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ABSTRACT. Based on some set-theoretical observations, compact-
ness results are given for general hit-and-miss hyperspaces. Compact-
ness here is sometimes viewed splitting into ” x-Lindel6fness” and ” k-
compactness” for cardinals k. To focus only hit-and-miss structures,
could look quite old-fashioned, but some importance, at least for the
techniques, is given by a recent result, [8], of Som Naimpally, to who
this article is hearty dedicated.
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1. INTRODUCTION

Let (X, 7T) be a topological space. By B(X), Bo(X), CI(X) and K(X) respec-
tively we denote the power set, the power set without the empty set &, the family
of all closed subsets and the set of all compact subsets of X. For B € P(X) and
2A C P(X) we define B~* := {A € A/AN B # &} (hit-set) and B> := {4 €
A/AN B = &} (miss—set). Specializing A := CI(X), we get the usual symbols
B~,B". By m.a we denote the topology for 2, generated by the subbase of all
G~2,G € 7. Now consider @ # a C PB(X); by 7,2 we denote the topology for
2A which is generated from the subbase of all B¥%,B € o and G~*,G € 7. Of
course, for every possible a we have 7o C 7o,9; for @ = Cl(X) we get the Vietoris
topology and for a = K (X) we get the Fell topology for A. If « = A C Cl(X), Ta,u
is called A—topology by Beer and Tamaki [2], and was first introduced by Poppe [10].

By F(X) and Fo(X) we denote the set of all filters and ultrafilters, respectively,
on a set X (a filter is not allowed to contain the empty set &); the symbol §(¢) (resp.
Fo(p)) means the set of all filters (resp. ultrafilters) which contain a given filter ¢;
is the filter generated by a singleton {z},z € X. The symbol ¢, denotes the conver-
gence structure induced by a topology 7, i.e. ¢, := {(p,z) € F(X) x X|p Dz N7},
S0 ¢, is a relation between filters and points of a set X.

If X is a set, 7,2 are subsets of P(X), then we call A weakly complementary w.r.t.
7, iff for every subset o C 7 there exist a subset B C 2, s.t. [Upegyy B = X \Uge, S

Lemma 1.1. Let X be a set, 7,2 C P(X) and K C X. Then holds
UGork = (Je* 2K
icl il

for every collection G;,i € I,G; € T.

If A is weakly complementary w.r.t. T, then for every collection G;,i € I,G; € T
the implication

UG oK < (JG* 2Kk

i€l i€l
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holds, too.

Proof. Let | J;c;Gi2 K. Ac K* = ANK #@=90# AN
ANG,, #0=AeG,* = Acl;c; G ™.

Conversely, let 2 be weakly complementary w.r.t. 7and (J,c; G;* 2 K~*. Assume
Uier Gi 2 K. Then X\UJ,; Gi 2 K\U,¢; Gi # @ holds, so thereisan A € A, A C
X\ Uie; Gi with AN K\ U;¢; Gi # @. Thus A € K~*, implying A € J,¢; G; -
This yields Jip € I : ANG,, # @ in contradiction to the construction of A. O

ielGiiaiQGI:

Corollary 1.2. Let X be a set, 7,4 C PB(X) and K C X. Then holds

(1.1) UGiok < |JG 2K

il i€l
for every collection G;,i € I,G; € 7 if and only if A is weakly complementary w.r.t.
T.

Proof. We only have to show, that 2 is weakly complementary w.r.t. 7, if (1.1)
holds. Assume, 2 is not weakly complementary w.r.t. 7. Then there must be a
collection {G;|i € I} C 7, such that (J{A|A € P(X \ U;c; Gi) NAL 2 X\ U,e; G
Now, we chose K := (X \ U;c; Gi) \U{AlA € B(X \ U;c; Gi) N2} # @. Then no
element of 2, which meets K, can be contained in X \ J;c; Gi, i.e. every element
of K=* meets J;c; Gi, too. So, it must meet a Gj,,i0 € I and consequently it
is contained in | J;c; G; *. But, by construction, the collection {G;|i € I'} doesn’t
cover K, so (1.1) would fail.

