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Abstract

We present an algorithm for optimal step–and–shoot intensity mod-
ulated radiation therapy without interleaf collision and with elimina-
tion of tongue–and–groove effects. Adapting the concepts of [6] we
characterize the minimal number of monitor units as the maximal
weight of a path in a properly constructed weighted digraph. We also
show that this number of monitor units can be realized by an unidi-
rectional plan, thus proving that the algorithm of Kamath et al. [10]
is monitor unit optimal in general and not only for unidirectional leaf
movement. Our characterization of the minimal number of monitor
units has the advantage that it can be used to derive a heuristic for
the reduction of the number of segments following the ideas of [7].
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1 Introduction

In intensity modulated radiation therapy (IMRT), the desired fluence distri-
bution can be described by an intensity matrix, that is a nonnegative integer
m× n–matrix A, where the irradiated region is discretized into m× n bixels

and the entry ai,j represents the required fluence at bixel (i, j). A modern way
to realize such intensity maps is the usage of a multileaf collimator (MLC).
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An MLC consists of metal leaves which can block the radiation. To each row
of the intensity matrix there is associated a pair of leaves, a left leaf and a
right leaf that can be moved in the direction of the row. When the MLC
is used in the so called step–and–shoot mode the given fluence distribution
is realized by superimposing a number of differently shaped homogeneous
fields coming from different combinations of the leaf positions. For example,
Figure 1 shows a sequence of leaf positions for the matrix

A =









1 2 2 0
0 2 3 1
1 1 3 3
2 2 1 0









,

where the shading indicates the region which is covered by the leaves.

Figure 1: A realization of the intensity matrix A using an MLC.

The problem of realizing a given intensity matrix A leads to the problem
of representing A as a positive integer combination of certain (0, 1)–matrices,
called segments, which represent the possible leaf positions. The main objec-
tives in constructing such a segmentation are to minimize the total number of
monitor units (TNMU) and the number of segments (NS). An important re-
striction for the possible segments in some of the MLCs used in clinical prac-
tice is the interleaf collision constraint (ICC) which forbids the overlapping of
opposite leaves in adjacent rows. Due to the tongue–and–groove design of the
MLCs there is a narrow strip in the border region between two adjacent rows
that is covered by both leaves and this may lead to underdosage effects in
these regions. In order to minimize these effects we require that ai,j ≤ ai+1,j

implies that bixel (i + 1, j) is exposed whenever bixel (i, j) is exposed (simi-
larly for i−1 instead of i+1). Thus we assure that the overlap region of two
bixels always receives the smaller one of the relevant doses. We say that a
segmentation of A satisfies the tongue–and–groove constraint (TGC) if this
condition is fulfilled for all segments. Starting with [3] and [5] there were
proposed several algorithms for the segmentation problem [1, 2, 4, 9, 13, 14].
Only recently there were presented two algorithms eliminating the tongue–
and–groove effect [10, 12]. The algorithm from [10] is TNMU–optimal, as is
shown for unidirectional plans in [10] and will be proved without restriction
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on the leaf movement direction in the present paper. Adapting the approach
of [4], in [6] we characterized the minimal TNMU for the segmentation with
ICC as the maximal weight of a path in a certain digraph. In this paper
we further modify this approach such that the TGC is included, thus solv-
ing the TNMU–minimization problem for the two most relevant restrictions
completely. In addition, we derive a greedy heuristic for the reduction of the
number of segments and present some numerical test results.

2 Mathematical formulation of the TNMU–

segmentation problem with ICC and TGC

Throughout the rest of the paper, for a natural number n, [n] denotes the set
{1, 2, . . . , n} and for natural numbers m < n, [m, n] denotes the set {m, m +
1, . . . , n}. In this section we formulate an LP–relaxation of the segmentation
problem that is very similar to the one used in [6]. We start with a formal
characterization of the (0, 1)–matrices that are allowed as segments for a
given intensity matrix A.

Definition 1. Let A be an intensity matrix. An A–segment is an m × n-
matrix S = (si,j) with entries from {0, 1}, such that there exist integers li, ri

(i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (1)

si,j =

{

1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (2)

ICC: li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m − 1]), (3)

and we have

TGC:

{

ai,j ≤ ai+1,j ∧ si,j = 1 ⇒ si+1,j = 1 (i ∈ [m − 1], j ∈ [n]),
ai,j ≤ ai−1,j ∧ si,j = 1 ⇒ si−1,j = 1 (i ∈ [2, m], j ∈ [n]).

(4)

Now a segmentation of an intensity matrix A is a representation

A =

t
∑

i=1

uiS
(i)

with positive integers ui and A–segments S(i) (i ∈ [t]), the TNMU of this
segmentation is

∑t

i=1 ui and the TNMU–segmentation problem is to find, for
given A, a segmentation with minimal TNMU. Let A be a fixed intensity
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matrix. We denote by F the family of subsets of [m] × [n] that correspond
to A−segments, precisely

F = {T ⊆ [m] × [n] : There exists an A − segment S

with (i, j) ∈ T ⇐⇒ si,j = 1}.

Now the formulations of the linear program and its dual are exactly the
same as in [6]. We associate with a segmentation A =

∑k

i=1 uiSi a function
f : F → IN : for 1 ≤ i ≤ k we put f(T ) = ui for the T ⊆ [m] × [n]
corresponding to the segment Si, and for the remaining T we put f(T ) = 0.
Now the LP–relaxation of the TNMU–segmentation problem is:

(P )



































minimize
∑

T∈F

f(T ) subject to

f(T ) ≥ 0 ∀T ∈ F ,

∑

T∈F :(i,j)∈T

f(T ) = ai,j ∀(i, j) ∈ [m] × [n].

