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Abstract. In this paper, we continue our considerations in [3] on eigenfunctions of two-scale
difference equations. Using the results in [3] concerning equivalent eigenfunctions and equivalent
characteristic polynomials, we derive sum relations for shifts of an eigenfunction in the interval
(−1, 1). In particular, we deal with the case that the characteristic polynomial contains a cyclic
factor. We give necessary and sufficient conditions for the linear independence of shifts of an eigen-
function, and we determine a basis for the coefficient vector in the case of linear dependence. Here
the representation of the characteristic polynomial by means of the corresponding minimal poly-
nomial is basically used. Our main emphasis is laid on linear combinations of such shifts yielding
polynomials, where both the possible coefficients and the possible polynomials are characterized.
The results are specialized to the constant polynomial equal to 1, i.e. to partitions of unity. But also
linear combinations of shifts of an eigenfunction, yielding certain distributions, are investigated.
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1. Preliminaries

Two-scale difference equations

λϕ

(

t

2

)

=
N
∑

ν=0

cνϕ(t− ν) (t ∈ R) (1.1)

with complex coefficients and λc0cN 6= 0, N ∈ N0, appear in wavelet theory, multiresolution analysis
and subdivision schemes, cf. [11], [8]. The solutions of (1.1) are sought in the class of generalized
functions consisting of complex valued continuous functions and their derivatives of finite order in
the distributional sense [1]. In [3] we have denoted non-zero solutions ϕ of (1.1) as eigenfunctions

if they satisfy the two ”boundary” conditions:

(i) ϕ(t) = 0 for t < 0,

(ii) ϕ(t) is equal to a polynomial for t > N .

These conditions are quite natural since we want to include compactly supported solutions of
(1.1), if such exist, and we demand always that integrals of eigenfunctions with (i) shall again be
eigenfunctions. Under the normalization

N
∑

ν=0

cν = 1 (1.2)

the eigenvalues of (1.1) are exactly the numbers λn = 2n (n ∈ Z) and they are all simple, i.e. the
eigenfunctions are uniquely determined up to a constant factor, cf. [12], [13] and [6].

E-mail addresses: lothar.berg@mathematik.uni-rostock.de, manfred.krueppel@mathematik.uni-ro-
stock.de
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An eigenfunction ϕ belonging to λn vanishes for t > N when n < 0, and it is equal to a
polynomial of degree n when n ≥ 0. The eigenfunction belonging to λn (n ∈ Z) and normalized by
the condition

(iii) ϕ(n)(t) = 1 for t > N

is denoted by ϕn. As usual, ϕ(n) denotes, for n ≥ 0, the distributional derivative of order n and,
for n < 0, the (−n)-times iterated integral satisfying (i). For all n ∈ Z it holds ϕ′

n = ϕn−1 and

ϕ
(−1)
n = ϕn+1.

The main goal of this paper is to investigate linear combinations of shifts of an eigenfunction.
For this reason we list such notations and results of [3], partly in an improved version, which we
shall need afterwards. At the beginning we point out three

Corrections 1.1
1. In [ 3 : (3.1) ] replace φ̃−1 by ϕ̃−1.
2. In [ 3 : Definition 6.7 ] there must be added a convention concerning multiple cycles, cf. the

later Definition 1.7.
3. In [ 3 : Algorithm II.1, p.480 ] the words ”all quadratic factors by symmetric zeros, i.e.” must

be cancelled.

We always use the notation
pn(t) = ϕn(t) (t > N) (1.3)

for the polynomials in (ii) and

P (w) =
N
∑

ν=0

cνw
ν (1.4)

for the characteristic polynomial corresponding to (1.1), where P (0) 6= 0 according to c0 6= 0, and
P (1) = 1 according to (1.2). Conversely, every polynomial (1.4), having the properties P (0) 6= 0 and
P (1) = 1, can be termed as characteristic polynomial since it generates a corresponding two-scale
difference equation (1.1).

The polynomials (1.3) are Appell polynomials. For n < 0 they are equal to the zero polynomial,
and for n ≥ 0 they are defined by the generating function

etzφ(z) =
∞
∑

n=0

pn(t)zn (t ∈ R), (1.5)

cf. [22], where

φ(z) = L{ϕ−1} =

∞
∏

j=1

P
(

e−z/2j
)

(1.6)

is the Laplace transform of the eigenfunction ϕ−1 with φ(0) = 1, cf. [2]. Note that the Appell
polynomials pn are uniquely determined by the characteristic polynomial P . For n ≥ 0 the main
term of pn is equal to 1

n!
tn, so that in particular p0 = 1.

A pendant to (1.6) is the infinite product

S(w) =

∞
∏

j=0

Q
(

w2j
)

(1.7)

with Q(0) = 1. If Q is a holomorphic function for small |w| then also S is such a function, and
S(0) = 1.

Proposition 1.2 [ 3 : Proposition 7.6 ] For a polynomial Q the product (1.7) is a rational func-

tion if and only if Q is of the form

Q(w) = (1 + w)α p(w
2)

p(w)
(1.8)

where p is a characteristic polynomial, and α ∈ N0.
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The main topic of [3] consists in a comparison of (1.1) with a second two-scale difference
equation

λ̃ϕ̃

(

t

2

)

=

Ñ
∑

ν=0

c̃ν ϕ̃(t− ν) (1.9)

for which analogous notations and assumptions are used as for (1.1), in particular λ̃c̃0c̃Ñ 6= 0,
P̃ (1) = 1 and ϕ̃m (m ∈ Z) for the normalized eigenfunction belonging to the eigenvalue λ̃ = 2m, as
well as p̃m(t) for the Appell polynomials belonging to

φ̃(z) = L{ϕ̃−1} =
∞
∏

j=1

P̃
(

e−z/2j
)

. (1.10)

Definition 1.3 [ 3 : Definitions 3.1 and 4.10 ] For fixed n,m ∈ Z the eigenfunctions ϕn and ϕ̃m

are called equivalent ϕn ∼ ϕ̃m if they satisfy the equality

ϕn(t) = r0ϕ̃m(t) (t < 1) (1.11)

with a certain constant r0. The characteristic polynomials P , P̃ are called equivalent P ∼ P̃ if there
exists a constant α ∈ Z such that ϕn ∼ ϕ̃m for

m− n = α. (1.12)

Proposition 1.4 [ 3 : Lemmas 3.2 and 4.7, Corollary 4.9, Propositions 3.3 and 3.5 ] For equiv-

alent eigenfunctions ϕn, ϕ̃m it is r0 6= 0 in (1.11). Moreover, there exist further constants rk such

that (1.11) can be extended to

ϕn(t) =
∞
∑

k=0

rkϕ̃m(t− k) (t ∈ R). (1.13)

The generating function

R(w) =

∞
∑

k=0

rkw
k (1.14)

of the coefficients in (1.13) is a rational function satisfying the limit relation

lim
w→1

R(w)

(1 − w)α
= 1 (1.15)

with α from (1.12), and for w = e−z it is representable in the form

R
(

e−z) =
zαφ(z)

φ̃(z)
(1.16)

with (1.6), (1.10) and (1.12). The relation (1.13) can be inverted by

ϕ̃m(t) =
∞
∑

k=0

skϕn(t− k), (1.17)

with the coefficients sk from

1

R(w)
=

∞
∑

k=0

skw
k. (1.18)

The function R, defined by (1.16), satisfies the homogeneous equation

2αP (w)R(w) = P̃ (w)R(w2) (1.19)

which is called the basic functional equation.
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Proposition 1.5 [ 3 : Proposition 4.4 ] Let (1.19) with α ∈ Z have a solution R with the repre-

sentations

R(w) = wα0R0(w), R(w) = (1 − w)α1R1(w), (1.20)

where the functions Rj are continuous at w = j with Rj(j) 6= 0 (j ∈ {0, 1}), then R is a rational

function which is uniquely determined up to a constant factor, α0 = 0 and α1 = α.

Definition 1.6 [ 3 : Definition 5.3 ] A rational solution R of the basic functional equation (1.19)
is called the canonical solution, if it is normalized by (1.15), i.e. if

R(w) = (1 − w)αR1(w) (1.21)

with R1(1) = 1.

The main result concerning equivalent eigenfunctions, i.e. equivalent characteristic polynomials,
and the basic functional equation reads:

Theorem 1.7 [ 3 : Theorem 5.1, Corollary 5.4 ] With the notation (1.12) the following asser-

tions are equivalent:

(a) ϕn ∼ ϕ̃m, i.e. P ∼ P̃ ,

(b) the basic functional equation (1.19) has a non-zero rational solution R.

If these assertions are satisfied, then in (1.13) the coefficients rk, belonging to the equivalent eigen-

functions ϕn and ϕ̃m, are the coefficients in (1.14) of the canonical solution R of the basic functional

equation (1.19).

Definition 1.8 [ 3 : Definition 6.7 ] The set of non-vanishing pairwise distinct numbers ζ1, ζ2, . . .,
ζk (k ∈ N) is called a cycle with the length k under a mapping f : C 7→ C if f(ζj) = ζj+1 for
j = 1, . . . , k− 1 and f(ζk) = ζ1, cf. [23]. The numbers ζ1, . . . , ζ` are called cyclic under f if each ζj

belongs to a cycle of f possibly with a certain multiplicity m, where the corresponding cycles are
to interpret as m distinct cycles. In the case f : w 7→ w2 we usually drop ”under f”.

For a cycle ζ1, . . . , ζk with the length k (under w 7→ w2) we have ζ2k

= ζ for each ζ = ζj

(j = 1, . . . , k), and consequently in view of ζ 6= 0 that ζ2k−1 = 1, i.e. all cyclic numbers are roots
of unity with odd root exponents.

Lemma 1.9 [ 3 : Lemma 6.8 ] If p and q are polynomials with q(0) 6= 0 and

p(w) =
q(w2)

q(w)
, (1.22)

and if p does not have symmetric zeros, then the zeros of q are cyclic under w 7→ w2 and the zeros

of p are cyclic under w 7→ −w2.

Lemma 1.10 [ 3 : Algorithm II ] If P is a characteristic polynomial with symmetric zeros, then

there exist two characteristic polynomials R and P̃ such that

P (w) =
R(w2)

R(w)
P̃ (w),

and P̃ does not have symmetric zeros.

