
Reducing the number of monitor units in

multileaf collimator field segmentation

Thomas Kalinowski
Universität Rostock

Fachbereich Mathematik

D-18051 Rostock
Germany

thomas.kalinowski@mathematik.uni-rostock.de

August, 2004

Abstract

Multileaf collimators (MLCs) are the prevailing tool for the realization of
radiation fields in intensity modulated radiation therapy (IMRT). One step
in the treatment planning is to determine a set of leaf positions realizing
a certain intensity modulated radiation field. In this paper we suggest two
extensions in the use of the MLC that lead to considerable savings in terms
of monitor units, thus potentially increasing the treatment quality. We test
our method with random and with clinical sample matrices.

Key words: leaf sequencing, radiation therapy optimization, intensity mod-
ulation, multileaf collimator, IMRT

2000 MSC: 92C50, 90C90

1 Introduction

In recent years intensity modulated radiation therapy (IMRT) has become an
important method in cancer therapy. The objective in the treatment plan-
ning is to irradiate the tumor as efficient as possible without damaging the
organs near to it. A modern way to realize intensity modulated radiation
fields is the usage of a multileaf collimator (MLC). An MLC consists of two
opposite banks of metal leaves which can be shifted towards each other and
so open or close certain parts of the irradiated area. In this paper we assume
that the desired intensity is already determined. After discretization an in-
tensity function can be considered as an m × n matrix A with nonnegative
integer entries. We consider the usage of MLCs in the static mode (step and
shoot). This means that the radiation is switched off when the leaves of the
collimator are moving. In other words we have to determine a (finite) set
of leaf positions with corresponding irradiation times such that the superpo-
sition of the homogeneous fields yields the given intensity matrix. The leaf
positions can be described by certain (0, 1)–matrices, called shape matrices
or segments. Two important criteria for the quality of the segmentation are
the total number of monitor units (TNMU) and the number of segments
(NS) which should both be as small as possible. In the literature there are
several leaf sequencing algorithms ([7, 3, 4, 13, 12, 11, 5, 2, 1, 9, 6]), some of
them providing the optimal TNMU but a large NS, others reducing the NS
heuristically at the price of an increased TNMU. The algorithms also differ in
the extend to which they include additional machine–dependent constraints
like the interleaf collision constraint. In principle both, TNMU and NS, can
be optimized by integer programming [10]. But due to the NP–completeness
of integer programming this is applicable only for small problem sizes. See
[8] for a survey and a comparison of the different segmentation algorithms.
In this paper we suggest two new forms of using MLCs. Both approaches
have in common that the set of allowed segments is enlarged which makes
it possible to realize a given intensity matrix with a smaller number of seg-
ments. In Section 2 we allow the MLC to be rotated about 90 between the
delivery of two segments, and in Section 3 two MLCs are used whose direc-
tions of leaf movement are perpendicular to each other. In both cases we
neglect machine–dependent constraints and the tongue and groove effect. As
in [3] we assume that the irradiation time for each segment equals 1, i.e. we
have to represent the intensity matrix as a sum of segments, and under these
conditions we want to minimize the number of used segments.

3

2 Using the MLC in two directions

In this section we search for a realization of the given intensity matrix A in the
following setup: the multileaf collimator has no interleaf collision constraint
and can be rotated about 90. A segment is a (0, 1)–matrix describing a leaf
position in the sense that a 0–entry indicates a region that is covered by
some leaf and a 1–entry indicates a region that receives radiation. So there
are two different types of segments, called horizontal and vertical segments,
according to the choice of the direction of leaf motion. This is made precise
in the following definition.

Definition 1. A horizontal segment is an m×n-matrix S = (si,j), such that
there exist integers li, ri (i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (1)

si,j =

{

1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (2)

A vertical segment is an m × n-matrix S = (si,j), such that there exist
integers lj, rj (j ∈ [n]) with the following properties:

lj ≤ rj + 1 (j ∈ [n]), (3)

si,j =

{

1 if lj ≤ i ≤ rj

0 otherwise
(i ∈ [m], j ∈ [n]), (4)

Now a segmentation of an intensity matrix A is a representation of A as
a sum of segments.

Example 1. A segmentation with 4 horizontal and 2 vertical segments is
given by

(

1 4 2 5
1 3 3 2
1 3 2 5
6 4 6 0

)

=

(

0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 0

)

+

(

0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 0

)

+

(

0 1 1 1
1 1 1 0
0 1 1 1
1 1 1 0

)

+

(

1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

)

+

(

0 1 0 0
0 1 0 0
0 1 0 1
1 0 1 0

)

+

(

0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

)

. (5)

Observe that the minimal number of monitor units for this matrix would be
8 if the MLC was used in only one direction (horizontal or vertical) [3, 6, 9].

