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Abstract

Intensity maps are nonnegative matrices describing the intensity modulation
of beams in radiotherapy. In order to use a multileaf collimator in the static
mode for the realization of the intensity modulation one has to determine a
segmentation, i.e. a representation of an intensity map as a positive combi-
nation of special matrices corresponding to fixed positions of the multileaf
collimator, called segments. We consider the problem to construct segmen-
tations with the minimal total number of monitor units and the minimal
number of segments. Neglecting machine–dependent constraints like the in-
terleaf collision constraint and assuming that the entries of the intensity
map are bounded by a constant, we prove that a segmentation with minimal
number of segments under the condition that the number of monitor units
is minimal, can be determined in time polynomial in the matrix dimensions.
The results of our algorithm are compared with Engel’s [9] heuristic for the
reduction of the number of segments.

Key words: leaf sequencing, radiation therapy optimization, intensity mod-
ulation, multileaf collimator, IMRT
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1 Introduction

In recent years intensity modulated radiation therapy (IMRT) has become
an important method in cancer therapy. The objective in the treatment
planning is to irradiate the tumor as efficient as possible without damaging
the organs near to it. A modern way to realize intensity modulated radia-
tion fields is the usage of a multileaf collimator (MLC). An MLC consists of
two opposite banks of metal leaves which can be shifted towards each other
and so open or close certain parts of the irradiated area. In this paper we
assume that the desired intensity is already determined. After discretiza-
tion an intensity function can be considered as an m × n matrix A with
nonnegative integer entries. We consider the problem to realize this inten-
sity modulation with an MLC in the static mode (step and shoot). This
means that the radiation is switched off when the leaves of the collimator are
moving. In other words we have to determine a (finite) set of leaf positions
with corresponding irradiation times such that the superposition of the ho-
mogeneous fields yields the given intensity matrix. Two important criteria
for the quality of the segmentation are the total number of monitor units
(TNMU) and the number of segments (NS) which should both be as small
as possible. In general, it is not possible to minimize both parameters si-
multaneously (see [13] for a counterexample). Instead we first determine the
minimal TNMU and among all the realizations with this TNMU we search
for one with minimal NS. In the literature there are several leaf sequenc-
ing algorithms ([2, 4, 6–10, 14, 16–18]), some of them providing the optimal
TNMU but a large NS, others reducing the NS heuristically at the price of
an increased TNMU. The algorithms also differ in the extend to which they
include additional machine–dependent constraints like the interleaf collision
constraint. In principle both, TNMU and NS, can be optimized by integer
programming [15]. But due to the NP–completeness of integer programming
this is applicable only for small problem sizes. See [13] for a survey and a
comparison of the different segmentation algorithms. In this paper we neglect
machine–dependent constraints and focus on the question for the complexity
of the NS–minimization.

Throughout the paper we use the notation [n] := {1, 2, . . . , n} for positive
integers n. Let A = (ai,j) denote the given m × n–intensity matrix. For
brevity of notation we put ai,0 = ai,n+1 = 0 for i ∈ [m]. We define a segment
to be a 0 − 1–matrix describing a leaf position of the MLC. This is made
precise in the following definition.

Definition 1. A segment is an m×n-matrix S = (si,j), such that there exist
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integers li, ri (i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (1)

si,j =

{

1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (2)

The interpretation is that li−1 and ri +1 are the positions of the i–th left
and right leaf, respectively. So a 1–entry indicates that the corresponding
region receives radiation while a 0–entry indicates a region that is covered
by a leaf. Now for a nonnegative integer matrix A, a segmentation of A

is a representation of A as a positive integer combination of segments, i.e.
A =

∑k

i=1 uiSi with segments Si (i = 1, 2, . . . , k) and positive integers ui (i =
1, 2, . . . , k).

Example 1. A segmentation with 10 MU for a benchmark matrix from [15]
is

(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

= 3

(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+ 3

(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

)

+ 1

(

0 0 0 0 0 1
0 0 0 1 1 1
0 0 0 0 1 0
0 1 1 1 1 0

)

+ 1

(

0 0 0 1 1 1
0 0 0 1 0 0
0 1 1 0 0 0
1 1 1 0 0 0

)

+ 1

(

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 1 1 0

)

+ 1

(

1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
0 0 0 0 0 0

)

.

(3)

Now the segmentation problem can be formulated as follows.

Segmentation problem: Given the nonnegative integer matrix A, find a
segmentation A =

∑k

i=1 uiSi with in first instance minimal TNMU
∑k

i=1 ui and in second instance minimal number of segments k.

There are several efficient algorithms for determining TNMU–optimal seg-
mentations [6, 9, 14]. According to [9] the minimal TNMU equals

c(A) := max
i∈[m]

n
∑

j=1

max{0, ai,j − ai,j−1}. (4)

The problem of minimizing the number of segments is NP–complete in the
strong sense even for single row matrices. The NP–hardness was shown in [2]
by reduction of 2–Partition ([11]). Woeginger gave an unpublished proof
of the NP–hardness in the strong sense by a reduction of 3–Partition ([11]).
In [13] the NS–minimization for one row has been reduced to the bipartite
case of Minimum Edge–Cost Flow ([11]). For special instances of Min-

imum Edge–Cost Flow there is a reduction in the reverse direction and
this yields a new point of view on Woegingers argument which is presented
below. The following special case of Minimum Edge–Cost Flow has been
shown to be strongly NP–complete in [3] by a reduction of 3–Partition.
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Instance: A complete bipartite graph G = (U ∪ V, E) with |U | = 3|V | and
a function w : U → IN \ {0}.

Question: Is there a flow function f : E → IN such that

∀x ∈ U
∑

y∈V

f(xy) = w(x), (5)

∀y ∈ V
∑

x∈U

f(xy) = 3w, where w =
1

|U |

∑

x∈U

w(x), (6)

|{xy ∈ E : f(xy) > 0}| ≤ |U |. (7)

This problem can be reduced to the NS–minimization problem as follows. We
put q = |V |, n = 4q, denote the elements of U by u1, . . . , u3q, the elements
of V by v1, . . . , vq, and define the row vector a = ( a1 ... an ) as follows.

ai =

i
∑

j=1

w(uj) for 1 ≤ i ≤ 3q,

ai = 3(n − i)w for 3q + 1 ≤ i ≤ n.

Theorem 1 (Woeginger). There is a segmentation of a with 3q segments
(and this segmentation is necessarily TNMU–optimal) iff there is a function
f : E → IN satisfying (5)–(7)

Proof. “⇒”: Suppose there is a segmentation

a =

3q
∑

j=1

cjs
(j) (8)

where the segments are described by

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise.
(j ∈ [3q], i ∈ [n]).

By Lemma 1 from [13] we may assume that lj ≤ 3q ≤ rj for all j ∈ [3q].
Moreover, ai > ai−1 for all i ∈ [3q] (with a0 = 0) implies that for each
i ∈ [3q] there is some j ∈ [3q] with lj = i, hence we may assume li = i

and ci = ai − ai−1 for i ∈ [3q], and this assures the TNMU–optimality
of the segmentation. Let

f(uivri−3q+1) = ci (i ∈ [3q])
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and f(xy) = 0 for all the remaining edges xy. Observe that an = 0, so
ri < n for all i and 1 ≤ ri − 3q + 1 ≤ q. Clearly, (7) is satisfied. Now
fix i ∈ [3q]. From (8) and the fact that j = i is the only index with
lj = i we obtain that

w(ui) = ai − ai−1 = ci = f(uivri
) =

∑

y∈V

f(uiy),

so (5) is satisfied. Now fix i, 3q + 1 ≤ i ≤ n. From (8) we obtain

3w = ai−1 − ai =
∑

j∈[3q]:rj=i−1

cj

=
∑

j∈[3q]:rj=i−1

f(ujvi−3q) =

3q
∑

j=1

f(ujvi−3q),

thus (6) is satisfied.