Definition 1.11 [ 3 : Definition 6.1 ] A characteristic polynomial P0 of degree N0 is called
minimal if P ∼ P0 implies that N ≥ N0.

Minimal characteristic polynomials are uniquely determined in every class of equivalent poly-
nomials. They are related with two-scale symbols of scaling functions having minimum support in
[ 9 : p. 119 ].
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Proposition 1.12 [ 3 : Proposition 6.9 ] The characteristic polynomial P0 is minimal if and

only if the following conditions are satisfied:

(a) P0 does not have symmetric zeros,

(b) P0 does not have cyclic zeros under w 7→ −w2.

Proposition 1.13 [ 3 : Proposition 6.2 ] Every characteristic polynomial P has a unique repre-

sentation of the form

P (w) =

(

1 + w

2

)β
p(w2)

p(w)
P0(w) (1.23)

where p is a characteristic polynomial, P0 a minimal characteristic polynomial, and β ∈ N0.

For a given characteristic polynomial P the representation (1.23) can be found by means of
[ 3 : Algorithm II ]. Conversely, every polynomial P with a representation (1.23) is a characteristic
polynomial where P is itself a minimal polynomial if and only if both β = 0 and p = 1 in (1.23). If
p in (1.23) has −1 as a zero with the multiplicity k, then it must be 0 ≤ k ≤ β and −1 is a zero of
P with the multiplicity β − k.

Proposition 1.14 [ 3 : Corollary 7.5, 14 : Theorem 2 ] The shifts ϕ−1(· + ν) (ν ∈ Z) of the

eigenfunction ϕ−1 are linearly independent if and only if in the representation (1.23) of the charac-

teristic polynomial P it holds p = 1.

Proposition 1.15 [ 3 : Theorem 7.2 ] The equality

N
∑

ν=0

ϕ−1(t+ ν) = 1 (|t| < 1) (1.24)

is valid, if and only if in the representation (1.23) of the characteristic polynomial P it holds β ≥ 1.

For Lebesgue-integrable ϕ−1 equality (1.24) is well-known, cf. [19], [12] and [4]. In view of
Proposition 1.15 we have finally

Proposition 1.16 [ 3 : Example 2.2 ] If β ≥ 1 in the representation (1.23) of the characteristic

polynomial P and n ∈ N0 then it holds the equality

N
∑

ν=0

ϕn−1(t+ ν) =

n
∑

k=0

an−k

k!
Bk(t+N + 1) (|t| < 1), (1.25)

where Bk(·) are the Bernoulli polynomials and an = pn(0) with (1.5) and (1.6).

This paper is motivated by the question concerning the existence of equations of the form

N
∑

ν=0

ξνϕn(t+ ν) = Q(t) (|t| < 1) (1.26)

with fixed n ∈ Z and a polynomial Q. The clue to the success consists in the use of equivalent
eigenfunctions being polynomials for great t according to (ii), and in the fundamental factorization
(1.23). Nontrivial equations (1.26) exist if and only if the characteristic polynomial is not a minimal
polynomial. In the just mentioned case the coefficients ξν in (1.26) only depend on β and p in (1.23),
they are independent on the minimal polynomial P0.

We begin with the basic Theorem 2.1 concerning sums of shifted eigenfunctions and with some
simple applications. Theorem 3.6 presents additional details in the case of cyclic polynomials.
Proposition 1.14 concerning the linear independence of shifts of ϕ−1 is transferred to arbitrary
eigenfunctions ϕn in Theorem 4.4 for n ∈ N0, and in Corollary 4.8 for n ∈ Z, however, in the
interval (-1,1), cf. Remark 1.17 and [20]. Theorem 4.7 clarifies the case in which the shifts are
linearly dependent. Theorem 5.1 gives a complete survey on the possible coefficients ξν in (1.26)
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and Proposition 5.6 on the possible degrees of the polynomials Q. In Corollary 5.2.3 it turns out
that the coefficients must be certain exponential polynomials in ν.

The special caseQ = 1 of (1.26), i.e. the partition of unity, is studied in detail, the corresponding
results are listed in Theorem 6.1. By means of Theorem 6.3 it can be checked whether given numbers
ξν are possible as coefficients. Proposition 6.4 shows that ξν = c is only possible in the case that
both n = −1 and c = 1, i.e. in the case (1.24), Example 6.5 that ξν = c ζν , ζ 6= 1, is only possible
if n = 0, p (ζ) = 0 and c = ζ−1

ζN+1 , and Proposition 6.6 concerns the case ξν = 1
2
(1 + (−1)ν).

Proposition 7.2 deals with linear combinations of shifts of an eigenfunction which yield special
distributions. Finally, Section 8 deals with different supplements to the foregoing results. In par-
ticular, Proposition 8.1 gives necessary and sufficient conditions such that the infinite product (1.7)
represents a rational function.

Remark 1.17 If ϕn in (1.26) is Lebesgue-integrable or even continuous then it suffices to
consider this equation only in the interval [0, 1] or in (0, 1) (where the term on the left-hand side
with ν = N is a polynomial). But for distributions there do not exist equations in closed intervals,
and in (0, 1) we do not have any information concerning the boundary points. In view of the shifts
at hand we need an interval with length greater than 1, and the simplest interval of this kind is
(−1, 1). In particular, this interval is important in order to find the compatibility conditions in
Remark 7.3.3. Note that the validity of equalities in a finite interval is necessary but not sufficient
for the corresponding validity for all real numbers, whereas for linear independence it is the opposite.

2. Sums of shifted eigenfunctions

In this section we consider linear combinations of shifts of an eigenfunction which are fundamental
for later investigations. As before, P and P̃ are two characteristic polynomials of degree N and Ñ ,
respectively.

Theorem 2.1 Assume that P ∼ P̃ . Let R be the canonical solution of (1.19) with (1.18). Then

for ` ≥ Ñ + 1 the normalized eigenfunctions of the two-scale difference equation (1.1) satisfy the

equalities

∑̀

ν=0

s`−νϕn(t+ ν) = p̃m(t+ `) (|t| < 1) (2.1)

where m = n+ α, and where p̃m are the Appell polynomials belonging to the generating function

etzzαφ(z)

R(e−z)
=

∞
∑

m=0

p̃m(t)zm (2.2)

with the function φ from (1.6).

Proof. According to Theorem 1.7 we have (1.13) with m = n+ α for all n ∈ Z and the coeffi-
cients from (1.14). By Proposition 1.4 this equation can be written as (1.17) with the coefficients
from (1.18). Replacing t by t+ ` with |t| < 1 and considering (i), we get

ϕ̃m(t+ `) =
∑̀

k=0

skϕn(t+ `− k) =
∑̀

ν=0

s`−νϕn(t+ ν).

Now, in view of ` ≥ Ñ + 1 we have ϕ̃m(t+ `) = p̃m(t+ `) for t > −1 with the Appell polynomials
p̃m having the generating function

etzφ̃(z) =
∞
∑

m=0

p̃m(t)zm. (2.3)

According to (1.16) this expansion immediately implies (2.2) �
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As applications we consider at first the both special cases

P (w) =

(

1 + w

2

)k

P̃ (w) (2.4)

and

P (w) =
1 + wk

2
P̃ (w) (2.5)

where P̃ is an arbitrary characteristic polynomial and k ∈ N, so that in both cases also N = k+ Ñ ∈
N. In the case P = P̃ the assertions of Theorem 2.1 are trivial.

Proposition 2.2 If −1 is a zero of the characteristic polynomial P with the multiplicity at least

k ≥ 1, then for ` ≥ N + 1 − k the normalized eigenfunctions of the two-scale difference equation

(1.1) satisfy the equalities

∑̀

ν=0

(

`+ k − 1 − ν

k − 1

)

ϕm−k(t+ ν) = p̃km(t+ `) (|t| < 1) (2.6)

where p̃km are the Appell polynomials belonging to the generating function

etzzkφ(z)

(1 − e−z)k
=

∞
∑

m=0

p̃km(t)zm (2.7)

with the function φ from (1.6).

Proof. If −1 is a zero of P and its multiplicity at least k, then P can be written in the form
(2.4), and the corresponding basic functional equation (1.19) with α = k has the canonical solution
R(w) = (1 − w)k, cf. Definition 1.6. Theorem 1.7 implies P ∼ P̃ , and in view of

1

R(w)
=

1

(1 − w)k
=

∞
∑

ν=0

(

k − 1 + ν

k − 1

)

wν

and Ñ = N − k, Theorem 2.1 yields the assertions �

Remark 2.3 According to

νκ =

κ
∑

j=0

djκ

(

ν −N − 1

j

)

=

κ
∑

j=0

djκ(−1)j

(

N + j − ν

j

)

,

where djκ = ∆j(N + 1)κ are the forward differences with ∆p(N) = p(N + 1) − p(N), we obtain
from (2.6) with ` = N , k = j + 1 and m = j that

N
∑

ν=0

νκϕ−1(t+ ν) =
κ
∑

j=0

djκ(−1)j p̃j+1,j(t+N) (|t| < 1) (2.8)

for 0 ≤ κ ≤ k − 1. For κ = 1 the right-hand side of (2.8) is equal to P ′(1) − t.

The next result is also a special case of Theorem 2.1, but we shall prove it in a direct way.

Proposition 2.4 If the characteristic polynomial P has the form (2.5), then the normalized

eigenfunctions of the two-scale difference equation (1.1) satisfy the equalities

∑̀

µ=0

ϕm−1(t+ µk) =
1

k
p̃m(t+ k`) (−1 < t < k), (2.9)

where ` ≥ N+1
k

− 1 and where p̃m are the Appell polynomials belonging to the generating function

ketzzφ(z)

1 − e−kz
=

∞
∑

m=0

p̃m(t)zm (2.10)

with the function φ from (1.6).
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Proof. In the case (2.5) with k ∈ N equation (1.19) with α = 1 has the canonical solution
R(w) = 1

k
(1 − wk), and Theorem 1.7 implies

ϕm−1(t) =
1

k
(ϕ̃m(t) − ϕ̃m(t− k)) . (2.11)

By summation we obtain

∑̀

µ=0

ϕm−1(t+ µk) =
1

k
(ϕ̃m(t+ `k) − ϕ̃m(t− k)) ,

and owing to (ii) and (1.3) applied to ϕ̃m this equation turns over into (2.9) for N − k(` + 1) ≤
−1 < t < k. Finally, (2.10) is valid analogously to (2.2) �

For k = 1 the results of Proposition 2.2 and Proposition 2.4 coincide. In particular for ` = N
and m = 0 the equalities (2.6) and (2.9) reduce to (1.24) so that P (−1) = 0 is a sufficient condition
for the validity of (1.24), cf. Proposition 1.15.

