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Abstract

The cardinality of the minimal pairwise balanced designs on v elements
with largest block size k is denoted by g(k)(v). It is known that 31 ≤ g(4)(18) ≤
33. In this paper we show that g(4)(18) 6= 31.
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Introduction

Let K be a set of positive integers. A pairwise balanced design PBD(v, K) (denoted
by P ) of order v with block sizes from K is a pair P = (V,B), where V is a finite
set (the point set) of cardinality v and B is a family of subsets (called blocks) of V
which satisfy the following properties:

(i) every pair of distinct elements of V occurs in exactly one block of B;

(ii) if B ∈ B, then |B| ∈ K.

A partial PBD(v, K) is defined similarly, with the difference that (V,B) satisfies
instead of property (i) the property:

(i’) every pair of distinct elements of V occurs in at most one block of B.

The dual of a (partial) PBD with point set V = {0, 1, . . . , v − 1} and block set
B = {B0, B1, . . . , Bm−1} is a pair P ∗ = (V ∗,B∗), where V ∗ = {0, 1, . . . ,m− 1} and
B∗ = {B∗

0 , B
∗
1 , . . . , B

∗
v−1} is a family of subsets of V ∗ with the property that x ∈ B∗

j

if and only if j ∈ Bx. Clearly, the dual of a (partial) PBD is a partial PBD.

The cardinality of the minimal pairwise balanced designs on v elements with largest
block size k is denoted by g(k)(v). The value g(4)(v) was investigated in [5, 8] and
was determined for all v with the exception of 17 and 18. Lower and upper bounds
for v = 18 were established by Stanton [6, 7] as 30 ≤ g(4)(18) ≤ 33. The lower bound
was improved to 31 ≤ g(4)(18) by Grüttmüller, Roberts and Stanton [3]. The study
of bounds on g(k)(v) for arbitrary k and different replication factors has been subject
of numerous papers. The paper [2] includes a recent survey of known results.

In this paper, we prove that there does not exist a PBD(18, {2, 3, 4}) with exactly
31 blocks by showing that no partial design can be completed to be such a design.
This has been achieved by case analysis and a combination of analytic and compu-
tational techniques. Most of the cases have been eliminated by an analytic approach
using either a PBD or dual design. However only examples of the analytic argu-
ments involved in either approach are included here, for the purpose of illustrating
the methods of argument. Almost all cases have also been eliminated by exhaus-
tive computer searches. The reason for the reliance on computer searches is that
the analytic arguments became quite detailed and long as the number of subcases
increased beyond 30, and thus many more pages of arguments of similar types but
different detail are needed to achieve the same result as claimed here.
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Volume V (x|B) Possible point types
6 3145

7 2245 213244 3443

8 233144 223343 213542 3741

9 233442 223641

Table 1: Possible point types in P

1 Preliminaries

Let gi be the number of blocks of size i for i = 2, 3, 4. Then counting pairs of points
in two ways gives

g2 + 3g3 + 6g4 =

(
18

2

)
.

Also, g2 + g3 + g4 = 31, and there are three integer solutions to these two equations.
It has been shown in [7, Cases 2, 6] that there is one solution, (g2, g3, g4) = (6, 1, 24),
which cannot be realised as a PBD(18, {2, 3, 4}). The simple argument for this
solution is included here as Lemma 1.1 for completeness. The other two solutions
are (g2, g3, g4) = (3, 6, 22) and (g2, g3, g4) = (0, 11, 20). Illustration of the elimination
of some of the subcases by analysis when (g2, g3, g4) = (0, 11, 20) and (g2, g3, g4) =
(3, 6, 22) appear in Sections 2 and 3 respectively. All cases, except for some cases
eliminated in Section 2, are eliminated by computation in Section 5.

Let B′ be a subset of the block set B. The volume(frequency) of a point x in B′,
denoted by V (x|B′), is the number of blocks in B′ which contain x. Similarly, if X ′

is a subset of the point set, then V (X ′|B′) =
∑

x∈X′ V (x|B′). A point which occurs
in exactly j blocks is called a j-point.

