l0,1, . . . , l0,n−1) = (r0, r1, . . . , rn−1) and it is a latin square if and only if all ele-
ments ri as well as all differences ri − i (mod n) are mutually distinct. The latter
condition ensures that the elements in every column are pairwise different. As men-
tioned before, it is easily checked that there is no cyclically generated latin square of
even order n since

∑n−1
i=0 i ≡ n

2
mod n but

∑n−1
i=0 (ri − i) ≡ 0 mod n. A proper partial
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row is a row (r0, r1, . . . , rn−1) where some of the ri are empty and all nonempty ri and
the corresponding differences ri− i (mod n) are mutually distinct. Of course, a proper
partial row with exactly k nonempty ri corresponds to a PLS(n, k). We remark that
most (but not all) computations are done in the ring (Zn, +, ·). If x ∈ Zn is relative
prime to the ring order, then the multiplicative inverse exists and will be denoted by
x−1.

We will state most of the results in terms of proper (partial) rows and start here with
a first observation on isomorphic rows:

Lemma 2.1. Let n, m, a be three integers (n, m relatively prime) and let R =
(r0, r1, . . . , rn−1) be a proper row. Then each of

R + a = (r0 + a, r1 + a, . . . , ri + a, . . . , rn−1 + a),
mR = (mrm−10, mrm−11, . . . ,mrm−1i, . . . ,mrm−1(n−1)),
RT = (rj0 , rj1 , . . . , rji

, . . . , rj(n−1)
), and

RR = (−rj−1 − 2,−rj−2 − 2, . . . ,−rj−i−1
− 2, . . . ,−rj0 − 2)

is also a proper row, where the indices ji are uniquely determined by rji
− ji = i and all

calculations are performed in the ring (Zn, +, ·).

Proof. R is a proper row and, therefore, all the elements ri+a and differences (ri+a)−i
are distinct. Thus, R + a is a proper row. Furthermore, since m and m−1 are relatively
prime to n we have {mrm−1i : i ∈ Zn} = {mri : i ∈ Zn} = {ri : i ∈ Zn} = Zn and
{mrm−1i − i : i ∈ Zn} = {m(rm−1i −m−1i) : i ∈ Zn} = {m(ri − i) : i ∈ Zn} = {ri − i :
i ∈ Zn} = Zn, implying that mR is a proper row. Similarly, {rji

: i ∈ Zn} = {ri : i ∈
Zn} = Zn and {rji

− i : i ∈ Zn} = {ji : i ∈ Zn} = Zn, implying that RT is a proper row.
Moreover, RR is a proper row since {−rj−i−1

− 2 : i ∈ Zn} = {−ri − 2 : i ∈ Zn} = Zn

and {−rj−i−1
− 2− i : i ∈ Zn} = {−(−i− 1 + j−i−1)− 2− i : i ∈ Zn} = {−j−i−1 − 1 :

i ∈ Zn} = Zn. �

If R is proper row, then R + (−r0) is a proper row. Therefore, without loss of
generality we can always assume that the first prescribed element in a row equals zero:
r0 = 0.

We remark that proper rows are equivalent to transversals in a special latin square as
follows: R = (r0, r1, . . . , rn−1) is a proper row if and only if TR = {(ri − i (mod n), i) :
i ∈ Zn} is a transversal in the latin square L = (lij) = (i + j (mod n)). We will use
this equivalence to illustrate statements and constructions, see for example Figure 2 for
Lemma 2.1 and note that RT can be obtained from R by transposing the corresponding
transversal cells, while RR can be obtained from R by reflecting the transversal cells in
the main back diagonal.

Let R be a row with n elements and define u(R), `(R) to be two sets of indices as
follows: u(R) = {i : (ri (mod n))− i ≥ 0} and `(R) = {i : (ri (mod n))− i < 0}. The
set u(R) can be viewed as the set of indices whose corresponding transversal cells are
above or on the main back diagonal. Moreover, we define an operation cp(R,Q,w) (w ∈
{0, 1,−1}) which cuts out elements of row R = (r0, r1, . . . , rn−1) and pastes in elements
of row Q = (q0, q1, . . . , qn−1) to form a new row E = cp(R,Q,w) = (e0, e1, . . . , en−1)
with

ei =

{
ri if i ∈ u(R),
qi + wn if i ∈ `(R).
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R '