Obviously, if for every collection {G;li € I} C 7 the complement X \ J,;.; G;
itself belongs to 2, or if all singletons {z},z € X are elements of 2, then 2 is weakly
complementary w.r.t. 7. So, if 7 is a topology on X, Cl(X) and K(X) are weakly
complementary w.r.t. 7.

Corollary 1.3. Let (X,7) be a topological space, K C X and Vi € I : G; € 7.
Then holds
UG ok <= (JG 2K
il il
We have yet another easy, but useful set-theoretical lemma:

Lemma 1.4. Let X be a set, A CP(X) and p € F(X). Assume, A is closed under
finite unions of its elements. Then holds

pNA# T =YY €Folp):vyNA# T,

i.e. a filter contains an ™A-set, iff each refining ultrafilter contains an A-set.

Proof. Suppose Vi € Fo(p) : Ay, € A+ Ay, € b. Now, assume ¢ N2A = &. From
this automatically follows X ¢ 2.

Consider B := {X \ A] A € A}. Because of the closedness of 2 under finite unions,
B is closed under finite intersection of its elements, and @ ¢ B, because X ¢ 2.
For any F € ¢, B € B we have F N B # &, because F'N B = @ would imply
F C X\ B € 2 and therefore o N A # @&. So, p U B is a subbase of a filter and
consequently, there exists an ultrafilter ¢, containing ¢ U B, therefore containing ¢
and the complement of every 2-set - in contradiction to Vi € Fo(p) : p NA £ 2.
The other direction of the statement of the lemma is obvious. ]

Definition 1.5. Let k be a cardinal. Then a topological space (X,7) is called
k-compact, iff every open cover of X with cardinality at most k admits a finite
subcover.

(X, 7) is called k-Lindelof, iff every open cover of X admits a subcover of cardinality
at most k.
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A filter is called k-generated, iff it has a base of cardinality at most . A filter
v is called k-completable, iff every subset B C ¢ with card(8) at most « fulfills
Npesy B # 9. 1t is called k-complete, iff (5.9 B € ¢ holds under this condition.

Proposition 1.6. A topological space (X,T) is k-compact, if and only if every
k-generated filter on X has a convergent refining ultrafilter.

Proof. Let (X, 1) be k-compact and ¢ a filter on X with a base 9B of cardinality at
most k. Assume, all refining ultrafilters of ¢ would fail to converge in X. Then for
each element x € X, all refining ultrafilters of ¢ contain the complement of an open
neighbourhood of . But the set of complements of open neighbourhoods of a point
x is closed w.r.t. finite unions, thus by Lemma 1.4, ¢ contains the complement of
an open neighbourhood of x. So, for each x € X there must exist O, € TNz and
B, € 8B, st. B, C X\ O,, implying B, C X \ O, and thus X \ B, 2 O,. Now,
for each B € B we define Op := X \ B and find, that {Op| B € B} is an open
cover of X, because of the preceeding facts. So, there must exist a finite subcover
Op, U---UOp, = X, implying J_,(X \ B;) = X, just meaning ;_, B; = &,
which is impossible, because all B; belong to the filter ¢. So, the assumption must
be false; there must exist convergent refining ultrafilters of (.

Otherwise, let all k-generated filters on X have a convergent refining ultrafilter. As-
sume, there would exist an open cover € := {O; € 7| i € I}, J;c; O = X, card(I) <
k such that all finite subcollections fail to cover X (implying & to be infinite). But
the set of all finite subcollections of the infinite collection € of cardinality at most
r has cardinality at most k, too. So, B := {X \ U;_; O;,| n € IN,ij, € I} is
a filterbasis of cardinality at most k, thus there must exist an ultrafilter ¢ 2O B,
which converges in X - leading to the usual contradiction, because every x € X is
contained in an open O, € € and X \ O, belongs to B C ¢. |

Analogously we get a characterization of x-Lindelof-spaces.

Proposition 1.7. If (X, 1) is k-Lindeldf, then every k-completable filter on X has
a convergent refining ultrafilter.

If k is an infinite cardinal and every k-complete filter on a topological space (X, 1)
has a convergent refining ultrafilter, then (X, 7) is k-Lindeldf.

