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Abstract

A class of natural linear characters for the
centralizers of elements in the symmetric
group is introduced. The character values of
the corresponding monomial characters are
calculated. They have a surprising combina-
torial interpretation.
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For any 0 < m ∈ N, let

fm(x) =
∑

d|m
µ(d) xm/d ,

where µ is the Möbius function, so fm is a monic polynomial of degree m over Z. For
τ = (τ1, . . . , τn) ∈ Nn

0 , let

pτ (x) =
n∏

m=1

τm−1∏
j=0

(fm(x) + jm) ;

so if τ is a partition of n, i.e. n =
∑
m

mτm, then pτ has degree n. Note that for n 6= 0

(which we assume throughout), the constant term of pτ is 0, since this is true for every
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fm. We expand

pτ (x) =
n∑

t=1

χt(τ) xt ,

so this produces class functions χ1, . . . , χn of the symmetric group Sn, where of course
χt(g) = χt(τ) if g ∈ Sn is of type τ , i.e. g has exactly τi orbits of length i (in its natural
action on n = {1, . . . , n} ). The aim of this note is to show that the χt’s are characters of
Sn . More precisely, Corollary 1 states that the χt’s are sums of certain canonical mono-
mial characters.

Notation

(i) For k ∈ N , let Sn,k = {g ∈ Sn | g has exactly k orbits on n }, so Sn,k is a union of conju-
gacy classes Kβ of Sn , namely the ones of type β with k = |β| := ∑

i

βi. Clearly, Sn,k = ∅
if k > n; also, Sn,0 = ∅ (since n > 0).

(ii) For m ∈ N, let

εm = e
2πi
m ∈ C ,

so εm is a primitive m-th root of unity. Note that (εm) d = εm/d for every d|m .

Lemma 1
n−1∏

k=0

(x + k) =
n∑

k=0

|Sn,k|xk

Proof: Given an element g ∈ Sn,k−1, we define g̃ ∈ Sn+1,k by g̃(n+1) = n+1 and g̃ = g
on n. Given g ∈ Sn,k and 1 ≤ i ≤ n , we define g̃i ∈ Sn+1,k by

g̃i(j) =





n + 1 if j = i

g(i) if j = n + 1

g(j) otherwise.

Then ˜ is a bijection between Sn,k−1 ∪ Sn,k × n and Sn+1,k ; in particular |Sn+1,k| =
|Sn,k−1|+ |Sn,k|n. From this, the assertion follows easily by induction.

Remark 1 For any 0 < m ∈ N, there is a natural action of Sn on the set mn of all maps
n → m. Such a map f is fixed by g ∈ Sn if and only if f is constant on the orbits of g, so
the number of fixed points of g is mb(g), where b : Sn → N counts the orbits. Calculating
the multiplicity of the trivial character in the permutation character πm gives

(πm,1) =
1

n!

∑
g∈Sn

πm(g) =
1

n!

∑
t

|Sn,t|mt =
1

n!

n−1∏

k=0

(m + k) =

(
n + m− 1

n

)
,

where the third equality follows from the lemma. By Burnside’s lemma ([1], Corollary
5.15), this gives the number of orbits of Sn on mn, hence the number of choices with
repetitions of n objects from m. So get a well known formula from basic combinatorics.
A similar argument allows us to calculate the multiplicity of the sign character sgn: using
that π−m = (−1)nsgn · πm, one gets

(πm, sgn) =

(
m

n

)
.
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Lemma 2
t−1∏

k=0

(fm(x) + km) =
∑

β ` t

|Kβ|mt−|β|fm(x)|β|

Proof:
t−1∏
k=0

(fm(x) + km) = mt
t−1∏
k=0

( 1
m

fm(x) + k)

= mt
t∑

k=0

|St,k| ( 1
m

fm(x))k (using Lemma 1)

=
t∑

k=0

|St,k|mt−kfm(x)k

=
∑
β ` t

|Kβ|mt−|β|fm(x)|β| .

