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Abstract

We present a version of the orthogonality re-
lations for group characters which appears
to be new – at least in this generality. The
proof given uses only Maschke’s theorem and
Schur’s lemma. Among other consequences,
Burnside’s result on the existence of zeros for
non–linear irreducible characters is general-
ized.
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Throughout, G is a finite group. The most important case x = y of part (i) of the follow-
ing appears as lemma in Gallagher’s paper [1]; see also 3.4 in [2]. Some of the corollaries
below follow already from Gallagher’s result.

Theorem 1 Orthogonality Let V and W be CG-modules affording the characters χ and
ψ of G and let H be a subgroup.

(i) If χ|H is irreducible, then

1

|H|
∑

h∈H

χ(hx)χ(hy) =
χ(xy−1)

χ(1)

for all x, y ∈ G. In particular, the mean is 1 if x = y.
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(ii)
1

|H|
∑

h∈H

χ(hx)ψ(hy) = 0 for all x, y ∈ G

if and only if V|H and W|H have no common constituents.

Proof:

(i) Let E := EndC(V ). For any a, b ∈ E, we have a linear map λaρb : E → E sending
e ∈ E to aeb. A short calculation using matrix units shows that its trace on E is
trE(λaρb) = trV (a) · trV (b). Therefore

∑
h∈H

trV (h−1a) · trV (bh) =
∑
h∈H

trE(λh−1aρbh)

= trE(
∑
h∈H

λh−1aρbh)

= trE(τ) ,

where
τ :=

∑

h∈H

λh−1aρbh

sends e ∈ E to
eτ =

∑

h∈H

h−1aebh .

Since V|H is (absolutely) irreducible and eτ commutes with all h ∈ H, it is a scalar
matrix, say eτ = c · Id. The scalar c can be calculated by taking the trace:

c · χ(1) = trV (
∑
h∈H

h−1aebh)

= |H| · trV (aeb) .

Therefore

eτ =
|H|
χ(1)

· trV (aeb) · Id

for every e ∈ E. Since τ : E → E maps all of E into the one-dimensional subspace
C · Id, we have

trE(τ) · Id = (Id)τ =
|H|
χ(1)

· trV (ab) · Id

or
1

|H|
∑

h∈H

trV (h−1a) · trV (bh) =
1

|H| trE(τ) =
trV (ab)

χ(1)
.

Therefore

1

|H|
∑

h∈H

χ(hx)χ(hy) =
1

|H|
∑

h∈H

trV (h−1x) · trV (y−1h) =
trV (xy−1)

χ(1)
=
χ(xy−1)

χ(1)
,

where we have used χ(h−1y) = χ(y−1h).
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(ii) The same idea works: Denote F = HomC(V,W ). For a ∈ EndC(V ) and b ∈
EndC(W ), the map λaρb : F → F has trace trF (λaρb) = trV (a)trW (b) as before.
But

τ :=
∑

h∈H

λh−1aρbh : f 7→
∑

h∈H

h−1afbh ,

and this is an H-linear map V → W , hence 0, if V|H and W|H have no common
constituents. Therefore τ = 0 and so

0 = trF (τ) =
∑

h∈H

trV (h−1a) · trW (bh) .

One direction follows.
To prove the converse, take x = y = 1 and use the ordinary orthogonality relations
for H; note that these are a consequence of what has already been shown.

If H is normal and x = y, one can give a much shorter proof, using the elements of Clifford
theory.

Corollary 2 Let H ≤ G and χ ∈ Irr (G). Assume that χ|H is irreducible and let e be
the central idempotent of CH corresponding to χ|H . Then

ϕ(x) =
χ(1)

|H|
∑

h∈H

χ(xh−1)h

for x ∈ CG defines an algebra homomorphism ϕ : CG→ CH with χ(ϕ(g)) = χ(g) for all
g ∈ G, ϕ(h) = he for all h ∈ H and ϕ(gy) = ϕ(g)y for all g ∈ G and y ∈ NG(H).

Proof: Take x, y ∈ G and look at the coefficient of some fixed a ∈ H for ϕ(xy) and
for ϕ(x)ϕ(y) respectively. We get

χ(1)

|H| χ(xya−1) and

∑

h,k∈H
hk=a

χ(1)

|H| χ(xh−1)
χ(1)

|H| χ(yk−1) =

(
χ(1)

|H|

)2 ∑

h∈H

χ(xh−1)χ(ya−1h)

respectively. By part (i) of the theorem, the last sum ist just

|H|
χ(1)

χ(xya−1) .

