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Abstract

A class of natural linear characters for the
centralizers of elements in the symmetric
group is introduced. The character values of
the corresponding monomial characters are
calculated. They have a surprising combina-
torial interpretation.
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For any 0 <m € N, let

fm(x) = Zu(d) am/ )

where p is the Mobius function, so f,, is a monic polynomial of degree m over Z. For
T=(7m,...,7) € Nj, let

so if 7 is a partition of n, i.e. n = Y mm,, then p, has degree n. Note that for n # 0
m

(which we assume throughout), the constant term of p, is 0, since this is true for every
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(i)

fm. We expand
x) = th(T) zt,
=1

so this produces class functions xi, ..., x, of the symmetric group S,,, where of course
xt(g9) = xi(7) if g € S, is of type 7, i.e. g has exactly 7; orbits of length ¢ (in its natural
action on n = {1,...,n}). The aim of this note is to show that the x,’s are characters of
Sy . More precisely, Corollary 1 states that the x;’s are sums of certain canonical mono-
mial characters.

Notation

For k € N, let S, = {g € S, |g has exactly k orbits on n }, so S, is a union of conju-
gacy classes Kz of S, , namely the ones of type § with k = |5] := > ;. Clearly, S, =0

if k> n; also, S, =0 (since n > 0).

For m € N, let
27

em=em €C,
SO &, is a primitive m-th root of unity. Note that (g,,)?¢ = &, sa for every dlm

Lemma 1 -
Hx+k Z]Snk|x
k=0

Proof:  Given an element g € S, ;_1, we deﬁne g€ S bygn+l)=n+landg=g
onn. Given g € S, and 1 < i <n, we define g; € S,+1 by

n+1 ifj=i

gi(j)=4¢g() ifj=n+1
g(j) otherwise.

Then ™ is a bijection between S, ;1 U S, x n and S,414; in particular |S,4q14| =
|Snk—1| + |Snk|n. From this, the assertion follows easily by induction.

Remark 1 For any 0 < m € N, there is a natural action of S,, on the set m® of all maps

n — m. Such a map f is fixed by g € S, if and only if f is constant on the orbits of g, so

the number of fixed points of ¢ is m*@, where b : S, — N counts the orbits. Calculating
the multiplicity of the trivial character in the permutation character 7, gives

(Tm, 1 mzﬂm %;'S”’t|mt_llnm+k (n+;’;—1>7

gESH

where the third equality follows from the lemma. By Burnside’s lemma ([1], Corollary
5.15), this gives the number of orbits of S, on m”, hence the number of choices with
repetitions of n objects from m. So get a well known formula from basic combinatorics.
A similar argument allows us to calculate the multiplicity of the sign character sgn: using
that 7_,,, = (—1)"sgn - 7, one gets

(T, Sg11) = (7:) .
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Lemma 2
i—1

[1(fn(@) + km) = 37 (Kl m V£, ()
k=0 Bt
Proof:
t-1 =1
[T (Fm(@) +km) = m" [T (5 fin() + k)
k=0 kTO
= m' > Skl (£ fin(2))*  (using Lemma 1)
k=0
t
= Z |St,k|mt7kfm($)k
k=0
= X Kl mt A (2)
Brt
Lemma 3
pm) = > ¢
€ primitive
et
Proof:

)IEDIEED It :{1 A YT

dlm € primitive e m-th 0 otherwise

d-th root root of
of unity unity

hence the assertion.

Definition, Remark 2

Let GG be a finite group acting on the finite set X. Fix some conjugacy class K of G and
consider the set

M ={(a,B)|a € K, B an orbit of <a> on X} .

It is clear that M is a G-set by (a,B)g = (a9, Bg) and that a : M > (a,B) — a € K is a
G-map. For every point (a, B) € M, we define a linear character (a,3)0 of the stabilizer
G(a,B) by

(a,B)0(g) = 5{8‘ if 2g=xa’ for some € B .

Since g € G(4,3) commutes with a, the choice of x is irrelevant. Also j is unique modulo
the length |B| of the orbit. Therefore (a,B)6 is well-defined and clearly multiplicative.
Obviously (a, B)§? = (a%,Bg)d, so 0 : (a,B) — (a, B)6 is an inductible map; it follows that
v = 0% is a character of GG, in fact a monomial character induced from a linear character
Mg of Cg(a) for a € K (compare [3] for the notation and simple facts concerning inductible
maps and their induction). This character depends on X and K, so v = (X, K).

In the following, G = S,, and X = n, so it remains to specify the conjugacy class. As the
classes are naturally labelled by the partitions o of n, we use the partitions also as labels
for the 4’s and write 7, := y(n, K,).