Lemma 3
µ(m) =

∑
ε primitive
m-th root
of unity

ε

Proof:
∑

d|m

∑
ε primitive
d-th root
of unity

ε =
∑

ε m-th
root of
unity

ε =

{
1 if m = 1

0 otherwise
=

∑

d|m
µ(d) ,

hence the assertion.

Definition, Remark 2

(i) Let G be a finite group acting on the finite set X. Fix some conjugacy class K of G and
consider the set

M = {(a,B) | a ∈ K, B an orbit of <a> on X} .

It is clear that M is a G-set by (a,B)g = (ag,Bg) and that α : M 3 (a,B) 7→ a ∈ K is a
G-map. For every point (a,B) ∈ M , we define a linear character (a,B)θ of the stabilizer
G(a,B) by

(a,B)θ(g) = ε j
|B| if xg = xaj for some x ∈ B .

Since g ∈ G(a,B) commutes with a, the choice of x is irrelevant. Also j is unique modulo
the length |B| of the orbit. Therefore (a,B)θ is well–defined and clearly multiplicative.
Obviously (a,B)θg = (ag,Bg)θ, so θ : (a,B) 7→ (a,B)θ is an inductible map; it follows that
γ = θα is a character of G, in fact a monomial character induced from a linear character
λa of CG(a) for a ∈ K (compare [3] for the notation and simple facts concerning inductible
maps and their induction). This character depends on X and K, so γ = γ(X,K).

(ii) In the following, G = Sn and X = n , so it remains to specify the conjugacy class. As the
classes are naturally labelled by the partitions σ of n, we use the partitions also as labels
for the γ’s and write γσ := γ(n,Kσ).
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(iii) There is an alternative – and more familiar – description of the linear character λa of
CSn(a) from which γσ is induced. As is well known, corresponding to the decomposition of
a (of type σ) in products of cycles of equal length, there is a direct product decomposition
of CSn(a). The factor C(m) corresponding to the cycles a1, . . . , as (say) of length m
in this direct product is in turn a semi-direct product of an abelian normal subgroup
A = <a1, . . . , as>∼= Cm × · · · × Cm with a symmetric group Ss which acts by permuting
the cycles. Therefore, there are m linear characters of A which are stable under Ss, hence
extendable to C(m), so we can choose a linear character λm of C(m) which has order m
and is trivial on Ss. This character is determined only up to algebraic conjugation, but
we can avoid ambiguity by specifying that λm(ai) = εm.
The product of these characters λm gives a character λa of CSn(a). In fact, λa = ϑα

a , as is
easily seen by calculating the values of these two linear characters on a cycle of a and on
an element only permuting the cycles.
Incidentally, the choice of λm is irrelevant for γσ = λSn

a : induce first to the Young subgroup
S1σ1 × . . .× Snσn and use that all characters of a symmetric group are rational.

(iv) To summarize, for every σ ` n, we have a monomial character γσ of Sn with values given
by

γσ(g) =
∑
a∈Kσ
ga = ag

λa(g) ,

where
λa(g) =

∏
i

(a,Bi)θ(g
ei)

for a set Bi of representatives of the orbits of <g> on the orbits of <a> and ei =
| <g> : <g>Bi

| .

(v) For bookkeeping, it is useful to introduce Xσ :=
n∏

i=1

xσi
i , a monomial in n variables of

total degree |σ|, and

hg(x1, . . . , xn) =
∑

σ `n

γσ(g) Xσ ∈ Z[x1, . . . , xn] ,

a polynomial that collects the character values of the γσ’s at an element g ∈ Sn; of course,
hg = hτ depends only on the conjugacy class Kτ of g.

(vi) It is clear that

hg =
∑

σ `n

γσ(g)Xσ =
∑

σ `n

∑
a∈Kσ
ag=ga

λa(g)Xσ =
∑
a∈C

λa(g)Xσ(a) ,

where C = CSn(g) and σ(a) is the type of a.

