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Abstract. We study numerical aspects of wear problems in railway mechanics.
A short overview of the needed components — a dynamical vehicle/track model,
contact geometry and contact mechanics — is given to demonstrate the complexity
of the problem. An algorithm for the integration of the domain evolution equation
describing wear in the long time scale is presented and discussed. Solutions for
simple choices of the model components are studied. Finally, ways to couple the
most advanced available models via internet programming are demonstrated on the
basis of a vehicle model due to Meinke in a co-simulation with our own geometry
program.

1 Introduction

We describe wear in the framework of domain evolution problems (cf Sethian,
[20], and Fig. 1). Related problems are e.g. curvature driven flows, Stefan

Fig. 1. Example of a domain (used as an extreme test
case for assessing integration methods). Under curva-
ture driven motion, F = —k, where k denotes the cur-
vature of the boundary, the domain should become con-
vex and vanish to a point. Poor numerical methods,
however, lead to artificial oscillations of the boundary
which in the case of railway mechanics may look like
corrugations

problem or the osmotic cell problem. In our case, the speed of the boundary
(contact surface) is determined by a wear law, the latter using data from a
dynamical model as input.

For this paper, the wear process is understood as a pure geometrical change
of the body under consideration, i.e. as a shift of the boundary in direction of
the inner normal. For now, we do not allow for changes inside the material.
Our assumptions lead to the formulation

i(r,t) = F(z(-,t),t)n. (1)
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Here z is a point on the actual position of the body’s surface at time ¢. The
variable 7 is used to parameterize the surface.

The speed F at which the wear surface retreats is determined by a so-called
speed low. In general, it is not defined by a formula — as it is in the case of
curvature driven flows, which we use frequently for testing numerical proce-
dures.

In railway mechanics, to obtain the speed F at a given position on the actual
wear surface, we need to perform a simulation of the motion of the vehicle.
During this simulation, given the present surface geometry, the intensity of
power dissipation, and hence the wear intensity are determined. Obviously,
this is a numerically very expensive procedure, and the result depends on the
driving conditions of the simulated vehicle.

The time integration of (1) can be described by the following feedback loop,
cf. Fig. 2, in which dynamics, geometry and contact mechanics are coupled
together. The numerical solution of a wear problem requires hence two inte-

wear
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Fig. 2. Knothe’s feedbackloop (simplified for autonomous problem)

gration procedures. In an outer loop, solving integration of (1) with respect to
the so-called long time scale (or slow time scale), the surface is updated. In an
inner loop, simulation with respect to the fast time scale has to be performed.
This procedure is — from the point of view of the outer loop — an auxiliary
problem, from which we obtain the wear intensity which has the character
of a probabilistic density. Here qualitative aspects of the vehicle model, like
periodicity, quasi-periodicity or ergodicity, play an important role, [18].

To illustrate the time scales, consider a wheelset rolling at 200km/h.
Under normal conditions, 50 million rotations remove a layer of about
100 um ... 1mm. Hence a single-atomic layer of material is abrased in
one second, in the same time we observe several recurrences of the lateral
motion, 16 revolutions and about 100 oscillations of the normal contact.
A reasonable step for the outer time integration would be the order of
hours — which would still require about 1000 (quite expensive) steps. For
the inner integration, a time step around a millisecond is required to
obtain a reasonable accuracy. The ratio is hence of the order of 10.
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2 Components

In this section we collect some of the ingredients needed to build models
capable of describing wear distributed over the circumference of a railway
wheel. These components may be combined in different ways to create models
for simulations. Our minimal collection may be extended by supplements from
other groups.

2.1 Nonlinear Dynamics

We assume that the driving motion is governed by a system of nonlinear
equations of motion of the general form

m(q(t))d(t) = f(ta(t),q(t),r(t)) - (2)

Here we denote by g € R? generalized coordinates, ¢ time, * time derivative,
m the mass matrix and and f generalized forces. External control is expressed

Fig.3. Wheelset on rails. The evolving sur-
faces result in complicated relations between
lateral shift, elevation and contact point posi-
tion. For an elastic axle, such relations (depen-
dent on yaw and, in general, also on revolution
angle) hold for each of the wheels. For a rigid

wheelset, also the rolling angle is determined
I T by a holomorphic constraint

by r(t), which may be a force or a prescribed travelling speed.