In the case (2.5) with Ñ < k equality (2.11) with m = 0 implies the relation

kϕ−1

(

t+
N

2

)

= 1

(

|t| < k − Ñ

2

)

,

which is a certain pendant to (1.24).
Equality (2.9) is equivalent to the system of equalities

∑̀

µ=0

ϕm−1(t+ µk + j) =
1

k
p̃m(t+ `k + j) (|t| < 1)

for ` ≥ N+1
k

− 1 and j = 0, . . . , k − 1, from which for m = 0 it follows

[ N−j
k

]
∑

µ=0

ϕ−1(t+ µk + j) =
1

k
(|t| < 1) (2.12)

where we have used that ϕ−1(t) = 0 for t > N and p̃0(t) = 1.

3. Cyclic polynomials

In order to give a further application of Theorem 2.1 we first recall some facts from [23] and [5]. Let
M be a finite set of non-vanishing complex numbers, which is closed under the mapping w 7→ w2.
Then M contains cyclic numbers, i.e. at least one cycle of pairwise distinct numbers ζ1, . . . , ζk in
the sense of Definition 1.8. All ζ ∈ M are roots of unity. We consider the square roots

√
ζ, −

√
ζ

of elements ζ ∈ M and term the square roots not belonging to M absent roots of M. The set Ω of
the absent roots of M consists only of pre-periods, it has the same cardinality as M, and the set
M∪⊗ is also closed under w 7→ w2. The following lemma is a supplement to [ 17 : Lemma 2.3 ].

Lemma 3.1 Two polynomials p and q with p(0) 6= 0 are related by

q(w) =
p(w2)

p(w)
, (3.1)

if and only if the zero set of p is closed under w 7→ w2, and the zeros of q are the corresponding

absent roots.

Proof. Let M = {ζ1, . . . , ζ`} and Ω = {ω1, . . . , ω`} be given with the foregoing properties. We
define

q(w) =
∏̀

j=1

(w − ωj), p(w) = a
∏̀

j=1

(w − ζj) (3.2)
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with a 6= 0 so that

p(w2) = a
∏̀

j=1

(

w −
√

ζj

)

∏̀

j=1

(

w +
√

ζj

)

. (3.3)

Since the set of all zeros of (3.3) is equal to M∪⊗, and since q has the main coefficient 1, it follows
that p(w2) = p(w)q(w).

Conversely, if (3.1) is given, then the zero set M of p(w) must be a subset of the zero set of
p(w2), i.e. M must be closed under w 7→ w2, and the zero set Ω of q(w) must be the corresponding
set of the absent roots �

Remark 3.2
1. If the zero set M of p contains not only cyclic numbers, but also pre-periods, then q contains

symmetric zeros and we can factorize p = p1p2, where p1 has the numbers of the pre-periods as
zeros, and p2 the cyclic numbers of M. The corresponding factorization of (3.1)

q(w) =
p1(w

2)

p1(w)

p2(w
2)

p2(w)

has the following properties: The first factor of the right-hand side is a rational function containing
the symmetric zeros of q, and the second factor is a polynomial, cf. Lemma 1.9.

2. If the zero set M of p contains no pre-periods, then M is cyclic under w 7→ w2, and ωj = −ζj

(j = 1, . . . , `) so that

q(w) =
∏̀

j=1

(w + ζj) =
(−1)`

a
q(−w).

In this case (3.1) turns over into
p(w)p(−w) = Cp

(

w2) (3.4)

with C = (−1)`a. But in (3.4) it is also C = p(0), and for p(1) 6= 0 moreover C = p(−1), i.e.

p(−1) = p(0). (3.5)

Since a cycle cannot contain symmetric numbers, q(w) cannot have symmetric zeros so that (3.4)
sharpens (1.22) in Lemma 1.9.

In the sequel we write R instead of p since this polynomial shall be interpreted as canonical
solution of the basic functional equation.

Definition 3.3 A polynomial R is called a cyclic polynomial if the zeros of R are cyclic under
w 7→ w2.

In particular, non-vanishing constant polynomials can be considered as trivial cyclic polynomi-
als. For a cyclic polynomial

R(w) =
K
∑

ν=0

rνw
ν (3.6)

we have R(0) = r0 6= 0. In the sequel we use the notation R(w) = R(w).

Proposition 3.4
1. A non-zero polynomial R satisfies the equality

R(w)R(−w) = R(0)R
(

w2) (3.7)

if and only if R is a cyclic polynomial.

2. If R is a cyclic polynomial of degree K, then with (3.6) we have

r0 = (−1)KrK . (3.8)

Moreover, R is a cyclic polynomial, too, and it holds

R(w) = CwKR

(

1

w

)

(3.9)
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where C is a constant with |C| = 1. In particular, if R has the form (1.21) with real R1(1) 6= 0,
then C = (−1)α.

3. A cyclic polynomial R has the property

R(−1) = 2αR(0) (3.10)

where α is defined by (1.21) with R1(1) 6= 0.

Proof. 1. The if-part of the first assertion follows from Remark 3.2.2, the inversion from
Lemma 1.9.

2. Substituting (3.6) into (3.7) and comparing the main terms yields (3.8). In view of ζ = ζ−1

for cyclic zeros the polynomial R is also cyclic and both sides of (3.9) have the same zeros. This
implies (3.9) with a certain constant C. Writing R in the form (1.21) with R1(1) 6= 0, then
substituting into (3.9) yields

C = lim
w→1

R(w)

R(w)
= (−1)αR1(1)

R1(1)

so that |C| = 1, and C = (−1)α for real R1(1).
3. Using once more (1.21) with R1(1) 6= 0 we see that

R
(

w2
)

R(w)
= (1 + w)αR1

(

w2
)

R1(w)
→ 2α

as w → 1, and (3.7) yields (3.10) �

Remark 3.5
1. For an arbitrary cyclic polynomial R it is R(−1) 6= 0 according to (3.10) and R(0) 6= 0.

Hence (3.7) implies that P (w) = R(−w)
R(−1)

is a characteristic polynomial equivalent to 1, cf. Theorem

1.7. The constant C in (3.9) can also be expressed by C = (−1)K r0

r0
, cf. (3.8).

2. For real R(1) 6= 0 we have C = 1 in (3.9). This equality yields rν = rK−ν for ν = 0, . . . ,K,
and the last one

K
∑

ν=0

Im rν = 0,

and according to (3.8) moreover r0 = (−1)Kr0 and rK = (−1)KrK . Hence, r0 and rK are purely
imaginary for odd K, and real for even K. For even K = 2k we also have Im rk = 0.

3. In view of ζ = ζ−1 for arbitrary roots of unity the relation (3.9) is already valid if the zeros
of R are only closed under w 7→ w2 where |C| = 1, too. For real R(1) 6= 0 we have again C = 1,

and it follows R′(1) + R
′
(1) = K so that ReR′(1) = ReR

′
(1) = K

2
. Moreover, for real R(−1) 6= 0

the degree K must be even.
4. The polynomial 1

C
R in (3.9) is the reversed polynomial of R, cf. [3], [7].

In the following we consider one single cycle ζ, ζ2, . . . , ζ2K−1

, where ζ2K

= ζ with minimal K,
and the corresponding cyclic polynomial

R(w) = rK

K
∏

j=1

(

w − ζ2j−1
)

. (3.11)

The coefficients rν of the corresponding expansion (3.6) can be calculated by means of the algebraic

field theory, cf. [15]. In particular, for even K = 2k all coefficients rν of R are real if ζ2k+1 = 1,

because then the zeros ζj = ζ2j−1

satisfy ζν = ζk+ν for ν = 1, . . . , k. We restrict ourselves to the
case ζ 6= 1 so that R(1) 6= 0 and K ≥ 2 as well as R(−1) = R(0), cf. (3.10) with α = 0. Hence, we
can consider characteristic polynomials P , P̃ , which are connected by

P (w) =
R(−w)

R(0)
P̃ (w) (3.12)

and by means of (3.7) this equality can be written as

P (w)R(w) = P̃ (w)R
(

w2) , (3.13)
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i.e. as basic functional equation (1.19) with α = 0. We normalize R by R(1) = 1 so that R is the
canonical solution of (3.13). Now, Theorem 1.7 yields P ∼ P̃ , and Theorem 2.1 yields (2.1) with
m = n and ` ≥ Ñ + 1 = N −K + 1 as well as (2.2) with α = 0. The coefficients sν in (2.1) can be

characterized in the following way, where we remark that according to ζ2K−1 = 1 and K ≥ 2 there
exists always a smallest odd integer L ≥ 3 with ζL = 1 where L|(2K − 1).

Theorem 3.6 Let P be a characteristic polynomial of the form (3.12), and R the cyclic poly-

nomial (3.11) with R(1) = 1 and ζL = 1 (L ≥ 3). Then in (1.18) the coefficients sν are L-periodic

and they satisfy the relations

s0 + s1 + · · · + sL−K = 0, (3.14)

s2 + s4 + · · · + s2M = 0 (3.15)

where M = [L−K
2

],
sν = −sL−K−ν for ν = 0, 1, . . . , L−K (3.16)

and

sν = 0 for ν = L−K + 1, . . . , L− 1. (3.17)

Proof. We define a polynomial Q of degree L − K by means of the factorization 1 − wL =
R(w)Q(w), so that

1

R(w)
=

Q(w)

1 − wL
. (3.18)

This relation immediately proves

Q(w) =

L−K
∑

ν=0

sνw
ν , (3.19)

(3.14), (3.17) and the periodicity sν = sL+ν . The polynomial Q in (3.18) is a cyclic polynomial with
Q(1) = 0 and Q′(1) = −L. Hence, according to Proposition 3.4.2 with α = 1, Q has the property

Q(w) = −wL−KQ

(

1

w

)

,

and this implies (3.16). Moreover, Proposition 3.4.3 yields Q(−1) = 2Q(0), i.e.

s0 − s1 + . . .+ (−1)L−KsL−K = 2s0.