Lemma 4 Let gm be the product of all cycles of length m of g ∈ Sn, viewed as an
element of Sm τm , where τ is the type of g. Then

hg =
∏
m

hgm .
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Proof: Let Tm ⊆ n be the union of all orbits of length m of g and Hm = STm , the
symmetric group on Tm; also denote Cm = CHm(gm). Then

hgm =
∑

am∈Cm

λam(gm)Xσ(am) ,

so ∏
m

hgm =
∑

(a1,...,an)
am∈Cm

λa1(g1) . . . λan(gn)Xσ(a1) . . . Xσ(an) .

Now C1 × · · · × Cn 3 (a1, . . . , an) 7→ a := a1 · · · an is a bijection C1 × · · · × Cn → C :=
CSn(g); clearly, σ(a) = σ(a1) + · · · + σ(an) and by definition λa(g) = λa1(g1) . . . λan(gn).
Therefore, the sum on the right simplifies to

∑
a∈C

λa(g)Xσ(a) = hg

as claimed.

Lemma 5 Let g be homocyclic, say g is the product of t cycles of length m. Then

hg =
∑

β ` t

|Kβ|mt−|β| ∏
i


∑

d|m
µ(d) x

m/d
i·d




βi

.

Proof: Let n = m · t and C = CSn(g). Since

hg =
∑
a∈C

λa(g)Xσ(a) ,

we have to calculate the contribution of a ∈ C to this sum.
Since C is a semi-direct product of St and an abelian normal subgroup N =<g1, . . . , gt> ,
where g = g1 · . . . ·gt is the cycle decomposition, every element a ∈ C can be written as
a = a0 · ge1

1 · . . . · get
t with a0 ∈ St. We consider first the case that a0 is a long cycle, so a0

has order t. Denote A = <a> and D := <g, a> ; so D is an abelian transitive subgroup of
Sn. Let l be the order of a. Then clearly t|l; since at = ge , where e =

∑
i

ei and since the

order of ge is d := m/gcd(e,m), we find that l = t · d. This is then the length of every

orbit of A, so A has m · t/l = m/d orbits. The corresponding monomial is therefore x
m/d
t·d .

To calculate the coefficient, note that gm/d and at generate the same subgroup (of order
d), so gm/d = at·u for some u prime to d. Therefore λa(g) = εt·u

l = εu
d is a primitive d-th

root of unity.

Now take a′ = a0 · ge′1
1 · . . . · ge′t

t and let e′ =
∑
i

e′i . For any 0 ≤ s < m , there are mt−1

solutions (e′1, . . . e
′
t) for e′ ≡ s mod(m) with 0 ≤ e′i < m for all i. If we collect those for

which gcd(e′,m) = m/d for some fixed divisor d of m, the monomial is always x
m/d
t·d and

each primitive d-th root of unity appears mt−1 times as a coefficient. By Lemma 3, we
get mt−1µ(d) x

m/d
t·d for fixed d and

∑

d|m
mt−1µ(d) x

m/d
t·d = mt−1

∑

d|m
µ(d) x

m/d
t·d
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as contribution of a0N to hg.
A general element a0 of St will have several cycles, say βi cycles of length i for some
β ` t. Then the above analysis can be done for each of these cycles, replacing t by i. The
contribution of a0N to hg is then

∏
i

(
mi−1

∑
d|m

µ(d) x
m/d
i·d

)βi

= m

P
i

(i−1)βi ∏
i

(
∑
d|m

µ(d) x
m/d
i·d

)βi

= mt−|β| ∏
i

(
∑
d|m

µ(d) x
m/d
i·d

)βi

.

Summing over all elements of St yields the result.

Combining the last two lemmas, we get

Theorem For g ∈ Sn of type τ , one has

hg =
∏
m




∑

β ` τm

|Kβ|mτm−|β|
∏

i


∑

d|m
µ(d) x

m/d
i·d




βi

 .

Proof: Clear.