A point x has point type P (x) = 2α23α34α4 or (α2, α3, α4) if x is contained in exactly
α2 blocks of size 2 (doubles), α3 blocks of size 3 (triples) and α4 blocks of size 4
(quads). Each point type must satisfy

α2 + 2α3 + 3α4 = v − 1 = 17. (1)

With this equation and αk ≤ gk it is easily checked that for a point x in a PBD
with (g2, g3, g4) = (0, 11, 20) or (3, 6, 22) then the only possible point types are
exhibited in Table 1. Let a, b, c, d denote the number of points x with a volume
V (x|B′) = 6, 7, 8, 9 respectively. Then

a + b + c + d = 18 and 6a + 7b + 8c + 9d = 2g2 + 3g3 + 4g4. (2)

It can be noted that in Sections 2 and 3 it is shown that d = 0.
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The terms blocks and points are used when referring to a (partial) PBD and the
terms elements and sets when referring to the dual design. In particular let P be a
PBD(18, {2, 3, 4}) with 31 blocks, gi blocks of size i and hj j-points then the dual
design P ∗ = (V ∗,B∗) is an antichain consisting of |V ∗| = 31 elements in |B∗| = 18
sets, with hj sets of size j, and with gi elements occurring in i sets in P ∗. Each
pair of distinct points occurs together in exactly one block of P , hence each pair of
distinct sets in P ∗ has exactly one element in common: |B∗

i ∩ B∗
j | = 1 for i 6= j. A

set of size j is called a j-set and an element which occurs in exactly i sets is called
an i-element, i ≥ 0. If two distinct elements occur in the same set then it is said
that they are a pair.

Lemma 1.1
There is no PBD(18, {2, 3, 4}) with the configuration (g2, g3, g4) = (6, 1, 24).
Proof Assume that the lemma is false. Then the volume of the quads is 96, and as
there are 18 points in 24 blocks, there must be at least one point which occurs in
six quads. However this point would then occur in pairs with 18 distinct elements,
so this case is not possible.

2 Case (g2, g3, g4) = (0, 11, 20)

As g2 = 0 only point types with α2 = 0 are possible. In Table 1 the only such point
types are a 6-point of type 3145, a 7-point of type 3443 and an 8-point of type 3741.
As a refinement of equation (2), volumes of each point type in the triples and quads
require that a+4b+7c = 33 and 5a+3b+ c = 80. There are three feasible algebraic
solutions: (a, b, c) =(15,1,2), (14, 3, 1) or (13, 5, 0). As g3 = 11 there can be at most
one point of type 3741, so (a, b, c) = (15, 1, 2) is immediately eliminated.

2.1 Assume that (a, b, c) = (14, 3, 1) (Using P )

Let C be the point of type 3741 and A, B be two points of type 3443. Begin by
assigning the points to triples. C occurs in seven triples. Each of A and B occur in
four triples, once with C and once as a pair. This requires a minimum of 12 triples,
but there are only 11 triples. So this case is not possible.

2.2 Assume that (a, b, c) = (13, 5, 0) (Using P ∗)

Let A×B denote the Cartesian product of sets A and B. Say that a pair of distinct
sets (A, B) ∈ A × B is covered by an element a if A ∩ B = {a}. Alternatively it is
said that a covers the pair (A, B) ∈ A × B. If a ∈ X then it can be said that X
covers (A, B).
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Let X ⊆ V ∗ and let C ⊆ B∗. An element x ∈ X is called an i-element with respect
to C if x occurs in exactly i sets of C. Say that X|C has frequency type 0a1b2c3d4e if
X consists of a 0-elements, b 1-elements, c 2-elements, d 3-elements and e 4-elements
with respect to C. Let S ∈ C be a set. S has set type 1a2b3c4d with respect to X|C
if a, b, c, d elements of S are 1, 2, 3, 4-elements (respectively) of X with respect to C.

Considering the dual P ∗, there are five 7-sets and thirteen 6-sets. The 7-sets each
contain four 3-elements and three 4-elements. The 6-sets each contain one 3-element
and five 4-elements. Let P denote the five 7-sets, let a, . . . , k denote the eleven 3-
elements and let A, . . . , T denote the twenty 4-elements. At most one of the eleven
3-elements occurs three times in P as V ({a, . . . , k}|P) = 20 and there are 10 pairs in
P ×P. Remember that any two distinct sets have exactly one element in common,
thus any pair of distinct sets from P × P is covered by exactly one element of V ∗,
and an element of V ∗ which occurs in exactly i sets in P covers i(i − 1)/2 such
pairs. Therefore the only possible frequency types for {a, . . . , k}|P are 132731, 01210

or 1229. Each of these cases require a separate argument. A part of one argument
is included here for illustration.

2.2.1. Assume that {a, . . . , k}|P has frequency type 132731.

As the 3-elements cover all of the pairs in P × P , it can be assumed that P =
{abciABC, adejDEF, afgkGHI, bdfhJKL, ceghMNO}. Partition the remaining
13 sets of P ∗ into Q, the seven 6-sets each containing one of b, c, d, e, f, g or h, and
R the six 6-sets containing one of i, j or k. Let X = {A, . . . , O}, Y = {P, . . . , T}
and Z = X ∪ Y . Table 2 shows the set types that might occur in Q with respect to
Z|Q given that each set in Q must have six pairs in Q×Q covered by elements of
Z.