The dynamical behavior of a single wheelset, cf. Fig. 3, is already very com-
plex. For low speed, we have a stable trivial solution. Above a critical speed,
there is a stable limit cycle. For further increasing speed, there is phase dou-
bling and transition to chaos, cf. for instance [11] and [22].

For the purpose of wear calculation, the dynamical model has to be adapted
to the changing geometry in the contact region. This will be discussed in the
next two subsections.

2.2 Rolling Contact and Dry Friction

A major component of the dynamical system introduced in the previous sub-
section is the force vector f on the right-hand side of the equations of motion
(2), in particular, the contact forces are difficult to model. For the calculation
of friction forces, we have the standard options of the Vermeulen-Johnson law
[10], or the Fastsim [14,21] and Contact [13] algorithms. For the long time
simulations we need to perform in order to obtain accurate wear speeds, we
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Fig. 4. Disk wheel rolling, acceler-
ating moment and counteracting
force F¢. Sparsely discretized 2D-
model of a tyre

> rolling —>

prefer simpler friction laws in form of algebraic expressions, cf. also [2]. Even
a rough approximate solution, cf. Fig. 4, of the underlying Signorini prob-
lem, basing on influence functions obtained within the Zastrau/Nackenhorst
project, leads to excessive computation times, and is at this moment not
possible to carry out for our purposes. In Fig. 5 we present results for the

0 Z 0
X (m) 0.01 y (m) X (m) 0.01 y (m)

Fig. 5. Contact forces. (a) normal pressure. (b) tangential forces

tractions in the contact zone between wheel and rail for a large normal force.
This local distribution of the friction force over the contact patch determines
how the dissipated power has to be mapped to the wear surfaces. In the next
subsection, we discuss how to find the location of the contact point around
which said contact patch is located.

2.3 Geometry

A very sensitive aspect of modeling rolling of realistic wheels on rails is the
geometry of the contact, in particular the effective calculation of the geomet-
rical points of contact. Those points are needed for the dynamical model —
the calculation of friction forces — and also for the wear model — for assigning
the frictional power at a given instant to a place on the contact evolving
surface.

For given mbs-coordinates of the bodies, let 77 be the ith surface coordi-
nate of the bth body, b = 1,2, accordingly n® = (n%);=;. 3 the (unique) outer

i
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normal unit vectors to those surfaces x', 22. Then necessary conditions for
contact may by formulated as

£ () + N (7)) = 22(r%) 3)
22(7%) + NP (7?) = 2' (1Y) (4)

This system implies that the normal directions coincide, and that shifting
the bodies rigidly in that common normal direction, brings the points z!(71)
and z2(72) to the same spot. This system a is 6 x 6 nonlinear problem, and
for general non-convex bodies hard to solve.

For perfect wheels (axial-symmetric) and rails (prismatic), the system can
be simplified considerably, cf. [1]. The solution can be determined from a
scalar minimization problem, cf. Fig. 6. Even so, due to the non-convexity, a

Fig. 6. Cut through the distance function. The min-
4 imization of the distance function between wheel
and rail surfaces is a non-convex problem, diffi-
cult for the existence of more than one local mini-
mum. The distance function depends continuously
on the mbs-coordinate g, the minimizer, however,
-0.04 0 0.04 may Jump

very accurate starting value for the minimizer has to be found before a fast
iterative method (Newton-type) can be successfully applied.

For worn surfaces, reduction to a scalar problem is in general not possible.
An implementation of a reasonably quick solver for (3)-(4) is due to Hanler,
[9].

For a prismatic rail, however, the simplification still works. Considerable re-
duction of numerical effort comes from the fact that the first component of
the rail’s normal vanishes everywhere.

Let us label the wheel by superscript 1, rail by 2, axial coordinate on the
wheel by 7, angular by 75, and define a function 71 (1) = (7,7 (7})) by
the condition

x(n' (1,73 (1)), 0)e1 = 0. (5)

Here e; points in the direction along the rail, ez is vertical, and x(z,¢q) is
the actual position of wheel particle x under mbs-coordinates gq. Then the

parameter of the contact point on the wheel surface is defined via
71 ,.(¢) = argmin(x(z' (7' (1)), q) — 2*(z3(x (71 (1), 9))) ) €3 - (6)