Together with (3.14) this implies (3.15) �

Example 3.7 (Case K = 2, L = 3) The third roots of unity ζ = − 1
2
+ i

2

√
3 and ζ2 = − 1

2
− i

2

√
3

form a cycle of the length 2. Here

R(w) =
1

3

(

1 + w + w2)

has real coefficients and
Q(w) = 3(1 − w)

so that s0 = 3, s1 = −3, s2 = 0 and sν+3 = sν for ν ∈ N0.

Example 3.8 (Case K = 3, L = 7) For ζ = e
2πi
7 the numbers ζ, ζ2 and ζ4 form a cycle of the

length 3. Here we have

R(w) =
i√
7

(

−1 − aw + aw2 + w3)

with a = 1
2

(

1 + i
√

7
)

and

Q(w) = 7(1 − w)R(w)

so that s0 = i
√

7, s1 = 1
2
(7 − i

√
7), s2 = −i

√
7, s3 = −1

2
(7 + i

√
7), s4 = i

√
7, s5 = s6 = 0, and

sν+7 = sν for ν ∈ N0. The conjugate polynomial R is the polynomial (3.11) with ζ3 instead of ζ,
i.e. with respect to the cycle ζ3, ζ6 and ζ5.
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Example 3.9 (Case K = 4, L = 15) For ζ = e
2πi
15 the numbers ζ, ζ2, ζ4 and ζ8 form a cycle

of the length 4. Here
R(w) = −1 + bw + 2w2 + bw3 − w4

with b = 1
2

(

1 + i
√

15
)

and

Q(w) =
(

1 − w5) (1 + w + w2)R(w)

so that s0 = −1, s1 = −1
2

(1+ i
√

15), s2 = 1
2
(3− i

√
15), s3 = 3, s4 = 1

2
(3+ i

√
15), s5 = 1

2
(1+ i

√
15),

s11−ν = −sν for ν = 0, . . . , 5, s12 = s13 = s14 = 0, and sν+15 = sν for ν ∈ N0. The conjugate
polynomial R is the polynomial (3.11) with ζ7 instead of ζ, i.e. with respect to the cycle ζ7, ζ14,
ζ13 and ζ11.

The last two examples were elaborated by means of the DERIVE system.

4. Linear independence

For stability questions of wavelet decompositions and subdivision schemes it is important that the
shifts ϕ−1(· + ν) (ν ∈ Z) of the eigenfunction ϕ−1 are linearly independent, cf. [10], [14], [20], [21].
In [10] there was given a necessary and sufficient condition for the linear independence of the shifts
of a continuous eigenfunction ϕ−1, even in the more dimensional case, and in [21] for the shifts of a
distribution ϕ−1. In [ 14 : Theorem 2 ] this condition was formulated by means of the corresponding
symbol (which is proportional to our characteristic polynomial), and in [3] it was simplified by the
foregoing Proposition 1.14. In [20] the local linear independence of shifts over any nonempty open
subset of R and its connection to the global linear independence was discussed.

In this section we consider the linear independence over the interval (−1, 1), cf. Remark 1.17.
The shifts of an eigenfunction ϕn with fixed n ∈ Z are called linearly independent if

N
∑

ν=0

ξνϕn(t+ ν) = 0 (|t| < 1) (4.1)

implies ξν = 0 for ν = 0, 1, . . . , N , otherwise they are called linearly dependent. We recall that
N = degP , cf. (1.4). For our intention we need the following two Lemmas.

Lemma 4.1 Let y be a polynomial of degree n. Then k + 1 shifts y(t + tµ) are linearly inde-

pendent in any interval if and only if both k ≤ n and tµ 6= tν for µ 6= ν.

Proof. Let an be the main coefficient of y, and let yµ(t) = y(t + tµ) (µ = 0, 1, . . . , k). In the
case k = n the corresponding Wronskian has the value

W (y0, . . . , yn) = an+1
n

n
∏

j=1

jj
∏

µ<ν

(tµ − tν).

which was calculated by means of the Vandermonde determinant. Hence, tµ 6= tν implies the linear
independence of y0, . . . , yn, and the more of y0, . . . , yk in the case k < n.

Conversely, if one of the conditions k ≤ n and tµ 6= tν is violated, then y0, . . . , yk are linearly
dependent �

Lemma 4.2 The shifts ϕ−1(· + ν) (ν ∈ {0, 1, . . . , N}) of the eigenfunction ϕ−1 are linearly

independent if and only if in the representation (1.23) of the characteristic polynomial P it holds

p = 1.

The validity of this lemma follows from Proposition 1.14 and the equivalence between the global
to the local linear independence on the unit interval (0, 1) and therefore also on (−1, 1), cf. [18]
and [20], p.2.
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In the sequel assumptions and assertions concerning eigenfunctions are usually addressed to the
representation (1.23) of the corresponding characteristic polynomial P . Once for all we introduce
the notations K = deg p and

p(w) =

K
∑

k=0

%kw
k (4.2)

so that the degrees in (1.23) are connected by

N −N0 = K + β, (4.3)

and we introduce the

Convention 4.3 If in connection with an eigenfunction ϕn of (1.1) we use notations as p and

P0, as well as N , β, K and N0, then we always mean these data from the corresponding characteristic

polynomial P in the representation (1.23) with (4.2) and (4.3).

The representation (1.23) is equivalent to the basic functional equation (1.19) with α = β,
P̃ = P0 and the canonical solution

R(w) = (1 − w)βp(w) (4.4)

of degree K + β, but there are further possibilities to connect (1.23) with (1.19) as we shall see at
once.

Theorem 4.4 The shifts of the eigenfunction ϕn (n ∈ N0) are linearly independent if and only

if n ≥ K − 1 with K from Convention 4.3.

Proof. The representation (1.23) is equivalent to the basic functional equation (1.19) with
α = 0, the characteristic polynomial

P̃ (w) =

(

1 + w

2

)β

P0(w)

of degree Ñ = β + N0, and the canonical solution R = p with (4.2). Owing to Theorem 1.7 the
corresponding eigenfunctions ϕn and ϕ̃n are related by

ϕn(t) =
K
∑

k=0

%kϕ̃n(t− k) (t ∈ R).

Therefore the left-hand side of (4.1) can be written as

N
∑

ν=0

ξνϕn(t+ ν) =

N
∑

µ=0

ηµϕ̃n(t+ µ) (|t| < 1) (4.5)

where

ηµ =

min (N,K+µ)
∑

ν=µ

ξν%ν−µ (4.6)

for µ = 0, 1, . . . , N . Given %k with %0 6= 0, (4.6) is a linear system with a nonsingular upper
triangular matrix. This means that (4.6) is a bijection between ξν and ηµ, i.e. the shifts of ϕn are
linearly independent if and only if the shifts of ϕ̃n in (4.5) are linearly independent.

In order to prove the theorem we have to assume that (4.1) is satisfied. Hence, by n + 1
differentiations we obtain from (4.5)

Ñ
∑

µ=0

ηµϕ̃−1(t+ µ) = 0 (|t| < 1)
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since ϕ̃n(t) is a polynomial of degree n for t > Ñ . Now, Lemma 4.2 implies η0 = . . . = ηÑ = 0 so
that (4.1) and (4.5) yield the linear combination

N
∑

µ=Ñ+1

ηµϕ̃n(t+ µ) = 0 (|t| < 1), (4.7)

which remains to investigate. Since ϕ̃n(t) is a polynomial of degree n for t > Ñ , Lemma 4.1 yields
that the K = N − Ñ shifts in (4.7) are linearly independent if and only if K − 1 ≤ n. This proves
the theorem �

In the following we come back to the general case n ∈ Z, and we say that (4.1) has the solution

ξ = (ξ0, . . . , ξN ) if the coordinates of the vector ξ satisfy (4.1). Integrating (4.1) several times,
Theorem 4.4 implies:

Corollary 4.5 If the equation (4.1) has a non-zero solution ξ = (ξ0, . . . , ξN ), then there exists

an integer k with n < k ≤ K − 1 such that

N
∑

ν=0

ξνϕk(t+ ν) = C (|t| < 1) (4.8)

with a constant C 6= 0.

After normalizing (4.8) by C = 1 we shall come back to this equation in Section 6.

Lemma 4.6 If the equation (4.1) has k ≥ 2 linearly independent solutions ξ = (ξ0, . . . , ξN ),
then there are at least k − 1 linearly independent vectors ξ satisfying

N
∑

ν=0

ξνϕn+1(t+ ν) = 0 (|t| < 1).

Proof. By integration of (4.1) with ξ = ξ
µ

= (ξµ0 . . . , ξµN ) (µ = 1, . . . , k) we get

N
∑

ν=0

ξµνϕn+1(t+ ν) = dµ (|t| < 1) (4.9)

with certain constants dµ. The assertion of the lemma is valid if at least k − 1 constants dµ are
vanishing. If this is not the case we can assume that dµ 6= 0 for µ = `, . . . , k with 1 ≤ ` ≤ k− 1 and
dµ = 0 otherwise. In this case the validity of the lemma can be seen if we replace (4.9) for µ ≥ ` by

N
∑

ν=0

(

ξµν

dµ
− ξkν

dk

)

ϕn+1(t+ ν) = 0 (|t| < 1) (µ = `, . . . , k − 1) �

For the next theorem we recall Convention 4.3.

Theorem 4.7 For a given eigenfunction ϕn there exist exactly K − n− 1 linearly independent

vectors ξ satisfying (4.1) when −β ≤ n ≤ K − 2, and exactly K + β linearly independent vectors

when n < −β.

Proof. According to the equivalence between (1.23) and (1.19) with α = β, P̃ = P0 and the
canonical solution (4.4) Theorem 1.7 implies

ϕn(t) =

K+β
∑

k=0

rkϕ̃m(t− k) (t ∈ R). (4.10)

In the case n < −β, i.e. m < 0, it holds ϕ̃m(t) = 0 both for t < 0 and t > Ñ = N −K − β, and
(4.10) with −1 < t < N + 1 can be written in matrix form

ψ(t) = Mψ̃(t) (|t| < 1) (4.11)
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where
ψ(t) = (ϕn(t), ϕn(t+ 1), . . . , ϕn(t+N))T,

ψ̃(t) = (ϕ̃m(t), ϕ̃m(t+ 1), . . . , ϕ̃m(t+ Ñ))T

and where M is the (N + 1) × (Ñ + 1)-matrix

M =





















r0 0
...

. . .

r0
rK+β

. . .
...