Corollary 1

χt =
∑

σ `n
|σ|= t

γσ

Proof: Again for g of type τ , we get by substitution

hg(x, . . . , x) =
∑

σ `n

γσ(g)x|σ| =
n∑

t=1




∑

σ `n
|σ|= t

γσ(g)


 xt .

On the other hand, we get from the theorem and Lemma 2 that

hg(x, . . . , x) =
∏
m


 ∑

β ` τm

|Kβ|mτm−|β| ∏
i

(
∑
d|m

µ(d) xm/d

)βi




=
∏
m

[
∑

β ` τm

|Kβ|mτm−|β|fm(x)|β|
]

=
∏
m

τm−1∏
j=0

(fm(x) + jm)

= pτ (x) =
n∑

t=1

χt(g)xt .
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Now compare coefficients to get

χt(g) =
∑

σ `n
|σ|= t

γσ(g) ;

this holds for every g, hence the assertion.

Remark 3

(i) By the theorem, the character values of the γσ’s can be calculated in the polynomial ring
Z[x1, . . . , xn]. This is tedious, but purely mechanical work; note that the sizes of the
conjugacy classes (the only information needed from the group) are given by a straight-
forward formula. For instance, let g ∈ S8 be of type τ = (2, 3, 0, 0, 0, 0, 0, 0). For m = 1,
there are two partitions of τ1 = 2, namely (2, 0) and (0, 1); the corresponding classes have
both size 1, so the first factor in hg is

1 · 12−2 ·
(
µ(1) x

1/1
1·1

)2

+ 1 · 12−1 ·
(
µ(1) x

1/1
2·1

)1

= x2
1 + x2 .

For m = 2, there are three partitions of τ2 = 3, namely (3, 0, 0), (1, 1, 0) and (0, 0, 1); the
corresponding classes have size 1, 3 and 2 respectively, so the second factor in hg is

1 · 23−3 ·
(
µ(1) x

2/1
1·1 + µ(2) x

2/2
1·2

)3

+ 3 · 23−2 ·
(
µ(1) x

2/1
1·1 + µ(2) x

2/2
1·2

)1

·
(
µ(1) x

2/1
2·1 + µ(2) x

2/2
2·2

)1

+ 2 · 23−1 ·
(
µ(1) x

2/1
3·1 + µ(2) x

2/2
3·2

)1

= (x2
1 − x2)

3 + 6 (x2
1 − x2)(x

2
2 − x4) + 8 (x2

3 − x6)
= x6

1 − 3 x4
1x2 + 9 x2

1x
2
2 − 6 x2

1x4 − 7 x3
2 + 6 x2x4 + 8 x2

3 − 8 x6 .

All other τm = 0, so the corresponding factors of hg are 1. Therefore

hg = (x2
1 + x2)(x

6
1 − 3 x4

1x2 + 9 x2
1x

2
2 − 6 x2

1x4 − 7 x3
2 + 6 x2x4 + 8 x2

3 − 8 x6)
= x8

1 − 2 x6
1x2 + 6 x4

1x
2
2 − 6 x4

1x4 + 2 x2
1x

3
2 + 8 x2

1x
2
3 − 8 x2

1x6 − 7 x4
2

+6 x2
2x4 + 8 x2x

2
3 − 8 x2x6 .

From this, we can read off the character values γσ(g); e.g. for σ = (0, 4, 0, 0, 0, 0, 0, 0), we
look at the coefficient of x4

2 to find γσ(g) = −7 .

(ii) Similarly (but much simpler), the values of χt can be calculated in Z[x].

(iii) There are as many γσ’s as there are irreducible characters, but they do not in general
span the space of class functions. Here is a list giving – for a few small n – the class
number k of Sn and the dimension d of the subspace spanned by the γσ’s :

n 1 2 3 4 5 10 15 20 25 30
k 1 2 3 5 7 42 176 627 1958 5604
d 1 2 3 4 6 38 161 577 1816 5245

From these meager data, it looks as if the quotient d/k might tend to 1 for increasing
n, but I have not even an argument for the existence of a limit. As is clear from the
theory, the algorithm is reasonably fast, considering that some of the character values are
quite large; in any case, it takes longer to calculate the dimension of the subspace than
to compute the monomial characters.
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(iv) There is a symmetry for the values of γσ: If gτ ∈ Kτ and gσ ∈ Kσ, then

|Kτ |γσ(gτ ) = |Kσ|γτ (gσ) .