The dual variables (one variable for each (i, j) ∈ [m]× [n]) can be considered
as a function g : [m] × [n] → IR and in this formulation the dual program is

(D)



















maximize
∑

(i,j)∈[m]×[n]

ai,jg(i, j) subject to

∑

(i,j)∈T

g(i, j) ≤ 1 ∀T ∈ F .

We construct a digraph G = (V, E) as follows.

V = {0, 1} ∪ ([m] × [0, n + 1]) , E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(0, (i, 0)) : i ∈ [m]} ∪ {((i, n + 1), 1) : i ∈ [m]},

E2 = {((i, j), (i + 1, j)) : i ∈ [m − 1], j ∈ [n − 1]},

E3 = {((i, j), (i − 1, j)) : i ∈ [2, m], j ∈ [n − 1]},

E4 = {((i, j − 1), (i, j)) : i ∈ [m], j ∈ [n + 1]}.

Here 0 and 1 serve as starting and end point, respectively, and the vertices
in [m]× [n] correspond to the entries of A. The two extra columns [m]×{0}
and [m]×{n+1} have the purpose to simplify the notation: they assure that
for every (i, j) ∈ [m]× [n] there are vertices (i, j − 1) and (i, j + 1). Without
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this, in several of the arguments below, it would be necessary to treat the
first and the last column seperately (then 0 and 1 would have to play the
role of (i, 0) and (i, n+1), respectively). To be able to treat the first and the
n-th column exactly as the remaining columns, we also put ai,0 = ai,n+1 = 0
(i ∈ [m]). Observe that we omit the vertical arcs ((i, n), (i ± 1, n)) in the
n-th column: this is to make the vertex (i, n) of any (0, 1)–path unique. This
is no loss of generality, because we will see that we are interested only in
(0, 1)–paths of maximal weight, the weights of vertical arcs are nonpositive
and the arcs right of column n have weight 0. Now we define the weight
function w : E → ZZ :

w(0, (i, 0)) = w((i, n + 1), 1) = 0 (i ∈ [m]),

w((i, j), (i + 1, j)) = min{0, ai+1,j − ai,j} (i ∈ [m − 1], j ∈ [n]),

w((i, j), (i − 1, j)) = min{0, ai−1,j − ai,j} (i ∈ [2, m], j ∈ [n]),

w((i, j − 1), (i, j)) = max{0, ai,j − ai,j−1} (i ∈ [m], j ∈ [n + 1]).

Example 1. Figure 2 shows G corresponding to the matrix

A =









4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3








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Figure 2: The digraph G corresponding to matrix A.

The following theorem, whose proof is the content the next two sections,
is the main result of this paper.

Theorem 1. The minimal TNMU of a segmentation of a nonnegative matrix
A equals the maximal weight of a (0, 1)−path in G.
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3 The lower bound

In this section we associate with a (0, 1)–path P a dual feasible solution and
prove the lower bound of the theorem. For an intensity matrix A let

c(A) = max{w(P ) : P is a (0, 1) − path in G}.

Let A be an intensity matrix and let P be a (0, 1)−path in G. We define a
function g : [m] × [n] → {0, 1} as follows.

g(i, j) =































































































































1 if (i, j − 1), (i, j), (i, j + 1) ∈ P, ai,j ≥ ai,j−1, ai,j > ai,j+1

1 if (i − 1, j), (i, j), (i, j + 1) ∈ P, ai,j < ai−1,j , ai,j > ai,j+1

1 if (i + 1, j), (i, j), (i, j + 1) ∈ P, ai,j < ai+1,j, ai,j > ai,j+1

1 if (i − 1, j), (i, j), (i + 1, j) ∈ P, ai,j < ai−1,j , ai,j ≤ ai+1,j

1 if (i + 1, j), (i, j), (i − 1, j) ∈ P, ai,j < ai+1,j , ai,j ≤ ai−1,j

1 if (i, j − 1), (i, j), (i + 1, j) ∈ P, ai,j ≥ ai,j−1, ai,j ≤ ai+1,j

1 if (i, j − 1), (i, j), (i − 1, j) ∈ P, ai,j ≥ ai,j−1, ai,j ≤ ai−1,j

−1 if (i, j − 1), (i, j), (i, j + 1) ∈ P, ai,j < ai,j−1, ai,j ≤ ai,j+1

−1 if (i − 1, j), (i, j), (i, j + 1) ∈ P, ai,j ≥ ai−1,j , ai,j ≤ ai,j+1

−1 if (i + 1, j), (i, j), (i, j + 1) ∈ P, ai,j ≥ ai+1,j , ai,j ≤ ai,j+1

−1 if (i − 1, j), (i, j), (i + 1, j) ∈ P, ai,j ≥ ai−1,j , ai,j > ai+1,j

−1 if (i + 1, j), (i, j), (i − 1, j) ∈ P, ai,j ≥ ai+1,j , ai,j > ai−1,j

−1 if (i, j − 1), (i, j), (i + 1, j) ∈ P, ai,j < ai,j−1, ai,j > ai+1,j

−1 if (i, j − 1), (i, j), (i − 1, j) ∈ P, ai,j < ai,j−1, ai,j > ai−1,j

0 otherwise.

(5)
Here by x, y, z ∈ P we mean that P runs through these vertices in the given
order, i.e. (x, y) and (y, z) are arcs of P . Observe that g(i, j) 6= 0 is possible
only if (i, j) lies on P . The definition of g is illustrated in Figure 3.

