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Abstract

A ’partial’ inner product with respect to a
given subset of Irr (G) is introduced and its
basic properties are studied. As applica-
tions, a weak second orthogonality is shown
in a Clifford setting and a version of the
Burnside-Brauer theorem is given.
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Throughout this paper, G is a finite group. Characters and class functions are over C
and y — X denotes complex conjugation (of numbers or class functions).

Definition Partial inner product
Let S C Irr (G) be any subset.

(1) For class functions a and 3 of G, call
(Oé, ﬁ)g = Z (Oé, U)G<J7 ﬁ)G
oS

the S-partial inner product of o and .
Closely related is the projection

ag = Z (a,0)q0,

c€eS

because clearly (a, 8)2 = (ag, 8)¢ = (o, Bg)a = (ag, B¢)g for any a and 3.
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(2) For g € G, denote
=20
c€eSs
Remark 1

(i) Clearly, p% depends only on the conjugacy class of g.
(ii) There is a symmetry: p%(h) = pl(g) for all g,h € G.

(iii) By its very definition, pf €< S >, the subspace of all class functions spanned by
S. In fact, < S > is generated by the p¥’s, because for 7 € S, we have

Z |G| Z Z o=, <|—(1;| ZT(Q)@) o= (ro)go="1 .

geG geG oceSs oeSs geG o€l

(iv) The most prominent member of the family {p%} is of course the regular character
p = pllrr(G) , and as with the regular character, one can calculate inner products as
values: (a, p)s = ag(g) for every class function a.

Example
If S =1Irr (G/N) for some N < G, then ag(g) = ﬁ > a(gn) for any g € G.
neN
Proposition 1 Associativity for partial inner products
Let S C Irr (G) and a class function 7 of G be given and denote 7' = Irr (G) \ S. For
ceC,let G(c) = G(c,n) ={g € G| n(g) = c}. Then the following are equivalent:

(i) For all class functions a and 3 of G, one has (an, 8)2 = (a,73)g
(ii) If 0 # > o(g)o(h) for elements g,h € G, then n(g) = n(h) .

ogeS

(iii) Every 0 # p is an eigenvector for 7.
(iv) < 8 > is closed under multiplication with 7.

(v) > o(g)r(g)=0foreveryceC,o €S, 7€T
9€G(c)

(vi) < S > is closed under multiplication with 7.
(vil) < S > and < T > are closed under multiplication with 7.

(viii) (an)g = agn for every a.

Proof:
(i)=(ii) Let K = g% and L = h®, and let xj and y; be the characteristic functions for
these conjugacy classes. Then it is easily seen that

K||L
(e xe)S = (). |ci||2 | > aly)

o€eS

_ L]
(X TIXL)E = |2 > alg)

ogeS

while




Since these two values are equal by assumption, (ii) follows.

()= (iii) If 0 # p5(h) = 3 olg)a(h), then n(g) = n(h), so n(h)pg(h) = n(g)ps(h) for
[24S]
every h. This means npl = n(g)p% , so pl is an eigenvector for n with eigenvalue 7(g).

(iii)=-(iv) This clear since < S > is spanned by the pl’s

(iv)=(v) Take 0 € S and 7 € T’; let ¢4, ..., ¢, € C be all the different values of 7. Define

a;(o,7) = Y. o(g)7(g) . For fixed ¢, let 7 = (i) = [[ (1 — ¢;1). Then 7 vanishes on
9€G(ci) j#i

G \ G(¢;) and is a non-zero constant d, say, on G(¢;). Since 7 is a polynomial in 7, it

leaves < S > invariant, so

d
1@

0= (m0,7) = o,T),

which implies a;(o,7) = 0. This proves the statement if ¢ is one of the ¢;’s. If not, G(c)
is empty and the assertion holds trivially.

(v)=(vi) Keep the notation and let v be any class function which is constant, say equal
to 74, on every G(¢;) ; then

(,YO-TG ‘G'Z’%a”aT =0

for every 0 € S, 7 € T. This implies yo €< S >. The argument applies in particular to
v =7, proving (vi).

(vi)=(vii) Using (iv)=-(vi) with 7 instead of 7, one finds that < S > is closed under
multiplication with n. Let 7 € T. If nT ¢ < T >, there is some o € S with 0 # (o,n7), =
(07, T)q, a contradiction, since 077 €< S > by assumption.

(vii)=-(viii) Let @ = ag + ay be given. Then in an = agn + a;n , the first summand
belongs to < S >, the second to < T' >, by hypothesis. Therefore (an)g = agn.
(viii)=(i)

(om,ﬂ)é = ((an)g, B) = (agn, B¢ = (ag,mB)c = (Oéaﬁﬁ)g ’

where the second equality holds by assumption.

Remark 2

(i) The values ¢4, ..., ¢, of n come in no particular order. However, it is reasonable to
agree that ¢; = n(1). Note that this means G(c¢;) = Ker (n) if n is a character; also,
all the G(¢;)’s are then unions of cosets of G(¢;).

(ii) The class function 7(i) constructed in the above proof will in fact be a generalized
character if n is and if ¢; is rational (for instance ¢ = 1). This follows by observing
that then the ¢;’s are algebraic integers permuted by the Galois group.

(iii) The functions constant on all G(¢;) are precisely the polynomials in 1 (of degree
< m), as the usual interpolation argument shows.

(iv) Statements (ii) and (v) are versions of the orthogonality relations: Condition (iv)
is trivially satisfied for every S if one takes n = 1. Then G(1) = G, so (v) reduces
to (0,7)g =0 for 0 # 7 € Irr (G) (taking S = {o}).