(i)

There is an alternative — and more familiar — description of the linear character A\, of
Cs, (a) from which 7, is induced. As is well known, corresponding to the decomposition of
a (of type o) in products of cycles of equal length, there is a direct product decomposition
of Cs,(a). The factor C™ corresponding to the cycles ai,...,a, (say) of length m
in this direct product is in turn a semi-direct product of an abelian normal subgroup
A=<aq,...,as>= C), X -+ x (), with a symmetric group Sy which acts by permuting
the cycles. Therefore, there are m linear characters of A which are stable under S,, hence
extendable to C™ so we can choose a linear character \,, of C™ which has order m
and is trivial on S,. This character is determined only up to algebraic conjugation, but
we can avoid ambiguity by specifying that A, (a;) = €.

The product of these characters A, gives a character A, of Cg_(a). In fact, A, = ¥, as is
easily seen by calculating the values of these two linear characters on a cycle of a and on
an element only permuting the cycles.

Incidentally, the choice of \,, is irrelevant for v, = A5»: induce first to the Young subgroup
S1ey X ... X Spe, and use that all characters of a symmetric group are rational.

To summarize, for every o - n, we have a monomial character v, of S,, with values given

by
Yo(9) = Y Aalg) .
aEKa'
ga=ag
where

Aa(g) = H(a, B;)0(g*)

(2

for a set B; of representatives of the orbits of <g> on the orbits of <a> and e; =
| <g>:<g>p; | :
n
For bookkeeping, it is useful to introduce X7 := [[ 27" , a monomial in n variables of
i=1
total degree |o|, and
hy(zy,... z,) = Z%(g) X7 €Zxy,...,xp)
okn

a polynomial that collects the character values of the v,’s at an element g € S,,; of course,
hg = h. depends only on the conjugacy class K. of g.

It is clear that

hy =Y (@)X =) X(9)X7 = A(g) X7

okn obn a€K, aeC
ag=ga

where C' = Uy, (g) and o(a) is the type of a.

Lemma 4 Let g, be the product of all cycles of length m of g € S,,, viewed as an
element of S, , where 7 is the type of g. Then

hg = H hy,,



Proof:  Let T,, C n be the union of all orbits of length m of g and H,, = S, , the
symmetric group on 7T,,; also denote C,, = Cq,, (gm). Then

D Ao lgm) X

am€Cim,
SO
The. = D Aalg). - Aa,(gn) X)L Xl
" e
Now Cy x -+ x Cy, 3 (a1,...,a,) — a:=ay---a, is a bijection C; x -+ x C,, — C':

— =
Cs,(g): clearly, o(a) = ola) -+ o(ay) and by definition Au(g) = Auy(61) - don (9.
Therefore, the sum on the right simplifies to

D Xalg) X = by,

aeC

as claimed.

Lemma 5 Let g be homocyclic, say g is the product of ¢ cycles of length m. Then

Bi
by = S 01T St
Bt i dlm
Proof: Let n=m-t and C' = Cg,(g). Since
hy =D Aalg) X7
acC

we have to calculate the contribution of a € C' to this sum.

Since C' is a semi-direct product of S; and an abelian normal subgroup N =<gy,...,¢:>,
where g = g;- ... -¢g; is the cycle decomposition, every element a € C' can be written as
a=ag-g7t-...- gy with ag € S;. We consider first the case that ag is a long cycle, so ag

has order ¢. Denote A = <a> and D :=<g,a>; so D is an abelian transitive subgroup of
Sn. Let [ be the order of a. Then clearly t|l; since a’ = ¢°, where e = )" e; and since the

order of ¢°¢ is d := m/ged(e,m), we find that [ = t - d. This is then the length of every
orbit of A, so A has m-t/l = m/d orbits. The correspondmg monomial is therefore z,_ m/d,
To calculate the coefficient, note that ¢™/¢ and a' generate the same subgroup (of order
d), so g™ = a** for some u prime to d. Therefore \,(g) = ei'® = % is a primitive d-th
root of unity.

Now take a’ = ag-gy' ...+ ¢g;" and let ¢ = > e} . For any 0 < s < m, there are m'~*

(2
solutions (€}, ...¢€}) for ¢ = s mod(m) with 0 < € < m for all i. If we collect those for
which ged(e’,m) = m/d for some fixed divisor d of m, the monomial is always a:';nd/ 4 and
each primitive d-th root of unity appears m!~! times as a coefficient. By Lemma 3, we

get mt~pu(d) 2* for fixed d and

S ) e = S )

dlm dlm



as contribution of agN to hy.

A general element ay of S; will have several cycles, say ; cycles of length i for some
B Ft. Then the above analysis can be done for each of these cycles, replacing ¢ by ¢. The
contribution of agN to h, is then

Bi P'—l : ] Bi
H(mi—lzuw)w%d) = m" ”H(ZMWJ )

i dlm i dlm

i dlm

Bi
= m'~PI] (z u(d) x?tﬁ)

Summing over all elements of S; yields the result.