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

2R '

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

RT '

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

RR '

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

Figure 2. Rows R = (0, 3, 1, 4, 2), 2R, RT , RR illustrated as transversals

For example take R = (0, 3, 1, 4, 2) to obtain E = cp(R,R, 1) = (0, 3, 6, 4, 7). A row
E = (e0, e1, . . . , en−1) with all the ei as well as all the ei − i (mod n) mutually distinct
and the property that 0 ≤ ei−i < n will be called an extended proper row. An extended
proper row E can also be viewed as a transversal TE = {(ei− i, i) : i ∈ Zn} in the n×n
square L = (lij) = (i + j), see Figure 3. Squares of this kind occur later as subsquares
in the structures to be considered.

3. Direct Constructions

In this section, we provide constructions for latin squares of prime order or order nine
containing two prescribed diagonals. Furthermore, we describe a special class of latin
squares and their properties.

Lemma 3.1. Let n be a prime number. Then every proper PLS(n,2) L is cyclically
completable.

Proof. All calculations in this proof are done in the ring (Zn, +, ·). Let l0,0 = 0 and l0,j

be the two prescribed elements of the first row of L. Let d = l0,j − j and define a row
R by ri = i(j−1d + 1) for i = 0, 1, . . . , n− 1. Clearly all elements ri and all differences
ri − i = ij−1d are distinct. Moreover, r0 = 0 and rj = j(j−1d + 1) = d + j = l0,j. Thus,
R is the first row of a cyclic completion of L as desired. �

Lemma 3.2. Let L be a PLS(9, 2). Then L is cyclically completable.

Proof. Let R be the first row of L with prescribed elements r0 = l0,0 = 0
and rj = l0,j where rj, j, (rj − j (mod 9)) 6= 0. Obviously, R can be com-
pleted to one of the following 7 proper rows since every possible pair (r0 =
0, rj) occurs among them: (0,2,4,6,8,1,3,5,7); (0,3,7,4,1,8,5,2,6); (0,4,3,8,2,7,1,6,5);
(0,5,8,2,6,3,7,1,4); (0,6,1,5,7,2,4,8,3); (0,7,6,1,5,4,8,3,2); (0,8,5,7,3,6,2,4,1). �

E '

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

Figure 3. Extended proper row E = (0, 3, 6, 4, 7) illustrated as transversal
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R(9) '

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 0

2 3 4 5 6 7 8 0 1

3 4 5 6 7 8 0 1 2

4 5 6 7 8 0 1 2 3

5 6 7 8 0 1 2 3 4

6 7 8 0 1 2 3 4 5

7 8 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7

R(11) '

0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 0

2 3 4 5 6 7 8 9 10 0 1

3 4 5 6 7 8 9 10 0 1 2

4 5 6 7 8 9 10 0 1 2 3

5 6 7 8 9 10 0 1 2 3 4

6 7 8 9 10 0 1 2 3 4 5

7 8 9 10 0 1 2 3 4 5 6

8 9 10 0 1 2 3 4 5 6 7

9 10 0 1 2 3 4 5 6 7 8

10 0 1 2 3 4 5 6 7 8 9

Figure 4. Rows R(9) = (0, 2, 4, 8, 7, 3, 1, 6, 5) and R(11) = (0, 2, 4, 6, 9, 1, 10, 5, 3, 8, 7)

In the following we define for every odd n ≥ 5 the first row R(n) = (r0, r1, . . . , rn−1)
of a special cyclically generated latin square of order n.

Construction 3.3. If n ≡ 1 (mod 4), then define

ri =


2i (mod n) for i = 0, 1, . . . , n−5

2
,

2i + 2 (mod n) for i = n−3
2

, n+1
2

, . . . , n− 4,
n− 2 (mod n) for i = n−1

2
,

n− 3 (mod n) for i = n− 2,
2i− 2 (mod n) for i = n+3

2
, n+7

2
, . . . , n− 1 .

If n ≡ 3 (mod 4), then define

ri =


2i (mod n) for i = 0, 1, . . . , n−5

2
,

2i + 2 (mod n) for i = n−1
2

, n+3
2

, . . . , n− 4,
n− 2 (mod n) for i = n−3

2
,

n− 3 (mod n) for i = n− 2,
2i− 2 (mod n) for i = n+1

2
, n+5

2
, . . . , n− 1 .