Lemma 1. Let P be a (0, 1)−path in G and let g be defined according to (5).
Then g is feasible for the dual program (D).

Proof. Denote the vertices (i, j) with g(i, j) 6= 0 by (i1, j1), . . . , (it, jt) in the
order in which they occur on P . Using the definition of g, it is easy to check
that g(i1, j1) = 1 and

g(ip, jp)g(ip+1, jp+1) = −1 (p ∈ [t − 1]). (6)
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1

1

−1

−1

−1

1

1

1

1

−1−1

−1

1

−1

Figure 3: Illustration of the definition of the dual solution g. We depicted
the possibilities for the path P to pass through a vertex (i, j) (always the
middle vertex) which lead to a nonzero value of g(i, j). The labels of the
arcs indicate the relation of ai,j to its neighbours, and the label of the middle
vertex is the resulting value of g(i, j).

The definition of g also implies, for p ∈ [t− 1], that for arcs ((i, j), (i, j + 1))
on the ((ip, jp), (ip+1, jp+1))–subpath of P , we have

ai,j+1 ≥ ai,j if g(ip, jp) = −1, (7)

ai,j+1 < ai,j if g(ip, jp) = 1, (8)

and for arcs ((i, j), (i ± 1, j)) on the ((ip, jp), (ip+1, jp+1))–subpath of P , we
have

ai±1,j < ai,j if g(ip, jp) = −1, (9)

ai±1,j ≥ ai,j if g(ip, jp) = 1. (10)

Let S be an A−segment with parameters li, ri (i ∈ [m]). We have to show
that

∑

(i,j)∈[m]×[n]

g(i, j)si,j ≤ 1.

Let p, q ∈ [t] such that p < q,

g(ip, jp)sip,jp
= g(iq, jq)siq ,jq

= 1

and g(iv, jv)siv ,jv
≤ 0 for p < v < q. Hence,

siv ,jv
= 0 if p < v < q and g(iv, jv) = 1.

A path from (ip, jp) to (iq, jq) with a possible leaf setting is shown in Figure
4. From (6) we obtain q ≥ p + 2. We claim that
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1
−1

1
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(ip, jp)

(iq, jq)

� � � �

�

�
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Figure 4: A possible path from (ip, jp) to (iq, jq). The labels at the vertices
are the nonzero values of g(i, j).

q−1
∑

v=p+1

g(iv, jv)siv ,jv
≤ −1,

and clearly this proves the lemma. Assume

q−1
∑

v=p+1

g(iv, jv)siv ,jv
= 0,

or equivalently
siv ,jv

= 0 for p < v < q.

We need the following claims.

Claim 1. If g(iv, jv) = −1 and liv > jv, then liv−1
> jv−1 (p < v < q).

Claim 2. If g(iv−1, jv−1) = −1 and riv−1
< jv−1, then riv < jv (p < v ≤ q).

Proof of the claims. If iv = iv−1 the claims are obvious. So suppose that iv 6=
iv−1. Let j ′ be the first column j ′ ≥ jv−1 where P leaves row iv−1, and let j ′′ be
the last column j ′′ ≤ jv where P enters row iv, i.e. the ((iv−1, jv−1), (iv, jv))–
subpath of P has the form

(iv−1, jv−1), (iv−1, jv−1 + 1), . . . , (iv−1, j
′), (iv−1 ± 1, j ′), . . . ,

(iv ± 1, j ′′, ), (iv, j
′′), (iv, j

′′ + 1), . . . , (iv, jv).

This is illustrated in Figure 5. Let Q be the ((iv−1, j
′), (iv, j

′′)) subpath.
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i

iv−1

iv

( iv−1 , jv−1) ( iv−1, j’)

( v , j’’) ( iv , jv )

Figure 5: Illustration for the proof of Lemma 1.

1. Suppose that g(iv, jv) = −1 and liv > jv. We prove by induction
going backwards along Q, that li > j for every (i, j) ∈ Q, in particular
liv−1

> j ′ ≥ jv−1. For (i, j) = (iv, j
′′),

li = liv > jv ≥ j ′′.

For an arc ((i, j − 1), (i, j)), li > j − 1 follows from li > j. For an arc
((i − 1, j), (i, j)) of Q, by (10) we have ai−1,j ≤ ai,j. The TGC implies
si−1,j = 0, and together with the ICC and li > j this implies li−1 > j.
The analogue argument works for arcs ((i + 1, j), (i, j)).

2. Suppose that g(iv−1, jv−1) = −1 and riv−1
< jv−1. By induction along

Q, we show that ri < j for every (i, j) ∈ Q, in particular riv < j ′′ ≤ jv.
For (i, j) = (iv−1, j

′),

ri = riv−1
< jv−1 ≤ j ′.

For an arc ((i, j), (i, j + 1)) of Q, ri < j + 1 follows from ri < j. For
an arc ((i − 1, j), (i, j)) of Q, by (9) we have ai,j < ai−1,j . The TGC
implies si,j = 0, and together with the ICC and ri−1 < j this implies
ri < j. The analogue argument works for arcs ((i, j), (i − 1, j)).