To see this, note that

|Kτ |γσ(gτ ) = γσ(K̂τ ) =
∑
a∈Kσ
b∈Kτ
ab = ba

λa(b) .

While it is not quite true that λa(b) = λb(a), both are products of the same number of
algebraically conjugate roots of unity. This holds in general, i.e. for an arbitrary finite
group G on any finite G-set X. Here is the argument:
Denote A = <a>, B = <b> and C = <a, b> for commuting elements a, b and fix an orbit
xC. If |xC| = t, |xA| = r and |xB| = s then all orbits of A on xC have length r (since C
is commutative). Therefore there are t/r such A-orbits on xC, transitively permuted by
B. Hence bt/r is the smallest power of b fixing xA, say xbt/r = xad, so the contribution of
xC to λa(b) is the factor εd

r . Similarly, the contribution of xC to λb(a) is the factor εe
s,

where xat/s = xbe.
The last equation shows that be fixes xA, so e is a multiple of t/r, say e = (t/r)u and

similarly d = (t/s)v. Setting δ = ε
(t/r)(t/s)
t = ε

t/s
r , it follows that εd

r = δv ∈<δ>, hence
<εd

r>≤<δ>. In fact, equality holds, since from

xat/s = xbe = xb(t/r)u = xadu ,

one concludes that t/s ≡ du mod r, hence δ = ε
t/s
r = εdu

r ∈< εd
r >. Similarly, δ and εe

s

are algebraically conjugate.
For G = Sn, one finds by summing (essentially as in the proof of Lemma 5) separately for

the orbits of <a, b>, that the contributions of each such orbit to γσ(K̂τ ) and to γτ (K̂σ)
are equal.

(v) This symmetry can be used as a check or as a shortcut in calculations. For instance, let
τ = (0, . . . , 0, 1) be the partition corresponding to the long cycles. From the theorem, we
get then simply

hτ =
∑

d|n
µ(d) x

n/d
d ,

so

γσ(gτ ) =

{
µ(d) if σ is homocyclic with cycle length d

0 otherwise .

Therefore

γτ (gσ) = |Kτ |
|Kσ | γσ(gτ )

=

{
µ(d) |Kτ |

|Kσ| if σ is homocyclic with cycle length d

0 otherwise

=

{
µ(d) dm−1(m− 1)! if σ is homocyclic with m cycles of length d

0 otherwise.

(It is easy to check this directly from the definition of γτ .)
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(vi) Here is a more theoretical application: Let πz be the class function defined by πz(σ) = z|σ|,
where z ∈ Z. Using the symmetry |Kτ |γσ(τ) = |Kσ|γτ (σ), one calculates the inner product

(γτ , πz) =
1

n!

∑
σ

|Kσ|γτ (σ)z|σ| =
1

n!

∑
σ

|Kτ |γσ(τ)z|σ| =
|Kτ |
n!

n∑
t=1




∑

σ `n
|σ|= t

γσ(τ)


 zt ,

hence by Corollary 1

(γτ , πz) =
1

|Cτ |
∑

t

χt(τ) zt =
1

|Cτ | pτ (z) ,

where |Cτ | is the order of the centralizer in Sn of an element of type τ . In particular, |Cτ |
divides pτ (z) for every z ∈ Z, since πz is a generalized character.

Corollary 2 Let n > 1; denote l = [n
2
] ,

γe =
∑

σ `n
|σ| ≡ 0 mod(2)

γσ and γo =
∑

σ `n
|σ| ≡ 1 mod(2)

γσ .

Then

(i)

γe(1) = γo(1) =
n!