“⇐”: Suppose there is a function f satisfying (5)–(7). By (5) and (7), for
each j ∈ [3q] there is exactly one k(j) ∈ [q] with f(ujvk(j)) > 0. For
j ∈ [3q], put

cj = f(ujvk(j)), lj = j, rj = 3q + k(j) − 1,

and define segments s(j) by

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise.
(j ∈ [3q], i ∈ [n]).

This yields a segmentation of a: for i ≤ 3q we have s
(j)
i = 1 iff lj ≤ i,

so
3q

∑

j=1

cjs
(j)
i =

i
∑

j=1

cj =
i

∑

j=1

∑

v∈V

f(ujv) =
i

∑

j=1

w(uj) = ai,

and for i > 3q we have s
(j)
i = 1 iff rj ≥ i, and so

3q
∑

j=1

cjs
(j)
i =

n−1
∑

t=i

∑

j∈[3q]:rj=t

cj =

n−1
∑

t=i

∑

j∈[3q]:k(j)=t−3q+1

cj

=
n−1
∑

t=i

3q
∑

j=1

f(ujvt−3q+1) = (n − i)w = ai.
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This shows that the NS–minimization is NP–hard. But the reduction
essentially depends on the fact that the entries can become arbitrary large.
In this paper we show that the NS–minimization problem can be solved in
time polynomial in the matrix dimensions m and n if the maximal entry L of
the intensity matrix is bounded. This seems to be a reasonable assumption in
practice: for instance the authors of [18] report, that they obtained matrices
with 7 nonzero intensity levels when they applied a preliminary version of
the CORVUS inverse treatment planning system (NOMOS corporation) to
a very complex head and neck tumor case. The algorithm proposed here is
an application of the dynamic programming principle (see [5]). The paper
is organized as follows. The cases of single row intensity maps and multiple
row intensity maps are treated seperately in Sections 2 and 3, respectively.
For both cases we describe polynomial algorithms for the construction of
segmentations with minimal TNMU and minimal NS. In Section 4 we test
our algorithm with randomly generated matrices and with matrices from
clinical practice, and we compare the results with the heuristic method from
[9].

2 Single row intensity maps

First we give an exact formulation of the problem L–One Row–Min MU–

Min NS:

Instance: A vector a = ( a1 a2 ... an ) of integers with 0 ≤ ai ≤ L (i =
1, . . . , n).

Problem: Find a segmentation with in first instance minimal TNMU and
in second instance minimal NS!

We put a0 = an+1 = 0. Let

P = {i ∈ [n] : ai ≥ ai−1 and ai > ai+1},

Q = {i ∈ [n] : ai < ai−1 and ai ≤ ai+1}.

Clearly, |P | = |Q|+ 1 if an 6= 0 and |P | = |Q| if an = 0. If an 6= 0 denote the
elements of P and Q by p1, . . . , pt and q1, . . . , qt−1 such that

p1 < q1 < p2 < q2 < · · · < qt−1 < pt,

and put q0 = 0 and qt = n + 1. If an = 0 denote the elements of P and Q by
p1, . . . , pt and q1, . . . , qt such that

p1 < q1 < p2 < q2 < · · · < qt−1 < pt < qt.
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From the results of [9] it follows that in a TNMU–optimal segmentation

a =
k

∑

j=1

cjs
(j)

every segment is of the form

s
(j)
i =

{

1 for lj ≤ i ≤ rj,

0 otherwise,

with qτ−1 < lj ≤ pτ and pτ ′ ≤ rj < qτ ′ for some τ, τ ′ ∈ [t]. Since the
order of the segments is not relevant, we may order them in such a way that
r1 ≤ · · · ≤ rk. For τ ∈ [t − 1], let k0(τ) be the unique index with rj < qτ for
j ≤ k0(τ) and rj ≥ qτ for j > k0(τ), and put

a(τ) = a −

k0(τ)
∑

j=1

cjs
(j).

Also put k0(0) = 0, k0(t) = k, a(0) = a and a(t) = 0. For j > k0(τ), from
rj ≥ qτ it follows that for i ≤ qτ ,

s
(j)
i = 1 ⇐⇒ lj ≤ i.

In particular, for i = 1, . . . , qτ − 1 and j = k0(τ) + 1, . . . , k,

s
(j)
i = 1 =⇒ s

(j)
i+1 = 1. (9)

For 0 ≤ τ ≤ t − 1, we have

a(τ) =

k
∑

j=k0(τ)+1

cjs
(j),

hence (9) implies that

a
(τ)
1 ≤ a

(τ)
2 ≤ · · · ≤ a(τ)

qτ
,

and the multisets

Uτ = {a
(τ)
i − a

(τ)
i−1 : 1 ≤ i ≤ qτ , a

(τ)
i 6= a

(τ)
i−1}, (10)

Vτ = {a
(τ)
i − a

(τ)
i−1 : qτ < i ≤ pτ+1, a

(τ)
i 6= a

(τ)
i−1}, (11)

Wτ = {a
(τ)
i − a

(τ)
i+1 : pτ+1 ≤ i < qτ+1, a

(τ)
i 6= a

(τ)
i+1} (12)
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are partitions of aqτ
, apτ+1 − aqτ

and apτ+1 − aqτ+1, respectively. Observe that

a
(τ)
i = ai for i ≥ qτ , hence Vτ and Wτ depend only on a, while Uτ depends

also on the pairs
(s(1), c1), . . . , (s

(k0(τ)), ck0(τ)).

Considering the sequence (Uτ , Vτ , Wτ ) (τ = 0, . . . , t), where we add Ut =
Vt = Wt = ∅, we will derive a method to construct the desired segmentation.

Definition 2. For integers u, v and w with 0 ≤ u ≤ v ≤ L and 0 ≤ w < v,
a (u, v, w)−peak is a triple (U, V, W ) of unordered partitions of u, v − u and
v − w, i.e. a triple of multisets of positive integers with

∑

x∈U

x = u,
∑

x∈V

x = v − u,
∑

x∈W

x = v − w.

In addition, the triple (∅, ∅, ∅) is called (0, 0, 0)−peak.

Thus for τ = 0, . . . , t, (Uτ , Vτ , Wτ) is an (aqτ
, apτ+1, aqτ+1)−peak (where

apt+1 = aqt+1 = 0), and for τ ≤ t − 1, the choice of the pairs

(s(k0(τ)+1), ck0(τ)+1), . . . , (s
(k0(τ+1)), ck0(τ+1))

can be considered as the choice of a way to go from the peak (Uτ , Vτ , Wτ ) to
the peak (Uτ+1, Vτ+1, Wτ+1). We claim that the number of segments needed
for this step does not depend on the particular a(τ), but only on the multisets
Uτ ∪ Vτ , Wτ and Uτ+1. To prove this we associate with a (u, v, w)–peak
(U, V, W ) a vector b = ( b1 ... bβ ) as follows. Put α = |U | + |V |, β = α +
|W |, denote the elements of U ∪ V by d1, . . . , dα and the elements of W by
dα+1, . . . , dβ, such that

d1 ≥ d2 ≥ · · · ≥ dα and dα+1 ≥ dα+2 ≥ · · · ≥ dβ.