0 rK+β





















In view of r0 6= 0 there exist exactly K + β linearly independent vectors ξ = (ξ0, . . . , ξN ) satisfying
ξM = 0, since the last K + β coordinates ξÑ+1, . . . , ξN can be chosen arbitrarily, and then the

Ñ + 1 first coordinates ξ0, . . . , ξÑ are uniquely determined by the recursive system ξM = 0. For

each such vector ξ equality (4.11) implies (4.1). Conversely, ξψ = 0 implies ξMψ̃ = 0. Since P̃
is a minimal polynomial, Theorem 4.4 implies ξM = 0 so that there are exactly K + β linearly
independent vectors ξ satisfying (4.1). In particular, this is valid in the case n = −β − 1.

As we just have shown, there exist exactlyK+β linearly independent solutions when n = −β−1.
Hence it follows by Lemma 4.6 and Theorem 4.4 that there exist exactly K − n − 1 linearly inde-
pendent solutions when −β ≤ n ≤ K − 2 �

A basis for the linearly independent vectors ξ of Theorem 4.7 shall be given in Remark 5.4.1.
In view of K − n− 1 ≤ K + β − 1 for n ≥ −β we have the

Corollary 4.8 For an eigenfunction ϕn there exist at most K + β linearly independent vectors

ξ satisfying (4.1), so that the shifts of ϕn are linearly independent when K = β = 0.

5. Linear combinations yielding polynomials

The main results of this paper concern the equation (1.26), i.e. the equation

N
∑

ν=0

ξνϕn(t+ ν) = Q(t) (|t| < 1) (5.1)

with fixed n ∈ Z and a polynomial Q. Our aim is to determine explicitly a complete system
of linearly independent vectors ξ = (ξ0, . . . , ξN ) satisfying (5.1) with any polynomial Q, and to
determine the possible degrees of Q. For a given eigenfunction ϕn we recall Convention 4.3, and in
particular the relation (4.3) which implies N ≥ N0. For the polynomial (4.4) we use the expansion
(1.18), i.e.

1

(1 − w)βp(w)
=

∞
∑

j=0

sjw
j , (5.2)

and by means of the coefficients in (5.2) we build up the (N + 1)-dimensional vectors

s1 = ( sN0+1 sN0
· · · s0 0 · · · 0 )

s2 = ( sN0+2 sN0+1 · · · s0 · · · 0 )
...

. . .
. . .

sN−N0
= ( sN sN−1 · · · s0 )



















. (5.3)

These vectors exist for N > N0, i.e. for P 6= P0, and they are linearly independent since s0 6= 0.
If we extend sj for j < 0 by sj = 0 then the vector sµ (µ = 1, . . . , N − N0) can be written as

sµ = (sN0+µ, . . . , sN0−N+µ) or shortly sµ = (sN0+µ−ν)N
ν=0.
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Theorem 5.1 For a given eigenfunction ϕn (n ∈ Z) there exist exactly N −N0 linearly inde-

pendent vectors ξ = (ξν)N
ν=0 satisfying (5.1) with certain polynomials Q. In the case N > N0 the

N −N0 vectors sµ (µ = 1, . . . , N −N0) from (5.3) form a basis for the set of these vectors ξ. Each

possible polynomial Q in (5.1) is a linear combination of the N −N0 polynomials p̃n+β(t+N0 + µ)
where p̃m are the Appell polynomials from (2.3) with (1.10) and P̃ = P0.

Proof. First we show that there exist at most N −N0 linearly independent vectors ξ satisfying
(5.1) with a certain polynomial Q. Supposing there would exist N −N0 + 1 such vectors where the
degrees of the corresponding polynomials Q are less or equal to L. Then by k = L+1 differentiations
we would obtain N −N0 + 1 linearly independent solutions of the equations

N
∑

ν=0

ξνϕn−k(t+ ν) = 0 (|t| < 1),

i.e. in view of (4.3), at least K + β + 1 linearly independent solutions of (4.1) with n− k instead of
n. But this is impossible by Corollary 4.8.

Hence, for N = N0 there exist no non-zero vectors ξ satisfying (5.1) with a polynomial Q. In
the following let be N − N0 ≥ 1. Using the equivalence between (1.23) and (1.19) with α = β,
P̃ = P0 and (4.4), we apply Theorem 2.1 with m = n+ β and ` = N0 + µ for µ ∈ {1, . . . , N −N0}.
Hence, (2.1) yields the N −N0 equations

N
∑

ν=0

sN0+µ−νϕn(t+ ν) = p̃n+β(t+N0 + µ) (|t| < 1) (5.4)

with the extended coefficients sj from (5.2), i.e. the N − N0 linearly independent vectors ξ = sµ

from (5.3) satisfy an equation of the form (5.1). Consequently, these N −N0 vectors form a basis
for the set of all vectors satisfying (5.1), and Q is a linear combination of the polynomials p̃n+β

from (5.4) �

Corollary 5.2
1. For a given eigenfunction ϕn there exists an equation of the form (5.1) with a non-zero

vector ξ if and only if the corresponding characteristic polynomial P is not minimal.

2. The maximal degree of a polynomial Q in (5.1) is equal to n + β when n + β ≥ 0, whereas

for n+ β < 0 the polynomial Q in (5.1) must necessarily be the zero polynomial.

3. The coefficients sj are exponential polynomials in j, i.e. they are exponential functions with

polynomial coefficients.

Corollary 5.2.3. follows from a decomposition of the left-hand side of (5.2) in partial frac-
tions which also explains the bases of the exponential functions and the degrees of the polynomial
coefficients, cf. [ 10 : Theorem 4.1 ].

Note that differentiations or integrations of (5.1) with respect to t can only change n and Q, but
not the coefficients ξν which remain invariant. In what follows we assume that P is not a minimal
polynomial, i.e. N −N0 = K+β ≥ 1, so that the vectors (5.3) exist. Moreover, we use the forward
differences ∆sµ = sµ+1 − sµ and the notation Q = QL which shall mean that Q is a polynomial of
degree L when L ≥ 0 and the zero polynomial when L < 0.

Proposition 5.3 For a given eigenfunction ϕn with n ≥ −β − 1 and an integer k with both

0 ≤ k ≤ K + β − 1 and k ≤ n + β + 1 there exist exactly K + β − k linearly independent vectors

ξ = (ξν)N
ν=0 satisfying (5.1) with a certain polynomial Q = QL where L ≤ n+β−k. The K+β−k

vectors ∆ksµ, µ ∈ {1, . . . ,K + β − k}, with sµ from (5.3) form a basis for the set of these vectors.

Proof. From the equations (5.4) we take the k-fold differences with a fixed k ∈ {0, 1, . . . ,K +
β − 1} so that we obtain the K + β − k equations

N
∑

ν=0

∆ksN0+µ−νϕn(t+ ν) = ∆kp̃n+β(t+N0 + µ) (|t| < 1) (5.5)

16



(µ ∈ {1, . . . ,K + β − k}). Since p̃n+β is a polynomial in t with the main term 1
(n+β)!

tn+β when

n + β ≥ 0, the right-hand side of (5.5) is a polynomial with the main term 1
(n+β−k)!

tn+β−k when

k ≤ n+β, and the zero polynomial when k = n+β+1. The vectors ∆ksµ, µ ∈ {1, . . . ,K+β− k},
are linearly independent, since a linear dependence of differences would imply the linear dependence
of the original vectors.

It remains to show that, for fixed k, there exist no further linearly independent vectors ξ
satisfying (5.1) with a polynomial Q = QL and L ≤ n + β − k. If there would exist such a vector
then by n+ β − k + 1 differentiations of (5.1) we would obtain K + β − k + 1 linearly independent
vectors ξ satisfying

N
∑

ν=0

ξνϕk−β−1(t+ ν) = 0 (|t| < 1).

But this is impossible since by Theorem 4.7 with n = k− β − 1 there exist at most K + β − k such
vectors in both cases k ≥ 1 and k = 0 �

Remark 5.4
1. The right-hand side of (5.5) is vanishing when k > n+β, and in this case an equation of the

form (5.1) is only possible with the zero polynomial Q = 0. In the case k = n+ β + 1 Proposition
5.3 is applicable for −β − 1 ≤ n ≤ K − 2 and yields the following extension of Theorem 4.7 that
the K − n − 1 vectors ∆n+β+1sµ, (µ ∈ {1, . . . ,K − n − 1}), form a basis for the solutions of (4.1)
in the case −β − 1 ≤ n ≤ K − 2. By differentiation of (4.1) with n = −β − 1 it follows that the
K + β vectors sµ remain a basis also for n < −β − 1 which already follows from Theorem 5.1 and
Corollary 5.2.2.

2. In the case k = K + β − 1 Proposition 5.3 is applicable for n ≥ K − 2 and yields, up to a
constant factor, only one equation (5.1), namely (5.5) with µ = 1.

The vectors ∆ksµ in Proposition 5.3 can be determined explicitly where we recall (4.3) :

Proposition 5.5 For 0 ≤ k ≤ K + β − 1 the vectors ∆ksµ (µ = 1, . . . ,K + β − k) with sµ

(µ = 1, . . . , N −N0) from (5.3) can be written as

∆ksµ = (σN0+k+µ−ν)N
ν=0 (5.6)

where the coordinates σj are defined for j < 0 by σj = 0, and for j ≥ 0 and fixed k by

(1 − w)k−β

p(w)
=

∞
∑

j=0

σjw
j . (5.7)

Proof. According to sj = 0 for j < 0 we can write the vectors (5.3) in the short form

sµ = (sN0+µ−ν)N
ν=0.

Using the formula

∆ksµ =

k
∑

`=0

(

k

`

)

(−1)`sk+µ−`

and the notation

σj =

j
∑

`=0

(

k

`

)

(−1)`sj−` (5.8)

we obtain (5.6), and (5.8) together with (5.2) prove (5.7) �

The vectors (5.6) read in detail

∆ks1 = ( σN0+k+1 σN0+k · · · σ0 0 · · · 0 )

∆ks2 = ( σN0+k+2 σN0+k+1 · · · σ0 · · · 0 )
...

. . .
. . .

∆ksK+β−k = ( σN σN−1 · · · σ0 )



















, (5.9)
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i.e. ξν = σN0+k+µ−ν are the coefficients of (5.1). Note that the coefficients σj depend on k ∈
{0, . . . ,K + β− 1} according to (5.7), cf. (5.8). In particular, for k = 0 we have σj = sj comparing
(5.7) and (5.2).