Number of set types Possible set types
r 1342

s 12213141

t 112341

u 1233

v 112232

w 2431

Table 2: Set types possible for Q with respect to Z|Q
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It follows that if the collection Z|Q has frequency type 1m2n3o4p, then

r + s + t + u + v + w = 7

3r + 2s + t + 2u + v = m

s + 3t + 2v + 4w = 2n

s + 3u + 2v + w = 3o

2r + s + t = 4p (3)

Unless otherwise stated the elements of Z are now considered in the context of their
occurrences in Q or R alone. It will be useful to note that all elements of X are
3-elements in Q ∪ R and all elements of Y are 4-elements in Q ∪ R, so that upon
determination of a frequency type of a particular set of elements restricted to one of
the parts Q or R, the frequency type of the same set of elements in the other part
immediately follows.

Consideration of P ×Q shows that each set in Q contains three elements of X and
two elements of Y so V (X|R) = 24 and V (Y |R) = 6. Consideration of P ×R shows
that each set in R contains four elements of X and one element of Y . Furthermore
V ({A, B, C}|R) = V ({D, E, F}|R) = V ({G, H, I}|R) = 4 so each set covers at least
one pair in R × R. V ({J, K, L}|R) = V ({M, N, O}|R) = 6 so each of these sets
covers at least three pairs in R×R. Therefore X covers at least 9 of the 15 pairs
in R×R. Also Y covers at least one pair and {i, j, k} covers exactly three pairs in
R×R. Thus there remain two pairs to determine in R×R. Note that neither set
{J, K, L} nor {M, N, O} contains two 3-elements in R as then X would cover twelve
pairs in R×R. There are no 3-elements from {A, . . . , I} in R as each element pairs
with i, j or k in P .

As V (Y |R) = 6, Y covers 1,2 or 3 pairs in R×R and no element occurs more than
three times in R, Y |R has frequency type 1421, 011222, 0223 or 011331. One of these
subcases is now argued for illustration.

2.2.1.1. Assume that Y |R has frequency type 011331.

Then Y covers 3 pairs in R×R so X covers 9 pairs in R×R. It follows that X|R has
each of the sets {A, B, C}, {D, E, F}, {G, H, I} comprising one 2-element and two
1-elements and {J, K, L}, {M, N, O} each containing three 2-elements of R. So X|R
has frequency type 1629. Let C, F, I be 2-elements in R and let A, B, D, E, G, H be
1-elements in R and thus 2-elements in Q. It is easily seen that X|Q, Y |Q, Z|Q have
frequency types 1926, 113341 and 110263341 respectively.

The following additional constraints on the variables in (3) can be noted. There is
only one 4-element in Z|Q so set type 1342 is impossible inQ and therefore r = 0. All
of the 3-elements of Z|Q are elements of Y and each set in Q contain two elements
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of Y so u = 0. There are no 2-elements in Y |Q so w = 0. Therefore (3) is uniquely
satisfied by (r, s, t, u, v, w) = (0, 3, 1, 0, 3, 0).

Note that the frequency types of X|Q and Y |Q require that the 1-element and the
4-element in the set W ∈ Q of type 112341 must be elements of Y . The three 2-
elements in W must be in X and so they can be assumed to be A, D and G. Hence
W must be of the form hADGPT , where P is a 1-element in Q. It follows that
P is a 3-element in R and each of the three sets in R which contain P must also
include two 1-elements and two 2-elements of X|R to satisfy R × R. Thus all six
of the 1-elements in X|R, namely A, B, D, E, G, H are in sets with P in R which is
a contradiction given that A, D, G and P are in W . Therefore this subcase is not
possible.

3 Case (g2, g3, g4) = (3, 6, 22)

Since α4 ≤ 5 for all point types in Table 1 and the volume of the quads is 88, there
are two ways to configure the quads. Case 1 has sixteen points in 5 quads and two
points occurring in 4 quads. Case 2 has seventeen points occurring in 5 quads and
one point occurring in 3 quads. Point types with α4 ≥ 3 must have volume 6, 7, or
8, so d = 0. Then there are three solutions to the point-volume equations (2) and
these are now considered in turn.

Assume that (a, b, c) = (16, 0, 2). This solution is impossible for Case 1 as the two
8-points must be type 233144 giving duplicate pairs in the doubles. Case 2 cannot
be satisfied as only 6-points or 7-points have α4 = 5. Thus (a, b, c) = (16, 0, 2) is
impossible.

Assume that (a, b, c) = (15, 2, 1). This solution has an 8-point, for which α4 ≤ 4
holds. Therefore, in Case 1 the 8-point is of type 233144. Then the other point
occurring in 4 quads is of type 213244. This in turn implies that there is exactly
one 7-point of type 2245 and a contradiction is reached since duplicated pairs occur
in the doubles. So Case 1 is impossible. In Case 2, noting that only 6-points or
7-points have α4 = 5, V consists of fifteen 6-points of type 3145, two 7-points of type
2245 and one 8-point of type 223343.