So, for U = Uτ , V = Vτ and W = Wτ the di (i = 1, . . . , β) are the absolute
values of the nonzero differences of consecutive entries of the initial part
( a

(τ)
1 ... a

(τ)
qτ+1 ) of a(τ). Now b is defined by

bi =















i
∑

j=1

dj for 1 ≤ i ≤ α,

v −
i

∑

j=α+1

dj for α + 1 ≤ i ≤ β.

In addition, let b0 = 0.

Example 2. The associated vector for any peak with U ∪ V = {4, 2, 1, 1}
and W = {2, 2, 1} is b = ( 4 6 7 8 6 4 3 ).
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Lemma 1. Fix some τ , 0 ≤ τ ≤ t − 1, and let b = ( b1 ... bβ ) be the vector
associated with the (aqτ

, apτ+1, aqτ+1)–peak (Uτ , Vτ , Wτ ), defined according to
(10)–(12), where α = |Uτ ∪ Vτ | and β = α + |Wτ |. Also let U ′ be a partition
of aqτ+1, and let c1, . . . , cρ be positive integers with

ρ
∑

j=1

cj = apτ+1 − aqτ+1. (13)

Then the following statements are equivalent.

1. There exist integers lj, rj with 1 ≤ lj ≤ pτ+1 ≤ rj < qτ+1 (j = 1, . . . , ρ),

such that for a′ = a(τ) −
ρ

∑

j=1

cjs
(j), where

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , ρ; i = 1, . . . , n)

we have

(a) 0 ≤ a′
1 ≤ a′

2 ≤ · · · ≤ a′
qτ+1

(b) {a′
i − a′

i−1 : 1 ≤ i ≤ qτ+1, a′
i 6= a′

i−1} = U ′ (where a′
0 = 0).

2. There exist integers l′j, r′j with 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , ρ,

such that for b′ = b −
∑ρ

j=1 cjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , ρ; i = 1, . . . , β)

we have

(a) b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ

(b) {b′i − b′i−1 : 1 ≤ i ≤ β, b′i 6= b′i−1} = U ′ (where b′0 = 0).

Proof. Let

R1 = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1},

R2 = {i : pτ+1 ≤ i < qτ+1, a
(τ)
i 6= a

(τ)
i+1}.

Clearly,

Uτ ∪ Vτ = {a
(τ)
i − a

(τ)
i−1 : i ∈ R1} and

Wτ = {a
(τ)
i − a

(τ)
i+1 : i ∈ R2}.
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But by construction of b we also have

Uτ ∪ Vτ = {bi − bi−1 : 1 ≤ i ≤ α} and

Wτ = {bi − bi+1 : α ≤ i ≤ β − 1}.

Together this implies that there are bijections

ϕ1 : R1 → {1, . . . , α}, ϕ2 : R2 → {α, . . . , β − 1},

such that

a
(τ)
i − a

(τ)
i−1 = bϕ1(i) − bϕ1(i)−1 for i ∈ R1 and

a
(τ)
i − a

(τ)
i+1 = bϕ2(i) − bϕ2(i)+1 for i ∈ R2.

It is an easy consequence of the results of [9], that from the assumption (13) it
follows that for lj, rj (j = 1, . . . , ρ) as in the first statement, we have lj ∈ R1

and rj ∈ R2 for all j and for l′j, r′j (j = 1, . . . , ρ) as in the second statement
we have l′j ≤ α and r′j ≥ α for all j. Suppose that lj, rj (j = 1, . . . , ρ) satisfy
the conditions of the first statement. The difference of the entries number i

and i − 1 changes only when lj = i or rj = i − 1 for some j. Thus, if i 6∈ R1

and i − 1 6∈ R2 we have

a′
i − a′

i−1 = a
(τ)
i − a

(τ)
i−1 = 0.

Hence, for i = 1, . . . , qτ+1,

a′
i − a′

i−1 6= 0 =⇒ i ∈ R1 or i − 1 ∈ R2.

Put

C1(i) = {j ∈ [ρ] : lj = i} for i ∈ R1,

C2(i) = {j ∈ [ρ] : rj = i} for i ∈ R2.

Then

a′
i − a′

i−1 = a
(τ)
i − a

(τ)
i−1 −

∑

j∈C1(i)

cj for i ∈ R1

a′
i − a′

i+1 = a
(τ)
i − a

(τ)
i+1 −

∑

j∈C2(i)

cj for i ∈ R2.

By condition (a) of the first statement we have a′
i − a′

i+1 ≤ 0 for i =
0, . . . , qτ+1 − 1. For i ∈ R2 this yields

∑

j∈C2(i)

cj ≥ a
(τ)
i − a

(τ)
i+1,
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and together with

∑

i∈R2

∑

j∈C2(i)

cj =

ρ
∑

j=1

cj = apτ+1 − aqτ+1 =
∑

i∈R2

(

a
(τ)
i − a

(τ)
i+1

)

we obtain for i ∈ R2,
∑

j∈C2(i)

cj = a
(τ)
i − a

(τ)
i+1.

and thus a′
i − a′

i+1 = 0 for i ∈ R2. So the only nonzero differences a′
i − a′

i−1

come from indices i ∈ R1. Now put l′j = ϕ1(lj) and r′j = ϕ2(rj) (j = 1, . . . , ρ)
and let b′ be defined as in the second statement. Then l′j = ϕ1(i) iff j ∈ C1(i)
and r′j = ϕ2(i) iff j ∈ C2(i), hence for i ∈ R1 we have

b′ϕ1(i) − b′ϕ1(i)−1 = bϕ1(i) − bϕ1(i)−1 −
∑

j : l′j=ϕ1(i)

cj

= bϕ1(i) − bϕ1(i)−1 −
∑

j∈C1(i)

cj

= ai − ai−1 −
∑

j∈C1(i)

cj

= a′
i − a′

i−1,

and for i ∈ R2,

b′ϕ2(i) − b′ϕ2(i)+1 = bϕ2(i) − bϕ2(i)+1 −
∑

j : r′j=ϕ2(i)

cj

= bϕ2(i) − bϕ2(i)+1 −
∑

j∈C2(i)

cj

= ai − ai+1 −
∑

j∈C2(i)

cj

= a′
i − a′

i+1 = 0.

So the second statement holds, and since all the arguments are reversible,
we have proved that lj, rj (j = 1, . . . , ρ) satisfy the conditions of the first
statement iff l′j = ϕ1(lj), r′j = ϕ2(rj) (j = 1, . . . , ρ) satisfy the conditions of
the second statement, and this proves the lemma.