Obviously, in this setup the TNMU of the treatment corresponding to a
segmentation is proportional to the number of segments. Now the segmenta-
tion problem is to find, for given A, a segmentation with the minimal TNMU.

4

In the Subsection 2.1 we derive a backtracking algorithm for the segmenta-
tion problem. Due to the this algorithm is applicable only for small problem
sizes (10 × 10–matrices with entries between 0 and 7), but in any case we
obtain a lower bound for the TNMU by interrupting the backtracking after
some time. In Subsection 2.2 we present a heuristic approach that finds a
segmentation with a small TNMU. A comparison between the lower bound
and heuristic results can be found in Section 4.

2.1 A lower bound

Theorem 1. Let c1, c2 be nonnegative integers and put c = c1 + c2. Then
a segmentation of A with c1 horizontal and c2 vertical segments exists iff
B := cJ −A (where J is the all–one–matrix of size m× n) can be written as
a sum of four nonnegative integer matrices P = (pi,j), Q = (qi,j), R = (ri,j),
S = (si,j) with the following properties.

1. pi,j + qi,j ≤ c1, ri,j + si,j ≤ c2 for (i, j) ∈ [m] × [n]

2. pi,j ≥ pi,j+1, qi,j ≤ qi,j+1 for i ∈ [m], j ∈ [n − 1]

3. ri,j ≥ ri+1,j, si,j ≤ si+1,j for i ∈ [m − 1], j ∈ [n]

Proof. “⇒”: By construction, bi,j is the number of times the bixel (i, j) has
to be covered in a segmentation with c monitor units. Suppose there is
given a segmentation with c1 horizontal and c2 vertical segments. For
(i, j) ∈ [m] × [n], let pi,j, qi,j, ri,j and si,j be the number of segments
in which bixel (i, j) is covered by the left, the right, the upper and the
lower leaf, respectively. This yields the desired decomposition of B.

“⇐”: Suppose B = P +Q+R+S where P , Q, R and S satisfy the conditions
of the theorem. Now we define segments S(1), S(2), . . . , S(c) as follows.
For 1 ≤ k ≤ c1, let

σ
(k)
i,j =

{

0 if k ≤ pi,j,

1 otherwise,
τ

(k)
i,j =

{

0 if k > c1 − qi,j,

1 otherwise.

For c1 + 1 ≤ k ≤ c, let

σ
(k)
i,j =

{

0 if k − c1 ≤ ri,j

1 otherwise
, τ

(k)
i,j =

{

0 if k − c1 > c2 − si,j

1 otherwise
.

Finally, for all k ∈ [c], put s
(k)
i,j = σ

(k)
i,j τ

(k)
i,j . To conclude the proof we

have to check that the matrices S(k) = (s
(k)
i,j) are segments and that

5

their sum is A. Condition 1 in the theorem implies that, for each k and
each (i, j), at most one of the numbers σ

(k)
i,j and τ

(k)
i,j is 0, corresponding

to the fact that a bixel can not be covered by both leaves of a leaf pair
at the same time. Thus the number of indices k with s

(k)
i,j = 0 equals

pi,j + qi,j + ri,j + si,j = bi,j, hence

c
∑

k=1

s
(k)
i,j = c − bi,j = ai,j.

We show that S(k) is a horizontal segment for k ≤ c1. For k > c1 one
obtains similarly that S(k) is a vertical segment. If s

(k)
i,j = 0, either

σ
(k)
i,j = 0 or τ

(k)
i,j = 0. By construction of the σ

(k)
i,j , τ

(k)
i,j and by Condition

2 in the theorem this implies σ
(k)
i,j′ = 0 for all j ′ < j or τ

(k)
i,j′ = 0 for all

j ′ > j, and consequently s
(k)
i,j = 0 for all j ′ < j or for all j ′ > j.

Example 2. For A =

(

1 4 2 5
1 3 3 2
1 3 2 5
6 4 6 0

)

and c = 6 = 4 + 2 we have

B =

(

5 2 4 1
5 3 3 4
5 3 4 1
0 2 0 6

)

=

(

3 2 2 0
2 1 0 0
3 2 0 0
0 0 0 0

)

+

(

0 0 0 0
1 1 1 2
0 0 0 0
0 0 0 4

)

+

(

2 0 2 1
2 0 2 1
2 0 2 0
0 0 0 0

)

+

(

0 0 0 0
0 1 0 1
0 1 0 1
0 2 0 2

)

.