Finally in this section we consider (5.1) with a given non-zero polynomial Q. The case Q ≡ 0
was already treated in the previous section. Again we recall Convention 4.3.

Proposition 5.6 Let Q be a fixed polynomial of degree L. Then in the case L−β ≤ n ≤ K−1
equation (5.1) has exactly K−n linearly independent solutions ξ = (ξν)N

ν=0. In the cases n < L−β
and n ≥ K+L, respectively, it has no solution. In the remaining case K ≤ n < K+L it is solvable

only for special Q, but not for all.

Proof. Let be L − β ≤ n ≤ K − 1 so that 0 ≤ n + β − L and n + β ≤ K + β − 1. Then
for k = n + β − L, n + β − L + 1, . . . , n + β the equations (5.5) show that the monomials Q = t`

(` = L,L − 1, . . . , 0) can recursively be represented in the form (5.1). Hence, also an arbitrary
polynomial Q of degree L can be represented in this way, and since for the representation of the
last term with ` = 0, i.e. k = n+β, there exist exactly K−n possibilities according to Proposition
5.3, there exist exactly K − n linearly independent vectors ξ satisfying (5.1).

For n < L − β there exist no solutions ξ of (5.1) according to Corollary 5.2.2. In the case
n ≥ K + L we choose k = K + β, and Proposition 5.3 yields that there are no solutions of (5.1).

The case K ≤ n < K + L is possible only for L ≥ 1. Here we choose k = n + β − L, so that
Proposition 5.3 yields K+β−(n+β−L) = K−n+L ≤ L equations (5.1) with certain polynomials
Q of degree L and linearly independent coefficient vectors. But a polynomial of degree L has L+ 1
coefficients, so that not all such polynomials can be represented in the form (5.1) �

Remark 5.7 From the complete system of linearly independent solutions ξ of the inhomoge-
neous equation (5.1) with fixed Q 6≡ 0 one obtains the general solution of this equation as weighted
arithmetic average with arbitrary (real or complex) coefficients.

6. Partitions of unity

The most important special case of (5.1) is the case Q = 1, i.e. the equation

N
∑

ν=0

ξνϕn(t+ ν) = 1 (|t| < 1) (6.1)

with n ∈ Z, because all other cases arise from (5.1) by differentiation or integration up to a constant
factor, and (6.1) still includes the equation (1.24). In the case k = n+β ≥ 0 all equations (5.5) have
the form (6.1). Hence, Proposition 5.3 and Proposition 5.5 both with this k, as well as Proposition
5.6 with L = 0 immediately imply:

Theorem 6.1 In the cases n < −β and n ≥ K, respectively, there exists no vector ξ satisfying

(6.1). In the remaining case −β ≤ n ≤ K − 1, the equation (6.1) has exactly K − n linearly

independent solutions ξ with the basis ξ
µ

= ∆n+βsµ (µ = 1, . . . ,K − n), and with sµ from (5.3).

The vectors of this basis can be written as

∆n+βsµ = (σN−K+n+µ−ν)N
ν=0 (6.2)

where the coordinates σj are defined for j < 0 by σj = 0, and for j ≥ 0 and fixed n by

(1 − w)n

p(w)
=

∞
∑

j=0

σjw
j . (6.3)

Formula (6.2) shows that ξν = σN−K+n+µ−ν (µ = 1, . . . ,K − n) are the coefficients of (6.1),
and the expansion (6.3) shows that they are independent of β. Concerning (6.1) cf. also Remark
5.7 with Q = 1.

18



Remark 6.2
1. According to Theorem 6.1 there exist partitions of unity if and only if K + β ≥ 1, i.e. if P

is not a minimal characteristic polynomial. For n = K − 1 equation (6.1) has exactly one solution
ξ = (ξν)N

ν=0 which, in view of (6.2) for µ = 1, is given by

ξν = σN−ν (6.4)

where the coefficients σj are defined by (6.3) with n = K − 1.
In particular, in the special case K = 0 we have n = −1, p = 1, and β ≥ 1. Hence expansion

(6.3) yields σj = 1 for j ∈ N0, so that ξν = 1 (ν = 0, 1, . . . , N) according to (6.4), cf. Proposition
1.15.

In the second special case K = 1, i.e. n = 0, the polynomial (4.2) reads p(w) = %0 + (1 − %0)w
with %0 /∈ {0, 1}. Hence, (6.3) and (6.4) yield

ξν =
1

%0

(

%0 − 1

%0

)N−ν

. (6.5)

2. If we choose p = R as in Example 3.7 and

P (w) =
R(−w)

R(0)
= 1 − w + w2,

i.e. N = K = 2, N0 = β = 0, P0 = 1, then Theorem 6.1 implies that equation (6.1) has the linearly
independent solutions s1 = (−3, 3, 0) and s2 = (0,−3, 3) in the case n = 0, and the unique solution
∆s1 = s2 − s1 = (3,−6, 3) in the case n = 1.

The next result improves our knowledge about the coefficients in (6.1) where we again recall
Convention 4.3.

Theorem 6.3 The equality (6.1) is valid if and only if first the integer n satisfies the inequalities

−β ≤ n ≤ K − 1 (6.6)

and second there exists a polynomial q of degree at most K − n− 1 with q(1) = 1 such that

(1 − w)n q(w)

p(w)
=

N
∑

ν=0

ξN−νw
ν + O

(

wN+1
)

(w → 0). (6.7)

Proof. If ξ satisfies (6.1) then by Theorem 6.1 it follows (6.6) and that ξ is representable

as weighted arithmetic average of the K − n linearly independent vectors ∆n+βs1, . . . ,∆
n+βsK−n.

Hence, there exist uniquely determined constants C0, . . . , CK−n−1 with

C0 + . . .+ CK−n−1 = 1 (6.8)

such that

ξ =

K−n−1
∑

µ=0

Cµ∆n+βsK−n−µ. (6.9)

In view of Proposition 5.5 with k = n+ β equation (6.9) is equivalent to

N
∑

ν=0

ξN−νw
ν =

K−n−1
∑

µ=0

Cµ

N−µ
∑

ν=0

σνw
µ+ν (6.10)

where the coefficients σν are given by (6.3). The expansion (6.3) implies that

N−µ
∑

ν=0

σνw
µ+ν =

wµ(1 − w)n

p(w)
+ O

(

wN+1
)

(w → 0), (6.11)

and hence (6.10) can be written in the form (6.7) with

q(w) =

K−n−1
∑

µ=0

Cµw
µ, (6.12)
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and (6.8) yields q(1) = 1. Hence, the both conditions (6.6) and (6.7) are necessary for the validity
of (6.1).

Conversely, assume that n satisfies (6.6) and that the polynomial (6.12) with q(1) = 1 satisfies
(6.7). Using (6.12) and the expansion (6.3) we obtain

(1 − w)n q(w)

p(w)
=

K−n−1
∑

µ=0

Cµ
wµ(1 − w)n

p(w)

=

K−n−1
∑

µ=0

Cµ

N−µ
∑

ν=0

σνw
µ+ν + O

(

wN+1
)

(w → 0).

Comparison with (6.7) implies (6.10) which is equivalent to (6.9) according to Proposition 5.5 with
k = n+β. This means in view of q(1) = 1 that the vector ξ is representable as weighted arithmetic

average of the K − n vectors ∆n+βs1, . . . ,∆
n+βsK−n. The latter are solutions of (6.1) according

to Theorem 6.1. Hence, the vector ξ satisfies (6.1), too, so that the both conditions (6.6) and (6.7)
are also sufficient for the validity of (6.1) �

The condition (6.7) of Theorem 6.3 can be applied in two different ways: Either by given n and
q it determines the coefficients ξν of (6.1), or by given numbers ξν it answers the question whether
they can appear as coefficients in (6.1). Since the left-hand side of (6.7) is always a proper fraction
the numbers ξν are exponential polynomials in ν as in Corollary 5.2.3. The simplest special case
ξν = c in (6.1) yields a generalization of Proposition 1.15 :

Proposition 6.4 The equality

c

N
∑

ν=0

ϕn(t+ ν) = 1 (|t| < 1). (6.13)

is valid if and only if n = −1, c = 1 and β ≥ 1.

Proof. According to Theorem 6.3 we have to check (6.6) and (6.7). The asymptotic relation
(6.7) with ξν = c (ν = 0, . . . , N) can be written in the form

(1 − w)n q(w)

p(w)
=

c

1 − w
+ O

(

wN+1
)

(w → 0). (6.14)

We show that this relation is equivalent to

p(w) =
1

c
(1 − w)n+1q(w). (6.15)

In the case n ≥ 0 the relation (6.14) implies

(1 − w)n+1q(w) = cp(w) + O
(

wN+1
)

(w → 0)

where deg q ≤ K − n − 1 so that both polynomials in this relation have a degree at most K ≤ N ,
and it follows (6.15). In the case n < 0 the relation (6.14) implies

(1 − w)q(w) = c(1 − w)−np(w) + O
(

wN+1
)

(w → 0).

In view of −n ≤ β and (4.3) both polynomials in this relation have a degree at most K + β ≤ N
so that it follows (6.15), too. In view of p(1) = q(1) = 1 equation (6.15) is satisfied if and only if
n = −1 and c = 1 where

q(w) = p(w). (6.16)

Since for n = −1 the inequalities (6.6) reduce to β ≥ 1 the proof is finished �

Under the conditions of Proposition 6.4 it holds (6.16) so that comparison of (4.2) with (6.12)
yields Cµ = %µ (µ = 0, . . . ,K) for the coefficients in (6.9). Analogously, Theorem 6.3 yields in a
straightforward way :
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Example 6.5 In the case ξν = c ζν , ζ 6= 1, the equality (6.1) is valid if and only if n = 0,
p(ζ) = 0 and c = ζ−1

ζN+1 , cf. the special case (6.5) with ζ = %0

%0−1
.

The differentiation of (6.1) with the coefficients of Example 6.5 yields a certain connection to
[ 10 : Theorem 4.1 ]. In order to study a more complicated example we come back to the equality
(2.12) in the case k = 2 and j = 0 where we again recall Convention 4.3.