This shows that ϕ is multiplicative. The other properties are obvious.

Under the assumptions of the corollary, let K = Q(χ). By its very definition, ϕ : KG→
KH, so for any field E ≥ K, there exists an E-representation affording χ if and only if
there exists an E-representation affording χ|H .
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It is possible to prove the corollary first and then deduce part (i) of the theorem. To
do so, note first that the representation of G on V induces an algebra homomorphism
CG → EndCV . It is well known that EndCV ∼= eCH ≤ CH. This shows the existence
of an algebra homomorphism ϕ : CG → CH with χ(ϕ(g)) = χ(g) for all g ∈ G. One
can then use the regular character of H to deduce the above formula for ϕ. Since ϕ is
multiplicative, part (i) of the theorem is a consequence. This approach follows closely the
one in [3], 2.13.

Corollary 3 Let H ≤ G and χ ∈ Irr (G) with χ|H irreducible.

(i) Given a1, . . . , an ∈ G for some n ≥ 1, one has

χ(a1a2 . . . an) =

(
χ(1)

|H|

)n−1

·
∑

(h0,...,hn)∈Hn+1

h0 =hn =1

n∏

i=1

χ(h−1
i−1 ai hi ) .

(ii) If the values of χ on some cosets Hg1, . . . , Hgs, s > 0 are known, one can calculate
the character values on all elements in the subgroup generated by these cosets. In
particular, if the values on Hg are known, the values on 〈H, g〉 can be deduced.
They all belong to the field Q(χ(x) |x ∈ Hg).

Proof:

(i) Use induction on n. Replacing y by y−1, on gets from part (i) of the theorem that

χ(1)

|H|
∑

h∈H

χ(xh)χ(h−1y) = χ(xy) .

This is the statement for n = 2 (the case n = 1 being trivial) and provides the
induction step.

(ii) By the first part, we can calculate (rationally) the character value on any product

of elements from
⋃
i

Hgi once we know χ(1)
|H|

. For this, choose a ∈ Hg with χ(a) 6= 0.

Since

χ(a) = χ(a−1aa) =

(
χ(1)

|H|

)2 ∑

h,k∈H

χ(a−1h)χ(h−1ak)χ(k−1a)

and χ(a−1h) = χ(h−1a), χ(h−1ak) = χ(kh−1a) and χ(k−1a) are all known, the sum

can be calculated, and therefore
(
χ(1)
|H|

)2

and χ(1)
|H|

as well.

Taking H = G and g = 1 in the next corollary gives Burnside’s result mentioned above.
Another example illustrating the point nicely is G = SL(2, 3) and H = Q8 . The irre-
ducible characters of degree 2 have no zero outside H.

Corollary 4 Let H ≤ G, g ∈ G of order k and χ ∈ Irr (G). If χ|H is irreducible and χ

has no zero on the coset Hg, then χ(g) = ± ε, where ε is a k–th root of unity.
Proof: (Compare [3], 3.14, 3.15) Let χ = χ1, . . . , χt be all the algebraic conjugates of χ.

4



Note that they are all irreducible under restriction to H, so it follows from part (i) of the
theorem that

1

t|H|
∑

i, h

|χi(hg)|2 = 1 .

No χi has a zero on Hg, so

0 <
∏

i, h

|χi(hg)|2 .

Since the product is a rational algebraic integer, it is at least 1. Now use the fact that
the inequality

1

n

n∑

i=1

ri ≥ (
n∏

i=1

ri)
1/n

between arithmetic and geometric mean (for 0 ≤ ri ∈ R) is proper unless all ri’s are equal.
Therefore |χi(hg)| = 1 for all i and h and in particular |χ(g)| = 1. It is then actually
a root of unity by exercise 3.2 in [3]. Since χ(g) belongs to the cyclotomic field Qk, the
assertion follows from [6], Satz 11.13.

In some cases, the sign of the character value in the last result can be determined: Let
k = o(g) be a power of some prime p. If ζ is a primitive k–th root of unity and I any max-
imal ideal of Z[ζ] containing p, then ζs ≡ 1 mod I for every s, hence χ(g) ≡ χ(1) mod I.
So if χ(g) = ε, a k–th root of unity, then χ(1) ≡ 1 mod p and if χ(g) = −ε then
χ(1) ≡ −1 mod p. In particular, if Hg contains a p–element, then χ has a zero on Hg
unless χ(1) ≡ ±1 mod p (still assuming χ|H irreducible).