Now we are prepared to show by induction on v, that riv < jv for p < v ≤ q,
in particular riq < jq, contradicting siq ,jq

= 1. Let v = p + 1. From siv ,jv
= 0

it follows that either liv > jv or riv < jv. But g(iv, jv) = −1, and by Claim
1, liv > jv implies lip > jp, contradicting sip,jp

= 1. Hence riv < jv. Let
p + 2 ≤ v < q. If g(iv, jv) = 1, by Claim 2, riv−1

< jv−1 yields riv < jv. So
suppose that g(iv, jv) = −1. From siv ,jv

= 0 we obtain liv > jv or riv < jv.
By Claim 1, liv > jv implies liv−1

> jv−1, contradicting riv−1
< jv−1. Hence

riv < jv. Finally, Claim 2 with v = q yields riq < jq. �

Lemma 2. Let P be a (0, 1)−path in G and let g be defined according to (5).
Then

∑

(i,j)∈[m]×[n]

g(i, j)ai,j = w(P ).
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Proof. Again, we denote the vertices (i, j) with g(i, j) 6= 0 by (i1, j1), . . . , (it, jt)
in the order in which they occur on P . Also, let Pk be the ((ik−1, jk−1), (ik, jk))–
subpath of P for k ∈ [2, t] and let P1 be the (0, (i1, j1))−subpath of P . Now
the lemma is an immediate consequence of the following claim which is easy
to verify: For k ∈ [t], we have (with ai0,j0 = 0),

g(ik, jk) = 1 ⇒ w(Pk) = aik,jk
− aik−1,jk−1

, (11)

g(ik, jk) = −1 ⇒ w(Pk) = 0. (12)

Observe that w.l.o.g. we suppose that g(it, jt) = 1. Assume that g(it, jt) =
−1. Then ai,j = 0 for every (i, j) on the ((it, jt), 1)–subpath of P , and we
can put g(i, n) = 1 for the unique i with (i, n) ∈ P preserving the feasibility
of g and the objective value. �

4 The algorithm

We construct a segmentation of A according to the following algorithm:

A(0) := A, k := 0.
while A(k) 6= 0 do

Determine an A(k)−segment S(k+1) such that
A(k+1) := A(k) − S(k+1) is nonnegative and c

(

A(k+1)
)

= c
(

A(k)
)

− 1.
k := k + 1.

Suppose that we have a method to construct S(k+1) from A(k), such that the
given conditions are fulfilled. The next lemma implies that the algorithm
yields only A–segments.

Lemma 3. Suppose that A =
∑t

k=1 S(k), and for every k ∈ [t], S(k) is an

A(k−1)–segment, where A(0) = A and for k ≥ 1, A(k) := A−
∑k

k′=1 S(k). Then
for k ∈ [t], every A(k−1)–segment (in particular S(k)) is also an A–segment.

Proof. We use induction on k. The case k = 1 is clear by hypothesis. So let
k > 1. Using that S(k−1) is an A(k−2)−segment, we obtain

a
(k−2)
i,j ≤ a

(k−2)
i+1,j ⇒ a

(k−1)
i,j ≤ a

(k−1)
i+1,j (i ∈ [m − 1], j ∈ [n]),

a
(k−2)
i,j ≤ a

(k−2)
i−1,j ⇒ a

(k−1)
i,j ≤ a

(k−1)
i−1,j (i ∈ [2, m], j ∈ [n]),

and this implies that every A(k−1)−segment is also an A(k−2)−segment and
by induction an A−segment. �
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Now we suppose that A(k) is given and we describe how the segment
S(k+1) is determined. Let wk denote the weight function on the arcs of G

with respect to A(k) and put, for (i, j) ∈ [m] × [n],

α
(k)
1 (i, j) = max{wk(P ) : P is a (0, (i, j)) − path in G}, (13)

α
(k)
2 (i, j) = max{wk(P ) : P is a ((i, j), 1) − path in G}, (14)

α(k)(i, j) = α
(k)
1 (i, j) + α

(k)
2 (i, j). (15)

We define the matrix S(k+1) by

s
(k+1)
i,j =

{

1 if a
(k)
i,j > 0, α(k)(i, j) = c

(

A(k)
)

, α
(k)
1 (i, j) = a

(k)
i,j ,

0 otherwise.

In order to show that this matrix has the required properties, it is clearly
sufficient to consider the case k = 0. So let w = w0 and S = S(1). The
nonnegativity of A − S follows directly from the definition of S.

Lemma 4. S is an A−segment.

Proof. In order to show that there are li, ri (i ∈ [m]) satisfying (1) and (2),
we just have to observe that there are no i ∈ [m], j, j ′ ∈ [n], with j ′ > j + 1,
such that si,j = si,j′ = 1, si,j+1 = 0. Assume the contrary. Then we have

• ai,j+1 = 0 (contradiction to α1(i, j
′) = ai,j′) or

• α1(i, j + 1) > ai,j+1 (contradiction to α1(i, j
′) = ai,j′) or

• α(i, j + 1) < c(A) (contradiction to α1(i, j
′) = ai,j′ and α(i, j) = c(A)).

So we have to check that the ICC and the TGC are satisfied. Assume that
the ICC (3) is violated. Then there are rows i, i′, such that li > ri′ + 1 and
li′′ = ri′′ + 1 for all rows i′′ between i and i′. For symmetry reasons we have
to consider only the case i < i′, which is illustrated in Figure 6. By definition
of S, ai,j = 0 for j < li. We use induction on i′′ to show that

ai′′,j = 0 for i ≤ i′′ < i′, 1 ≤ j < li.

Suppose i < i′′ < i′, 1 ≤ j < li and ai′′,j > 0. Using the induction hypothesis,
we obtain that any (0, (i′′, j))–path of weight α1(i

′′, j) concatenated with the
path

(i′′, j), (i′′ − 1, j), . . . , (i, j), (i, j + 1), . . . , (i, li)

yields a (0, (i, li))–path of weight α1(i
′′, j) − ai′′,j + ai,li . This implies

α1(i
′′, j) = ai′′,j and α(i′′, j) = c(A),

11



i

i′

li ri

li′ ri′

Figure 6: Illustration of an ICC–violation

hence si′′,j = 1, a contradiction. Let P be a (0, (i′, ri′ + 1))–path of weight
α1(i

′, ri′ + 1) concatenated with the path

(i′, ri′ + 1), (i′ − 1, ri′ + 1), . . . , (i, ri′ + 1), (i, ri′ + 2), . . . , (i, li).