The contact point is hence z'(7!(r{,)). Here we assumed that for the rail
surface, we have a parametrization of the form z? = z?(z3), i.e. 7¥ is along
the rail and does not enter the equation, 73 = 3.
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It is obvious that a fast evaluation of the above contact conditions is essential.
However, there is no point in tuning procedures for the original profiles, e.g.
S$1002/UIC 60, since the profiles change essentially during wear simulation.
To make this clear, compare the location of the contact point in dependence
on lateral shift, once calculated for virgin profiles, once for slightly worn ones,
Fig. 7. Note that the contact geometry is the main interface point where the

0.04

Fig. 7. The axial position of the point of geometri-
cal contact on the wheel surface, for vanishing yaw
and roll angles. The continuous line is for the vir-
gin profile pair S1002/UIC60. The dashed line cor-
responds to slightly worn wheel profile, rail profile
-0.02 0 0.02 still unchanged

-0.04

feedback loop closes, Fig. 2. Dynamical models which use force models basing
on frozen profiles can’t work beyond the mere onset of wear.

2.4 Wear Laws

Due to a simple assumption, frequently quoted as Archard’s law, cf. [5], for
abrasive wear F depends on the frictional power density dissipated at x(7,t).
Hence the term F in (1) is obtained by running the dynamical model (2),
and averaging a function of the dissipated power, which is then mapped to
the surface of the body in order to obtain a wear distribution.

For example, [19] uses a piecewise constant function for mild and strong abra-
sion, respectively.

For a comprehensive discussion of factors contributing to wear, we refer to
[16].

Observations that reshaped rails wear faster than new ones motivated as-
sumptions about state variables assigned to the surface [6].

For this paper, we want to focus on numerical aspects of wear simulation,
rather than on sophistication of the wear model. Thus we assume propor-
tionality between worn mass and dissipated energy, which results finally in
an equation of the form

F = —,380’15 (7)

where s is the local creepage, o, tangential stress, and 8 a positive constant.
For calculations on the long time scale, on the right-hand side the mean value
over a sufficiently long interval of the fast time scale has to be taken.

In terms of Meinder’s model, our assumption means that during the exploita-
tion of a given vehicle, we do not change regimes between mild and strong
abrasion.
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Given this assumption, by matching data on wear of ICE-wheels, the value of
the single wear constant 3 can be found to be of the order 10712 if standard
units are used. We prefer, however, to scale the long time scale to 1, and
hence we may assume 3 = 5-1075.

3 Models

It was Brommundt’s original idea, cf. [4] to study evolution of wear in the
long time scale on the basis of extremely simple dynamical models in the
short time scale. This allowed the application of asymptotic expansions and
gave first results very quickly. Despite the fact that we have at our disposal
a palette of much more advanced vehicle models, we chose for this paper to
follow this approach. It allows us to compare the effects of different analytical
and numerical methods on one and the same model. We will see that poor
approximations may contribute more to the output than the model itself.
As a benchmark model, we propose a rolling disk, driven by a constant
moment against a quadratic drag force. The equations of motion for the
three degrees of freedom (longitudinal and vertical displacement, angle of
rotation) are given by

mgy, = Fr — c|q1|q1 , (8)

Jis = M +r(1)Fr (10)
with

T = —q3, (11)

s =q1 +qsr(r), (12)

Fy = k(r(r) — @) — dga, (13)

FR = —LLFNS. (14)

Equation (11) plays the role of a contact geometry module, (12-14) substitute

= 1.6742 - 10° N/m3
= 100 Ns/m

=0.2 s/m

=300 kg

= 37.5 kgm?

= 0.5Ns”/m®

Fg = -50000 N

= -9.81 m/s?

= -225Nm

cugTEar

ZUQ

Fig. 8. Disk wheel as a benchmark model
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a contact force model, the term containing the constant ¢ in (8) simulates the
control motion. The constants given in Fig. 8 lead to a steady state with
longitudinal speed of around 30 m/s, and a frictional power around 19 W.
For given radius function r(-), the mean value of frictional power tends to
a limit, multiplication with the wear constant § gives finally the evolution
speed F:

r(1,t) = —BsFr (15)
B=5-10"° (16)

where overline stands for taking the temporal mean value, and time is mea-
sured in a characteristic time for the life cycle of a wheel. For this case, the
approximation of the outer normal by the position vector in (15) is obviously
acceptable.

The initial geometry imperfection — a single trough — is defined by B—splines,
the data can be downloaded from our website.!

