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Abstract

A ’partial’ inner product with respect to a
given subset of Irr (G) is introduced and its
basic properties are studied. As applica-
tions, a weak second orthogonality is shown
in a Clifford setting and a version of the
Burnside-Brauer theorem is given.
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Throughout this paper, G is a finite group. Characters and class functions are over C
and χ 7→ χ denotes complex conjugation (of numbers or class functions).

Definition Partial inner product
Let S ⊆ Irr (G) be any subset.

(1) For class functions α and β of G, call

(α, β)S
G :=

∑
σ∈S

(α, σ)G(σ, β)G

the S-partial inner product of α and β.
Closely related is the projection

αS :=
∑
σ∈S

(α, σ)G σ ,

because clearly (α, β)S
G = (αS, β)G = (α, βS)G = (αS, βS)G for any α and β.
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(2) For g ∈ G, denote

ρg
S =

∑
σ∈S

σ(g) σ .

Remark 1

(i) Clearly, ρg
S depends only on the conjugacy class of g.

(ii) There is a symmetry: ρg
S(h) = ρh

S(g) for all g, h ∈ G.

(iii) By its very definition, ρg
S ∈< S > , the subspace of all class functions spanned by

S. In fact, < S > is generated by the ρg
S’s, because for τ ∈ S, we have

∑
g∈G

τ(g)

|G| ρg
S =

∑
g∈G

τ(g)

|G|
∑
σ∈S

σ(g)σ =
∑
σ∈S

(
1

|G|
∑
g∈G

τ(g)σ(g)

)
σ =

∑
σ∈S

(τ, σ)Gσ = τ .

(iv) The most prominent member of the family {ρg
S} is of course the regular character

ρ = ρ1
Irr(G) , and as with the regular character, one can calculate inner products as

values: (α, ρg
S)G = αS(g) for every class function α.

Example
If S = Irr (G/N) for some N C G, then αS(g) = 1

|N |
∑

n∈N

α(gn) for any g ∈ G.

Proposition 1 Associativity for partial inner products
Let S ⊆ Irr (G) and a class function η of G be given and denote T = Irr (G) \ S . For
c ∈ C, let G(c) = G(c, η) = {g ∈ G | η(g) = c}. Then the following are equivalent:

(i) For all class functions α and β of G, one has (αη, β)S
G = (α, ηβ)S

G .

(ii) If 0 6= ∑
σ∈S

σ(g)σ(h) for elements g, h ∈ G, then η(g) = η(h) .

(iii) Every 0 6= ρg
S is an eigenvector for η.

(iv) < S > is closed under multiplication with η.

(v)
∑

g∈G(c)

σ(g)τ(g) = 0 for every c ∈ C, σ ∈ S, τ ∈ T

(vi) < S > is closed under multiplication with η.

(vii) < S > and < T > are closed under multiplication with η.

(viii) (αη)S = αSη for every α.

Proof:
(i)⇒(ii) Let K = gG and L = hG, and let χK and χL be the characteristic functions for
these conjugacy classes. Then it is easily seen that

(χKη, χL)S
G = η(g)

|K||L|
|G|2

∑
σ∈S

σ(g)σ(h) ,

while

(χK , ηχL)S
G = η(h)

|K||L|
|G|2

∑
σ∈S

σ(g)σ(h) .
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Since these two values are equal by assumption, (ii) follows.
(ii)⇒(iii) If 0 6= ρg

S(h) =
∑
σ∈S

σ(g)σ(h), then η(g) = η(h), so η(h)ρg
S(h) = η(g)ρg

S(h) for

every h. This means ηρg
S = η(g)ρg

S , so ρg
S is an eigenvector for η with eigenvalue η(g).

(iii)⇒(iv) This clear since < S > is spanned by the ρg
S’s.