Of course, every k-complete filter is k-completable, so we may say, that a topo-
logical space (X, 7) is k-Lindeldf, if and only if each x-complete filter on X has a
convergent refinement.

2. COMPACTNESS PROPERTIES FOR HYPERSPACES

Lemma 2.1. Let k be a cardinal, (X, 7) a topological space and let A C P(X) be
weakly complementary w.r.t. 7. If Ay := A\ {@} is k-Lindeldf (resp. k-compact)
in Ty, then (X, T) is k-Lindeldf (resp. k-compact).

Proof. If A is weakly complementary w.r.t. 7, then 2 is, too. So, Corollary 1.2 is
applicable. Let {G;|i € I'} be an open cover (resp. an open cover with cardinality at
most ) of X. By Corollary 1.2, then {G; *°|i € I} is an open cover of X %0 = 2
(resp. of card. at most k), so there exists a subset J C I of cardinality at most
(resp. a finite subset J), s.t. ;¢ G;% 2 A = X0, implying J;; G; 2 X by
Corollary 1.2. O

Of course, the assumed topology 7; g, is not really hit-and-miss, because the
miss-sets are missed. But every proper hit-and-miss topology would be stronger
and therefore it would enforce the desired properties for (X, 7) as well.

Lemma 2.2. Let (X,7) be a k-compact (resp. k-Lindeldf) topological space and
assume Cl(X) CA CP(X). Then Uy := A\ {D} is k-compact (resp. k-Lindeldf)
mn TZVQ[O .
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Proof. Let ¢ be a k-generated (resp. x-complete) filter on 2y. Then, for an arbitrary
heA:={ge XPo)|VM € Py(X): g(M) € M} the image h(p) is a k-generated
(resp. k-complete) filter on X and consequently it has a 7-convergent refining
ultrafilter ¢;,. Furthermore, there must exist an ultrafilter ¢» D @, s.t. h(¢)) = ¥y,.
So, the set

A={ae X|3f € A: (f(¥),a) € ¢;}
is not empty and consequently the closure A belongs to 2y. Now, for any O € 7
with A € O7% (& ANO # ) we get ANO # I (because of the closure-
properties). Now, the assumption O~ %0 ¢ 1/3 would imply O € 1[1, yielding
VieA: X\Oe f(), thusVfe A:Vbe ANO: (f(¢),b) & g, - in contradiction
to the construction of A. Thus, O € 7,A € O~ % always imply O~ %0 € 1& and

consequently zﬁ 71.91,-converges to A. (]

Definition 2.3. Let (X, 7) be a topological space. A subset A C X is called weakly
relatively complete in X, iff

Vo € F(A) Ng (X)) :F(p) g (A) # 2,
i.e. every filter ¢ on A, which converges in X, has a refinement, converging in A.

Proposition 2.4. Let (X, 1) be a topological space and A C X. Then holds:

(a) A is weakly relatively complete in X, iff Fo(A)Ng-H(X) = Fo(A) Ng-1(A),
i.e. every ultrafilter on A, which converges in X, converges in A.

(b) If A is closed in X, then A is weakly relatively complete in X .

(c¢) If A is compact, then A is weakly relatively complete in X.

(d) If (X,7) is compact and A is weakly relatively complete in X, then A is
compact.

(e) If (X, 7) is Hausdorff, then every weakly relatively complete subset A C X
is closed in (X, T).

(f) A is compact iff A is weakly relatively complete and relatively compact.

(g) If (X, 7) is k-compact and A is weakly relatively complete in (X, 7), then A
18 K-compact.

(h) If (X, 1) is k-Lindelof and A is weakly relatively complete in (X, ), then A
18 k-Lindelof.

(i) Weak relative completeness is transitive, i.e. for all A C B C X with
B weakly relatively complete in (X, T) and A weakly relatively complete in
(B,7B), the subset A is weakly relatively complete in (X, 7).

There is also a useful description by coverings for weak relative completeness.

Lemma 2.5. Let (X, 1) be a topological space and A C X. Then the following are
equivalent:

(1) A is weakly relatively complete in X.