Proposition 6.6 The equality

c

[ N
2

]
∑

j=0

ϕn(t+ 2j) = 1 (|t| < 1) (6.17)

is valid if and only if either K ≤ N − 1, n = −1, p(−1) = 0 and c = 2 or K = N even, n = 0,
p(−1) = −1 and c = 2

1+p′(1)
.

Proof. According to Theorem 6.3 we have to check (6.6) and (6.7) now with ξν = c
2
(1+(−1)ν)

(ν = 0, . . . , N) where c 6= 0 in view of (6.17). Owing to

N
∑

ν=0

ξN−νw
ν =

cwr

1 − w2
+ O

(

wN+1
)

(w → 0), (6.18)

where r ∈ {0, 1} such that r ≡ N mod 2, it follows as in the proof of Proposition 6.4 that, for the
actual ξν , the asymptotic relation (6.7) is equivalent to

(1 − w)n+1(1 + w)q(w) = cwrp(w) (6.19)

so far as K ≤ N − 1. This is satisfied if and only if n = −1, p(−1) = 0 and c = 2 in view of
p(1) = q(1) = 1.

In the case K = N relation (4.3) implies N0 = β = 0 so that (6.6) specializes to 0 ≤ n ≤ K−1,
and (6.7) is equivalent to

(1 − w)n+1(1 + w)q(w) = cwrp(w) + dwK+1 (6.20)

with a certain constant d. For w = 1 it follows d = −c in view of p(1) = 1, hence for w = −1 we
obtain p(−1) = −1 in view of (−1)r = (−1)K . According to N0 = β = 0 the representation (1.23)
reduces to

P (w) =
p(w2)

p(w)
(6.21)

so that by Lemma 3.1 the zeros of p are closed under w 7→ w2. According to Remark 3.5.3 the
degree K is even, so that r = 0 in (6.20), and it holds

lim
w→1

p(w) − wK+1

1 − w
= K + 1 − p′(1) = 1 + p′(1) 6= 0.

Hence, (6.20) with d = −c implies both n = 0 and c = 2
1+p′(1)

in view of q(1) = 1. Conversely, in

the case K = N even, where P has the form (6.21), equation (6.20) is satisfied if n = 0, p(−1) = −1
and c = 2

1+p′(1)
where

q(w) = c
p(w) − wK+1

1 − w2

is a polynomial of degree K − 1 and q(1) = 1 �

Note that (2.5) with k = 2r (r ∈ N0) is sufficient, but not necessary for p(−1) = 0. An example
for the case N = K = 4 is given by the cyclic polynomial p(w) = R(w) from Example 3.9 with
c = 1

12
(3 − i

√
15) and q(w) = c(−1 + bw + w2 + w3).
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7. Linear combinations yielding special distributions

Next we consider linear combinations of shifts of an eigenfunction where the sums can be expressed
by means of periodic distributions. As preparation we introduce the infinite vector

Ψ(t) = (ϕn(t), ϕn(t+ 1), ϕn(t+ 2), . . .)T (7.1)

and the infinite two-slanted matrix

A = (c2j−k) (j, k ≥ 0) (7.2)

with cj = 0 for j /∈ {0, . . . , N}, so that the solution ϕ = ϕn of (1.1) with λ = 2n (n ∈ Z) is
equivalent to the solution of

2nΨ

(

t

2

)

= AΨ(t) (t < 1), (7.3)

both equations subject to (i), (ii) and (iii), cf. [13], [4] and the literature quoted there. We also
consider the (finite) vector

ψ(t) = (ϕn(t), ϕn(t+ 1), . . . , ϕn(t+N))T (7.4)

and the matrix
A = (c2j−k) (0 ≤ j, k ≤ N). (7.5)

Introducing suitable block matrices B, C, O where O is a zero matrix, we can split Ψ and A into

Ψ(t) =

(

ψ(t)

Ψ(t+N + 1)

)

, A =

(

A B

O C

)

.

and (7.3) can be written as

2nψ

(

t

2

)

= Aψ(t) + BΨ(t+N + 1), 2nΨ

(

t

2
+N + 1

)

= CΨ(t+N + 1). (7.6)

It suffices to restrict t to |t| < 1 where the components of Ψ(t + N + 1) are known polynomials.
Hence we only have to deal with the first equation in (7.6).

The case that the characteristic polynomial P has symmetric zeros can be excluded by ap-
plication of Lemma 1.10 and Theorem 1.7, and changing from P to P̃ . This has the following
consequence:

Lemma 7.1 If P does not have symmetric zeros, then all eigenvalues of A are non-vanishing.

Proof. Let A have the eigenvalue µ = 0, and let x = (x0, x1, . . . , xN ) be the corresponding
left eigenvector. According to [ 4 : Theorem 2.3/(i) ], x can be extended to a left eigenvector
x = (x0, x1, . . .) of A, i.e.

∞
∑

j=0

xjc2j−k = 0

for k ∈ N0, or for k = 2` and k = 2`+ 1, respectively, both

[ N
2 ]
∑

j=0

c2jxj+` = 0 and

[ N+1

2 ]
∑

j=1

c2j−1xj+` = 0.

The last equations are linear difference equations with constant coefficients which have a common
non-trivial solution only in the case that the polynomials

[ N
2 ]
∑

j=0

c2jw
j = 0,

[ N+1

2 ]
∑

j=1

c2j−1w
j = 0

have a common zero ζ 6= 0. But then ±
√
ζ must be zeros of P (w), which is a contradiction to the

hypothesis �
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Let A = T−1JT be Jordan’s normal form of the matrix (7.5) and µ0, µ1, . . . , µN the algebraic
eigenvalues of A, i.e. the diagonal elements of J . The ith row of T we denote by Ti. By means of
1-periodic distributions Q+

i (·) and Q−
i (·) we define

Qi(t) =























Q+
i

(

ln t
ln 2

)

for 0 < t < 1,

0 for t = 0,

Q−
i

(

ln |t|
ln 2

)

for −1 < t < 0,

(7.7)

for i = 0, 1, . . . , N . The definition at t = 0 shall indicate that the distribution Qi does not contain
a part which is concentrated in 0.

Proposition 7.2 Let A be non-singular and diagonalizable, −n ∈ N, αi = n− ln µi

ln 2
and −αi /∈ N

for i = 0, 1, . . . , N . Then there exist distributions (7.7) such that

Tiψ(t) = |t|αiQi(t) (|t| < 1). (7.8)

Proof. According to −n ∈ N we have Ψ = 0 in (7.6) and these equations reduce to

2nψ

(

t

2

)

= Aψ(t) (|t| < 1). (7.9)

The diagonalizability of A means J = diag (µ0, µ1, . . . , µN ), so that (7.9) is equivalent to

2nTiψ

(

t

2

)

= µiTiψ(t) (|t| < 1) (7.10)

for i = 0, . . . , N . Obviously, the general solution of this equation has the structure (7.8) �

Remark 7.3
1. With the notation T = (τij) we can write (7.8) in the form

N
∑

j=0

τijϕn(t+ j) = |t|αjQi(t) (|t| < 1),

i = 0, . . . , N , and we have obtained linear combinations of shifted eigenfunctions of (1.1) which are
expressed by means of periodic distributions.

2. With the notation
π(t) = (|t|α0Q0(t), . . . , |t|αNQN (t))T (7.11)

we can gather up (7.8) in the form Tψ(t) = π(t), so that

ψ(t) = T−1π(t) (|t| < 1). (7.12)

3. Denoting by T−1
i the ith row of T−1, the distributions Qi must satisfy the compatibility

conditions
T−1

i π(t) = T−1
i+1π(t− 1) (0 < t < 1)

for i = 0, . . . , N − 1, whereas T−1
0 π(t− 1) = T−1

N π(t) = 0 for 0 < t < 1.

The hypotheses of Proposition 7.2 can be weakened by means of

Lemma 7.4 A special solution of the inhomogeneous equation

2nϕ

(

t

2

)

= µϕ(t) + tk

with k ∈ N0 reads, for µ 6= 2n−k,

ϕ(t) =
2k

2n − µ2k
tk,

and for µ = 2n−k

ϕ(t) = −2k−n

ln 2
tk ln |t|.
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In the case n ≥ 0 we have to solve the equations

2nTiψ

(

t

2

)

= µiTiψ(t) + TiBΨ(t+N + 1) (7.13)

instead of (7.10). Since the inhomogeneous term is a polynomial, the general solution can easily be
constructed by means of (7.8) and Lemma 7.4.

In the general case that A is not diagonalizable let Jj be a q × q-Jordan block of J with upper
unities belonging to the eigenvalue µj . Then for −n ∈ N besides of (7.10) with i = j we have to
solve the equations

2nTiψ

(

t

2

)

= µjTiψ(t) + Ti+1ψ(t) (7.14)

for i = j − 1, . . . , j − q − 1. The first of these equations has the solution

Tj−1ψ(t) = |t|αj

(

Qj−1(t) −
1

µj ln 2
Qj(t) ln |t|

)

with Qi as in (7.7), and the solutions of the following equations have a similar structure, however
with higher powers of ln |t|, cf. [ 16 : Lemma 3.9 ]. The corresponding inhomogeneous equations for
n ≥ 0 can be treated analogously.

In the case that −αi = qi (qi ∈ N) the general solution of (7.10) reads

Tiψ(t) = t−qiQi(t) + aiδ
(qi−1)(t)

with an arbitrary constant ai. Again, for n ≥ 0 the corresponding inhomogeneous equation (7.13)
can be solved by means of Lemma 7.4, but the solution of (7.14) remains an open problem by
appearing δ-distributions.

8. Supplements

In this section we give four supplements to the foregoing results.

8.1. Infinite products. The first result generalizes Proposition 1.2 concerning the rationality
of the infinite product (1.7). Obviously, S(0) = 1 is a necessary condition for the convergence of
(1.7) at w = 0.

Proposition 8.1 The function (1.7) with S(0) = 1 is rational if and only if both Q is a rational

function with Q(0) = 1 and there exists an integer α ∈ Z such that

lim
w→1

(1 − w)αS(w) = c (8.1)

with c 6= 0. If S satisfies (8.1) then Q(1) = 2α.