See for example R(9) or R(11) in Figure 4. We observe that all these rows have the
following nice and for our constructions important property.

Property 3.4. Let R be a proper row as constructed above, then A = (ai) = cp(R,R, 1),
B = (bi) = cp(R,RR, 1) and C = (ci) = cp(RR, R, 1) are extended proper rows and
cp(A, A,−1) = R, cp(A, C,−1) = R, cp(B, A,−1) = R and cp(C, B,−1) = RR are
proper rows. Moreover, a0 = b0 = 0, c0 = 1, and if n ≡ 3 (mod 4) b(n−1)/2 = n while if
n ≡ 1 (mod 4) b(n+1)/2 = n.

4. Recursive Constructions

In this section, we present two constructions which build new proper rows from small
ingredient rows. These constructions will then be used to establish that every PLS(n, 2)
with prescribed elements l0,0 = 0 and l0,j = 2j + 1 (mod n) is cyclically completable.
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Construction 4.1. Let Q be a proper row of length m and E = cp(Q,Q, 1) =
(e0, e1, . . . , em−1). Let Q0, Q1, . . . , Qm−1 with Qi = (qi,0, qi,1, . . . , qi,n−1) are m proper
rows of length n each for i = 0, 1, . . . ,m− 1. Then R = (r0, r1, . . . , rmn−1) defined by

ri = qb,am + eb (mod mn)

where the integers a, b are uniquely defined by i = am + b with 0 ≤ b < m is a proper
row of length mn.

Before proving the claim we present an example.

Example 4.2. Let m = 5, Q = (0, 3, 1, 4, 2), E = (0, 3, 6, 4, 7), n = 3, Q0 =
(0, 2, 1), Q1 = (1, 0, 2), Q2 = (2, 1, 0), Q3 = (1, 0, 2), Q4 = (0, 2, 1). Then R =
(0, 8, 1, 9, 7, 10, 3, 11, 4, 2, 5, 13, 6, 14, 12). See Figure 5 for a representation of R by a
transversal. The second latin square is a rearrangement of the first latin square ob-
tained by simultaneously permuting columns and rows which provides a better under-
standing of the foregoing construction which can also be stated as: Take an m × m
square L = (lij) = (i + j) with a transversal TE and replace every cell (i, j) by a latin

square Lij = (lijkl) = ((i + j) + (k + l)m (mod mn)) of order n (the set of symbols in
Lij is {i + j, i + j + m, . . . , i + j + (n − 1)m (mod mn)}) to obtain a latin square of
order mn. While doing so every transversal cell (i, j) ∈ TE will be replaced by n new
transversal cells from TQj

in Lij.

Proof. We have to prove that in R all elements ri as well as all the ri − i (mod mn)
are distinct, i.e., {ri : i ∈ Zmn} = {ri − i (mod mn) : i ∈ Zmn} = Zmn. Obviously
{ri : i ∈ Zmn} ⊆ Zmn and {ri − i (mod mn) : i ∈ Zmn} ⊆ Zmn and, therefore, it
remains to prove that Zmn ⊆ {ri : i ∈ Zmn} and Zmn ⊆ {ri − i (mod mn) : i ∈ Zmn}.
Let x ∈ Zmn with x = αm + β and 0 ≤ β < m. There is exactly one qb in Q
with qb = β. Thus, eb ≡ β (mod m) and {qb,am + eb (mod mn) : a ∈ Zn} contains
all residues congruent to β (mod m). This implies that there exists an a such that
x = qb,am + eb (mod mn) = ram+b ∈ {ri : i ∈ Zmn}. Moreover, there is exactly
one index b such that eb − b = β and exactly one a such that qb,a − a (mod n) = α.
Therefore, x = (qb,a−a)m+(eb− b) (mod mn) = ram+b− (am+ b) (mod mn) ∈ {ri− i
(mod mn) : i ∈ Zmn}. That completes the proof. �

Construction 4.3. Let Q = (q0, q1, . . . , qm−1) be a proper row of length m. Let
E0, E1, . . . , Em−1 with Ei = (ei,0, ei,1, . . . , ei,n−1) are m extended proper rows of length
n each with the additional property that cp(Ei, Ei−1 (mod m),−1) is a proper row for
i = 0, 1, . . . ,m− 1. Then R = (r0, r1, . . . , rmn−1) defined by

ri = qan + eqa,b (mod mn)

where the integers a, b are uniquely defined by i = an + b with 0 ≤ b < n is a proper
row of length mn.