In fact the proof shows even more than just the equivalence of the two
statements: knowing l′j and r′j (j = 1, . . . , ρ) and R1 and R2, we can deter-

mine the lj, rj (j = 1, . . . , ρ) and R′ = {i : 1 ≤ i ≤ qτ+1, a
(τ+1)
i 6= a

(τ+1)
i−1 }

in a number of steps that is bounded by a constant.
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Example 3. Suppose a(τ) = ( 2 2 3 7 7 9 8 5 5 12 ) with Uτ = {2, 1}, Vτ =
{4, 2}, Wτ = {3, 1}, R1 = {1, 3, 4, 6} and R2 = {6, 7}. The associated vector
is b = ( 4 6 8 9 6 5 ) and bijections as in the proof of Lemma 1 are given by

ϕ1 : 1 7→ 2, 3 7→ 4, 4 7→ 1, 6 7→ 3,

ϕ2 : 6 7→ 5, 7 7→ 4.

Now from

( 4 4 4 5 5 5 ) = ( 4 6 8 9 6 5 ) − ( 0 2 2 2 0 0 ) − ( 0 0 1 1 1 0 ) − ( 0 0 1 1 0 0 ),

where we have

l′1 = 2, r′1 = 4, l′2 = 3, r′2 = 5, l′3 = 3, r′3 = 4,

we obtain

l1 = 1, r1 = 7, l2 = 6, r2 = 6, l3 = 6, r3 = 7,

corresponding to

( 0 0 1 5 5 5 5 5 5 12 ) = ( 2 2 3 7 7 9 8 5 5 12 ) − ( 2 2 2 2 2 2 2 0 0 0 )

− ( 0 0 0 0 0 1 0 0 0 0 ) − ( 0 0 0 0 0 1 1 0 0 0 ).

Lemma 1 motivates the following definitions.

Definition 3. Let b = ( b1 ... bβ ) be the vector associated with some (u, v, w)–
peak (U, V, W ) where α = |U ∪V | and β = α+ |W |, and let U ′ be a partition
of w. Let T be the set of positive integers ρ such that there are integers
l1, . . . , lρ, r1, . . . , rρ and coefficients c1, . . . , cρ ∈ IN \ {0} such that

1.
ρ

∑

j=1

cj = v − w,

2. 1 ≤ lj ≤ rj ≤ β − 1 for j = 1, 2, . . . , ρ.

and for b′ = b −
ρ

∑

j=1

cjf
(j), where

f
(j)
i =

{

1 if lj ≤ i ≤ rj,

0 otherwise,
(j = 1, . . . , ρ; i = 1, . . . , β)

we have

3. b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ = w and

13



4. {b′i − b′i−1 : 1 ≤ i ≤ β, b′i 6= b′i−1} = U ′ (with b′0 = 0).

Then we define

ρ(b, U ′) =

{

min T if T 6= ∅,
∞ if T = ∅.

Definition 4. Let (U, V, W ) and (U ′, V ′, W ′) be a (u, v, w)–peak and a
(u′, v′, w′)−peak, respectively, where u′ = w. Then we put

δ((U, V, W ), (U ′, V ′, W ′)) = ρ(b, U ′),

where b is the vector associated with (U, V, W ).

In order to model the segmentation process we define a digraph G =
(V, E). The vertex set is

V = {(τ, U, Vτ , Wτ) : 0 ≤ τ ≤ t, U is a partition of aqτ
},

where

Vτ = {ai − ai−1 : qτ < i ≤ pτ+1, ai 6= ai−1},

Wτ = {ai − ai+1 : pτ+1 ≤ i < qτ+1, ai 6= ai+1}

for 0 ≤ τ ≤ t. Observe that there is only one vertex with first component 0,
namely (0, ∅, V0, W0) corresponding to a(0) = a and there is only one vertex
with first component t, namely (t, ∅, ∅, ∅) corresponding to the zero vector.
In general, the vertices with first component τ represent the possibilities for
(Uτ , Vτ , Wτ ), and by the observation before Definition 2 for each τ there is
only one choice for Vτ and Wτ , depending only on a. In the arc set E we
include all arcs of the form

((τ, U, Vτ , Wτ ), (τ + 1, U ′, Vτ+1, Wτ+1))

for τ = 0, . . . , t− 1. Figure 1 shows G for a = ( 1 3 2 4 3 4 ), where the vertices
are labeled as follows.

a = (0, ∅, {1, 2}, {1}), b = (1, {2}, {2}, {1}), c = (1, {1, 1}, {2}, {1}),

d = (2, {3}, {1}, {4}), e = (2, {2, 1}, {1}, {4}), f = (2, {1, 1, 1}, {1}, {4})

g = (3, ∅, ∅, ∅).

We define the arc weights in G to be the distances of the corresponding
peaks, i.e.

δ((τ, U, Vτ , Wτ ), (τ + 1, U ′, Vτ+1, Wτ+1)) = δ((U, Vτ , Wτ ), (U
′, Vτ+1, Wτ+1))

14
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Figure 1: The digraph for the vector a.

for 0 ≤ τ ≤ t − 1 and all partitions U and U ′ of aqτ
and aqτ+1, respec-

tively. Observe that in this definition we used the fact that (U, Vτ , Wτ ) and
(U ′, Vτ+1, Wτ+1) are an (aqτ

, apτ+1, aqτ+1)–peak and an (aqτ+1, apτ+2, aqτ+2)–
peak, respectively. This assures that the condition u′ = w in the definition
of δ is satisfied. For instance, the segment ( 1 1 0 0 0 0 ) corresponds to the arc
(a, b), since

a − ( 1 1 0 0 0 0 ) = ( 0 2 2 4 3 4 ),

while ( 0 1 0 0 0 0 ) corresponds to the arc (a, c), since

a − ( 0 1 0 0 0 0 ) = ( 1 2 2 4 3 4 ).

In general, an arc of weight ρ corresponds to a linear combination of ρ seg-
ments. Now with a segmentation we can associate a path

(0, ∅, V0, W0), (1, U1, V1, W1), . . . , (t, ∅, ∅, ∅) (14)

in G.

Example 4. The segmentation

a = ( 1 1 0 0 0 0 ) + ( 0 1 1 1 0 0 ) + ( 0 1 1 1 1 1 ) + 2( 0 0 0 1 1 1 ) + ( 0 0 0 0 0 1 )
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corresponds to the path (a, b, e, g) in Figure 1 as follows.

a =̂ ( 1 3 2 4 3 4 )

(a, b) =̂ −( 1 1 0 0 0 0 )

b =̂ =( 0 2 2 4 3 4 )

(b, e) =̂ −( 0 1 1 1 0 0 )

e =̂ =( 0 1 1 3 3 4 )

(e, g) =̂ −( 0 1 1 1 1 1 )

−( 0 0 0 2 2 2 )

−( 0 0 0 0 0 1 )

g =̂ =( 0 0 0 0 0 0 ).

With these definitions the minimal number of segments needed to realize
a segmentation corresponding to (14) equals the weight of this path.

Lemma 2. In time O(1) we can determine the values ρ(b, U ′) for all vectors
b that are associated with some (u, v, w)–peak and for all partitions U ′ of
w. In addition we obtain values cj, l′j, r′j (j = 1, . . . , ρ(b, U ′)) satisfying the
conditions of Definition 3.