The next result is independent of the theorem, but it fits in with the context, because it
is proved by the same arguments as the last corollary and because one can again deduce
Burnside’s result, this time taking H = 1.

Proposition 5 Let H ≤ G and χ ∈ Irr (G). If χ|H is reducible then χ has a zero on

G \H.
Proof: Let again χ = χ1, . . . , χt be the algebraic conjugates of χ. If χ(g) 6= 0, then∑
i

|χi(g)|2 ≥ t by the arithmetic-geometric inequality. So if χ(g) 6= 0 for all g ∈ G \ H,

we get

t|G| =
∑

i, g∈G

|χi(g)|2 ≥
∑

i, h∈H

|χi(h)|2 +
∑

g∈G\H

t ,

hence
t|H| ≥

∑

i,h∈H

|χi(h)|2 = t|H|(χ, χ)H ,

contradicting the assumption on χ|H .

It is of course not possible to guaranty a zero of χ on a given coset of H in the last result.
Examples of non–linear χ’s with no zero on G \H are given below.

The following is a slight generalization of a well known result (see [3], Theorem 3.7 for
instance).

5



Proposition 6 Central characters LetH ≤ G, g ∈ G and L = gH be theH–conjugacy
class of g. Let χ be a character of G and let e = eσ be the central idempotent of CH

corresponding to some σ ∈ Irr (H). Finally, denote ωχ, σ(L̂) := χ(e
�

L)
σ(1)

. Then

(i)

ωχ, σ(L̂) =
|L|χ(eg)

σ(1)
=

|L|
|H|

∑

h∈H

χ(hg)σ(h)

(ii) If (χ, σ)H = 1, then ωχ, σ defines an algebra homomorphism A := CCG(CH) → C;

moreover, ωχ, σ(L̂) is an algebraic integer.

(iii) If χ|H = σ is irreducible, then ωχ, σ(L̂) = |L|χ(g)
χ(1)

is an algebraic integer.

Proof:

(i) Since e commutes with any h ∈ H, we have egh = (eg)h, so χ(ex) = χ(eg) for all

x ∈ L and therefore χ(eL̂) = |L|χ(eg). Now apply χ to eg = σ(1)
|H|

∑
h∈H

σ(h)hg.

(ii) Let L = L1, . . . , Lt be all the H–conjugacy classes in G. The class sums L̂i form a

basis of A. Note that any product L̂i · L̂j is a Z–linear combination of the L̂k’s, so

the Z–span of the L̂k’s is a Z–subalgera B ≤ A.
Now let V be a G–module affording χ and S an H–module affording σ. Multi-
plication with a ∈ A induces an H–endomorphism of V and therefore also of its
S-homogeneous part V e.
By assumption, V e ∼= S is irreducible, so Schur’s Lemma tells us that any ele-
ment of A acts by scalar multiplication on the module V e. This defines then an
algebra homomorphism ω : A → C. Since e is the projection on V e, we have
χ(eL̂) = χ(e ·ω(L̂)) = χ(e) ·ω(L̂) = σ(1) ·ω(L̂), i.e. ω = ωχ,σ. In particular, ωχ,σ(B)
is a unitary subring of C and finitely generated as a Z–module. All elements in
ωχ,σ(B) are then algebraic integers by [3], Theorem 3.4.

(iii) Clear from (ii), since eσ acts as identity on V .

Even under the assumptions of (ii), χ(eg) is in general not integral, so the usefulness of
the statement is not clear. For (iii), the situation is better:

Corollary 7 Let χ ∈ Irr (G) and K = gG be a conjugacy class. If there is a subgroup
H ≤ G such that χ|H is irreducible and 1 = gcd {χ(1), |L1|, . . . , |Lt|}, where L1, . . . , Lt
are all the H– conjugacy classes contained in K, then either g ∈ Z(χ) or else χ(g) = 0.

Proof: Mimic the proof for Burnside’s theorem as given in [3], Theorem 3.8. The only
change is that we choose integers u, v1, . . . , vt such that 1 = uχ(1) + v1|L1| + . . . + vt|Lt|.