Assume that (a, b, c) = (14, 4, 0). In Case 1, V must consist of fourteen 6-points of
type 3145, two 7-points of type 2245, and two 7-points of type 213244. In Case 2 V
consist of fourteen 6-points of type 3145, three 7-points of type 2245, and one 7-point
of type 3443.
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Possible point types
P1 223343

P2 203443

P3 213244

P4 223045

P5 203145

Table 3: Possible point types Pi

4 Preliminaries for Computer Results

Let P = {P1, . . . , Pn} be the set of all possible point types (Pi = (α(2,i), α(3,i), α(4,i))).
The point type distribution of a (partial) PBD with respect to P is a vector d =
d(P) = (d1, . . . , dn) such that the entry di counts how many points of type Pi are in
the (partial) PBD.

The case structure analysis in Sections 2 and 3 leaves four major cases to be elimi-
nated by computation:
(g2, g3, g4) = (0, 11, 20), (a, b, c) = (13, 5, 0);
(g2, g3, g4) = (3, 6, 22), (a, b, c) = (14, 4, 0) Cases 1 and 2;
(g2, g3, g4) = (3, 6, 22), (a, b, c) = (15, 2, 1) Case 2.
Thus there are five possible point types to consider as listed in Table 3.

The corresponding four possible point type distributions are:
d1 (0, 5, 0, 0, 13) : 5× 203443, 13× 203145;
d2 (0, 0, 2, 2, 14) : 2× 213244, 2× 223045, 14× 203145;
d3 (0, 1, 0, 3, 14) : 1× 203443, 3× 223045, 14× 203145;
d4 (1, 0, 0, 2, 15) : 1× 223343, 2× 223045, 15× 203145.

In order to avoid unnecessary long vectors we consider whenever possible only those
point types (with indices Id = {i : di 6= 0} = {i1, . . . , it}) which really occur. Let
B be any block, its single block type with respect to d(P) is a vector S = S(B) =
(s1, . . . , st) where sj counts how many points of type Pij occur in B. Clearly, each
possible single block type S satisfies

k(S) :=
t∑

j=1

sj is a size from K; (4)

sj ≤ dij for j = 1, . . . , t; and (5)

α(k(S),ij) = 0 implies sj = 0 for j = 1, . . . , t. (6)

Let Sd = {S1, . . . , Sr} be the set of all possible single block types with respect to
a point type distribution d(P) and let Ik = {i ∈ {1, . . . , r} : k(Si) = k} be the
set of indices i such that Si ∈ Sd belongs to a block of size k. The single block
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type distribution of a (partial) PBD with point type distribution d(P) is a vector
cd = cd(Sd) = (c1, . . . , cr) such that the entry ci counts how many blocks of type Si

are in the (partial) PBD. A possible single block type distribution needs to satisfy
the following conditions which are obtained by counting points of the same point
type which are contained in blocks of size k in two ways (7), or by counting pairs
of points of the same point type (8), or pairs of points of distinct point types (9) in
two ways (Sh,j denotes the j-th component of the possible single block type Sh).∑

h∈Ik

chSh,j = dijα(k,ij) for all j ∈ {1, . . . , t} and all k ∈ K, (7)

r∑
h=1

chSh,j(Sh,j − 1) ≤ dij(dij − 1) for all j ∈ {1, . . . , t}, (8)

and

r∑
h=1

chSh,jSh,` ≤ dijdi` for all j, ` ∈ {1, . . . , t}, i 6= `. (9)

Note that equality holds in (8) and (9) for all j, ` ∈ {1, . . . , t} simultaneously if and
only if the partial PBD is a PBD. We give here a list of all possible single block type
distributions for each of the point type distributions d1, . . . , d4.

For the point type distribution d1 there are 9 possible single block types Sd1 =
{(3, 0), (2, 1), (1, 2), (0, 3), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)} which allow 3 possible
single block type distributions:

cd11 = (1, 7, 3, 0, 0, 0, 0, 15, 5),

cd12 = (0, 10, 0, 1, 0, 0, 0, 15, 5),

cd13 = (0, 9, 2, 0, 0, 0, 1, 13, 6).

For the point type distribution d2 there are 15 possible single block types Sd2 =
{(2, 0, 0), (1, 1, 0), (0, 2, 0), (2, 0, 1), (1, 0, 2), (0, 0, 3), (2, 2, 0), (2, 1, 1), (2, 0, 2),
(1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 2, 2), (0, 1, 3), (0, 0, 4)} which allow 3 possible single
block type distributions:

cd21 = (0, 2, 1, 1, 2, 3, 0, 0, 0, 0, 2, 6, 0, 8, 6),

cd22 = (0, 2, 1, 0, 4, 2, 0, 1, 0, 0, 0, 6, 0, 9, 6),

cd23 = (0, 2, 1, 0, 4, 2, 0, 0, 1, 0, 2, 4, 0, 8, 7).