Proof. The total number of vectors b associated with some (u, v, w)−peaks
when u, v and w run through all the possible values is

L
∑

v=1

v−1
∑

w=0

PvPv−w

where Pi is the number of partitions of i ∈ IN . Fix one of these vectors b.
We consider all the sets S = {(l′j, r

′
j, cj) : j = 1, . . . , ρ} (ρ ∈ IN), such

that the vectors f (1), . . . , f (ρ), defined as in Definition 3 and the coefficients
c1, . . . , cρ satisfy the conditions in Definition 3. We claim that there are at
most

vv−w ≤ LL

possibilities for S. Writing
∑cj

k=1 f (j) for cjf
(j) we can express

∑ρ

j=1 cjf
(j)

as a sum of
∑ρ

j=1 cj = v − w (0, 1)−vectors. In order to satisfy Conditions
1 and 3 of Definition 3, for i = α, . . . , β − 1, in exactly bi − bi+1 of these
(0, 1)−vectors there must be 0 at position i + 1 and a 1 at position i. So we
may assume that the v−w right leaf positions are fixed. Since for each right
leaf position there are at most v left leaf positions the claim follows. For each
S the resulting partition U ′ of w can be computed in O(1) steps, since ρ is
bounded by v −w ≤ L, and β is bounded by 2L. Thus the number of peaks
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is bounded by a constant, the number of sets S to be checked for each peak
is bounded by a constant, for each of these sets the number of steps for the
checking is bounded by a constant, and this completes the proof.

Lemma 3. In time O(n) we can determine the arc weights δ(e) for all e ∈ E
and for each arc e a sequence

(s(1), c1), . . . , (s
(δ(e)), cδ(e))

realizing its weight.

Proof. By Lemma 2 we may assume that we know all the ρ(b, U ′). First we
determine in time O(n) the sets

P = {p1, . . . , pt},

Q = {q0, . . . , qt},

R1,τ = {i : qτ < i ≤ pτ+1, ai 6= ai−1} (τ = 0, . . . , t − 1),

R2,τ = {i : pτ+1 ≤ i < qτ+1, ai 6= ai+1} (τ = 0, . . . , t − 1),

and the partitions Vτ and Wτ (τ = 0, . . . , t). By induction, we assume that
we have already determined the weights of the arcs up to layer τ for some
τ , 0 ≤ τ ≤ t − 1. The number of vertices in layers τ and τ + 1 are bounded
by Paqτ

and Paqτ+1
, respectively. So the number of arcs is bounded by P2

L.
Fix some (τ, Uτ , Vτ , Wτ ) and (τ +1, Uτ+1, Vτ+1, Wτ+1). Also by induction, we
assume that we know the set

R1 = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1}

for some possible a(τ) corresponding to (τ, Uτ , Vτ , Wτ). Now by Lemma 1
(and its proof) we obtain

δ((τ, Uτ , Vτ , Wτ ), (τ + 1, Uτ+1, Vτ+1, Wτ+1))

and a sequence realizing this value in constant time from the corresponding
data for b and U ′ where b is the vector associated with (Uτ , Vτ , Wτ ) and
U ′ = Uτ+1. If τ ≤ t − 2 this also yields

R′
1 = {i : 1 ≤ i ≤ pτ+2, a

(τ+1)
i 6= a

(τ+1)
i−1 }

for some possible a(τ+1) corresponding to (τ + 1, Uτ+1, Vτ+1, Wτ+1). So the
weights for all arcs between adjacent layers can be determined in time O(1).
And since the number of layers t+1 is bounded by n, the lemma is proved.

Now the search for a segmentation with minimal NS amounts to the search
for a path of minimal weight in a layered digraph with at most n layers where
the number of vertices per layer is bounded by the constant PL. This can be
done in time O(n) ([12]). Thus we have proved

Theorem 2. L–One Row–Min MU–Min NS can be solved in time O(n).
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3 Multiple row intensity maps

In this subsection we generalize the basic idea of the preceding subsection to
prove that for bounded L the NS–minimization is polynomially solvable also
for multiple row matrices. The problem L–Min MU–Min NS is:

Instance: An integer matrix A = (ai,j) 1≤i≤m
1≤j≤n

with 0 ≤ ai,j ≤ L (i ∈ [m], j ∈

[n]).

Problem: Find a segmentation of A with in first instance minimal TNMU
and in second instance minimal NS!

Assume we have already determined the minimal TNMU c. From a seg-
mentation of A we obtain a partition c = c1 + c2 + · · · + ck where ci is the
coefficient of the i–th segment (i = 1, . . . , k). First we consider the problem
to check for a given partition if there is a segmentation of A with coefficients
c1, . . . , ck. This problem can be solved by checking the rows of A indepen-
dently. For the moment we omit the row index and denote by a = ( a1 ... an )
a fixed row of A and we put a0 = an+1 = 0. Compared to the single row case
an additional difficulty in the multiple row case arises from the fact that the
minimal TNMU that would be sufficient for a segmentation of a might be
smaller than c. As a consequence we can not use Lemma 1, where condition
(13) is essential. Here the order of the elements of the considered partition
must be taken into consideration. For instance, for b = ( 2 5 0 ) there is a
segmentation with coefficients 4, 1 and 1, namely

b = 4( 0 1 0 ) + ( 1 1 0 ) + ( 1 0 0 ),

while there is no segmentation with these coefficients for b′ = ( 3 5 0 ). So
instead of peaks we have to consider ordered peaks to be defined below.
Also, in order to describe the segmentation, we attach to a peak a multiset
X of coefficients, and call the result an extended ordered peak. This is made
precise in the following definition.

Definition 5. For integers v and w with 0 ≤ w < v ≤ L an extended ordered
(v, w)–peak is a pair (b, X) of an integer vector b = ( b1 b2 ... bβ ), such that
there is an integer α with 1 ≤ α < β and

0 < b1 < b2 < · · · < bα = v,

v = bα > bα+1 > · · · > bβ = w,

and a multiset X of positive integers. In addition, a pair (b, X), where b = ()
is the empty tuple and X is a multiset of positive integers is called extended
ordered (0, 0)–peak.
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Example 5. (( 2 5 7 4 3 ) , {1, 2, 2, 3, 3}) is an extended ordered (7, 3)–peak
(with α = 3, β = 5).

Let p1, . . . , pt and q0, . . . , qt be defined as in the preceding section. Then
for a segmentation

a =
k

∑

j=1

cjs
(j)

we can define k0(τ) and a(τ) (τ = 0, . . . , t) as before. Now for τ = 0, . . . , t,
we associate with a(τ) an extended ordered (apτ+1, aqτ+1)–peak (b(τ), Xτ ) as
follows. For τ < t, let

Iτ = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1},

Jτ = {i : pτ+1 < i ≤ qτ+1, a
(τ)
i 6= a

(τ)
i−1},

denote the elements of Iτ by i1, . . . , iα and the elements of Jτ by iα+1, . . . , iβ
such that i1 < i2 < · · · < iβ, and put

b0 = 0, bl = ail (l = 1, . . . , β).

Let X0 = {c1, . . . , ck} and

Xτ+1 = Xτ \ {ck0(τ)+1, ck0(τ)+2, . . . , ck0(τ+1)} (τ = 0, . . . , t − 1).

Now for τ < t, (b(τ), Xτ ) describes the initial part of a(τ) (up to column
qτ+1) together with the coefficients available for the remaining segments.
In the final state (τ = t) we have the zero row a(t) = 0 and a multiset
Xt of coefficients, that are not needed for the considered row. With the
zero row we associate the empty tuple b(t) = (), and thus we obtain from
any segmentation a sequence (b(0), X0), (b(1), X1), . . ., (b(t), Xt) of extended
ordered peaks.