Corollary 8 Let g ∈ G and χ ∈ Irr (G) such that χ(g) is a root of unity. If χ|H is

irreducible for some H ≤ G, then χ(1) divides |H : CH(g)|.

Proof: Clear since |gH | = |H : CH(g)| and |gH |
χ(1)

is integral by Proposition 5.
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Example Let X be a doubly transitive H–set, say |X| = n, and let S ≤ H with |H : S|
not divisible by n−1. Further let π be the permutation character of the symmetric group
G = SX ≥ H. Then χ = π−1 is irreducible, even when restricted to H (by 2-transitivity).
If g ∈ C = CG(S), then S ≤ CH(g), so χ(1) = n − 1 does not divide |H : CH(g)|. By
the last corollary, χ(g) 6= ±1, so π(g) 6= 0, 2. In particular, every element of C fixes some
point of X.
A closer look shows that there is even some x ∈ X such that Sx 6= Sy for all x 6= y ∈ X.
Such an x is clearly fixed by all of C.

Corollary 9 Let H, U ≤ G (not necessarily distinct), g ∈ G and χ ∈ Irr (G). If
both χ|H and χ|U are irreducible and if χ has no zero on the coset Hg, then χ(1) divides

|U : CU(hg)| for all h ∈ H.

Proof: χ(hg) is a root of unity by Corollary 4, so the assertion follows from Corol-
lary 8, used for U .

Following Exercise 3.15 (attributed to Thompson) in Isaacs’ book [3], we can use a result
of Siegel to improve Corollary 4.

Corollary 10 Let H ≤ G, g ∈ G, χ ∈ Irr (G) and assume that χ|H is irreducible.

Denote z = |{x ∈ Hg |χ(x) = 0}| and u = |{x ∈ Hg |χ(x) is a root of unity }|. Then

u ≤ |H| ≤ u+ 3z.

Proof: Let χ = χ1, . . . , χt be all the algebraic conjugates of χ. If x ∈ Hg is a zero for
χ, then χi(x) = 0 for any i and similarly for the roots of unity. If x ∈ Hg is one of the
r = |H| − z − u remaining elements, then |χi(x)|2 6= 1, 0 for all i, so 3t

2
≤ ∑

i

|χi(x)|2 by

[5], Theorem III. Therefore

(z + u+ r) · t = |H| · t =
∑

x∈Hg
i

|χi(x)|2 ≥ u · t + r · 3t

2
.

Hence z ≥ r
2
, so |H| = u+ z + r ≤ u+ 3z.

Remark

(i) If z = 0 in the last result, then clearly u = |H|. This is essentially the statement
of Corollary 4. It is a trivial consequence of the theorem that r = 0 also implies
u = |H|.

(ii) It is clear from the above proof that we have |H| = u + 3z if and only if 3t
2

=∑
i

|χi(x)|2 for every x with |χi(x)| 6= 1, 0 . As Siegel has shown, this happens only

for ξ := |χ(x)|2 = 1
2
(3 ±

√
5). Since ξ ∈ Q 5 and Qn ∩ Qm = Q if n and m are

relatively prim ([6], Satz 11.14), we must then have that the order of such an x is
divisible by 5.
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(iii) If χ is not linear and we consider the coset Hg = H, then x = 1 is one of these
’remaining elements’ and has order not divisible by 5. Therefore we get the stronger
inequality |H| < u + 3z in this case. For other cosets, however, we may have
equality. Take G = A5 and H = A4, for instance; then for the irreducible characters
of degree 3, one finds u = z = 3 on any coset 6= H.

In the following proof (and again at the end of the paper), we use the fact that for a
character χ of G and a subgroup H with (χ,1)|H = 0, all coset sums

∑
x∈Hg

χ(x) are 0,

since Ĥ and then also Ĥg act as 0 on the module affording χ, as the referee pointed out.

Corollary 11 Let H ≤ G, g ∈ G and χ ∈ Irr (G) real-valued and not linear. If χ|H is

irreducible and if χ has no zero on the coset Hg, then χ is rational on 〈H, g〉. Moreover
χ(x) = 1 for exactly half of the elements in Hg and χ(x) = −1 for the other half. In
particular, H has even order, and in fact 4χ(1) divides |H|.