In Brommundt’s original paper, the dynamical model was completely lin-
ear, and the normal force was assumed to be constant. The only nonlinear
relation was (7). The out-of-roundness is modeled by a sequence of Fourier
coefficients. Under these assumptions, every harmonic excites an oscillation of
slip and friction force with the same frequency, higher harmonics are caused
by the non-linear abrasion hypothesis.

Similar results were obtained by use of approximations to F in terms of
Taylor coefficients of the actual wear surface, [6]. Those lead to evolution
equations of the general form

re = F(u, Vr,V?r,...) (17)

which for suitable functions F' yield speed dependent growth or decay of
wavyness of the surface.

4 Numerics

For more realistic models of wear in railway mechanics, we have typically
two layers of numerical calculations. In an inner loop, the equations of mo-
tion of the dynamical model (vehicle, track) have to be solved. Along with
the solution, data essential for wear have to be collected and processed. We
call this most essential ingredient of a coupled wear model the wear collect-
ing algorithm. From this inner procedure we obtain the speed function F in
dependence on the momentary geometry (together with the control motion).
Now, the speed function is passed to the outer time-integration loop in which
the wear patterns finally evolve.

' 7 = 0.5m everywhere except on an arch of length 0.2m where it is reduced by

75 um. Details on http://alf.math.uni-rostock.de/~kurt/DFG/benchmark/
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A central problem here is accuracy. It turns out, that already for very simple
models, it is hard to obtain an accurate speed function. One limiting factor
is computation time, because we need trajectories of the dynamical system
with rather high precision, but also for a reasonably long time span.

Once the problem of obtaining a good approximation for F, the outer inte-
gration loop is straightforward. Since evaluations of F are extremely costly,
we do not recommend too much sophistication. However, as examples show,
the common practice of simply applying Euler’s explicit method is not the
best choice.

Here we need some denotations which we introduce below.

4.1 Discretization

Discretization of the functional variable  and separation leads to an ODE
problem of the form

y= g(tayau) ) (18)
u = h(t,y,u). (19)

Here we denote by y € R?*? the pair of vectors (g, ¢) describing the dynamical
state of the driving model, while u € R™ is the vector of nodal values of a
suitable presentation of the change in surface positions on a given grid.

The functions g and h on the right-hand sides are derived from the forces f
and the speed function F, cf. (2) and (7), respectively.

Now, instead of solving the system (18)—(19) in a straightforward way on a
given time interval [0,7] with huge T (not desirable), or solving a modified
system with h replaced by ah, a — big, on [0,T/a] instead (common, but dan-
gerous, cf. [17]), we apply the algorithm from [7] for integrating the coupled
system.

step 1: On the time interval [t;, t; + At;] (which is very long in terms of
the y-variables but very short in terms of the u-variables) we integrate the
y-equations with frozen u

t

3(t) = y(ts) + / ot y(®), ults)) dt (20)

t;

Thus, this low-dimensional part of the system is uncoupled and can be inte-
grated by any suitable method.

step 2: An approximation for w(t;11), ti41 = t; + At;, is calculated by

tit1

ultiyn) = u(ti) + / h(t, 9(t), u(ts)) dt (21)

t;

where we use ¢ instead of the exact solution.
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For the efficiency and accuracy of this algorithm, it is crucial how we approx-
imate the integral on the right-hand side. Using the property that
ti+At;
it [ w g, ute) d (22)
t;
approaches a limit very quickly, we may substitute the integral over the in-
terval [ti, tz' + Atz] by
ti+Atsim

Aty ht, 9(t), u(t) dt (23)

Atsz'm

t;

where Aty is a reasonable time span for simulation of the y-system. The
latter is chosen by monitoring the limit of the integral mean value, terminat-
ing when changes become negligible.

In the sequel, given the interpretation of (18) and (19), we will refer to step
1 of the algorithm as wear collection, and to step 2 as geometry updating.

4.2 Distributed Calculations

The algorithm described in the previous subsection is not well suited for paral-
lel computations, it is essentially sequential. Nonetheless, for several practical
reasons, it is sensitive to perform some routines on different computers. In
fact, often more advanced models are not easy to port from their original
environment, hence it is far easier to couple them while leaving them where
they were developed. (Usually, they are still being developed.)