Combining the last two lemmas, we get

Theorem For g € S,, of type 7, one has

Bi

hy =11 3 1Kslm™ T (Y ()2,

m BFTm 7 d\m

Proof:  Clear.

Corollary 1

Xe= > %

okn
o] =t

Proof: ~ Again for g of type 7, we get by substitution

n

h(x, ) =D (9)2 =D [ Y el |2

obn t=1 okn
lo|=t

On the other hand, we get from the theorem and Lemma 2 that

Bi
ho(x,...,x) = ]I > |Kﬁ|m7mﬁln<zu(d)xm/d>

SR> |Kﬁ|mfmﬁ'fm<x>ﬁ']



Now compare coefficients to get

= Z Yo (9) ;

okn
lo|=t

this holds for every ¢, hence the assertion.

Remark 3

By the theorem, the character values of the ~,’s can be calculated in the polynomial ring
Zlxy,...,x,]. This is tedious, but purely mechanical work; note that the sizes of the
conjugacy classes (the only information needed from the group) are given by a straight-
forward formula. For instance, let g € Sg be of type 7 = (2,3,0,0,0,0,0,0). For m = 1,
there are two partitions of 71 = 2, namely (2,0) and (0, 1); the corresponding classes have
both size 1, so the first factor in h, is

1-1%72. (lu(l) x}/11> +1-1271. (M(l) x§/11> =22+ 1y .

For m = 2, there are three partitions of 75 = 3, namely (3,0,0), (1,1,0) and (0,0, 1); the
corresponding classes have size 1, 3 and 2 respectively, so the second factor in h, is

_ 2/1 2/2
1.2%73. (N(l) $1/1 + 1(2) 5151/2>
1
+3.2%72 ( 551 1 1(2) I?/22> : (M(l) xg/l + M(Q)x;/;)
1
+2.2371 ( :z:?/f 1(2) x§/22>
ZEl —29)2+6 (3:1 - xg)(:cz —x4) + 8 (22 — x6)
=% — 3airy + 92302 — 623wy — T3 + 6a9zy + 823 — 8w .
All other 7, = 0, so the corresponding factors of h, are 1. Therefore

hy = (234 22)(at lexg + 9x1x2 6x1x4 T3+ 62914 + 823 — 8¢)
= m§—2x1x2+6x — 6xiry + 22303 + 8x3a3 — 8atwg — T
+6 x%m + 8 x2x§ — 8Toxg .

From this, we can read off the character values v,(g); e.g. for o = (0,4,0,0,0,0,0,0), we
look at the coefficient of z3 to find 7,(g) = —7.

Similarly (but much simpler), the values of x; can be calculated in Z[z].

There are as many -,’s as there are irreducible characters, but they do not in general
span the space of class functions. Here is a list giving — for a few small n — the class
number k of S, and the dimension d of the subspace spanned by the ~,’s

n 1 2 3 45 10 15 20 25 30
E1 2 3 5 7 42 176 627 1958 5604
d 1 2 3 4 6 38 161 577 1816 5245

From these meager data, it looks as if the quotient d/k might tend to 1 for increasing
n, but I have not even an argument for the existence of a limit. As is clear from the
theory, the algorithm is reasonably fast, considering that some of the character values are
quite large; in any case, it takes longer to calculate the dimension of the subspace than
to compute the monomial characters.



(iv) There is a symmetry for the values of 7,: If g, € K, and g, € K, then

’KTWU(.QT) = ’Kcrh/‘r<go)

To see this, note that

K0 (9:) = (1) = ) Al

CLGKU
beK
ab=ba

While it is not quite true that A,(b) = Ap(a), both are products of the same number of
algebraically conjugate roots of unity. This holds in general, i.e. for an arbitrary finite
group G on any finite G-set X. Here is the argument:

Denote A = <a>, B =<b> and C = <a, b> for commuting elements a, b and fix an orbit
xC. If |zC| =t, |vA| =r and |zB| = s then all orbits of A on C have length r (since C'
is commutative). Therefore there are t/r such A-orbits on xC', transitively permuted by
B. Hence b'/" is the smallest power of b fixing zA, say zb"/" = za?, so the contribution of
xC to A, (b) is the factor e4. Similarly, the contribution of xC' to \y(a) is the factor ¢,
where za'/® = xb°.

The last equation shows that b° fixes A, so e is a multiple of t/r say e = (t/r)u and
sunllarly d = (t/s)v. Setting § = t/r)(t/s) = &¥/%_ it follows that el = ¢V €<d>, hence
<ed> < <§>. In fact, equality holds, since from

zat’® = xb® = bW = g™

one concludes that ¢/s = du mod 7, hence § = glfs

are algebraically conjugate.