Then w(P ) = α1(i
′, ri′ + 1) − ai′,ri′+1 + ai,li. This implies

α1(i
′, ri′ + 1) = ai′,ri′+1 and α(i′, ri′ + 1) = c(A),

and in particular ai′,ri′+1 ≥ ai′,ri′
> 0. But then si′,ri′+1 = 1, a contradiction.

Now assume that the TGC (4) is violated. By symmetry it is sufficient to
consider the case

ai,j ≤ ai+1,j, si,j = 1, si+1,j = 0.

We have that

α1(i, j) ≥ α1(i + 1, j) + w((i + 1, j), (i, j)) = α1(i + 1, j) + ai,j − ai+1,j .

This implies α1(i + 1, j) = ai+1,j and α(i + 1, j) = c(A). Since also ai+1,j ≥
ai,j > 0, we obtain si+1,j = 1, a contradiction. �

Let A′ = A − S, denote the weight function on G with respect to A′ by
w′ and put

α′

1(i, j) = max{w′(P ) : P is a (0, (i, j)) − path in G}, (16)

α′

2(i, j) = max{w′(P ) : P is a ((i, j), 1) − path in G}, (17)

α′(i, j) = α′

1(i, j) + α′

2(i, j). (18)

It is clear that for an arc e ∈ E, we can have w′(e) 6= w(e) only if si,j = 1
for exactly one vertex of e. In order to prove c(A′) = c(A) − 1, we need the
following lemma, whose proof is trivial.

12



Lemma 5. Let e ∈ E, and put, for brevity of notation, si,0 = si,n+1 = 0
(i ∈ [m]).

1. If e = ((i, j − 1), (i, j)), si,j−1 = 0 and si,j = 1, then w′(e) = w(e) − 1.

2. If e = ((i, j − 1), (i, j)), si,j−1 = 1 and si,j = 0, then

w′(e) =

{

w(e) = 0 if ai,j−1 > ai,j,

w(e) + 1 if ai,j−1 ≤ ai,j.

3. If e = ((i ± 1, j), (i, j)), si±1,j = 0 and si,j = 1, then w′(e) = w(e) = 0.

4. If e = ((i ± 1, j), (i, j)), si±1,j = 1 and si,j = 0, then w′(e) = w(e) + 1.

For arcs on paths of weight c(A) we can say even more.

Lemma 6. Let P be a (0, 1)–path in G with w(P ) = c(A), and let e ∈ E be
an arc of P .

1. If e = ((i, j − 1), (i, j)), si,j−1 = 1 and si,j = 0, then w′(e) = w(e) = 0.

2. If e = ((i± 1, j), (i, j)), si±1,j = 1 and si,j = 0, then ai,j = α1(i, j) = 0.

Proof. 1. Assume the contrary and let P1 be the (0, (i, j))–subpath of P .
By Lemma 5, ai,j ≥ ai,j−1 > 0. Using w(P ) = c(A), we obtain

α1(i, j) = w(P1) = ai,j and α(i, j) = c(A),

hence si,j = 1, contradicting the assumption.

2. Assume the contrary for e = ((i−1, j), (i, j)) and let P1 be the (0, (i, j))–
subpath of P . (The case e = ((i+1, j), (i, j)) is treated similarly.) Using
w(P ) = c(A), we obtain

α1(i, j) = w(P1) = ai,j and α(i, j) = c(A).

So by construction of S, si,j = 0 implies ai,j = 0.
�

Lemma 7.

si,j = 1 ⇒ α′

1(i, j) = α1(i, j) − 1 = a′

i,j (i ∈ [m], j ∈ [n]).

Proof. Clearly, α′
1(i, j) ≥ a′

i,j. Assume that si,j = 1 and α′
1(i, j) > a′

i,j, and
let P be a (0, (i, j))−path with w′(P ) = α′

1(i, j). W.l.o.g. we suppose that
(i, j) is the first vertex on P with si,j = 1 and α′

1(i, j) > a′
i,j.

13



Case 1: sp,q = 0 for every (p, q) ∈ P \ {(i, j)}.

If e is an arc of P , w′(e) 6= w(e) is possible only if e is the last arc of
P . If the last arc is e = ((i, j − 1), (i, j)),

w′(P ) = w(P )− 1 ≤ α1(i, j) − 1 = a′

i,j.

So suppose that the last arc of P is e = ((i − 1, j), (i, j)). (The case
e = ((i + 1, j), (i, j)) is treated similarly.) Then w′(P ) = w(P ), and
from w′(P ) > ai,j − 1, w(P ) ≤ ai,j, it follows that

w(P ) = w′(P ) = ai,j.

Now for the first (p, q) ∈ P with ap,q > 0 we have α(p, q) = c(A)
and α1(p, q) = ap,q, hence sp,q = 1. Consequently, ap,q = 0 for every
(p, q) ∈ P \ {(i, j)}, thus ai,j = w(P ) = 0, a contradiction.

Case 2: There is some (p, q) ∈ P \ {(i, j)} with sp,q = 1.