For the point type distribution d3 there are 11 possible single block types Sd3 =
{(0, 2, 0), (1, 0, 2), (0, 0, 3), (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 3, 1), (0, 2, 2),
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(0, 1, 3), (0, 0, 4)} which allow 1 possible single block type distributions:

cd31 = (3, 4, 2, 0, 0, 3, 0, 0, 0, 12, 7).

For the point type distribution d4 there are 10 possible single block types Sd4 =
{(1, 1, 0), (0, 2, 0), (1, 0, 2), (0, 0, 3), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 2, 2), (0, 1, 3),
(0, 0, 4)} which allow 1 possible single block type distribution:

cd41 = (2, 1, 3, 3, 0, 0, 3, 0, 10, 9).

5 Search for a PBD with Prescribed Point Type

Distribution and Single Block Type Distribu-

tion

In this section, we describe the search undertaken to find a PBD(18, {2, 3, 4}) with
one of the possible point type distributions and single block type distributions de-
termined in the previous section. This search is split into two steps. In the first
step we determine all suitable partial PBDs containing only blocks of size 2 and 3
and consider their dual. The partial PBD is called the prestructure and its dual
is called the dual prestructure. In the second step it is attempted to complete the
prestructures obtained with blocks of size 4.

5.1 Search for a Prestructure

Let d = d(P) ∈ {d1, . . . , d4} be a prescribed possible point type distribution, let
cd = cd(Sd) be one possible single block type distribution and let Pp = {P p

1 , . . . , P p
n}

where P p
j is the restriction of point type Pj with respect to the partial block size set

{2, 3}, that is, P p
j = 2α(2,j)3α(3,j) . Furthermore, let (V,Bp) be a partial PBD(v, {2, 3})

with point type distribution dp with respect to Pp and single block type distribution
cp
d computed with respect to Sp

d = {Si ∈ Sd : i ∈ I2 ∪ I3}. Now, (V,Bp) is called
a suitable prestructure with respect to d and cd if ∀x ∈ V : P (x) ∈ Pp, ∀B ∈ Bp :
S(B) ∈ Sp

d , dp = d and cp
d = ((cd)i : i ∈ I2 ∪ I3).

The task is to find all suitable, non-isomorphic prestructures with respect to pre-
scribed d(P) and cd(Sd). When trying to search for these non-isomorphic prestruc-
tures on 18 points we found out that this search was particularly slow whenever
there is one special point type that occurs very often since any isomorphism maps
points of a certain point type to points of the same point type. That was the reason
why we decided to search instead for the dual prestructure. The advantage is that
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the dual prestructure has only g2 +g3 ≤ 11 points, thus isomorphism testing is much
faster. The disadvantage, however, is that this approach requires some additional
computations.

The dual prestructure is again a partial PBD as noted in the introduction. Thus all
notation introduced for partial PBDs in Section 4 and the (in)equalities (7), (8), (9)
are also valid for the dual prestructure. In order to distinguish between primal and
dual prestructure we will use (in accordance with the terminology given in Section 1)
the words element type (rather than point type), element type distribution (rather
than point type distribution), single set type (rather than single block type) and so
on whenever we refer to the dual prestructure.

The parameters of the dual of a suitable prestructure with prescribed d(Pp) and
cd(Sp

d) are as follows. The set sizes are from

K∗ = {k∗j := α(2,ij) + α(3,ij) : j = 1, . . . , t}.

Note that the set sizes k∗j are pairwise distinct for each point type distribution
d ∈ {d1, . . . , d4}. Thus we get a different set size from each point type. The g2 + g3

elements are of type

P ∗
i = (k∗1)

Si,1 . . . (k∗t )
Si,t for i = 1, . . . , |Sp

d |.

These element types are also pairwise distinct. Therefore, it is easily checked that
we have exactly (cd)i elements of type P ∗

i , which means that the element type
distribution d∗ = cd. Unfortunately, although the dual of the dual prestructure gives
the primal prestructure, we can not conclude that the single set type distribution
c∗d = d since distinct element types may correspond to the same block size. So it is
necessary to compute all possible single set types S∗d and all possible single set type
distributions c∗d(S∗d) using (7), (8), (9) and the fact that the dual of a single set type
corresponds to some point type. The single set types and possible single set type
distributions obtained this way are presented in Appendix A.