(iv)⇒(v) Take σ ∈ S and τ ∈ T ; let c1, . . . , cm ∈ C be all the different values of η. Define
ai(σ, τ) =

∑
g∈G(ci)

σ(g)τ(g) . For fixed i, let π = π(i) =
∏
j 6=i

(η − cj1). Then π vanishes on

G \ G(ci) and is a non-zero constant d, say, on G(ci). Since π is a polynomial in η, it
leaves < S > invariant, so

0 = (πσ, τ)G =
d

|G| ai(σ, τ) ,

which implies ai(σ, τ) = 0. This proves the statement if c is one of the ci’s. If not, G(c)
is empty and the assertion holds trivially.
(v)⇒(vi) Keep the notation and let γ be any class function which is constant, say equal
to γi, on every G(ci) ; then

(γσ, τ)G =
1

|G|
m∑

i=1

γiai(σ, τ) = 0

for every σ ∈ S, τ ∈ T . This implies γσ ∈< S >. The argument applies in particular to
γ = η, proving (vi).
(vi)⇒(vii) Using (iv)⇒(vi) with η instead of η, one finds that < S > is closed under
multiplication with η. Let τ ∈ T . If ητ /∈< T >, there is some σ ∈ S with 0 6= (σ, ητ)G =
(ση, τ)G, a contradiction, since ση ∈< S > by assumption.
(vii)⇒(viii) Let α = αS + αT be given. Then in αη = αSη + αT η , the first summand
belongs to < S >, the second to < T >, by hypothesis. Therefore (αη)S = αSη.
(viii)⇒(i)

(αη, β)S
G = ((αη)S, β)G = (αSη, β)G = (αS, ηβ)G = (α, ηβ)S

G ,

where the second equality holds by assumption.

Remark 2

(i) The values c1, . . . , cm of η come in no particular order. However, it is reasonable to
agree that c1 = η(1). Note that this means G(c1) = Ker (η) if η is a character; also,
all the G(ci)’s are then unions of cosets of G(c1).

(ii) The class function π(i) constructed in the above proof will in fact be a generalized
character if η is and if ci is rational (for instance i = 1). This follows by observing
that then the cj’s are algebraic integers permuted by the Galois group.

(iii) The functions constant on all G(ci) are precisely the polynomials in η (of degree
< m), as the usual interpolation argument shows.

(iv) Statements (ii) and (v) are versions of the orthogonality relations: Condition (iv)
is trivially satisfied for every S if one takes η = 1. Then G(1) = G, so (v) reduces
to (σ, τ)G = 0 for σ 6= τ ∈ Irr (G) (taking S = {σ}).
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Again, condition (iv) is trivially satisfied for every η if one takes S = Irr (G). Since
we may choose η such that η(g) 6= η(h) if g, h are not conjugate, we conclude from
(ii) that then 0 =

∑
σ∈Irr(G)

σ(g)σ(h) . This can be generalized:

Corollary 1
Let ϕ be an irreducible character of some normal subgroup N of G and let g, h ∈ G. If g
and h are not conjugate in G = G/N then

0 =
∑

χ∈Irr(G|ϕ)

χ(g)χ(h) .

Proof: It is clear that < Irr (G|ϕ) > is invariant under multiplication with any class
function of G. Since there is such a class function η with η(g) 6= η(h), the statement
follows from (iv)⇒(ii) above.

Remark 3

(i) Trivially, there are class functions which take different values on all conjugacy classes
of G. It is not hard to prove that there is a character (in general reducible) with
that property.

(ii) The question naturally arises what the value of
∑

χ∈Irr(G|ϕ)

χ(g)χ(h) is if g and h are

conjugate in G. This will be investigated in a separate paper [2].

Corollary 2
Assume that η takes only non–negative real values. Then the conditions of the proposition
are equivalent to (αη, α)S

G ≥ 0 for every α.
Proof: Assume that condition (viii) holds. Then

(αη, α)S
G = ((αη)S, αS)G = (αSη, αS)G ≥ 0 .

Conversely, assume that (αη, α)S
G ≥ 0 for every α. It is enough to show that < S > is

closed under multiplication with η (= η). If not, there is σ ∈ S and τ ∈ T = Irr (G) \ S
such that (τ, ησ)G 6= 0. Choose c ∈ C such that c · (τ, ησ)G = −(σ, ησ)G − 1 and let
α = σ + cτ , so αS = σ. It follows that

0 ≤ (αη, α)S
G = (αη, αS)G = (αη, σ)G = (σ + cτ, ησ)G = (σ, ησ)G + c · (τ, ησ)G = −1 ,

a contradiction.