(2) For every open cover A of A and every element x of X, there is an open
neighbourhood Uy o of x, s.t. Uy o N A is covered by finitely many members
of 2.

(3) For every open cover 2 of A there exists an open cover A" D A of X, such
that the intersection of every member of A’ with A can be covered by finitely
many members of A, i.e. VO € A’ : In € IN,Py,...,P, € A : J_ | P, 2
O N A holds.

Proof. (1)=(2): Let % C 7 with (Jp g P 2 A be given. For every x € A we can
chose a single member of 2l as open neighbourhood, whose intersection with A is
covered by itself. So, assume

(22) FJweX\A:VU,eU@)NT:Yn€N,Py,..P,e2A:U,NAZL | P,

i=1
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Then B := {(UNA)\U;_, P,| U € U(z)N7,n € IN, P, € A} would be closed under
finite intersections and thus there would exist an ultrafilter ¢ on A with ¢ O 8.
By construction ¢ — x must hold for this ultrafilter, and now by the weak relative
completeness of A it follows Ja € A : U(a) C . But 2 is an open cover of A, so
there is an open set P € 2 with a € P, implying P € ¢ — in contradiction to the
construction of . Thus (2.2) is false and we have

Voe X\A:3U, eU(x)N7:3In€N,P,...P,eA: U, NAC | JP,
i=1

(2)=(3): Note, that (3) is fulfilled with A’ := {U,| z € X \ A} UL.

(3)=(1): For a given ultrafilter ¢ on A with ¢ — x € X assume ¢ & ¢; *(A). Then
Va e A:3U, e U(a) N7 :US = X\ U, € 9. With these neighbourhoods define
A := {U,| a € A}, which is an open cover of A. By (2) there is an open cover
A’ O A of X such that VO € ' : In € IN, Py,...,P, € A: |J;_, P, 2 ON A holds.
Now, ¢ — x implies 3O € A’ : O € @ (especially AN O # & follows), and then we
have 3n € IN, Py, ...,P, € A: ONA C ., P, implying 3j € {1,...,n} : P; € ¢
— in contradiction to the construction of 2. So, the assumption ¢ ¢ ¢-1(A) must

be false, showing, that every ultrafilter on A, which converges in X, converges in
A. O

Theorem 2.6. Let (X, 7) be a topological space, and let « C P(X) consist of weakly
relatively complete subsets of X. Then holds for any A with CI(X) C A C P(X):
(Ao, 7o) is compact <= (X, 1) is compact.

Proof. According to Lemma 2.1 we need only to show that (R, 7,) is compact,
if (X,7) is compact. So, assuming (X, 7) to be compact, by Proposition 2.4 every
weakly relatively complete subset of X is compact, and we have o C K(X). Now we
will use Alexander’s Lemma: let U be a cover of %, consisting of subbase elements
K;F%,G;% with K, compact and G; open.

A =X\ (U{G|G 20 € U}) is closed.

By construction, A € G~%o for any G~%0 € U, so for A # @& there must exist some
K(;m“ € U with A € Kgm", yielding that Ky C J{G|G %0 € U}; K, compact =
3Gy, ...,Gn € U with Ky € JI_, Gy, but then {K; 0} U{G;™,..,G,™} is a
cover of .

If A=, then U{G;|G; ™ € U} = X, so from the compactness of X the existence
of some G; ™°,...,G,™ € U with X = [J;_, Gy follows. By Lemma 1.1 then
Ur_, G, ™ = 2o holds. O

Many known theorems of compactness w.r.t. the Fell- or the Vietoris-topology
follow immediately from the above result.

Lemma 2.7. Let (X,7) be a topological space, A C Po(X) with CU(X) C A and
a C CUX). If R C X is relatively compact in X, then Po(R) N A is relatively
compact in (A, 74).

Proof. Let B :={0;*|i€1,0; € T}U{Cfﬂ j € J,C; € a} be an open cover of
2 by subbase elements of 7. Let O := UiGI O;.