Again, condition (iv) is trivially satisfied for every 7 if one takes S = Irr (G). Since
we may choose 7 such that n(g) # n(h) if g, h are not conjugate, we conclude from

(i) that then 0= > o(g)o(h) . This can be generalized:
oelrr(G)

Corollary 1
Let ¢ be an irreducible character of some normal subgroup N of G and let g,h € G. It g
and h are not conjugate in G = G/N then

0= > xlgx(®) .

X€ELrr(Gle)

Proof: 1t is clear that < Irr (Glp) > is invariant under multiplication with any class
function of G. Since there is such a class function n with n(g) # n(h), the statement
follows from (iv)=-(ii) above.

Remark 3

(i) Trivially, there are class functions which take different values on all conjugacy classes
of G. It is not hard to prove that there is a character (in general reducible) with
that property.

(i) The question naturally arises what the value of Y. x(g)x(h) is if g and h are
x€lrr(Gle)

conjugate in G. This will be investigated in a separate paper [2].

Corollary 2

Assume that 7 takes only non—negative real values. Then the conditions of the proposition
are equivalent to (an, )2 > 0 for every a.

Proof:  Assume that condition (viii) holds. Then

(an, ) = ((an)g, ag)g = (agn, ag)g =2 0 .

Conversely, assume that (an,a)?, > 0 for every a. It is enough to show that < S > is
closed under multiplication with 77 (= 7). If not, thereis 0 € Sand 7 € T = Irr (G) \ S
such that (7,70), # 0. Choose ¢ € C such that ¢ (1,70); = —(0,7j0)s — 1 and let
a =0+ cT, 50 ag = 0. It follows that

0 < (an,0)g = (an, ag)g = (an,0)g = (0 + 7. 7j0)g = (0,70)g + ¢ (7.7j0)g = —1

a contradiction.

Corollary 3
Let S C Irr (G). Define a graph A = A(S) with vertices all the conjugacy classes of G
and an edge between two classes K and L if and only if 0 # >~ o(g)o(h) , where g € K

ceS
and h € L. The class functions n which are constant on the connected components of A

are then precisely the ones satisfying the conditions of the proposition.

Proof:  Clear from condition (ii) of the proposition.



Corollary 4
Let 1 be a class function of G taking exactly m values ¢y, ..., ¢,,. Define a graph I" = T'(n)
with vertices all the irreducible characters of G and an edge between ¢ and 7 if and only

if0# > o(x)r(x) for some i; here again G(¢;) = {g € G | n(g) = ¢;}. The unions of
z€G(c;)
connected components of [ are then precisely the sets S satisfying the conditions of the

proposition.

Proof:  Clear from condition (v) of the proposition.

Corollary 5

Let n be a faithful class function of G, i.e. n(g) # n(1) for g # 1. Then S = Iir (G)
and S = ) are the only subsets of Irr (G) such that the conditions of the proposition are
satisfied.

Proof: Taking ¢; = n(1), we have G(c;) = {1}, so Y. o(z)r(x) = o(1)7(1) # 0
z€G(c1)
for every o, 7 € Irr (G). Therefore the graph I' of the last corollary is connected (even

complete).

Corollary 5 can be read as a version of the Burnside-Brauer theorem (compare [1],
Theorem 4.3), because n < § > < < S > is certainly true if 1 is a character and
S={oelr(G)|(o,n")s # 0 for some i} .

Even if ) is not faithful, an idea in the proof of Proposition 1 can be used to predict, for
a given character 7, which irreducibles of G' will show up as constituents of some 7’ :

Poposition 2 Burnside—Brauer
Let v and n be characters of G and let K = Ker (n); further let m be the number of
different values of 7. Then for any x € Irr (G), the following are equivalent:

(i) O6v)k #0
(i) (x,7m")g # 0 for some m >4 > 0

(iii)  (x,n")g # 0 for some i > 0 .

Proof:

(i)=(ii) Let n(1) = ¢, ..., ¢m be the values of n and let 7 = [[ (n —¢;1) . Then 7
i>1

vanishes off K and is a non-zero constant on K, so 7 = ¢+ 1§ for some ¢ # 0. Therefore

(YT e=¢ 0719 =72 (X,7)x # 0 . Since 7 is a polynomial of degree m — 1 in 7,

it follows that y is a constituent of v’ for some i < m.

(ii)=> (i) Trivial.

(iii)=-(i) Since (x,vn") # 0 for some 4, a fortiori 0 # (x, Y7")x = 7" (1) (X, V) -

Remark 4

(i) Note that the first condition depends on 7 only via its kernel.
(ii) Clearly, one gets the classical result for v = 1 and 7 faithful, since then K = 1.



(i) As the proof of (i)=(ii) shows, the assumption that v and 7 are characters can
be weakened for this implication: v may be any class function; for 7, we need only
assume that K = {g € G | n(g) = n(1)} is a (normal) subgroup; there are many
class functions besides the characters satisfying this condition.

(iv) However, here are two simple examples showing that the condition that v and 7 are
characters is essential for the implication (iii)=-(i). In both examples, one of 7,7 is
a character, the other a generalized character. The group is Cy and X is a faithful
linear character.
First, take y =1 — A2 and n = 1 + A2, so K = C,. Then 1 is a constituent of 7"
but (1,7), = 0.
Second, take v = 1 and n = A(1 — \?), so again K = Cy (even though 7 is not a
character). Then X is a constituent of yn* but (X, ), = 0.
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