Again, we first provide an example.

Example 4.4. Let m = 3, Q = (0, 2, 1), n = 5, E0 = (0, 4, 3, 7, 6), E1 = (0, 4, 3, 5, 8),
E2 = (1, 4, 2, 7, 6). Then R = (0, 4, 3, 7, 6, 11, 14, 12, 2, 1, 5, 9, 8, 10, 13). See Figure 6
for a representation of R by TR. In terms of transversal cells we may formulate the



COMPLETING PARTIAL LATIN SQUARES WITH TWO PRESCRIBED DIAGONALS 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

2 3 4 5 6 7 8 9 10 11 12 13 14 0 1

3 4 5 6 7 8 9 10 11 12 13 14 0 1 2

4 5 6 7 8 9 10 11 12 13 14 0 1 2 3

5 6 7 8 9 10 11 12 13 14 0 1 2 3 4

6 7 8 9 10 11 12 13 14 0 1 2 3 4 5

7 8 9 10 11 12 13 14 0 1 2 3 4 5 6

8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

9 10 11 12 13 14 0 1 2 3 4 5 6 7 8

10 11 12 13 14 0 1 2 3 4 5 6 7 8 9

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10

12 13 14 0 1 2 3 4 5 6 7 8 9 10 11

13 14 0 1 2 3 4 5 6 7 8 9 10 11 12

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 5 10 1 6 11 2 7 12 3 8 13 4 9 14

5 10 0 6 11 1 7 12 2 8 13 3 9 14 4

10 0 5 11 1 6 12 2 7 13 3 8 14 4 9

1 6 11 2 7 12 3 8 13 4 9 14 5 10 0

6 11 1 7 12 2 8 13 3 9 14 4 10 0 5

11 1 6 12 2 7 13 3 8 14 4 9 0 5 10

2 7 12 3 8 13 4 9 14 5 10 0 6 11 1

7 12 2 8 13 3 9 14 4 10 0 5 11 1 6

12 2 7 13 3 8 14 4 9 0 5 10 1 6 11

3 8 13 4 9 14 5 10 0 6 11 1 7 12 2

8 13 3 9 14 4 10 0 5 11 1 6 12 2 7

13 3 8 14 4 9 0 5 10 1 6 11 2 7 12

4 9 14 5 10 0 6 11 1 7 12 2 8 13 3

9 14 4 10 0 5 11 1 6 12 2 7 13 3 8

14 4 9 0 5 10 1 6 11 2 7 12 3 8 13

Figure 5. Transversals representing row R = (0, 8, 1, 9, 7, 10, 3, 11, 4, 2, 5, 13, 6, 14, 12)

construction above as: Take a latin square L = (lij) = (i + j (mod m)) and replace

every cell (i, j) by an n× n square Lij = (lijkl) = ((i + j)n + (k + l) (mod mn)) of order
n to obtain a latin square of order mn. While doing so every transversal cell (i, j) ∈ TQ

will be replaced by n new transversal cells from TEi+j (mod m)
in Lij.

Proof. It suffices to prove that {ri : i ∈ Zmn} = {ri − i (mod mn) : i ∈ Zmn} = Zmn.
At first, we show Zmn ⊆ {ri : i ∈ Zmn}. Let x ∈ Zmn with x = αn + β and 0 ≤ β < n,
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

2 3 4 5 6 7 8 9 10 11 12 13 14 0 1

3 4 5 6 7 8 9 10 11 12 13 14 0 1 2

4 5 6 7 8 9 10 11 12 13 14 0 1 2 3

5 6 7 8 9 10 11 12 13 14 0 1 2 3 4

6 7 8 9 10 11 12 13 14 0 1 2 3 4 5

7 8 9 10 11 12 13 14 0 1 2 3 4 5 6

8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

9 10 11 12 13 14 0 1 2 3 4 5 6 7 8

10 11 12 13 14 0 1 2 3 4 5 6 7 8 9

11 12 13 14 0 1 2 3 4 5 6 7 8 9 10

12 13 14 0 1 2 3 4 5 6 7 8 9 10 11

13 14 0 1 2 3 4 5 6 7 8 9 10 11 12

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6. Transversal representing row R = (0, 4, 3, 7, 6, 11, 14, 12, 2, 1, 5, 9, 8, 10, 13)