Now, an exhaustive search technique (backtracking) was applied to search for a
dual prestructure with prescribed parameter. We do this by systematically building
up a feasible partial PBD. A partial PBD(g2 + g3, K

∗) on the element set V ∗ =
{0, 1, . . . , g2 +g3−1} with sets B∗ is called feasible with respect to given d∗(P∗) and
c∗d(S∗d) if

(i) if (k∗1)
α1 . . . (k∗t )

αt is the current element type of x ∈ V ∗ and (k∗1)
Sj,1 . . . (k∗t )

Sj,t

is the desired element type of x where j is uniquely determined by
∑j−1

i=1 (d∗)i ≤
x <

∑j
i=1(d

∗)i, then αi ≤ Sj,i for i = 1, . . . , t;

(ii) S(B) ∈ S∗d for all B ∈ B∗;

(iii) |{B ∈ B∗ : S(B) = Si ∈ S∗d}| ≤ (c∗d)i for all i = 1, . . . , |S∗d |;
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(iv) B∗ ≤lex π(B∗) for every element type preserving permutation π : V ∗ → V ∗,
i.e. π satisfies: if x ∈ V ∗ and

∑j−1
i=1 (d∗)i ≤ x <

∑j
i=1(d

∗)i, then
∑j−1

i=1 (d∗)i ≤
π(x) <

∑j
i=1(d

∗)i.

Let X = {B ⊆ V ∗ : S(B) ∈ S∗d}. We try to construct feasible partial PBD
(V ∗,B∗m) for m = 0, 1, . . . , 18 with B∗0 = ∅ and B∗m ∈ Xm = X × X × . . . × X .
Clearly, if (V ∗,B∗18) is a feasible dual prestructure, then its dual is a suitable primal
prestructure. Note, that in condition (i) it is checked that the current element type
of each element x can be extended to the desired element type. For that purpose
we fix an order of the elements types and want the first (d∗)1 elements to have the
desired element type P ∗

1 , the next (d∗)2 elements to have the desired element type P ∗
2 ,

and so on until we want the last (d∗)|P ∗| elements to have the desired element type
P ∗
|P ∗|. Conditions (ii) and (iii) ensure that the current set type distribution can be

extended to the desired set type distribution. Finally, condition (iv) ensures that we
construct from each class of isomorphic dual prestructures exactly one representative
prestructure. For more information on search techniques used in design theory see
for example [1] or [4]. The backtracking algorithm is given below.

Backtracking algorithm to find a feasible dual prestructure with respect to pre-
scribed d∗ = d∗(P∗) and c∗d = c∗d(S∗d)

1. procedure Search(d∗,c∗d,B∗)
2. begin
3. if |B∗| = 18
4. then compute primal prestructure (V ∗,B∗)∗ and save solution
5. else
6. for each B ∈ X do
7. if (V ∗,B∗ ∪ {B}) is a feasible partial PBD with respect to d∗,c∗d
8. then Search(d∗,c∗d,B∗ ∪ {B})
9. end

Running the algorithm with Search(d∗, c∗d, ∅) where (d∗, c∗d) ∈ {(d∗11, c∗d111
), (d∗11, c

∗
d112

),
(d∗11, c

∗
d113

), (d∗11, c
∗
d114

), (d∗11, c
∗
d115

), (d∗12, c
∗
d121

), (d∗13, c
∗
d131

), (d∗13, c
∗
d132

), (d∗21, c
∗
d211

),
(d∗22, c

∗
d221

), (d∗23, c
∗
d231

), (d∗31, c
∗
d311

), (d∗41, c
∗
d411

)} as given in Appendix A, we found
that there exist exactly 8 suitable primal prestructures whose blocks are listed in
Appendix B.

5.2 Search for a Completion of a Given Prestructure

Given a suitable primal prestructure with respect to prescribed d(P) and cd(Sd) we
want to find a completion of the prestructure with blocks of size 4 such that the
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PBD obtained has point type distribution d(P) and single block type distribution
cd(Sd). The algorithm used is basically the same as the one in the previous section.
We just need to alter the feasibility predicate and the search space X in accordance
with our new demands.

A partial PBD(18, {2, 3, 4}) on the point set V = {0, 1, . . . , 17} with block set B is
called feasible with respect to given suitable prestructure (V,Bp), and distribution
vectors d(P) and cd(Sd) if

(i) if 2α23α34α4 is the point type of x ∈ V , then α4 ≤ α(4,j) where j is uniquely

determined by
∑j−1

i=1 di ≤ x <
∑j

i=1 di;

(ii) S(B) ∈ Sd for all B ∈ B and Bp ⊆ B;

(iii) |{B ∈ B : S(B) = Si ∈ Sd}| ≤ (cd)i for all i = 1, . . . , |Sd|;

(iv) B ≤lex π(B) for every point type preserving permutation π which is an iso-
morphism of the prestructure.

We define the search space to be X = {B ⊆ V : |B| = 4, S(B) ∈ Sd}.