Thus we agreed with other groups of the DFG Priority Programme 1015
(Meinke/Meinders, Stuttgart, [19] and Popp/Kaiser, Hannover, [12]) on cou-
pling our models by the most simple possible interface — which is on the other
hand the safest to work with. Anticipating that all partial models have a con-
siderable cost in terms of CPU-time, it is clear that time for the exchange
of data is not the limiting factor. All results from one model are written
on ASCII text files and then transported by FTP to the remote machine.
Timing is done by waiting for needed input files. For all tests, losses due to
communication time were minimal.

We implemented distributed calculations with Meinke/Meinders the follow-
ing way. A (simple) vehicle model used as driving component is integrated on
one CPU (in Stuttgart). Along the trajectories dissipated power is calculated
and projected onto the surface grid by a method using geometrical data on
the contact geometry. The resulting wear intensity is sent to our server, where
the surface is updated, new contact geometry data are calculated and sent
to (the meantime idle) machine in Stuttgart.

To make this loop really closed, the dynamical model has to depend on the
contact geometry. In our case, this is the case due to dependencies of forces
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and moments on the position of the contact point and the curvatures of the
profiles there. Further, the wear collection is very sensitive to the contact
point position, cf. Fig. 7.

It has to be mentioned that for the simulation of realistic wear processes the
number of outer loop time steps is not excessive, it rarely exceeds 100.
Total time needed for the file transfer is measured in seconds, while the over-
all computation time is — even for simple components — the order of hours.
Consequently, we have practically no loss of efficiency if compared with run-
ning the simulation on one computer. What we gain is that we save the effort
to get always the actual version of the software developed in the other group
(or groups), together with all the formal problems that arise from that (e.g.
obtaining licences).

4.3 Testing the Speed Function

Before approaching the very time consuming integration of the shape evolu-
tion equation (outer loop), it is sensitive to evaluate and discuss the speed
function F, i.e. to test step 1 of the algorithm, wear collection, without ge-
ometry update. We perform all tests on the initial radius described in Sec. 3.
There are several sources of errors (from our own experience), which we want
to point out. All have catastrophal impact on the results.

The typical errors come from (i) too small accuracy of the time integration
of (18), (ii) bad discretization of the manifold z and (iii) too small Atg;, in
the algorithm.

For (i) we remark that matlab’s built-in solvers, with standard accuracy
options, perform poorly on the benchmark problem. In order to get a feel-
ing for the model, it is helpful to monitor the vertical motion, presented by
Fig. 9. The trajectory converges to the presented cycle, the ’shortcut’ caused

0.002

-0.002 Fig. 9. Integrating the benchmark model. Vertical
-0.001005  -0.001 -0.000995 phase as signature of the dynamical model

by the initial imperfection is taken once in eight rounds. As illustration for
(ii), we compare the correct result, confirmed by several methods, with er-
roneous wear speeds, Fig. 10. The source of the error here is a typical effect
for trigonometric polynomials — on localized defects, like a trough, they tend
to oscillations and miss the extrema. From (c) we infer that even the best
approximation by a trigonometric polynomial is not suited for reliable wear
simulations. A comparison with models without dynamical response in ver-
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Fig. 10. (a) wear intensity for benchmark model, (b) same with Fourier approxi-
mated radius, (c) Fourier approximation of (b)
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Fig. 11. (a) wear intensity in model with frozen normal force, (b) same with
Fourier approximated radius, (c¢) Fourier approximation of (b)

tical direction — i.e. with normal frozen force, equal to gravity plus external
load, shows large differences. In Figs 10 and 11, we used the same order of
trigonometric polynomials N = 10 as in [4], i.e. 21 coefficients. Our results
show the importance of the vertical components of the dynamical model, and
discourage the use of trigonometric polynomials.

Let us visualize the third source of errors in a modified version of the bench-
mark model — we superimpose a lateral motion according to a linear model

with k4 = 4147N/m (24)

A typical run of the algorithm collecting data on the wear distribution yields
the following sequence of figures, Fig. 12 It is obvious from Fig. 12 that too
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Fig. 12. Stages of the wear collection. (a) early. (b) medium. (c) final

quick termination of the wear collection may lead to possibly most spectac-
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ular, but very wrong results. Note that for Fig. 12 (a) a different scale had
to be used.

5 Results

In this section we present several results obtained for the integration of the
surface evolution equation (1) with the speed function F calculated by the
algorithm from Sec. 4. As a rule, dynamical simulations (inner loop) were
performed on a SUN workstation with 1.2 GHz processor, geometry and
graphics on a PC with and AMD Athlon processor at 1.6 GHz, data files
were exchanged by was done by FTP.