This yields

σ(1) =

(

0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 1

)

, τ (1) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0

)

, S(1) =

(

0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 0

)

,

σ(2) =

(

0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 1

)

, τ (2) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0

)

, S(2) =

(

0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 0

)

,

σ(3) =

(

0 1 1 1
1 1 1 1
0 1 1 1
1 1 1 1

)

, τ (3) =

(

1 1 1 1
1 1 1 0
1 1 1 1
1 1 1 0

)

, S(3) =

(

0 1 1 1
1 1 1 0
0 1 1 1
1 1 1 0

)

,

σ(4) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)

, τ (4) =

(

1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

)

, S(4) =

(

1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

)

,

σ(5) =

(

0 1 0 0
0 1 0 0
0 1 0 1
1 1 1 1

)

, τ (5) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 0 1 0

)

, S(5) =

(

0 1 0 0
0 1 0 0
0 1 0 1
1 0 1 0

)

,

σ(6) =

(

0 1 0 1
0 1 0 1
0 1 0 1
1 1 1 1

)

, τ (6) =

(

1 1 1 1
1 0 1 0
1 0 1 0
1 0 1 0

)

, S(6) =

(

0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

)

.

Based on Theorem 1, Algorithm 1 finds the minimal TNMU c and a
decomposition of B = cJ − A corresponding to a segmentation with this
TNMU. The step in line 7 can be realized using backtracking. Of course this
method is very time–consuming. Our implementation solved the problem

6

Algorithm 1 Minimal TNMU for 2–directional segmentation

c := max{ai,j : (i, j) ∈ [m] × [n]}
finished:=false
while not finished do

B := cJ − A

5: c1 := c; c2 := 0
while not finished and c1 ≥ 0 do

Construct a decomposition of B as in Theorem 1 or derive a contra-
diction from the assumption that such a decomposition exists
if Construction successful then

finished:=true
10: else

c1 := c1 − 1; c2 := c2 + 1
end if

end while

if not finished then

15: c := c + 1
end if

end while

for 10 × 10–matrices with random entries between 0 and 7 in a few seconds,
but for larger problems this algorithm is not practicable. By interrupting
the backtracking when some fixed time limit is reached without getting a
construction or a contradiction in line 7, we still obtain a lower bound for
the TNMU.

2.2 A heuristic method

For notational convenience we add a 0−th and an (m + 1)−th row and a
0−th and an (n + 1)−th column with

a0,j = am+1,j = ai,0 = ai,n+1 = 0 (i = 1, . . . , m; j = 1, . . . , n),

and we put

α(i) =

n
∑

j=1

max{0, ai,j − ai,j−1} (i ∈ [m]),

β(j) =
m
∑

i=1

max{0, ai,j − ai−1,j} (j ∈ [n]).

7

Let also
chor(A) = max

1≤i≤m
α(i), cvert(A) = max

1≤j≤n
β(j).

According to [6] there is a segmentation without vertical segments with
chor(A) monitor units, and there is a segmentation without horizontal seg-
ments with cvert(A) monitor units. Hence an upper bound for the minimal
number of monitor units needed to realize A is c(A) = min{chor(A), cvert(A)}.

Similar to the approach in [6] we construct a segmentation by successively
subtracting segments until the zero matrix is reached. For the choice of the
segment S we suggest a heuristic method. First chor(A) and cvert(A) are
determined and the direction of leaf motion is chosen to be horizontal if
chor(A) ≤ cvert(A) and vertical otherwise. We describe the construction of S

for the horizontal case, the vertical case is treated analogously. For the new
matrix A′ := A − S, we have two aims. Firstly, we want that

chor(A
′) = chor(A) − 1, (6)

and secondly cvert(A
′) should be small. Let us consider the second condition

first. With the segments we associate (D, D′)–paths in a layered digraph
G = (V, E) similar to the digraph from [2].