Proof. If S is a rational function then it holds (8.1) with a certain α ∈ Z. Moreover, (1.7) can
be written as

S(w) = S(w2)Q(w) (8.2)

so that Q is a rational function with Q(0) = 1 since S(0) = 1.
Conversely, let Q be a rational function with Q(0) = 1 and let S, defined by (1.7), satisfy (8.1)

with an integer α and a constant c 6= 0. Then equality (8.2) implies

Q(1) = lim
w→1

(1 + w)α (1 − w)αS(w)

(1 − w2)αS(w2)
= 2α,

and owing to Q(0) = 1 the rational function Q can be written in the form

Q(w) =
2αP (w)

P̃ (w)
(8.3)

where P and P̃ are some characteristic polynomials. Substituting (8.3) into (8.2) we get the basic
functional equation (1.19) with R = 1

S
, and Proposition 1.5 yields the rationality of R, and hence

also of S �

From (8.2) and (1.21) with R = 1
S

we immediately obtain the generalization of Proposition 1.2:
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Corollary 8.2 The function (1.7) with S(0) = 1 is rational if and only if Q is of the form

Q(w) = (1 + w)αR1(w
2)

R1(w)
(8.4)

where R1 is an arbitrary rational function with R1(0)R1(1) 6= 0, and α ∈ Z.

8.2. Cyclic polynomials. In addition to the three examples from Section 3 we now present
some results concerning the more complicated case K = 5, L = 31 which were found by means of

the DERIVE system. Let ζ = e
2πi
31 then there are the six cycles of length 5:

1) ζ, ζ2, ζ4, ζ8, ζ16, 2) ζ30, ζ29, ζ27, ζ23, ζ15,

3) ζ7, ζ14, ζ28, ζ25, ζ19, 4) ζ24, ζ17, ζ3, ζ6, ζ12,

5) ζ5, ζ10, ζ20, ζ9, ζ18, 6) ζ26, ζ21, ζ11, ζ22, ζ13.

According to Remark 3.5.2 the corresponding cyclic polynomials must have the form

Rn(w) =
i

%n

(

1 + (an + ibn)w + (cn + idn)w2 + (−cn + idn)w3 + (−an + ibn)w4 − w5)

(n = 1, . . . , 6) with
%n = −2(bn + dn) (8.5)

owing to Rn(1) = 1. The zeros of R2n are the conjugates of the zeros of R2n−1 so that

a2n = a2n−1, b2n = −b2n−1, c2n = c2n−1, d2n = −d2n−1, (n = 1, 2, 3),

and according to (8.5) also %2n = −%2n−1. Hence R2n(w) = R2n−1(w), and it suffices to consider
odd n only. Moreover, the coefficients satisfy the relations

cn = an − 1

2

and
d1 = b3 − b5, d3 = b5 − b1, d5 = b1 − b3. (8.6)

The coefficients an are the zeros of

2a3 − a2 − 5a+ 2 = 0.

With the notation α = 1
3

arctan( 3
2

√
3) they read

a1 = 1
6
−

√
31
3

sin
(

α+ π
3

)

≈ −1.541936,

a3 = 1
6

+
√

31
3

sinα ≈ 0.393401,

a5 = 1
6

+
√

31
3

cos
(

α+ π
6

)

≈ 1.648535.

The coefficients bn are the zeros of

2b3 −
√

31
(

b2 − 1
)

= 0.

With the notation β = 1
3

arcsin( 23
31

) they read

b1 =
√

31
6

(

1 + 2 cos
(

β + π
6

))

≈ 2.217995,

b3 =
√

31
6

(

1 − 2 sin
(

β + π
3

))

≈ −0.872561,

b5 =
√

31
6

(1 + 2 sinβ) ≈ 1.438448.

Though we can calculate dn and %n from (8.6) and (8.5), respectively, it is possible to calculate
them directly from

d3 − 31

4
d−

√
31 = 0
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and
%3 +

√
31 %2 − 31%+

√
31 = 0,

namely with γ = 1
3

arctan
(

12
√

3
23

)

d1 = −
√

31
3

cos
(

γ + π
6

)

≈ −2.311010,

d3 = −
√

31
3

sin γ ≈ −0.779547,

d5 =
√

31
3

sin
(

γ + π
3

)

≈ 3.090557,

and with β as before

%1 =
√

31
3

(−1 + 4 sinβ) ≈ 0.186029,

%3 =
√

31
3

(

−1 + 4 cos
(

β + π
6

))

≈ 3.304217,

%5 =
√

31
3

(

−1 − 4 sin
(

β + π
3

))

≈ −9.058010.

There exist further relations as

a2
1 + b21 = 4 + 2a5, 8

(

c21 + d2
1

)

= 87 − %2
3,

a2
3 + b23 = 4 + 2a1, 8

(

c23 + d2
3

)

= 87 − %2
5,

a2
5 + b25 = 4 + 2a3, 8

(

c25 + d2
5

)

= 87 − %2
1,

where the values w = %2
n are the zeros of

w3 − 31
(

3w2 − 29w + 1
)

= 0,

and also similar relations as before for the coefficients of the real polynomials %2
2n−1R2n−1R2n

(n = 1, 2, 3). In view of

1

R1(w)
= 31

1 − w

1 − w31
R2(w)R3(w)R4(w)R5(w)R6(w)

these relations could be useful to simplify the calculations of the coefficients sν from (3.19) for
R = R1 in (3.18), but we do not intend to present them, too.

8.3. Expansions of rational functions. Let sν (ν ∈ N0) be a sequence with the (formal)
generating function

S(w) =
∞
∑

ν=0

sνw
ν , (8.7)

let be sν = 0 for ν < 0 and
Sn = (sn, sn+1, sn+2, . . .) (8.8)

for n ∈ Z. A weaker version of the following proposition concerning the rationality of S follows of
our results in Section 4, but we shall give here a proof without these results.

Proposition 8.3 Under the foregoing notations assume that

L+
∑̀

n=`

CnSn = 0 (8.9)

with C`CL+` 6= 0 (L ∈ N, ` ∈ Z, ` > −L). Then (8.7) is a rational function of the form

S(w) =
qL+`−1(w)

q(w)
(8.10)

where the numerator is a polynomial of degree at most L+ `− 1 and

q(w) =
L
∑

ν=0

CL+`−νw
ν . (8.11)
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Conversely, if S from (8.7) has the form (8.10), then it holds not only (8.9) but L + 1 arbitrary

sequences (8.8) with n ≥ ` are linearly dependent.

Proof. From (8.7) we obtain

∞
∑

ν=0

sn+νw
ν =











w−nS(w) for n ≤ 0,

w−n

(

S(w) −
n−1
∑

ν=0

sνw
ν

)

for n > 0.
(8.12)

Replacing (8.8) into (8.9) yields

L+
∑̀

n=`

Cnsn+ν = 0 (ν ∈ N0). (8.13)

By multiplication with wν , summing over ν and considering (8.12) we get

S(w)

L+
∑̀

n=`

Cn

wn
=

L+
∑̀

n=m

Cn

wn

n−1
∑

ν=0

sνw
ν

or

S(w) =
1

q(w)

L+
∑̀

n=m

Cn

n−1
∑

ν=0

sνw
L+`+ν−n

with (8.11) and m = max (1, `).
Conversely, if (8.7) has the form (8.10), then by means of (8.12) it holds

q(w)

∞
∑

ν=0

sn+νw
ν =

1

wn

(

qL+`−1(w) − q(w)

n−1
∑

ν=0

sνw
ν

)

(8.14)

where the last sum over ν vanishes for n < 0. Since the left-hand side of (8.14) is regular at w = 0,
the right-hand side must be a polynomial g depending on n with

deg g ≤
{

L+ `− n− 1 for n ≤ 0,

L− 1 for n > 0.

In view of n ≥ ` it is deg g ≤ L− 1 in any case. But L+ 1 polynomials of degree at most L− 1 are
always linearly dependent. By means of (8.14) this implies that also L+ 1 sequences of (8.8) with
n ≥ ` are linearly dependent �

Remark 8.4 The sequence sν from (8.7) with (8.10) is a solution of the difference equation
(8.13) with the initial values s`, . . . , sL+`−1 where we recall that L + ` − 1 ≥ 0 and, in the case
` < 0, that sν = 0 for ν < 0. Every shift sn+k with k ∈ N is also a solution. By means of (8.8)
the second assertion of Proposition 8.3 expresses the well known fact that L + 1 solutions of a
linear homogeneous difference equation of order L are linearly dependent. As in Corollary 5.2.3 the
coefficients sν are exponential polynomials in ν.

8.4. Eigenvalues of two-slanted matrices. The considerations of Section 7 can be rounded
off by means of a theoretical result concerning the eigenvalues of a two-slanted matrix giving a new
formulation for the main part of [ 5 : Theorem 1 ].

Theorem 8.5 Let the characteristic polynomial P have the factorization

P = qP̃ , (8.15)

where q is a polynomial with properties as in Lemma 3.1 and P̃ a rest polynomial. Let M be the

zero set of the polynomial p in (3.1), let ζ1, . . . , ζm be a cycle of M and P (ζj) 6= 0 (j = 1, . . . ,m),
then all m roots µ of

µm =
1

2m

m
∏

j=1

P (ζj) (8.16)

are eigenvalues of the two-slanted matrix A belonging to P .
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Remark 8.6
1. According to (8.15) we have P (ω) = 0 for all zeros ω ∈ Ω of q. Hence, the factor q in (8.15)

can be determined in the following way. Consider the set Ω0 of all zeros of P being roots of unity
but not roots of another zero of P . Form the closure Ω0 with respect to the mapping w 7→ w2. If
this closure contains several cycles, consider also the separate orbits Ων (ν ∈ N) consisting of the
subsets closed under w 7→ w2 with one single cycle only. Let Mν = Ων \Ω0 with ν ∈ N. A set Mν

can be taken as the set M in Theorem 8.5, if and only if all absent roots of Mν belong to Ω0. If
this comes true we denote the set of these absent roots by Ων , and M =

⋃

Mν can also be taken
in Theorem 8.5 where Ω =

⋃

Ων .
2. If all elements ω ∈ Ων are zeros of P with a multiplicity at least r ≥ 2, then according to [ 5 :

Theorem 1 ] even the rm numbers µ
2j (j = 0, . . . , r− 1) with the m roots µ of (8.16) are eigenvalues

of A. In the case m = 1 and therefore ζ1 = 1 equation P (1) = 1 yields µ = 1
2

and the well known
result that 1

2j (j = 2, . . . , r) are also eigenvalues, cf. [13].
3. In the excluded case that P has 2k symmetric zeros, A has k zero vectors, cf. [ 4 : Remark

4.2(2) ].
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