Proof: By Corollary 4, the only values χ can take on Hg are ±1, and the preceding
remark shows that both values are taken equally often, say k times, so |H| = 2k is even.
It is clear from Corollary 2 that χ is rational on 〈H, g〉.
Now let

α =
∑

h∈H
χ(hg)=1

χ(h)

and
β =

∑

h∈H
χ(hg)=−1

χ(h) ,

so these are rational integers. Then, by Theorem 1

|H|
χ(1)

χ(g) =
∑

h∈H

χ(hg)χ(h) = α− β = 2α,

since α + β = 0, again by the above remark.
Now χ(g) = ±1, so 4χ(1) divides |H| if and only if α is even.
Assume α is odd; then χ(a) is odd for some a ∈ H. For c ∈ H arbitrary but fixed and
ε, δ ∈ {±1}, let rε,δ be the number of elements h ∈ H such that χ(hg) = ε and χ(chg) = δ.
Then r1,1 + r1,−1 = k = r1,1 + r−1,1, so r1,−1 = r−1,1 =: r. Therefore χ(hg) 6= χ(chg) for
exactly 2r elements and consequently χ(hg) = χ(chg) for 2k − 2r elements. Again using
Theorem 1, we get

|H|
χ(1)

χ(c) =
∑

h∈H

χ(chg)χ(hg) = (2k − 2r) − 2r ≡ |H| mod 4

independent of the choice of c. Choosing c such that χ(c) = 0 (recall that χ is not linear)
shows that 0 ≡ |H| mod 4, hence also

|H|
χ(1)

χ(a) ≡ 0 mod 4 .
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The assertion (and a contradiction) follow, since χ(a) is odd and χ(1) divides |H|.

The next corollary shows that a coset of a doubly transitive subgroup usually contains an
element with exactly one fixed point.

Corollary 12 Let G be a permutation group of degree n > 2 and H a 2–transitive
subgroup. Then any coset Hg either contains an element with exactly one fixed point or
else half of the elements in Hg have no fixed point and the other half have exactly two
fixed points. In this exceptional case, 4(n− 1) divides |H|.

Proof: If π = χ + 1 denotes the permutation character of G, then χ is rational val-
ued, not linear and, by 2–transitivity, irreducible under restriction to H. If χ has a zero
on Hg, then some element in this coset fixes exactly one point. If not, then χ satisfies
the conditions of the previous corollary. Noting that χ(1) = n− 1 and χ(x) + 1 = π(x),
the assertions are clear.

Of course, the exception cannot occur for 3–transitive H, because then any coset contains
an element fixing at least 3 points.
An earlier version of the paper did not contain Corollary 11; instead, Corollary 12 was
proved directly. The referee proposed the use of real-valued characters and made helpful
suggestions for the proof.

Examples

(i) Take g ∈ G = GL2(q) and H = SL2(q) for some prime power q. Which characters
χ of G with χ|H irreducible have no zero on Hg?

If det(g) = s2 is a square in Fq (this is always the case if q is even), then Hg contains
the central element sI, so χ(1) = 1 by Corollary 9. Conversely of course, the linear
characters have no zeros (on Hg).
Otherwise, the characteristic polynomial of an element x ∈ Hg is either irreducible
over Fq or has two different zeros (and both cases occur). Accordingly, |G : CG(x)|
is either q(q − 1) or q(q + 1). By Corollary 9, the degree of χ has to divide both.
This is satisfied by only two degrees, namely 1 (again, as expected) and q; the list
of character degrees (indeed the character table) can be found for instance in [4],
Theorem 28.5. Denote by B the subgroup of upper triangular matrices. Then H
acts doubly transitive on the cosets {By | y ∈ G} and the permutation character π
(of degree π(1) = |G : B| = q+ 1) takes on x ∈ Hg the value 0 (if the characteristic
polynomial of x is irreducible) or 2 (otherwise). So the character χ = π− 1 (known
as the Steinberg character) has degree q and no zero on Hg. Multiplying χ with
linear characters gives the other solutions.