V = {D, D′} ∪ {(i, l, r) : i ∈ [m], 1 ≤ l ≤ r + 1 ≤ n + 1,

ai,j > 0 for l ≤ j ≤ r},

and E consists of all possible arcs between row i and row i+1 (i = 1, . . . , m−
1), all arcs between D and row 1, and all arcs between row m and D′. Clearly,
there is a correspondence between the paths D, (1, l1, r1), . . . (m, lm, rm), D′

and the (horizontal) segments. Now we define a weight function on E and
determine the segment S as a path of maximal weight in Γ. This approach
seems to be natural because the values a′

i,j −a′
i−1,j , and thus cvert(A

′) depend
on the combinations of the leaf positions in adjacent rows. Experiments
have shown that for the considered range of parameters the weight function
w described below works quite well.

w(0, (1, l, r)) =

r
∑

j=l

max{1, β(j) + 5 − cvert(A)} (1 ≤ l ≤ r + 1 ≤ n)

w((m, l, r), 1) = 0 (1 ≤ l ≤ r + 1 ≤ n + 1)

In order to define the weights for the arcs ((i − 1, l, r), (i, l′, r′)) we put, for
i = 2, 3, . . . , m and j = 1, 2, . . . , n,

ρ1(i, j) =

{

max{1, β(j) + 5 − cvert(A)} if ai,j ≥ ai−1,j

0 otherwise,

8

ρ2(i, j) =

{

max{1, β(j) + 5 − cvert(A)} if ai,j > ai−1,j

0 otherwise.

ρk(i, j) (k = 1, 2) measure the influence of a potential segment with si,j 6=
si−1,j on ai,j − ai−1,j and thus on β(j). ρ1(i, j) is nonzero if a segment with
si,j = 0 and si−1,j = 1 increases the value of max{0, ai,j − ai−1,j}, and sim-
ilarly ρ2(i, j) is nonzero if a segment with si,j = 1 and si−1,j = 0 decreases
max{0, ai,j − ai−1,j}. The magnitudes of the ρk(i, j) (k = 1, 2) are chosen
according to the idea that columns j with β(j) close to cvert(A) should be
considered more important than columns j with a small value of β(j). Now
we define w as follows.

w((i − 1, l, r), (i, l′, r′)) =











































































































































−
l′−1
∑

j=l

ρ1(i, j) −
r
∑

j=r′+1

ρ1(i, j)

if l ≤ l′ ≤ r′ + 1 ≤ r + 1,

−
l′−1
∑

j=l

ρ1(i, j) +
r′
∑

j=r+1

ρ2(i, j)

if l ≤ l′ ≤ r + 1 ≤ r′,

−
r
∑

j=l

ρ1(i, j) +
r′
∑

j=l′
ρ2(i, j)

if l ≤ r + 1 < l′ ≤ r′ + 1,
l−1
∑

j=l′
ρ2(i, j) −

r
∑

j=r′+1

ρ1(i, j)

if l′ < l ≤ r′ + 1 ≤ r + 1,
l−1
∑

j=l′
ρ2(i, j) +

r′
∑

j=r+1

ρ2(i, j)

if l′ < l ≤ r + 1 ≤ r′,
r′
∑

j=l′
ρ2(i, j) −

r
∑

j=l

ρ1(i, j)

if l′ ≤ r′ + 1 < l ≤ r + 1.

Example 3. Let rows i − 1 and i of matrix A be

(2 4 1 4 3 4 3 3
1 5 3 2 7 4 3 2) ,

and consider the arc e = ((i−1, 4, 7), (i, 2, 6)), corresponding to the two rows

(0 0 0 1 1 1 1 0
0 1 1 1 1 1 0 0) .

If we choose a segment with these rows the corresponding part of A′ is

(2 4 1 3 2 3 2 3
1 4 2 1 6 3 3 2)

9

The relevant columns for w(e) are columns number 2, 3 and 7. Assume

cvert(A) = 23, β(2) = 20, β(3) = 21 and β(7) = 17.

Then

ρ1(i, 2) = 2, ρ1(i, 3) = 3, ρ1(i, 7) = 1

ρ2(i, 2) = 2, ρ2(i, 3) = 3, ρ2(i, 7) = 0

and we obtain
w(e) = 2 + 3 − 1 = 4.

Here the positive terms correspond to

max{0, a′
i,2 − a′

i−1,2} = 0 < 1 = max{0, ai,2 − ai−1,2} and

max{0, a′
i,3 − a′

i−1,3} = 1 < 2 = max{0, ai,3 − ai−1,3},

while the negative term corresponds to

max{0, a′
i,7 − a′

i−1,7} = 1 > 0 = max{0, ai,7 − ai−1,7}.

Finally, we delete all vertices (i, l, r) that lead to segments violating (6).
Fix some vertex (i, l, r) and put

a′
i,j =

{

ai,j − 1 if l ≤ j ≤ r,

ai,j otherwise.