Example 6. Suppose a = ( 2 4 3 1 6 3 0 6 1 ) is a row in an intensity matrix
with minimal TNMU c = 18, and we are checking the partition c = 5 + 3 +
2 + 2 + 2 + 1 + 1 + 1 + 1. Then from the segmentation

( 2 4 3 1 6 3 0 6 1 )

= ( 2 2 2 0 0 0 0 0 0 )

+ ( 0 1 0 0 0 0 0 0 0 )

+ ( 0 0 0 0 3 0 0 0 0 )

+ ( 0 0 0 0 2 2 0 0 0 )

+ ( 0 1 1 1 1 1 0 0 0 )

+ ( 0 0 0 0 0 0 0 5 0 )

+ ( 0 1 0 0 0 0 0 1 1 )
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we obtain

τ a(τ) b(τ) Xτ

0 ( 2 4 3 1 6 3 0 6 1 ) ( 2 4 3 1 ) {5,3,2,2,2,1,1,1,1}
1 ( 0 1 1 1 6 3 0 6 1 ) ( 1 6 3 0 ) {5,3,2,2,1,1,1}
2 ( 0 0 0 0 0 0 0 6 1 ) ( 6 1 0 ) {5,2,1,1}
3 ( 0 0 0 0 0 0 0 0 0 ) () {2,1}

That the vectors b(τ) provide enough information to construct the seg-
mentation, follows from the simple observation, that w.l.o.g. a plateau, i.e.
a sequence of consecutive entries of equal value

ai1 = ai1+1 = · · · = ai2

can be considered as one single entry. This is intuitively clear and proved
formally in the next lemma.

Lemma 4. Let a =
∑k

j=1 cjs
(j) be a segmentation with

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , k).

There are integers l′j and r′j (j = 1, . . . , k) with the following properties.

1. We have a =
k

∑

j=1

cjs
′(j) where

s
′(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , k).

2.

ai = ai−1 =⇒ s
′(j)
i = s

′(j)
i−1 (i = 2, . . . , n; j = 1, . . . , k). (15)

Proof. In order to satisfy the last condition, we have to replace the segments
with s

(j)
i 6= s

(j)
i−1 but ai = ai−1 for some i. Our strategy is to modify the

given segments as follows. For each plateau we choose one representative,
for instance the rightmost entry, and adapt the entries for each segment to
the chosen column. This corresponds to the following shifting of the leaves:
if the left leaf covers a part of the plateau it is shifted to the right until the
whole plateau is open, and if the right leaf covers a part of the plateau it is
shifted to the left until the whole plateau is covered.
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First observe that s
(j)
i can differ from s

(j)
i−1 only if i = lj or i − 1 = rj. So

for (15) it is sufficient that, for all j, we have

al′j
6= al′j−1 and ar′j

6= ar′j+1. (16)

Suppose alj = alj−1 for some j. Then i1 < lj ≤ i2 for some i1, i2 with

ai1 = ai1+1 = · · · = ai2 = a and ai1−1, ai2+1 6= a. (17)

Since we want to adapt the entries of the segment to the rightmost column
i2 we have to shift the left leaf to the left and put l′j = i1. Similarly, if
arj

= arj+1, then i1 ≤ rj < i2 for some i1, i2 with (17), and in order to adapt
the entries of the segment to column i2, we have to shift the right leaf to the
left and put r′j = i1 − 1. In summary, for j ∈ [k] we put

l′j =

{

lj if alj 6= a′
lj−1

max{i < lj : ai 6= alj} + 1 if alj = a′
lj−1

r′j =

{

rj if arj
6= a′

rj+1

max{i < rj : ai 6= arj
} if arj

= a′
rj+1

Then (16) is valid for all j, hence (15) is satisfied. In order to check the first

condition of the lemma, fix some i ∈ [n]. If s
′(j)
i = s

(j)
i for all j, then

k
∑

j=1

cjs
′(j)
i =

k
∑

j=1

cjs
(j)
i = ai.

So assume s
′(j)
i 6= s

(j)
i for some j. By construction this can be the case only

if ai = ai−1 or ai = ai+1. Now let i1 and i2 be the indices with i1 ≤ i ≤ i2,

ai1 = ai1+1 = · · · = ai = · · · = ai2 and ai1−1, ai2+1 6= ai.

We claim that s
′(j)
i = s

(j)
i2

(j = 1, . . . , k). If s
(j)
i2

= 0, lj > i2 or rj < i2. By
construction, in the first case l′j > i2 and in the second case r′j < i1, so in

both cases s
′(j)
i = 0. If s

(j)
i2

= 1, lj ≤ i2 and rj ≥ i2. By construction, l′j ≤ i1

and r′j ≥ i2, hence s
′(j)
i = 1 and the claim is proved. From this follows

k
∑

j=1

cjs
′(j)
i =

k
∑

j=1

cjs
(j)
i2

= ai2 = ai,

and since this argument works for any i ∈ [n] the first condition of the lemma
is satisfied.
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By Lemma 4 applied to a(τ), w.l.o.g. we may assume that a
(τ)
lj

6= a
(τ)
lj−1

and a
(τ)
rj 6= a

(τ)
rj+1 for all j > k0(τ). With this assumption the next lemma,

whose proof is obvious, justifies that we use the b(τ) instead of the a(τ).

Lemma 5. For fixed τ , 0 ≤ τ ≤ t−1, let b(τ) and Xτ be defined as described
above and let {c1, . . . , cρ} ⊆ Xτ be fixed. If aqτ+1 6= 0 let g = ( g1 ... gγ ) be
some vector with

0 < g1 < · · · < gγ = aqτ+1.

Then the following statements are equivalent.

1. There exist integers lj, rj with 1 ≤ lj ≤ rj < qτ+1, a
(τ)
lj

6= a
(τ)
lj−1 and

a
(τ)
rj 6= a

(τ)
rj+1 (j = 1, . . . , ρ) such that for a′ = a(τ) −

ρ
∑

j=1

cjs
(j), where

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , ρ; i = 1, . . . , n)

we have

(a) 0 ≤ a′
1 ≤ a′

2 ≤ · · · ≤ a′
qτ+1

= aqτ+1

(b) If aqτ+1 6= 0 there are exactly γ indices 1 ≤ i1 < · · · < iγ ≤ qτ+1

with a′
i∗
6= a′

i∗−1 (where a′
0 = 0) and we have

(

ai1 ai2 . . . aiγ

)

= g.

2. There exist integers l′j, r′j with 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , ρ,

such that for b′ = b −
∑ρ

j=1 cjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , ρ; i = 1, . . . , β)

we have

(a) b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ = aqτ+1

(b) If aqτ+1 6= 0 there are exactly γ indices 1 ≤ i1 < · · · < iγ ≤ β with
b′i∗ 6= b′i∗−1 (where b′0 = 0) and we have

(

bi1 bi2 . . . biγ

)

= g.