Corollary 3
Let S ⊆ Irr (G). Define a graph ∆ = ∆(S) with vertices all the conjugacy classes of G
and an edge between two classes K and L if and only if 0 6= ∑

σ∈S

σ(g)σ(h) , where g ∈ K

and h ∈ L. The class functions η which are constant on the connected components of ∆
are then precisely the ones satisfying the conditions of the proposition.

Proof: Clear from condition (ii) of the proposition.
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Corollary 4
Let η be a class function of G taking exactly m values c1, . . . , cm. Define a graph Γ = Γ(η)
with vertices all the irreducible characters of G and an edge between σ and τ if and only
if 0 6= ∑

x∈G(ci)

σ(x)τ(x) for some i ; here again G(ci) = {g ∈ G | η(g) = ci}. The unions of

connected components of Γ are then precisely the sets S satisfying the conditions of the
proposition.

Proof: Clear from condition (v) of the proposition.

Corollary 5
Let η be a faithful class function of G, i.e. η(g) 6= η(1) for g 6= 1. Then S = Irr (G)
and S = ∅ are the only subsets of Irr (G) such that the conditions of the proposition are
satisfied.

Proof: Taking c1 = η(1), we have G(c1) = {1}, so
∑

x∈G(c1)

σ(x)τ(x) = σ(1)τ(1) 6= 0

for every σ, τ ∈ Irr (G). Therefore the graph Γ of the last corollary is connected (even
complete).

Corollary 5 can be read as a version of the Burnside-Brauer theorem (compare [1],
Theorem 4.3), because η < S > ≤ < S > is certainly true if η is a character and
S = {σ ∈ Irr (G) | (σ, ηi)G 6= 0 for some i} .
Even if η is not faithful, an idea in the proof of Proposition 1 can be used to predict, for
a given character γ, which irreducibles of G will show up as constituents of some γηi :

Poposition 2 Burnside–Brauer
Let γ and η be characters of G and let K = Ker (η); further let m be the number of
different values of η. Then for any χ ∈ Irr (G), the following are equivalent:

(i) (χ, γ)K 6= 0

(ii) (χ, γηi)G 6= 0 for some m > i ≥ 0

(iii) (χ, γηi)G 6= 0 for some i ≥ 0 .

Proof:
(i)⇒(ii) Let η(1) = c1, . . . , cm be the values of η and let π =

∏
i>1

(η − ci1) . Then π

vanishes off K and is a non-zero constant on K, so π = c · 1G
K for some c 6= 0. Therefore

(χ, γ π)G = c · (χ, γ 1G
K)G = c · (χ, γ)K 6= 0 . Since π is a polynomial of degree m− 1 in η,

it follows that χ is a constituent of γηi for some i < m.
(ii)⇒(iii) Trivial.
(iii)⇒(i) Since (χ, γηi)G 6= 0 for some i, a fortiori 0 6= (χ, γηi)K = ηi(1)(χ, γ)K .

Remark 4

(i) Note that the first condition depends on η only via its kernel.

(ii) Clearly, one gets the classical result for γ = 1 and η faithful, since then K = 1.
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(iii) As the proof of (i)⇒(ii) shows, the assumption that γ and η are characters can
be weakened for this implication: γ may be any class function; for η, we need only
assume that K = {g ∈ G | η(g) = η(1)} is a (normal) subgroup; there are many
class functions besides the characters satisfying this condition.

(iv) However, here are two simple examples showing that the condition that γ and η are
characters is essential for the implication (iii)⇒(i). In both examples, one of γ, η is
a character, the other a generalized character. The group is C4 and λ is a faithful
linear character.
First, take γ = 1 − λ2 and η = 1 + λ2, so K = C2. Then 1 is a constituent of γη0

but (1, γ)K = 0.
Second, take γ = 1 and η = λ(1 − λ2), so again K = C2 (even though η is not a
character). Then λ is a constituent of γη1 but (λ, γ)K = 0.

References

[1] I.M. Isaacs, Character theory of finite groups, Academic Press, New York
1976
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