Let (i0, j0) be the last vertex (p, q) on P \ {(i, j)} with sp,q = 1, and
denote by P1 and P2 the (0, (i0, j0))− and the ((i0, j0), (i, j))−subpath
of P , respectively. Because w′(P1) = a′

i0,j0
, w.l.o.g. we suppose that

P1 is the path 0, (i0, 0), . . . , (i0, j0). The only arcs e of P2 for which
w′(e) 6= w(e) is possible are the first arc e1 and the last arc e2. By
Lemma 5, we have w′(e2) ≤ w(e2) and w′(e1) ≤ w(e1) + 1. So

w′(P ) = w′(P1) + w′(P2) ≤ ai0,j0 − 1 + w(P2) + 1 = w(P ) ≤ ai,j,

and we conclude w′(P ) = w(P ) = ai,j and w′(e1) = w(e1) + 1. Since
for the concatenation Q of P with an ((i, j), 1)–path of weight α2(i, j)
we have w(Q) = c(A), we can apply Lemma 6 to e1, and obtain e1 =
((i0, j0), (i0 ± 1, j0)). By symmetry, we only have to consider the case
e1 = ((i0, j0), (i0 + 1, j0)). By Lemma 6,

α1(i + 1, j) = ai+1,j = 0.

But now the path

0, (i0 + 1, 0), (i0 + 1, 1), . . . , (i0 + 1, j0)

concatenated with the ((i0+1, j0), (i, j))–subpath of P yields a (0, (i, j))–
path Q with w′(Q) = w′(P ) and sp,q = 0 for every (p, q) ∈ Q \ {(i, j)},
and we are in Case 1.

�
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Lemma 8. c(A′) = c(A) − 1.

Proof. Suppose that c(A′) > c(A)−1 and let P be a path with w′(P ) = c(A′).
It is easy to see that P contains a vertex (i, j) with si,j = 1: if Q is a path with
w(Q) = c(A) then for the first (i, j) ∈ Q with ai,j > 0 we have si,j = 1, so for
every path Q with si,j = 0 for every (i, j) ∈ Q we have w′(Q) = w(Q) < c(A).
Let (i, j) be the last vertex on P with si,j = 1 and denote by P1 and P2

the (0, (i, j))− and the ((i, j), 1)−subpath of P , respectively. By Lemma 7,
w′(P1) = a′

i,j. From

c(A) ≤ w′(P ) = w′(P1) + w′(P2) = α1(i, j) − 1 + α′

2(i, j)

it follows that α′
2(i, j) > α2(i, j). Since w′(e) = w(e) for all arcs e of P2

except possibly for the first one, we obtain

α′

2(i, j) = w′(P2) ≤ w(P2) + 1 ≤ α2(i, j) + 1,

hence
w(P2) = α2(i, j), w(P ) = c(A),

and by Lemma 6, for the first arc e of P2, we have e = ((i, j), (i ± 1, j)). If
e = ((i, j), (i + 1, j)), Lemma 6 also yields

α1(i, j) = ai+1,j = 0,

and the path
0, (i + 1, 0), (i + 1, 1), . . . , (i + 1, j)

concatenated with the ((i + 1, j), 1)–subpath of P yields a path Q of weight
c(A) with sp,q = 0 for every (p, q) ∈ Q, and this contradiction proves the
lemma. �

Proof of Theorem 1. Another formulation of the statement of the theorem
is that the minimal TNMU of a segmentation of A equals c(A). That the
TNMU is at least c(A), follows from Lemmas 1 and 2 by duality. By Lemmas
3 and 4, our algorithm yields A–segments S(1), . . . , S(t), such that

A =
t
∑

k=1

S(k) (19)

and by repeated application of Lemma 8,

c(A(k)) = c(A) − k (k ∈ [t]).

So c(A(c(A))) = 0, hence t = c(A), and (19) is a segmentation of A with c(A)
monitor units. �
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Kamath et al. [10] presented an algorithm generating unidirectional
schedules, i.e. with the leaves moving only from left to right, and they
show that it is TNMU–optimal among all unidirectional schedules. Here we
show that the segments determined by our algorithm can be realized by a
sequence of leaf positions in which the leaves move only from left to right.
Observe that the leaf positions are not uniquely determined by S: in rows
with at least one nonzero entry we have to put

li = min{j : si,j = 1}, ri = max{j : si,j = 1}.

while in rows that are completely zero we have ri = li −1 but there might be
several possible values for li. We solve this ambiguity by taking the leftmost
of the possible leaf positions. More precisely, for i ∈ [m] with si,j = 0 for all
j ∈ [n], we put li = max{li′, li′′} and ri = li − 1, where

i′ =

{

0 if ∀k < i, j ∈ [n] sk,j = 0,
max{k < i : ∃j ∈ [n] sk,j = 1} otherwise,

i′′ =

{

m + 1 if ∀k > i, j ∈ [n] sk,j = 0,
min{k > i : ∃j ∈ [n] sk,j = 1} otherwise,

and l0 = lm+1 = 1. This is illustrated in Figure 7. The next theorem states

i′

i

i′′

li = li′

Figure 7: The choice of the leaf positions for zero rows.

that the schedule obtained in this way is unidirectional, so the TNMU must
be same as for the schedule from the algorithm of Kamath et al.

Theorem 2. Let A =
∑t

k=1 S(k) be a segmentation determined by our al-

gorithm and let l
(k)
i , r

(k)
i (i ∈ [m], k ∈ [t]) be the parameters determined as

above. Then

l
(k+1)
i ≥ l

(k)
i , r

(k+1)
i ≥ r

(k)
i (i ∈ [m], k ∈ [t − 1]).

In order to prove this theorem we need the following lemma.
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Lemma 9.

j ≥ li ⇒ α′

2(i, j) ≥ α2(i, j) (i ∈ [m], j ∈ [n]).