Now for τ = 0, 1, . . . , t − 1 the choice of the pairs
(

sk0(τ)+1, ck0(τ)+1

)

, . . . ,
(

sk0(τ+1), ck0(τ+1)

)

can be viewed as a way to go from the extended ordered (apτ+1, aqτ+1)–peak

(b(τ), Xτ ) to the extended ordered (apτ+2, aqτ+2)–peak (b(τ+1), Xτ+1) (with
apt+1 = aqt+1 = 0).
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Definition 6. Let 0 ≤ w < v and let (b, X) be an extended ordered (v, w)–
peak, and let v′, w′ be integers with w ≤ v′ ≤ L and 0 ≤ w′ < v′ or
v′ = w′ = 0. In addition let X ′ be a submultiset of X and denote the
elements of X ′ by x1, . . . , x|X′|. We call an extended ordered (v′, w′)–peak
(b′, X \X ′) accessible from (b, X) if there are integers l′1, . . . , l

′
|X′|, r′1, . . . , r

′
|X′|

such that

1. 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , |X ′| (where b = ( b1 ... bβ )).

and for b′′ = b −
|X′|
∑

j=1

xjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j,

0 otherwise,
(j = 1, . . . , |X ′|; i = 1, . . . , β)

we have b′′ = 0 if v′ = w′ = 0 and otherwise

2. b′′1 ≤ b′′2 ≤ · · · ≤ b′′β = bβ = w and

3. If i1 < i2 < · · · < iγ′ are the indices with b′′i∗ 6= b′′i∗−1 (where b′′0 = 0),
then

b′1 < b′2 < · · · < b′γ′ = w,

and we have
(

b′′i1 b′′i2 . . . b′′iγ′

)

=
(

b′1 b′2 . . . b′γ′

)

.

The definition can be interpreted as follows. Assume ap1 = v, aq1 = w,

ap2 = v′, aq2 = w′, let b(0) be associated with a(0) as above, and let b′ =
( b′1 ... b′

β′ ) be a vector with

0 < b′1 < · · · < b′α′ = v′, v′ = b′α′ > · · · > b′β′ = w′.

Then (b′, X \ X ′) is accessible from (b(0), X) iff we can assign segments s(j)

to the elements of X ′, described by lj, rj (j = 1, . . . , |X ′|) with rj < q1 for
all j, such that for

a(1) = a(0) −

|X′|
∑

j=1

xjs
(j)

we have a
(1)
1 ≤ a

(1)
2 ≤ · · · ≤ a

(1)
p2 and the extended ordered (v′, w′)–peak

associated with a(1) is (b′, X \ X ′).
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Example 7. Let a = ( 0 2 5 5 7 4 3 3 5 6 8 2 ), X = {5, 3, 2, 2, 2, 1, 1, 1} and
X ′ = {3, 1}. The associated extended ordered (7, 3)–peak is (b, X) where
b = ( 2 5 7 4 3 ). Now we want to determine the extended ordered (8, 0)–peaks
(b′, X \ X ′) that are accessible from (b, X), where

b′ =
(

b′1 . . . b′γ−1 b′γ = 3 5 6 8 2
)

.

We obtain that (b′, X \X ′) and (b′′, X \X ′) are accessible from (b, X), where
b′ = ( 2 3 5 6 8 2 ) and b′′ = ( 1 3 5 6 8 2 ):

( 2 2 3 3 3 ) = b − ( 0 3 3 0 0 ) − ( 0 0 1 1 0 ),

( 1 1 3 3 3 ) = b − ( 0 3 3 0 0 ) − ( 1 1 1 1 0 ).

This corresponds to the following possible beginnings of a segmentation.

( 0 2 5 5 7 4 3 3 5 6 8 2 )

− ( 0 0 3 3 3 0 0 0 0 0 0 0 )

− ( 0 0 0 0 1 1 0 0 0 0 0 0 )

= ( 0 2 2 2 3 3 3 3 5 6 8 2 )

and

( 0 2 5 5 7 4 3 3 5 6 8 2 )

− ( 0 0 3 3 3 0 0 0 0 0 0 0 )

− ( 0 1 1 1 1 1 0 0 0 0 0 0 )

= ( 0 1 1 1 3 3 3 3 5 6 8 2 ) .

On the other hand one can check that (( 3 5 6 8 2 ) , X \ X ′) is not accessible
from (b, X) and this corresponds to the fact that it is not possible to find
(l1, r1) and (l2, r2) with r1, r2 < 7 such that after subtracting the correspond-
ing segments with coefficients 3 and 1 from a we obtain a row vector a′ with
a′

1 = · · · = a′
i = 0, a′

i+1 = · · · = a′
7 = 3 for some i, 1 ≤ i ≤ 6. Similar

statements can be made for b′ = ( 1 2 3 5 6 8 2 ).

Lemma 6. Let (b, X) be an extended ordered (v, w)−peak. Then the set of
all (b′, X \ X ′) that are accessible from (b, X) can be determined in time
O(1).

Proof. Observe that the accessibility does not depend on the whole vec-
tor b′ but only on the initial part ( b′1 ... b′

γ′
=w ). So in order to determine
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the accessible extended ordered peaks it is sufficient to determine the pairs
(( b′1 ... b′

γ′ ), X \ X ′) of initial parts and multisets of coefficients. Let b =
( b1 ... bβ ) and let α be the unique index with bα = v. We have b1 < · · · < bα

and bα > · · · > bβ. So for 1 ≤ k ≤ v − 1 there are at most two indices i

and i′ with 1 ≤ i, i′ ≤ β − 1 and bi = k, bi′ = k (namely the first one with
1 ≤ i ≤ α − 1 and the second one with α + 1 ≤ i′ ≤ β − 1). The only index
i with bi = v is i = α, and so we have

β−1
∑

i=1

bi ≤ v + 2

v−1
∑

k=1

k ≤ L2.

Hence it is sufficient to consider at most PL2 candidates for X ′, where each
of these has at most L2 elements. Fix one of these X ′. Labeling the elements
of X ′ as in Definition 6, for each xj ∈ X ′ there are at most

(

2L−1
2

)

choices for

f (j). So the total number of choices for the pairs (f (j), xj) that have to be
considered is bounded by

[(

2L − 1

2

)]|X′|

≤

[(

2L − 1

2

)]L2

.

For each of these choices the time needed to determine the resulting b′′ is
bounded by a constant. Precisely, in order to subtract one of the xjf

(j) we
have to do at most 2L subtractions. So after at most L2 · 2L subtractions
we have determined b′′. Finally, in order to determine the corresponding
( b′1 ... b′

γ′ ) according to condition 3 of Definition 6, we have to run through
the at most 2L entries of b′. This proves the lemma, since the number of
steps to determine the required data is bounded by

PL2

[(

2L − 1

2

)]L2

(L2 + 1)2L.

In order to model the segmentation we construct sets V0, . . . ,Vt of ex-
tended ordered peaks. Put V0 = {(b(0), X0)} and suppose we have already
constructed V0, . . . ,Vτ for some τ with 0 ≤ τ < t. Now we put

Vτ+1 = {(b′, X ′) : (b′, X ′) is an (apτ+2, aqτ+2) − peak that

is accessible from some (b, X) ∈ Vτ}.

Here for brevity of notation we put apt+1 = 1 and aqt+1 = 0. The elements of

Vτ represent the possibilities for (b(τ), Xτ ). There is a segmentation of the
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row with coefficients c1, . . . , ck iff Vt 6= ∅. Note that a natural interpretation
of this construction is a breadth first search (BFS) in the tree with vertex set
V0 ∪ . . .∪ Vt starting at (b(0), X0), where two vertices (b, X) and (b′, X ′) are
connected by an edge iff (b, X) ∈ Vτ , (b′, X ′) ∈ Vτ+1 for some τ and (b′, X ′)
is accessible from (b, X).