Backtracking algorithm to complete a given prestructure (V,Bp) with respect to
prescribed d = d(P) and cd = cd(Sd)

1. procedure Search(Bp,d,cd,B)
2. begin
3. if |B| = 31
4. then save solution and stop
5. else
6. for each B ∈ X do
7. if (V,B ∪ {B}) is a feasible partial PBD with respect to Bp,d,cd

8. then Search(Bp,d,cd,B ∪ {B})
9. end

We started the algorithm above with Search(Bp, d, cd,Bp) for each triple (d, cd,Bp) ∈
{(d1, cd11 ,B

p
d111

) (d1, cd12 ,B
p
d121

), (d1, cd13 ,B
p
d131

), (d2, cd21 ,B
p
d211

), (d2, cd22 ,B
p
d221

),
(d2, cd23 ,B

p
d231

), (d3, cd31 ,B
p
d311

), (d4, cd41 ,B
p
d411

)}. We found that none of the triples
was completable to a PBD with 31 blocks.

6 Conclusion

We have computed in the previous sections all suitable prestructures for a
PBD(18, {2, 3, 4}) with exactly 31 blocks and have shown that none of these pre-
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structures is completable. Therefore, we have established:

Theorem 6.1. There does not exist a PBD on 18 points with 31 blocks of size at
most 4.

A Possible Single Set Type Distributions of the

Dual Prestructure

Here is listed the parameters of all possible primal and dual prestructures. The pa-
rameter sets are labeled by dij which indicates that the primal prestructure belongs
to the restriction to blocks of size 2 and 3 of the point type distributions di with
single block type distribution cdij

.

d11: Parameter of primal prestructure: dp
1 : 5× 2034, 13× 2031

Sp
d1

= {(3, 0), (2, 1), (1, 2), (0, 3)},
cp
d11

= (1, 7, 3, 0)

Parameter of dual prestructure: d∗11: 1× 1043, 7× 1142, 3× 1241

S∗d11
= {(0, 1, 0), (0, 0, 1), (1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 4, 0),

(0, 3, 1), (0, 2, 2), (0, 1, 3)},
c∗d111

= (7, 6, 0, 3, 0, 0, 2, 0, 0, 0),
c∗d112

= (7, 6, 1, 1, 1, 0, 2, 0, 0, 0),
c∗d113

= (7, 6, 2, 0, 0, 1, 2, 0, 0, 0),
c∗d114

= (7, 6, 1, 2, 0, 0, 1, 1, 0, 0),
c∗d115

= (7, 6, 2, 0, 1, 0, 1, 1, 0, 0)

d12: Parameter of primal prestructure: dp
1 : 5× 2034, 13× 2031

Sp
d1

= {(3, 0), (2, 1), (1, 2), (0, 3)},
cp
d12

= (0, 10, 0, 1)

Parameter of dual prestructure: d∗12: 10× 1142, 1× 1340

S∗d12
= {(1, 0), (0, 1), (4, 0)},

c∗d121
= (10, 3, 5)

d13: Parameter of primal prestructure: dp
1 : 5× 2034, 13× 2031

Sp
d1

= {(3, 0), (2, 1), (1, 2), (0, 3)},
cp
d13

= (0, 9, 2, 0)

Parameter of dual prestructure: d∗13: 9× 1142, 2× 1241

S∗d13
= {(1, 0), (0, 1), (4, 0), (3, 1), (2, 2)}

c∗d131
= (9, 4, 3, 2, 0), c∗d132

= (9, 4, 4, 0, 1)

d21: Parameter of primal prestructure: dp
2 : 2× 2132, 2× 2230, 14× 2031

Sp
d2

= {(2, 0, 0), (1, 1, 0), (0, 2, 0), (2, 0, 1), (1, 0, 2), (0, 0, 3), }
cp
d21

= (0, 2, 1, 1, 2, 3)
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Parameter of dual prestructure: d∗21: 2 × 102131, 1 × 102230, 1 × 112032, 2 × 122031,
3× 132030

S∗d21
= {(0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (2, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 0, 1, 1, 0),

(1, 0, 0, 2, 0)},
c∗d211

= (1, 4, 9, 0, 2, 2, 0)

d22: Parameter of primal prestructure: dp
2 : 2× 2132, 2× 2230, 14× 2031

Sp
d2

= {(2, 0, 0), (1, 1, 0), (0, 2, 0), (2, 0, 1), (1, 0, 2), (0, 0, 3)}
cp
d22

= (0, 2, 1, 0, 4, 2)