The examples relate to the questions in how far wear patterns are determined
by initial imperfections, and whether they stay in place or travel.

For the benchmark model from Sec. 3, a time interval of length 4.0 (corre-
sponds to ca. 1000h) gives reasonable wear patterns. The results are pretty
robust with respect to parameters of the numerical method, e.g. the time
step of the outer loop or the use of predictor/corrector steps.

We obtain always a pattern with 8 maxima and minima, as indicated by
Fig. 10 (a). With the evolution, the wear speed tends almost to a sinusoidal
distribution.

For higher speed, the number of minima decreases. However, the variation of
the radius may grow considerably faster, so that we get lift off very quickly,
[3]. This violates the model assumptions, hence we stop simulations at the
first occurrence of zero normal force. For a three times higher speed, we ob-
tain 3 humps, but life time (time to first bumping of the wheel) decreases
8 times, cf. Fig. 13. We observe further that the frictional power is phase-

Fig. 13. Change of radius
(in mm) vs angle and time
(in 10%s), for a moment
M = -—-2000 Nm. For
the original benchmark,
we observe a pattern of
order 8. The higher mo-
ment results in a speed of
ca. 320 km/h and only 3
humps

shifted with respect to the radius, hence the wear pattern is not fixed but
moves around against rolling direction.

This effect may not be observed for cases where the variation growth too fast.
Than lift off takes place before the shift of the pattern becomes significant.
Further, a preexisting imperfection, like a flat spot, 'pins’ the pattern to the
surface until it is levelled out.
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We have to point out that for this presentation, we chose a driving wheel. The
mentioned effects occur likewise for a wheel coupled elastically to a perfect
partner wheel on a wheelset, cf. [4].

In conclude this section by some remarks on randomizing some of the model
parameters.

5.1 Randomized Control

Following a hint from a referees, we have performed calculations with ran-
domized data. Among others, we have run a vehicle over randomized ground.
For a random geometric error imposed on the vertical position of the rail
head, we obtain - in accordance with a lemma from [17] — that the results
coincide with those for a slightly changed wear law. For a given out-of-the-

Fig.14. 1D wear simulation, disk wheel
model on wavy ground. The solid line
shows the power dissipation (W) for
an ideal track, the dotted lines indicate
mean values over increasing rolling times
(1,10,100 (s)) on randomized track

round wheel, on perfect ground, we would obtain the creepage distribution
indicated in Fig. 14, solid line.

On wavy ground, we obtain a position (= time) dependent creepage. How-
ever, the mean value curves converge (with running time going to infinity) to
the output of the undisturbed ground case (dotted curves). In this case, we
have an averaging effect as should be expected on the basis of [17].
Analogously, we introduced a random lateral force f; acting on a damped
variant of the lateral dynamic (24)

mis = —kaqq — daqq + f4(t) with d4y = 514 Ns/m. (25)

The parameters of the the random force distribution f; determine the shape
of the final geometry, Fig. 15. Note that the damping has considerable influ-
ence on the distribution along the wheel axis.

6 Conclusions

It is as desirable as unrealistic to have the most advanced models of all
sub-systems involved in the feedback-loop of system dynamics and long-term
behavior, and run them in one single program or package. Instead, we use
simplifications where possible, and couple components of other groups via
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Fig.15. 2D extension of benchmark

problem. The force f4(t) is a time se-
2 ries of of random impulses with zero
0.05 an mean and a deviation of 3000 N

internet programming. It was shown in Sec. 3 that for studying polygonalisa-
tion, it is essential to include vertical dynamics in a sensible way. That way
results depend reasonably on data like initial surface deviations and speed of
control motion, and allow a consistent interpretation.

From the point of view of long-term changes, models of vehicles, track and
subgrade are components that determine the right-hand side of an evolution
problem for the domain occupied by the wearing parts. Proper methods of
integration for domain evolution problems are as important as fast methods
for solving the equations of motion of the dynamical systems. Benchmark
problems designed for testing the long-term integration have been formu-
lated. For closing the feedback loop, the dynamical system has to respond to
changes of geometry.

In this project, we have mainly studied wear patterns on wheels; patterns on
rails have been omitted to keep this paper within the given limits. For the
same reason, temperature effects on friction and wear laws have not been dis-
cussed, [15]. In the future, roughness, the real contact areas and local forces,
and in turn the changes of surface texture, should be modeled and included
into the feedback loop.
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