A segment corresponding to a path through (i, l, r) can not satisfy (6) if
α′(i) :=

∑n

j=1 max{0, a′
i,j −a′

i,j−1} > chor(A)− 1. But the only terms in α′(i)
that could be different from the corresponding terms in α(i) are the terms
for j = l and j = r + 1 (if r < n), and for these terms we have, if l ≤ r,

max{0, a′
i,l − a′

i,l−1} =

{

max{0, ai,l − ai,l−1} − 1 if ai,l > ai,l−1

max{0, ai,l − ai,l−1} if ai,l ≤ ai,l−1,

max{0, a′
i,r+1 − a′

i,r} =

{

max{0, ai,r+1 − ai,r} + 1 if ai,r ≤ ai,r+1

max{0, ai,r+1 − ai,r} if ai,r > ai,r+1,

So

α′(i) =























α(i) − 1 if l ≤ r, ai,l > ai,l−1 and ai,r > ai,r+1,

α(i) if l = r + 1,
α(i) if l ≤ r, ai,l > ai,l−1 and ai,r ≤ ai,r+1,

α(i) if l ≤ r, ai,l ≤ ai,l−1 and ai,r > ai,r+1,

α(i) + 1 if l ≤ r, ai,l ≤ ai,l−1 and ai,r ≤ ai,r+1.

Consequently, we have to delete all vertices satisfying one of the following
conditions.

10

1. α(i) = chor(A) and r = l − 1

2. α(i) = chor(A) and (ai,l ≤ ai,l−1 or ai,r ≤ ai,r+1)

3. α(i) = chor(A) − 1 and (l ≤ r, ai,l ≤ ai,l−1 and ai,r ≤ ai,r+1)

Now we choose a segment S corresponding to a (D, D′)−path of maximal
weight.

3 Two orthogonal MLCs

In this section we suppose that two MLCs without ICC are arranged in such
a way that the leaf pairs of the one are perpendicular to the leaf pairs of the
other, and the segments are the (0, 1)–matrices describing any combination
of leaf positions. For instance,

(0 1 1 0 1 0
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 1 0 0 0
1 0 0 0 1 1

)

is a segment corresponding to the leaf positions shown in Figure 1. We

Figure 1: Leaf positions corresponding to the segment given in the text.

formulate the segmentation problem as an integer program. We associate
with the segment S the set

T (S) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, si,j = 1},

and put
F = {T (S) : S is a segment}.

11

Then a segmentation A =
∑k

i=1 ciSi can be considered as a function f : F →
IN by putting f(T) = ci if T = T (Si) and f(T) = 0 for the remaining T .
Now the segmentation problem can be written as follows

(IP)



































minimize
∑

T∈F

f(T) subject to

f(T) ∈ IN ∀T ∈ F ,

∑

T∈F :(i,j)∈T

f(T) = ai,j ∀(i, j) ∈ V.

An LP–relaxation of this program is

(P)



































minimize
∑

T∈F

f(T) subject to

f(T) ≥ 0 ∀T ∈ F ,

∑

T∈F :(i,j)∈T

f(T) = ai,j ∀(i, j) ∈ V.

The dual variables (one variable for each (i, j) ∈ V) can be considered as a
function g : V → IR and in this formulation the dual program is

(D)



















maximize
∑

(i,j)∈V

ai,jg(i, j) subject to

∑

(i,j)∈T

g(i, j) ≤ 1 ∀T ∈ F .

Here we suggest a heuristic segmentation method based on dual feasible
solutions of a particular type. For pairs (i, j) with 2 ≤ i ≤ m − 1 and
2 ≤ j ≤ n − 1 we put

γ1(i, j) = max

{

1

3
(ai,s + ai,t + au,j + av,j − ai,j) : 1≤s<j<t≤n,

1≤u<i<v≤m

}

. (7)

Then
c̃(A) = max{γ1(i, j) : 2 ≤ i ≤ m − 1, 2 ≤ j ≤ n − 1}

is a lower bound for the TNMU, because for any (i, j) with 2 ≤ i ≤ m − 1,
2 ≤ j ≤ n − 1 and any numbers s, t, u and v with 1 ≤ s < j < t ≤ n

and 1 ≤ u < i < v ≤ m we can define a dual feasible solution g by putting
g(i, s) = g(i, t) = g(u, j) = g(v, j) = 1

3
, g(i, j) = −1

3
and g(p, q) = 0 for all

12

j

1
3

u

i
1
3

−1
3

1
3

1
3

v

s t

Figure 2: The structure of the dual feasible solution g, where the empty
spaces are filled with zeros.