If O = X, then there exists finitely many 41, ...,4%, € I with [J;_, O;, 2 R, because
R is relatively compact, and thus (J;_, 0;* 2 R™* 2 PBo(R) N A, by Lemma 1.1.
If O # X, then X \ O is nonempty and closed, but not covered by the O; * from
B. Thus, there must exist a jo € J with X\ O € C;‘OQ‘, implying C;, € O. Now, we
have Po(R)NA = (Po(R) N C']':“") U(Po(R)NC; "), and, of course, Po(R) N C’;‘O“" is
covered just by C;g“" € B. So, we have to find a finite subcover for (Po(R) N C;*),
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if this is not empty. Observe, that RN Cj}, is relatively compact in X, because it is
a subset of R. Furthermore, {O;|i € I}U{X \ C},} is an open cover of X. Thus we
find again finitely many i1, .., i, € I, s.t. [Jp_; Os, 2 RNC}, (because X \C}, can be
removed from any cover of RNC;, without loosing the covering property). Therefore
Un_, 0;.* 2 (RNCj,)~, by Lemma 1.1. But Po(R)NC;* C (RN Cj,)~* holds,
because any subset of R, which hits C},, automatically hits RN Cj,. O

3. ComMmpACT UNIONS

As an interesting application of a simple set-theoretical property, concerning the
T_operator, we want to take a brief look at the naturally arising question, whether
a union of compact sets itself is compact. Michael showed in [6] that a union of
closed sets is compact, if the unifying family is compact w.r.t. the Vietoris-topology.
Now, the Vietoris-topology is induced by the upper-Vietoris T‘J/r (miss sets: AT with
A€ € 1) and 77, but 77 is not sufficient to enforce compactness of a union of compact
sets, as the following example shows: Let X := IR, endowed with euclidian topology,
M := {[-m,m]| m € IN}. Then J,;coqn M = IR, is obviously not compact. But
every cover of 9T with elements of the defining subbase for 7, must especially cover
the element {0} = [0, 0] of 91, so it must contain a set O~ with 0 € O. Now, every
element of 9t contains the point 0, thus 9t C O~ follows. So, 9 is compact in 7
by Alexander’s subbase Lemma.

And unifying compact sets, 7; is not necessary, too, as we will see.

Proposition 3.1. Let X be a set, X CP(X) and M C X. Then holds
YUcrrom=Jcro |y M
i€l i€l Mem

for every collection C;,i € I.

Proof. For every M € 90t there must exist an iy, € I with M € C;:;, because of
Uies C;F 29 Thus M C Cf,, € U, C. O

In [5] it was shown

Lemma 3.2. Let (X, 7) be a topological space and M C K(X) compact w.r.t. the
upper—Vietoris topology. Then
K= )M

MeMm
1§ compact w.r.t. T.

Applying our simple set-theoretical statement, we get a similar result for unions
of relatively compact subsets.

Lemma 3.3. Let (X, 7) be a topological space, let X be the family of all relatively
compact subsets of X and let M C X be relatively compact in X w.r.t. the upper
Vietoris topology. Then

R := U M

MeM
is relatively compact in (X, 7).
Proof. Let |J;c; O; 2 X with O; € 7,i € I an open cover of X. Because of the
relative compactness of all P € X, there is a finite subcover Oi}j, e Oi;p for ev-
ery P € X, i.e. Op = UZ; Oﬁ; D M. Of course, Op € 7 and so (Op)° is
closed w.r.t. 7. Furthermore, P N O% = &, implying P € (O%)**. Thus we have

X C Upex(0Op)Tx, where the (Op)™* are open w.r.t. the upper-Vietoris topology.
Because of the relative compactness of X w.r.t. the upper—Vietoris topology, there
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must exist finitely many P, ..., P, € X with 9 C U;;l(Of;j)*I. Now, from Propo-
sition 3.1 we get R = Uy;cqn M C U;L:1 Op,, where every Op; is a finite union of
members of the original cover {O;]i € I} by construction. O

Corollary 3.4. Let (X, 1) be a topological space and let M C Po(X) consist of
relatively compact subsets of X. If M is compact w.r.t. the upper—Vietoris topology,

then
R= |J M
MeM
is relatively compact in (X, 7).

Proof. 9 is compact and therefore relatively compact in every set, which contains
N, especially in the family of all relatively compact subsets of X. So, Lemma 3.3
applies. O
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