(ii) Let F be a finite field of characteristic 2 and let G be the group of all semi-linear
transformations F 3 x 7→ xσa + b, σ ∈ Aut(F ), a, b ∈ F, a 6= 0. The subgroup
H of all linear transformations x 7→ xa + b is doubly transitive. Let φ : x 7→ x2 be
the Frobenius automorphism. If x is a fixed point of some hφ = (a, b)φ ∈ Hφ, then
x = (ax + b)2, so x is a zero of a separable polynomial of degree 2. Therefore, hφ
has no fixed point (if the polynomial is irreducible in F [x]) or exactly 2 fixed points.
This conclusion holds also for other cosets Hγ, provided γ is a generator of Aut(F ) :
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If γs = φ, choose t prime to |G| such that t ≡ s mod |Aut(F )|. Then hγ and (hγ)t

generate the same group, so have the same fixed points. Since (hγ)t ∈ Hφ, their
number is 0 or 2. In the smallest case |F | = 2, we have H = G = S2. If |F | = 4,
one gets H = A4 and G = S4; this is the only faithful example with |H| = 4χ(1) .
If |F | = 2p for some prime p, any g ∈ G \H has either 0 or 2 fixed points, since any
γ 6= id generates Aut(F ), so χ(g) = ±1 on G \H.

(iii) The following question was asked in a previous version of this paper:
Is there an example of a faithful character, irreducible when restricted to some
subgroup H and non–zero on all elements of a coset Hg, where g /∈ NG(H)?
The answer is ”yes”; in fact both readers of the paper came up with such examples.
The first is due to Frieder Ladisch and is actually a rational character:
With F and H as in the last example, consider the permutation σ on F defined by
0σ = 0 and xσ = x−1 for 0 6= x ∈ F . It is easily seen that σ does not normalize H
except for very small F . If x is fixed by σh = σ(a, b), then x = xσa + b. If x = 0,
this means b = 0. In this case, the unique solution of x2 = a gives the second fixed
point. If b 6= 0, we must have x = x−1a+ b or x2 + bx+a = 0. Since this polynomial
is separable, it has either two zeros or none (in F ).
The second example was given by the referee:
Let K be a p′–group which acts faithfully on an extra-special p–group N of order
p1+2n, fixing its center Z. Let G = KN be the semi-direct product and assume in
addition that G = G/Z is a Frobenius group with kernel N , so |K| divides p2n − 1.
Therefore all elements in G \ N are conjugate to some element in K, hence all
elements in G \ N are conjugate to some element kz with 1 6= k ∈ K and z ∈ Z.
The non-linear irreducible characters θ1, . . . , θp−1 of N are G-stable (since they
vanish off Z), hence extendible to G, because |G : N | and |N | are relatively prime
(see [3], Corollary 8.16). The θi’s are Galois-conjugate, so we may assume that their
extensions χi are as well. These χi’s have no zero on G \N :
By the above, it is enough to consider an element k ∈ K. If χ1(k) = 0, then
χi(k) = 0 for all i. But one gets all the faithful irreducible characters of G by
multiplying the χi’s with the irreducible characters of G/N , so they all vanish on k.
The second orthogonality relation then gives

|CG(k)| =
∑

χ∈Irr(G)

|χ(k)|2 =
∑

ψ∈Irr(G)

|ψ(k)|2 = |CG(k)|

which is obviously false (by a factor p).
Now one gets examples by taking H = SN , where S is any non–normal subgroup
of K. Specifically, one can take N of order 53 and exponent 5 and K the normalizer
of a Sylow 3–subgroup in SL2(5), so |K| = 12. Then a Sylow 2–subgroup S of K is
self-normalizing.
Two comments:
(a) Any prime divisor of |K| divides p2n−1 = (χi(1)+1)(χi(1)−1), since χi(1) = pn.
This illustrates the remark following Corollary 4.
(b) It is known and not hard to prove that |χi(k)|2 = |CN (k)| even if G is not a
Frobenius group.

Question Are there examples of a G–set of odd cardinality n = π(1) and a 2–transitive
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subgroup H, such that π(x) 6= 1 for all x in some coset Hg?
This looks unlikely in view of the fact – observed by Ladisch – that any transitive subgroup
U ≤ H must be of even order. To see this, note that (1, π)U = 1 by transitivity, so
(1, χ)U = 0, hence 0 =

∑
x∈Ug

χ(x) by an earlier remark. Since all summands are ±1, their

number must be even.
As a consequence, if n is odd, it cannot be a prime power. Also there can be no solvable
transitive subgroup in H, because its 2 ′–Hall group would still be transitive. By 2–
transitivity, Hg contains elements of even order, but it contains no 2–elements, because
π(x) ≡ n mod 2 for such elements (or use the remark following Corollary 4).
Note, however, that the weaker conditions of Corollary 11 do not imply χ(1) odd, as the
rational irreducible character of degree 2 for SL(2, 3) shows. Here |H| = |Q8| = 4χ(1).
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