other (p, q) ∈ [m] × [n]. This is illustrated in Figure 2. If we choose s, t,
u and v so that the maximum in (7) is attained the objective value of g is
γ1(i, j) and to see that g is feasible we just have to observe that in order to
cover the bixel (i, j) we have to cover at least one of the bixels (i, s), (i, t),
(u, j), (v, j). Of course, c̃(A) does not have to be an integer, and since we
are using only integer coefficients even dc̃(A)e can be used as a lower bound
for the TNMU. Our algorithm is based on the general principle of extracting
segments from A. Precisely, depending on A we determine a segment S, such
that

A′ = A − S

is still nonnegative, and then we iterate this step with A′ until the zero
matrix is reached. The main idea underlying our heuristic approach to the
construction of S is that we try to decrease the value of c̃. Observe that

ai,j = 0 =⇒ si,j = 0 (i ∈ [m], j ∈ [n]) (8)

is a necessary and sufficient condition for the nonnegativity of A′ = A − S.
Now we start with S equal to the all–one matrix of dimension m×n and cover
successively all the zero–entries of A. The construction of S is described in
Algorithm 2. Lines 2 to 9 ensure that condition (8) is satisfied for bixels
(i, j) with i ∈ {1, m} or j ∈ {1, n}. These bixels can be covered without
influencing other bixels, for instance (i, 1) can be covered by the left leaf
of row i, so lines 2 to 9 imply no loss of generality. We still have to make
precise, how we choose the bixel (i, j) in line 11 and the direction from which
we cover it in line 12. For the choice of the bixel we follow the strategy to
cover bixels (i, j) with a high value of γ1(i, j) first. Suppose we have already

13

Algorithm 2 Segment for two orthogonal MLCs

si,j := 1 (i ∈ [m], j ∈ [n])
for j = 1 to n do

if a1,j = 0 then s1,j = 0
if am,j = 0 then sm,j = 0

5: end for

for i = 1 to m do

if ai,1 = 0 then si,1 = 0
if ai,n = 0 then si,n = 0

end for

10: while (8) is violated do

Choose an (i, j) with ai,j = 0 and si,j = 1
Choose a covering direction from {left, right, up, down}
Cover bixel (i, j) with the leaf from the chosen direction
Let S be the segment corresponding to the new leaf positions

15: end while

chosen the bixel to cover. Now we have to choose the direction from which
we want to cover it. For instance by covering bixel (i, j) by the left leaf we
also cover all bixels (i, j ′) with 1 ≤ j ′ ≤ j. So it is natural to cover bixel
(i, j) from a direction with the property that the maximal entry of a bixel
that is covered although the entry is nonzero, is as small as possible. Let

γ
(left)
2 (i, j) = max{ai,j′ : 1 ≤ j ′ ≤ j},

γ
(right)
2 (i, j) = max{ai,j′ : j ≤ j ′ ≤ n},

γ
(up)
2 (i, j) = max{ai′,j : 1 ≤ i′ ≤ i},

γ
(down)
2 (i, j) = max{ai′,j : i ≤ i′ ≤ m},

and choose the covering direction of bixel (i, j),

dir(i, j) ∈ {left, right, up, down}

to be the direction with the smallest value of γ
(∗)
2 (i, j). To decide between

directions with equal value of γ
(∗)
2 (i, j) we consider the number of bixels (i′, j ′)

violating the condition for the segment (i.e. with ai′,j′ = 0 and si′,j′ = 1)
that are covered when we cover bixel (i, j) from the respective direction. To

14

make this precise, let

γ
(left)
3 (i, j) = |{(i, j ′) : 1 ≤ j ′ < j, ai,j′ = 0 and si,j′ = 1}| ,

γ
(right)
3 (i, j) = |{(i, j ′) : j < j ′ ≤ n, ai,j′ = 0 and si,j′ = 1}| ,

γ
(up)
3 (i, j) = |{(i′, j) : 1 ≤ i′ < i, ai′,j = 0 and si′,j = 1}| ,

γ
(down)
3 (i, j) = |{(i, j ′) : i < j ′ ≤ m, ai′,j = 0 and si′,j = 1}| ,

and choose for dir(i, j) the direction with in first instance minimal value of

γ
(∗)
2 (i, j), and in second instance maximal value of γ

(∗)
3 (i, j). If there is still

a tie it can be decided randomly. Finally, we put

γ3(i, j) = γ
(dir(i,j))
3 (i, j).