then there is exactly one index a such that qa = α. Moreover, there is exactly one
index b such that the b-th entry in row cp(Eqa , Eqa−1 (mod m),−1) equals β. Now, if
b ∈ u(Eqa), then eqa,b = β and, therefore, x = qan + eqa,b = ran+b ∈ {ri : i ∈ Zmn}. If
b ∈ `(Eqa), then eqa−1 (mod m),b − n = β and, therefore, x = qan + eqa−1 (mod m),b − n =
(qa − 1)n + eqa−1 (mod m),b (mod mn) = ra′n+b ∈ {ri : i ∈ Zmn} for some a′. Clearly
{ri : i ∈ Zmn} ⊆ Zmn. This implies that {ri : i ∈ Zmn} = Zmn.

Secondly, we need to prove that {ri−i (mod mn) : i ∈ Zmn} = Zmn. For an arbitrary
x ∈ Zmn with x = αn + β and 0 ≤ β < n we have x ∈ {ri − i (mod mn) : i ∈ Zmn},
since there is a uniquely determined pair (a, b) such that qa − a (mod m) = α and
eqa,b−b = β with the property that x = (qa−a)n+eqa,b−b (mod mn) = ran+b−(an+b)
(mod mn) ∈ {ri − i (mod mn) : i ∈ Zmn}. Thus {ri − i (mod mn) : i ∈ Zmn} = Zmn

follows since clearly {ri − i (mod mn) : i ∈ Zmn} ⊆ Zmn. �

Our next result concerns the completion of PLS(n, 2) where n is a composite integer
and the symbols prescribed in the first row are 0 and 2j+1 (mod n) at the j-th position.

Lemma 4.5. Let p > 3 be a prime number and m an odd integer. Furthermore, let
l0,0 = 0 and l0,j = 2j + 1 (mod mp) be the two prescribed elements of the first row of a
PLS(mp, 2) L. Then L is cyclically completable.

Proof. We consider four cases depending on the residues of j, 2j + 1 and j + 1 mod-
ulo p. First of all assume that j 6≡ 0 (mod p), 2j + 1 6≡ 0 (mod p) and j + 1 6≡ 0
(mod p). There exists a proper row U of size p with u0 = 0 and uj (mod p) = 2j + 1
(mod p) by Lemma 3.1. Take as ingredients in Construction 4.3 the proper row
Q = (0, 2, 4, . . . , 2i, . . . ,m − 4, m − 2) of length m and take m extended proper rows
Ei = cp(U,U, 1). Thus, we obtain the first row R of a cyclic completion of L, since
r0 = q0p + eq0,0 (mod mp) = 0 · p + e0,0 = 0 and, moreover, with j = ap + b (0 ≤ b < p)
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we have rj = qap + eqa,b (mod mp) = 2ap + e2a (mod m),b (mod mp) = 2ap + 2b + 1
(mod mp) = 2j + 1 (mod mp) as prescribed in L.

Now assume that j ≡ 0 (mod p). Use the row U = R(p) from Construction 3.3 to de-
fine extended proper rows as follows: E(2j/p) (mod m) = cp(UR, U, 1), E(2j/p−1) (mod m) =

cp(U,UR, 1) and Ei = cp(U,U, 1) for i = 0, 1, . . . ,m − 1 with i 6≡ 2j
p
, 2j

p
− 1 (mod m).

With these rows and Q = (0, 2, 4, . . . , 2i, . . . ,m− 4, m− 2), Construction 4.3 provides
a proper row R. Here, r0 = q0p + eq0,0 (mod mp) = 0 · p + e0,0 = 0 + u0 = 0 and,
moreover, with j = ap and Property 3.4 rj = 2ap + e2a (mod m),0 (mod mp) = 2ap + 1
(mod mp) = 2j + 1 (mod mp). Hence, R is the first row of a cyclic completion of L.