Parameter of dual prestructure: d∗22: 2× 102131, 1× 102230, 4× 122031, 2× 132030

S∗d22
= {(0, 0, 1, 0), (0, 0, 0, 1), (2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 2, 0)},

c∗d221
= (8, 6, 0, 2, 2)

d23: Parameter of primal prestructure: dp
2 : 2× 2132, 2× 2230, 14× 2031

Sp
d2

= {(2, 0, 0), (1, 1, 0), (0, 2, 0), (2, 0, 1), (1, 0, 2), (0, 0, 3)}
cp
d23

= (0, 2, 1, 0, 4, 2)

Parameter of dual prestructure: d∗23: 2× 102131, 1× 102230, 4× 122031, 2× 132030

S∗d23
= {(0, 0, 1, 0), (0, 0, 0, 1), (2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 2, 0)},

c∗d231
= (8, 6, 0, 2, 2)

d31: Parameter of primal prestructure: dp
3 : 1× 2034, 3× 2230, 14× 2031

Sp
d3

= {(0, 2, 0), (1, 0, 2), (0, 0, 3))},
cp
d31

= (3, 4, 2)

Parameter of dual prestructure: d∗31: 3× 102240, 4× 122041, 2× 132040

S∗d31
= {(0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 4, 0)},

c∗d311
= (8, 6, 3, 1)

d41: Parameter of primal prestructure: dp
4 : 1× 2233, 2× 2230, 15× 2031

Sp
d4

= {(1, 1, 0), (0, 2, 0), (1, 0, 2), (0, 0, 3)},
cp
d41

= (2, 1, 3, 3)

Parameter of dual prestructure: d∗41: 2× 102151, 1× 102250, 3× 122051, 3× 132050

S∗d41
= {(0, 0, 1, 0), (0, 0, 0, 1), (2, 0, 0, 0), (1, 1, 0, 0), (2, 0, 3, 0)},

c∗d411
= (6, 9, 0, 2, 1)

B Dual and Primal Prestructures

Here is listed all of the sets of the dual prestructures without sets of size 1 (which
are easy to complete) and the corresponding blocks of the primal prestructures.

d111: B∗ = {{0, 1, 2, 8}, {0, 3, 4, 9}, {0, 5, 6, 10}, {1, 3, 5, 7}, {2, 4, 6, 7}};
Bp

d111
= {{0, 1, 2}, {0, 3, 5}, {0, 4, 6}, {1, 3, 7}, {1, 4, 8}, {2, 3, 9}, {2, 4, 10},
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{3, 4, 11}, {0, 12, 13}, {1, 14, 15}, {2, 16, 17}}

d121: B∗ = {{0, 1, 2, 3}, {0, 4, 5, 6}, {1, 4, 7, 8}, {2, 5, 7, 9}, {3, 6, 8, 9}};
Bp

d121
= {{0, 1, 5}, {0, 2, 6}, {0, 3, 7}, {0, 4, 8}, {1, 2, 9}, {1, 3, 10}, {1, 4, 11},

{2, 3, 12}, {2, 4, 13}, {3, 4, 14}, {15, 16, 17}}

d131: B∗ = {{0, 1, 2, 3}, {0, 4, 5, 6}, {1, 4, 7, 8}, {2, 5, 7, 9}, {3, 6, 8, 10}};
Bp

d131
= {{0, 1, 5}, {0, 2, 6}, {0, 3, 7}, {0, 4, 8}, {1, 2, 9}, {1, 3, 10}, {1, 4, 11},

{2, 3, 12}, {2, 4, 13}, {3, 14, 15}, {4, 16, 17}}

d211: B∗ = {{0, 2}, {0, 3, 4}, {1, 2}, {1, 3, 5}},
Bp

d211
= {{0, 3}, {1, 2}, {2, 3}, {0, 1, 4}, {0, 5, 6}, {1, 7, 8}, {9, 10, 11}, {12, 13, 14}, {15, 16, 17}}

d221: B∗ = {{0, 2}, {0, 3, 4}, {1, 2}, {1, 5, 6}},
Bp

d221
= {{0, 3}, {1, 2}, {2, 3}, {0, 4, 5}, {0, 6, 7}, {1, 8, 9}, {1, 10, 11}, {12, 13, 14}, {15, 16, 17}}

d231: Same prestructure as d221

d311: B∗ = {{0, 1}, {0, 2}, {1, 2}, {3, 4, 5, 6}},
Bp

d311
= {{1, 3}, {2, 3}, {1, 2}, {0, 4, 5}, {0, 6, 7}, {0, 8, 9}, {0, 10, 11}, {12, 13, 14}, {15, 16, 17}}

d411: B∗ = {{0, 1, 3, 4, 5}, {0, 2}, {1, 2}},
Bp

d411
= {{0, 1}, {0, 2}, {1, 2}, {0, 3, 4}, {0, 5, 6}, {0, 7, 8}, {9, 10, 11}, {12, 13, 14}, {15, 16, 17}}
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