We choose among the bixels (i, j) with ai,j = 0 and si,j = 1 one with in first
instance maximal value of γ1(i, j), and in second instance maximal value of
γ3(i, j). Now the chosen bixel (i, j) is covered by the leaf that is given by
dir(i, j). Precisely, we put

si,j′ := 0 for

{

1 ≤ j ′ ≤ j if dir(i, j) = left,
j ≤ j ′ ≤ n if dir(i, j) = right,

si′,j := 0 for

{

1 ≤ i′ ≤ i if dir(i, j) = up,

i ≤ i′ ≤ m if dir(i, j) = down.

This covering step is repeated until (8) is satisfied.

Example 4. Consider the matrix

A =

(1 4 3 1 5 1
4 0 3 1 2 1
2 1 5 4 0 0
4 4 5 2 3 3
2 2 2 1 1 1
5 0 0 0 5 3

)

.

γ1(2, 2) = 5 is the maximal value of γ1(i, j), and (2, 2) can be covered from
the right with maximal value of a covered bixel equal to 3, while from all
other directions we would have to cover a bixel with entry 4. For all the
other zero–bixels it is obvious how to cover them without covering a nonzero
bixel. So the first segment is

(1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 0 0 0 1 1

)

,

15

and continuing we obtain a segmentation with 5 segments.

(1 4 3 1 5 1
4 0 3 1 2 1
2 1 5 4 0 0
4 4 5 2 3 3
2 2 2 1 1 1
5 0 0 0 5 3

)

−

(1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 0 0 0 1 1

)

=

(0 3 2 0 4 0
3 0 3 1 2 1
1 0 4 3 0 0
3 3 4 1 2 2
1 1 1 0 0 0
4 0 0 0 4 2

)

,

(0 3 2 0 4 0
3 0 3 1 2 1
1 0 4 3 0 0
3 3 4 1 2 2
1 1 1 0 0 0
4 0 0 0 4 2

)

−

(0 1 1 0 1 0
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 1 0 0 0
1 0 0 0 1 1

)

=

(0 2 1 0 3 0
2 0 2 0 1 0
0 0 3 2 0 0
2 3 3 0 1 1
0 1 0 0 0 0
3 0 0 0 3 1

)

,

(0 2 1 0 3 0
2 0 2 0 1 0
0 0 3 2 0 0
2 3 3 0 1 1
0 1 0 0 0 0
3 0 0 0 3 1

)

−

(0 1 1 0 1 0
1 0 0 0 0 0
0 0 1 1 0 0
1 1 1 0 1 1
0 1 0 0 0 0
1 0 0 0 1 1

)

=

(0 1 0 0 2 0
1 0 2 0 1 0
0 0 2 1 0 0
1 2 2 0 0 0
0 0 0 0 0 0
2 0 0 0 2 0

)

,

(0 1 0 0 2 0
1 0 2 0 1 0
0 0 2 1 0 0
1 2 2 0 0 0
0 0 0 0 0 0
2 0 0 0 2 0

)

−

(0 1 0 0 1 0
0 0 1 0 1 0
0 0 1 1 0 0
1 1 1 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0

)

=

(0 0 0 0 1 0
1 0 1 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0

)

.

4 Test results

We implemented both of the described methods in C++ on a 2GHz work-
station. Tables 1 and 2 show test results for random matrices. Each entry
is the average TNMU for 1000 matrices with entries from {0, 1, . . . , L}. For
comparison we also included the average minimal TNMU when one MLC is
used only in horizontal direction. According to [6] this minimal TNMU is
given by

max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1}.

The computation times for the whole heuristic columns were 172 seconds
(10 × 10) and 926 seconds (15 × 15) for method 2, and 91 seconds (10× 10)
and 610 seconds (15 × 15) for method 3.

16

Method 1 Method 2 Method 3
L TNMU TNMU bound TNMU bound
3 9.8 7.2 6.7 5.4 3.9
4 12.6 9.0 8.3 6.7 5.2
5 15.5 10.8 10.1 8.0 6.4
6 18.1 12.6 11.8 9.2 7.6
7 20.8 14.3 13.5 10.4 8.8
8 23.6 15.9 14.7 11.7 10.0
9 26.4 17.7 16.6 12.9 11.2
10 29.0 19.5 18.4 14.1 12.4
11 31.8 21.3 19.6 15.4 13.6
12 34.5 23.0 21.9 16.6 14.8
13 36.9 24.6 22.8 17.9 16.0
14 39.8 26.3 24.8 19.1 17.1
15 42.4 28.2 26.2 20.3 18.3
16 45.2 29.8 27.9 21.5 19.5

Table 1: Average TNMU for randomly generated 10 × 10–matrices with
entries between 0 and L. Method 1: minimal TNMU when the MLC is
always used in horizontal direction. Method 2: heuristic results and lower
bounds when the MLC can be rotated about 90. Method 3: heuristic results
and lower bounds when two orthogonal MLCs are used.