Proof. By Lemma 5, the only arcs e with w′(e) = w(e) − 1 are the arcs
((i, j), (i, j + 1)) with j + 1 = li ≤ ri. Let (i0, j0) be a vertex with j0 >

li0 and let P be any ((i0, j0), 1)–path. We denote the vertices (i, j) with
(i, j), (i, j + 1) ∈ P and li = j + 1 by (i1, j1), . . . , (it, jt). Then it is easy to
check that on the ((ik−1, jk−1), (ik, jk))–subpath (k ∈ [t]) there must be an
arc e = ((i, j), (i ± 1, j)) with si,j = 1 and si±1,j = 0. For these arcs we have
w′(e) = w(e) + 1, hence w′(P ) ≥ w(P ) and this concludes the proof. �

Proof of Theorem 2. We claim that a
(k−1)
i,j = 0 for j < l

(k)
i (i ∈ [m], k ∈ [t]).

If s
(k)
i,j = 1 for some j ∈ [n], obviously

l
(k)
i = min{j : a

(k−1)
i,j > 0}.

So suppose that s
(k)
i,j = 0 for every j ∈ [n]. By symmetry we can assume that

l
(k)
i = l

(k)
i′ where i′ is the maximal row index i′ < i such that s

(k)
i′,j = 1 for some

j ∈ [n]. Now assume that a
(k−1)
i,j > 0 for some j < l

(k)
i . By induction on i− i′

we suppose that a
(k−1)
i0,j = 0 for i′ < i0 < i. Now we obtain a (0, (i′, l

(k)
i′ ))–path

P = (0, (i, 0), (i, 1), . . . , (i, j), (i − 1, j), . . . , (i′, j), (i′, j + 1), . . . , (i′, li′))

with wk−1(P ) = a
(k−1)
i′,li′

, hence

α
(k−1)
1 (i, j) = a

(k−1)
i,j and α(k−1)(i, j) = c(A(k−1)),

consequently s
(k)
i,j = 1, and this contradiction establishes the claim.

Case 1: l
(k+1)
i ≤ r

(k+1)
i .

In this case l
(k+1)
i < l

(k)
i leads to the contradiction (j := l

(k+1)
i )

a
(k)
i,j = a

(k−1)
i,j = 0, s

(k+1)
i,j = 1.

So l
(k+1)
i ≥ l

(k)
i , and if r

(k)
i = l

(k)
i − 1 also r

(k+1)
i ≥ r

(k)
i . Assume that

r
(k)
i ≥ l

(k)
i and r

(k+1)
i < r

(k)
i .

Then for j = r
(k)
i we have

α
(k)
1 (i, j) = a

(k)
i,j > 0 and α(k)(i, j) = c(A(k)),

hence s
(k+1)
i,j = 1, a contradiction to j > r

(k+1)
i .
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Case 2: l
(k+1)
i = r

(k+1)
i + 1.

Case 2.1: l
(k)
i ≤ r

(k)
i .

For l
(k)
i ≤ j ≤ r

(k)
j , we have

α
(k)
1 (i, j) = a

(k)
i,j and α(k)(i, j) = c(A(k)).

Together with s
(k+1)
i,j = 0 this implies

a
(k)
i,j = 0 and α

(k)
2 (i, j) = c(A(k)).

Now by Lemma 9 applied to A(k) and A(k + 1), and using c(A(k+1)) =
c(A(k)) − 1, we obtain

l
(k+1)
i > r

(k)
i ≥ l

(k)
i , r

(k+1)
i ≥ l

(k+1)
i − 1 ≥ r

(k)
i .

Case 2.2: l
(k)
i = r

(k)
i + 1.

We suppose that l
(k)
i = l

(k)
i′ where i′ is the maximal row index

i′ < i with l
(k)
i′ ≤ r

(k)
i′ . Then l

(k)
i′′ = l

(k)
i′ for every i′′ ∈ [i′, i]. We

show by induction on i′′ − i′ that

l
(k+1)
i′′ ≥ l

(k)
i′′ for i′′ ∈ [i′, i].

For i′′ = i′ this is clear by Case 2.1, so let i′′ > i′. If l
(k+1)
i′′ ≤ r

(k+1)
i′′

we are in Case 1, and if l
(k+1)
i′′ = r

(k+1)
i′′ +1, we obtain by induction

and ICC,

l
(k+1)
i′′ = r

(k+1)
i′′ + 1 ≥ l

(k+1)
i′′−1 ≥ l

(k)
i′′−1 = l

(k)
i′′ .

�

5 Minimizing the number of segments

The problem of minimizing the number of segments is NP–hard even for a
single row intensity matrix [8]. So it is natural to look for a heuristic approach
that yields segmentations with a small number of segments in a reasonable
time even if optimality is not always reached. In [7] we used a greedy strategy
in order to find a segmentation with minimal TNMU and a small NS for
MLCs with ICC but neglecting the TGC. This method can be modified to
respect the TGC. In order to characterize the maximal coefficient u for which
there is an A–segment S, such that uS can be a term in a segmentation of
A with minimal TNMU, we need a kind of converse to Lemma 3.
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Lemma 10. Let A =
∑t

k=1 ukS
(k) be a segmentation of A (i.e. the S(k) are

A–segments), and put A(0) = A and A(k) = A −
∑k

k′=1 uk′S(k′) for k ∈ [t].
Then, for every k ∈ [t] we have

• s
(k)
i,j = 1 and s

(k)
i+1,j = 0 ⇒ a

(k−1)
i,j ≥ a

(k−1)
i+1,j + u (i ∈ [m − 1], j ∈ [n]),

• s
(k)
i,j = 1 and s

(k)
i−1,j = 0 ⇒ a

(k−1)
i,j ≥ a

(k−1)
i−1,j + u (i ∈ [2, m], j ∈ [n]).