2

(ii)
γe(g) = −γo(g) = (−1)n 2l−1 l!

if g is a ’long involution’, i.e. g has l orbits of length 2.

(iii)
γe(g) = γo(g) = 0

for all other g ∈ Sn .

Proof: Since

fm(1) =

{
1 if m = 1

0 otherwise
and fm(−1) =





−1 if m = 1

2 if m = 2

0 otherwise,

we can – for g of type τ – calculate that

γe(g) + γo(g) =
∑
σ `n

γσ(g)

=
∑
k

χk(g) by Cor.1

= pτ (1)

=
n∏

m=1

τm−1∏
j=0

(fm(1) + jm)

=

{
n! if τ = (n, 0, . . . , 0)

0 otherwise,
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so γe + γo = ρ , the regular character of Sn . Similarly,

γe(g)− γo(g) =
∑
k

(−1)kχk(g)

= pτ (−1)

=
n∏

m=1

τm−1∏
j=0

(fm(−1) + jm)

=





l−1∏
j=0

(2 + j2) if τ = (0, l, 0, . . . , 0) (n even)

−
l−1∏
j=0

(2 + j2) if τ = (1, l, 0, . . . , 0) (n odd)

0 otherwise,

=

{
(−1)n 2l l! if g is a long involution

0 otherwise.

The assertions follow.

Remark 4 Since
∑
σ

γσ = ρ, the sign character is a constituent (with multiplicity 1) of

exactly one γσ ; Frobenius reciprocity shows that this σ is the type of the long involutions.
Alternatively, one can deduce this from Remark 3(vi), since (−1n)sign = π−1.

Remark 5 The argument used in the proof of Corollary 2 can be generalized. For
instance, for an odd prime r, one has fr(−2) = (−2)r−(−2) = −(2r−2), so fr(−2)+jr = 0
for j = (2r − 2)/r. But if τr > j, then fr(x) + jr is a factor of pτ (x). For such τ then

0 = pτ (−2) =
∑

t

χt(τ)(−2)t =
∑

σ `n

γσ(τ)(−2)|σ| .

It follows from Remark 3(vi) again that (γτ , π−2) = 0 , still under the assumption that
τr > (2r − 2)/r for some odd prime r. Since π−2 is either a character or the negative of a
character, this means that π−2 and γτ have no common constituents. (Instead of −2, any
other negative integer z will do; of course, the condition on τ depends on z.)
Remark 6 There is a combinatorial interpretation of the polynomials pτ , hence of the
characters χk : Let F = Fq be the field with q elements, and let E be a field extension
with |E : F | = m. Then the map d 7→ F (d), where |F (d)| = qd, is a bijection between the
divisors d of m and the intermediate fields F ≤ F (d) ≤ E. Denote Ad := {a ∈ E |F [a] =
F (d)}; then qm = |E| = ∑

d|m
|Ad| . Möbius inversion yields

|Am| =
∑

d|m
µ(

m

d
) qd = fm(q) .

Now every a ∈ Am has minimal polynomial of degree m and each of these has m different
zeros, all in Am, so the number of monic irreducible polynomial of degree m in F [x] is

f ∗m(q) :=
1

m
fm(q) .

Since every polynomial is (essentially uniquely) a product of irreducibles, we can define
the type τ of a polynomial h by letting τm be the number of irreducible factors of degree
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m in h; so τ ` deg(h). Of course, an irreducible factor may occur with a multiplicity, so
the number of monic polynomials over F of a given type τ ` n is

p∗τ (q) =
n∏

m=1

(
f ∗m(q) + τm − 1

τm

)
.

Multiplication of p∗τ by a suitable scalar gives a monic polynomial, more precisely |Cτ | p∗τ =
pτ ; recall that the order of the centralizer |Cτ | =

∏
m

mτmτm!. Using Remark 3(vi) once

again, we conclude that the number of polynomials of type τ (over Fq) equals the inner
product (γτ , πq).
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