In the case 2j + 1 ≡ 0 (mod p) we use U = R(p) from Construction 3.3
and E((2j+1)/p) (mod m) = cp(UR, U, 1), E((2j+1)/p−1) (mod m) = cp(U,UR, 1) and Ei =

cp(U,U, 1) for i = 0, 1, . . . ,m − 1 with i 6≡ 2j+1
p

, 2j+1
p

− 1 (mod m). With Q =

(0, 2, 4, . . . , 2i, . . . ,m − 4, m − 2), Construction 4.3 provides a proper row R which is
the desired row if p ≡ 3 (mod 4) since r0 = 0 + u0 = 0 and rj = 2ap + e2a (mod m),b

(mod mp) = 2ap + e((2j+1)/p−1) (mod m),(p−1)/2 (mod mp) = 2ap + p (mod mp) = 2j + 1
(mod mp) with j = ap + b (0 ≤ b < p) and 2j + 1 = 2ap + 2b + 1 = (2a + 1)p.
If p ≡ 1 (mod 4), then RT is the desired row since rT

0 = r0 = 0 and rT
j = rj+1 =

2ap + e2a (mod m),b+1 (mod mp) = 2ap + e((2j+1)/p−1) (mod m),(p+1)/2 (mod mp) = 2ap + p
(mod mp) = 2j + 1 (mod mp).

Finally assume j + 1 ≡ 0 (mod p). In view of the foregoing (case j ≡ 0
(mod p)) we are able to find a proper row R′ with r′0 = 0 and r′−(j+1) (mod mp) =

−2(j + 1) + 1 (mod mp). Then R = (−1) · (R′)T is a proper row with r0 = 0 and
rj = −(r′)T

−j (mod mp) = −r′−(j+1) (mod mp) = −(−2(j + 1) + 1) (mod mp) = 2j + 1

(mod mp). �

Lemma 4.6. Let l0,0 = 0 and l0,j = 2j + 1 (mod 3α) be the two prescribed elements of
the first row of a PLS(3α,2) L. Then L is cyclically completable.

Proof. If α = 1, then there is no PLS(3, 2) with prescribed elements of the kind described
above. If α = 2, then the result follows from Lemma 3.2. If α ≥ 3, then we use a similar
argument as in the proof of Lemma 4.5: instead of a prime p we consider p = 9 and the
result follows immediately. �

5. Results and Problems

Now, we are ready to prove the main result of this paper.

Proof of Theorem 1.1. We use induction to prove the claim and assume that every
PLS(m,2) with m < n is cyclically completable. This is true by Lemma 3.1 and Lemma
3.2 for m ≤ 13.

Let l0,0 = 0 and l0,j be the two prescribed elements of the first row of a PLS(n,2) L.
We consider three cases depending on the factorization of n. Suppose first that there
exists a prime factor p of n such that j = ap and l0,j = αp. Let n = mp. Take a proper
row Q of length m with q0 = 0 and qa = α (which exists by the induction hypothesis)
and m extended proper rows Ei of length p defined by ei,s = 2s (mod p). The result
follows from Construction 4.3.
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Now, suppose that there exists a prime factor p of n such that j = ap+b (0 < b < p),
l0,j = αp + β (0 < β < p) and l0,j − j 6≡ 0 (mod p). Let n = mp. Take a proper row
Q of size p with q0 = 0 and qb = β (which exists by Lemma 3.1). Choose p proper
rows Qi of size m such that q0,0 = 0 and qb,a = α (which exist since C(1)=1). Applying
Construction 4.1, we get a proper row R with the prescribed elements, as desired.

Finally, suppose for all prime divisors p of n exactly one of the following conditions is
true: j ≡ 0 (mod p) or l0,j ≡ 0 (mod p) or l0,j − j ≡ 0 (mod p). Define m = l0,j − 2j.
Note that m is relatively prime to n, since otherwise for at least one prime divisor of n
all three conditions above are simultaneously satisfied. Hence, m−1 exists in (Zn, +, ·).
Lemma 4.5 or Lemma 4.6 yields a proper row R′ of length n with r′0 = 0 and r′m−1j =

2(m−1j) + 1 (mod n). Now, R = mR′ is a proper row with r0 = 0 and rj = mr′m−1j

(mod n) = m(2(m−1j) + 1) (mod n) = 2j + (l0,j − 2j) (mod n) = l0,j, as desired. �

We hope that this result provides some ideas that might be helpful to solve the
general problem.

Problem 5.1. Is it possible to prove that every partial latin square of odd order n with
k cyclically generated diagonals can be cyclically completed if n ≥ 3k − 1?
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