Informally speaking, if we consider the sequence of matrices starting with
A and subtracting one by one the S(k) taking S(k) exactly uk times, the
lemma claims that in each step we subtract an A′–segment, where A′ is the
resulting matrix after the previous step.

Proof. Assume the contrary and let k be the first index where one of the two
claims fails to be true. By symmetry, we assume

s
(k)
i,j = 1, s

(k)
i+1,j = 0, a

(k−1)
i,j < a

(k−1)
i+1,j + u.

Since S(k) is an A–segment, the TGC implies ai,j > ai+1,j . From our assump-
tion we obtain

a
(k)
i,j < a

(k)
i+1,j ,

hence
s
(k′)
i,j = 0 and s

(k′)
i+1,j = 1

for some k′ > k, contradicting the assumption that S(k′) is an A–segment. �

We call a pair (u, S) of a positive integer u and an A–segment S an
admissible segmentation pair, if

• A − uS is nonnegative,

• si,j = 1 and si+1,j = 0 ⇒ ai,j ≥ ai+1,j +u (i ∈ [m−1], j ∈ [n]),

• si,j = 1 and si−1,j = 0 ⇒ ai,j ≥ ai−1,j + u (i ∈ [2, m], j ∈ [n]),

• c(A − uS) = c(A) − u.

Now we proceed exactly as in [7]: we find an admissible segmentation pair
(u, S) with maximal u and continue with A − uS until we reach the zero
matrix. How the pair (u, S) is determined is described here only informally,
see [7] for the details. First we compute numbers u(i, l, r) for i ∈ [m], l ∈
[n+1], r ∈ [0, n] which are upper bounds for u in an admissible segmentation
pair (u, S) with li = l and ri = r. These upper bounds come from the
following lemma (see [7] for the proof).
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Lemma 11. Let (u, S) be an admissible segmentation pair with li = l and
ri = r. Then u ≤ v2(i, l, r) where

v2(i, l, l − 1) = c(A) − α1(i, l − 1) − max{0, di,l} − α2(i, l),

and if r ≥ l then v2(i, l, r) = min{γ1, γ2, γ3, γ4}, where

γ1 = c(A) − α1(i, l − 1) − α2(i, l),

γ2 = c(A) − α1(i, l − 1) −

r
∑

j=l+1

max{0, di,j} − α2(i, r + 1),

γ3 = c(A) − α1(i, l − 1) − di,l −

r
∑

j=l+1

max{0, di,j} − di,r+1 − α2(i, r + 1),

γ4 =
1

2

(

c(A) − α1(i, l − 1) −

r
∑

j=l+1

max{0, di,j} − di,r+1 − α2(i, r + 1)

)

.

Now we start with some upper bound for u, search for an admissible S,
and continue with u − 1 if our search is not successful. The search for S is
done by a branch–and–bound method: we start in row 1, and assuming we
have already constructed i rows of the segment we try to add row i + 1 by
checking all possible pairs (li+1, ri+1), i.e. all pairs with

li+1 ≤ ri + 1, ri+1 ≥ li − 1,

u(i + 1, li+1, ri+1) ≥ u,

ai+1,j ≥ ai,j + u if li+1 ≤ j < li or ri < j ≤ ri+1, and

ai ≥ ai+1 + u if li ≤ j < li+1 or ri+1 < j ≤ ri.

Example 2. For a benchmark matrix from [11] our algorithm yields the
segmentation

(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

= 2

(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+2

(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

)

+

(

1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

)

+

(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

)

+

(

0 1 0 0 0 0
0 1 1 1 0 0
0 1 1 0 0 0
1 1 1 0 0 0

)

+

(

0 0 0 1 1 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 1 0

)

+

(

0 0 0 0 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 1 1 1 0

)

+

(

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 1 1

)

.

6 Test results

We implemented our algorithm in C++ on a 2 GHz workstation and com-
puted segmentations for 15 × 15–matrices where the entries are chosen ran-
domly from {0, 1, . . . , L} (uniformly distributed) (L = 3, 4, . . . , 16). The
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results are shown in Table 1 where for each value of L the entries are aver-
aged over 1000 matrices. For comparison, in Table 2 we include the results
without TGC from [7]. Concerning the computation time, the algorithm
seems to be practicable: the 1000 segmentations for L = 16 were computed
in about 20 minutes, and the maximal time for one single matrix was 20
seconds.

L TNMU NS
3 16.6 15.5
4 21.2 18.0
5 25.8 20.5
6 30.3 22.6
7 34.9 24.3
8 39.2 25.7
9 43.6 27.0
10 48.2 28.3
11 52.9 29.5
12 57.2 30.5
13 61.7 31.4
14 66.0 32.2
15 70.6 33.1
16 74.8 33.9

Table 1: Test results with TGC
for 15×15–matrices with random
entries from {0, 1, . . . , L}.

L TNMU NS
3 15.4 12.6
4 19.5 14.5
5 23.6 16.0
6 27.6 17.2
7 31.7 18.2
8 35.7 19.1
9 39.8 19.9
10 43.8 20.7
11 47.7 21.3
12 51.8 21.9
13 55.7 22.5
14 59.8 23.0
15 63.8 23.5
16 67.7 24.0

Table 2: Test results without TGC
for 15×15–matrices with random en-
tries from {0, 1, . . . , L}.
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