For G = S, one finds by summing (essentially as in the proof of Lemma 5) separately for
the orbits of <a,b>, that the contributions of each such orbit to v,(K,) and to ~,(K,)
are equal.

=e¢® €< &? >, Similarly, § and &¢

This symmetry can be used as a check or as a shortcut in calculations. For instance, let

7 =1(0,...,0,1) be the partition corresponding to the long cycles. From the theorem, we
get then simply
he =Y p(d)z/®
dln
SO
p(d) if o is homocyclic with cycle length d
i (gT) = .
0 otherwise .
Therefore
K,
'77(90) = ||Ka|\ VU(QT)
p(d) ;ﬁj if o is homocyclic with cycle length d
0 otherwise

{,u(d) d™ Y(m —1)! if ¢ is homocyclic with m cycles of length d
0

otherwise.

(It is easy to check this directly from the definition of ~;.)
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(vi) Here is a more theoretical application: Let 7, be the class function defined by (o) = 217!,
where z € Z. Using the symmetry | K, |v,(7) = | Ky|7-(0), one calculates the inner product

K.
() = oy DKol = 1y 3 ()2 = | 'Z S ) | 2

okn
o] =t

hence by Corollary 1

(77’771—7; |C|2Xt |O| ( )

where |C;| is the order of the centralizer in S, of an element of type 7. In particular, |C;|
divides p,(z) for every z € Z, since 7, is a generalized character.

Corollary 2 Let n > 1; denote [ = [§],

Ve = Zryaand')/o: Z’ya-

okn
|o] =0 mod(2) lo|= 1 mod(2)

Then

7e(9) = —(9) = (=1)" 271!
if g is a 'long involution’, i.e. g has [ orbits of length 2.

76(9) - 70(9) =0
for all other g € S,

Proof:  Since

L i1 -1 ifm=1
fm(1) = e and f(—1)=<2 ifm=2
0 otherwise

0  otherwise,

we can — for g of type 7 — calculate that

Ye(9) +7%(9) = D2 7(9)

B {n! if 7= (n,0,...,0)

0 otherwise,



SO Ye + Yo = p, the regular character of S, . Similarly,

Ye(9) — Ylg) = Zkl(—l)’“xk(g)

= p'r(_1>_1
=g1ﬁua>+m>

T‘Q

( 1

(2+j2) it 7=(0,0,0,...,0) (n even)

~,
Lol
= o

(2452) if7=(1,1,0,...,0) (nodd)

]:

0 otherwise,
B (—1)m 24! if g is a long involution
B 0 otherwise.

The assertions follow.

Remark 4 Since ) 7, = p, the sign character is a constituent (with multiplicity 1) of

exactly one 7, ; Frobenius reciprocity shows that this o is the type of the long involutions.
Alternatively, one can deduce this from Remark 3(vi), since (—1")sign = 7_;.

Remark 5 The argument used in the proof of Corollary 2 can be generalized. For
instance, for an odd prime r, one has f,(=2) = (=2)"—(-2) = —(2"—2), so f,(=2)+jr =0
for j = (2" —2)/r. But if 7. > j, then f,.(z) 4 jr is a factor of p.(z). For such 7 then

0=pr(— Z Xe(1)(=2)" =) 7a(7)(=2)

okn

It follows from Remark 3(vi) again that (v,,7_2) = 0, still under the assumption that
> (2" — 2)/r for some odd prime r. Since m_5 is either a character or the negative of a
character, this means that 7_5 and 7, have no common constituents. (Instead of —2, any
other negative integer z will do; of course, the condition on 7 depends on z.)
Remark 6 There is a combinatorial interpretation of the polynomials p., hence of the
characters x;: Let F' = F, be the field with ¢ elements, and let E be a field extension
with |E : F| = m. Then the map d — F(d), where |F(d)| = ¢¢, is a bijection between the
divisors d of m and the intermediate fields F' < F(d) < E. Denote Ay := {a € E| Fla] =
F(d)}; then ¢™ = |E| = > |A4| . Mébius inversion yields

dm
[Anl = Y1) " = Fula)

dlm

Now every a € A,, has minimal polynomial of degree m and each of these has m different
zeros, all in A,,, so the number of monic irreducible polynomial of degree m in Fx] is

fa) = - fula)

Since every polynomial is (essentially uniquely) a product of irreducibles, we can define
the type T of a polynomial h by letting 7,, be the number of irreducible factors of degree
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m in h; so 7 - deg(h). Of course, an irreducible factor may occur with a multiplicity, so
the number of monic polynomials over F' of a given type 7 F n is

pi() = mH G

1 Tm

Multiplication of p* by a suitable scalar gives a monic polynomial, more precisely |C. | pt =
pr; recall that the order of the centralizer |C.| = [[m™7,!. Using Remark 3(vi) once

again, we conclude that the number of polynomials of type 7 (over Fj) equals the inner
product (7., m,).
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