17

Method 1 Method 2 Method 3
L TNMU TNMU bound TNMU bound
3 14.0 10.0 8.3 7.4 4.0
4 17.9 12.4 10.2 9.0 5.3
5 21.7 14.8 12.3 10.5 6.7
6 25.6 17.2 14.5 12.0 7.9
7 29.4 19.6 16.2 13.6 9.3
8 33.2 21.9 18.0 15.1 10.5
9 37.0 24.2 20.1 16.6 11.8
10 40.9 26.6 21.8 18.1 13.0
11 44.7 29.0 24.0 19.6 14.2
12 48.5 31.4 25.7 21.1 15.7
13 52.3 33.7 27.8 22.5 16.9
14 56.2 36.1 29.5 24.1 18.1
15 59.8 38.3 31.3 25.5 19.6
16 63.3 40.7 32.6 27.0 20.4

Table 2: Average TNMU for randomly generated 15 × 15–matrices with
entries between 0 and L. Method 1: minimal TNMU when the MLC is
always used in horizontal direction. Method 2: heuristic results and lower
bounds when the MLC can be rotated about 90. Method 3: heuristic results
and lower bounds when two orthogonal MLCs are used.

case no. MU 1 MU 2 MU 3
1 16 11 11
2 16 11 11
3 20 12 11
4 19 12 11
5 15 13 10
6 17 12 12
7 18 13 11
8 22 14 13
9 26 16 13
10 22 14 14
11 22 15 14
12 23 16 14
13 23 14 14

Table 3: Test results for clinical matrices: the TNMU with one MLC in one
direction (MU 1), with one MLC in two directions (MU 2) and with two
orthogonal MLCs (MU 3).

18

References

[1] D. Baatar and H.W. Hamacher. New LP model for multileaf collimators
in radiation therapy. contribution to the conference ORP3, University
of Kaiserslautern, 2003.

[2] N. Boland, H.W. Hamacher, and F. Lenzen. Minimizing beam-on time
in cancer radiation treatment using multileaf collimators. NETWORKS,
43(4):226–240, 2004.

[3] T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer. X–ray field
compensation with multileaf collimators. Int. J. Radiat. Oncol. Biol.
Phys., 28:723–730, 1994.

[4] A.L. Boyer and C.Y. Yu. Intensity–modulated radiation therapy with
dynamic multileaf collimators. Semin. Radiat. Oncol., 9:48–59, 1999.

[5] J. Dai and Y. Zhu. Minimizing the number of segments in a deliv-
ery sequence for intensity–modulated radiation therapy with a multileaf
collimator. Med. Phys., 28:2113–2120, 2001.

[6] K. Engel. A new algorithm for optimal multileaf collimator field seg-
mentation. Preprint 03/5, Fachbereich Mathematik, Uni Rostock, 2003.

[7] J.M. Galvin, X.G. Chen, and R.M. Smith. Combining multileaf fields
to modulate fluence distributions. Int. J. Radiat. Oncol. Biol. Phys.,
27:697–705, 1993.

[8] T. Kalinowski. Realization of intensity modulated radiation fields using
multileaf collimators. In R. Ahlswede, L. Bäumer, and N. Cai, editors,
General Theory of Information Transfer and Combinatorics. Shannon
Foundation, to be published 2004. Report on a Research Project at
the ZIF (Center of interdisciplinary research) in Bielefeld Oct. 1, 2002
– August 31, 2003.

[9] S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka. Leaf sequenc-
ing algorithms for segmented multileaf collimation. Phys. Med. Biol.,
48(3):307–324, 2003.

[10] M. Langer, V. Thai, and L. Papiez. Improved leaf sequencing reduces
segments of monitor units needed to deliver IMRT using multileaf colli-
mators. Med. Phys., 28:2450–2458, 2001.

[11] W. Que. Comparison of algorithms for multileaf collimator field seg-
mentation. Med. Phys., 26:2390–2396, 1999.

19

[12] R.A.C. Siochi. Minimizing static intensity modulation delivery time
using an intensity solid paradigm. Int. J. Radiat. Oncol. Biol. Phys.,
43:671–680, 1999.

[13] P. Xia and L. Verhey. Multileaf collimator leaf–sequencing algorithm for
intensity modulated beams with multiple static segments. Med. Phys.,
25:1424–1434, 1998.

20