Lemma 7. For given Vτ , the set Vτ+1 can be determined in time O(nL+1).

Proof. According to [9], the sum of the elements of X0, which is the minimal
TNMU equals

c = max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1} ≤ nL.

Now in any partition c = c1+· · ·+ck where the ci (i ∈ [k]) are the coefficients
of a segmentation of A, we have ci ≤ L for i ∈ [k]. Hence such a partition can
be described by an L–tuple (λ1, . . . , λL) of integers, where λr is the number
of summands equal to r for r ∈ [L]. Then

λr ≤
nL

r
(r ∈ [L]),

and so there are O(nL) choices for X0. Now the multiset X in

(b, X) ∈ Vτ

is a partition of some c′ with 0 ≤ c′ ≤ c ≤ nL with all summands less than
or equal to L. So there are nL possibilities for c′, and for each of these there
are O(nL) possible partitions. Thus the number of choices for X is bounded
by O(nL+1). The vectors b in the elements of Vτ differ only in the initial
part ( b1 ... bγ ), where bγ = aqτ

. But these initial parts are in bijection to the
ordered partitions of aqτ

, and of these there are (see for instance [1])

aqτ
∑

i=1

(

aqτ
− 1

i − 1

)

≤ L

(

L

bL
2
c

)

.

Since L is bounded by a constant we obtain that |Vτ | is bounded by O(nL+1).
By Lemma 6, for each (b, X) ∈ Vτ the set of accessible (b′, X \ X ′) can be
determined in time bounded by a constant, and this yields the claim.

Lemma 8. For a fixed partition c = c1 + · · · + ck, it can be checked in time
O(nL+2) if there is a segmentation of a with coefficients c1, . . . , ck.
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Proof. We only have to check if Vt 6= ∅. Since t ≤ n the claim is an immediate
consequence of Lemma 7.

Now we can prove

Theorem 3. The problem L–Min MU–Min NS can be solved in time
O(mn2L+2).

Proof. Obviously,

c = max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1}

can be determined in time O(mn). As in the proof of Lemma 7 the number
of partitions of c = c1 + · · · + ck that have to be considered is bounded by
O(nL). By Lemma 8, for a fixed partition c = c1 + · · ·+ ck it can be checked
in time O(mnL+2) if there is a segmentation of A with coefficients c1, . . . , ck,
and this concludes the proof.

We finish this section with a remark concerning practical aspects of this
result. Though the time complexity of the NS–minimization is polynomial in
m and n the exponent grows linearly with L and also the L–dependent con-
stants that were used to estimate the time–complexities of the different steps
of the algorithm, grow rapidly with L. So we expect an efficient algorithm
only for very small L. In the proof of the polynomiality we constructed the
whole sets Vτ (τ = 1, . . . , t), i.e. we performed a BFS as described before
Lemma 7. But in order to decide if there is a segmentation with the con-
sidered coefficients we need to know only if Vt is nonempty, and in order to
reconstruct a segmentation basically one path from the unique element of V0

to some element of Vt is sufficient. So for practical purposes it is natural to
use depth first search (DFS) instead of BFS.

4 Test results

We implemented the algorithm described above and Tables 1 and 2 show
test results for random 10 × 10– and 15 × 15–matrices, respectively. The
computations where done on a 2 GHz workstation and we determined the
minimal NS for 1000 randomly generated matrices with maximal entry L.
The entry in column ’max. time’ is the maximal time needed for one single
matrix, and the entry in column ’total time’ is the time needed for all the
1000 matrices. For comparison the tables also contain heuristic results that
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exact heuristic
L NS max. time total time NS total time
3 6.9 1 s 9 s 6.9 0.9 s
4 7.6 1 s 13 s 7.8 1.0 s
5 8.1 1 s 29 s 8.4 1.1 s
6 8.5 21 s 1.7 min 8.9 1.2 s
7 8.8 50 s 5.6 min 9.3 1.2 s
8 9.1 66 s 6.2 min 9.7 1.3 s
9 9.3 3.4 min 16.1 min 10.0 1.3 s
10 9.5 5.6 min 41.3 min 10.3 1.4 s
11 9.8 11.0 min 1.3 h 10.6 1.4 s
12 9.9 24.0 min 2.0 h 10.9 1.5 s
13 10.0 1.4 h 7.0 h 11.1 1.5 s

Table 1: Average number of segments for random 10 × 10–matrices with
maximal entry L. Each entry is averaged over 1000 matrices.

exact heuristic
L NS max. time total time NS total time
3 9.7 1 s 16 s 9.8 4.8 s
4 10.7 1 s 31 s 10.9 5.4 s
5 11.3 12 s 175 s 11.7 5.8 s
6 11.8 54 s 18.6 min 12.4 6.5 s
7 12.3 6.5 min 1.6 h 13.0 6.8 s
8 12.6 4.5 h 7.9 h 13.5 7.1 s
9 12.9 24.1 h 37.9 h 14.0 7.4 s
10 13.2 10.0 h 44.7 h 14.5 7.6 s

Table 2: Average number of segments for random 15 × 15–matrices with
maximal entry L. Each entry is averaged over 1000 matrices.
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were obtained with a slightly improved version of the algorithm described in
[9].

In order to evaluate the performance of the heuristic we determined the
differences between the heuristic values and the exact minimums. Tables 3
and 4 show the frequencies of the values of the differences when 1000 matrices
where treated for each value of L. We conclude that for the considered range

L 0 1 2 3
3 969 31 0 0
4 876 123 1 0
5 780 218 2 0
6 663 331 2 0
7 525 456 19 0
8 437 516 47 0
9 335 603 62 0
10 306 584 104 6
11 262 615 121 2
12 168 654 173 5
13 141 641 213 5

Table 3: Frequencies of the differ-
ences between the heuristic number
of segments and the exact minimum
for 10 × 10–matrices.

L 0 1 2 3 4
3 940 60 0 0 0
4 809 189 2 0 0
5 609 379 12 0 0
6 453 509 37 1 0
7 327 585 86 2 0
8 250 594 151 5 0
9 150 609 230 11 0
10 85 551 335 28 1

Table 4: Frequencies of the differ-
ences between the heuristic number
of segments and the exact minimum
for 15 × 15–matrices.

of parameters the exact algorithm yields only small improvements in terms
of the number of segments, while the computational effort is extremely high
already for small values of L. So for practical purposes the heuristic seems
to be a good compromise between computation time and accuracy of the
optimization. Finally, we also tested our algorithm with 13 clinical matrices,
and the results are shown in Table 5.
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exact heuristic
case no. MU NS CPU–time NS CPU–time
1 16 7 0.04 s 8 0.01 s
2 16 7 0.19 s 7 0.00 s
3 20 8 0.39 s 8 0.01 s
4 19 7 0.04 s 8 0.00 s
5 15 7 0.01 s 7 0.00 s
6 17 8 0.70 s 9 0.00 s
7 18 7 0.03 s 7 0.00 s
8 22 9 1.30 s 9 0.01 s
9 26 9 25.77 s 10 0.00 s
10 22 8 0.62 s 9 0.00 s
11 22 10 7.88 s 10 0.00 s
12 23 9 1.96 s 10 0.01 s
13 23 9 2.36 s 9 0.01 s

Table 5: Test results for clinical matrices
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