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Abstract: Tensor inducing a Frobenius in-
duced character leads to a sum of characters
where each summand is given by first tensor
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The starting point for this paper was the question how to describe the character which re-
sults from applying tensor induction to a sum of characters or to a character induced from
a subgroup; this is a problem very similar in spirit to working out a power of a sum but
it poses a notational problem. The description offered here uses the concept of inductible
maps and their induction. The precise definition of inductible maps and a description
how they can be induced are given in Section 2; it uses the language of G-sets (where
G is a group, mostly assumed finite) and G-maps. Consequently, these form the topic
of Section 1, which contains some basic lemmas and the definition of the tensor product
of two G-sets. Inducing an inductible map leads from (generalized) characters to (gen-
eralized) characters and is flexible enough to include addition, multiplication, ordinary
(Frobenius) induction and tensor induction of class functions; it also describes Mackey
decomposition at no extra cost. The answer to the question above is then given in Sec-
tion 3. As a corollary, one finds that tensor inducing a sum of monomial characters leads
again to a sum of monomial characters. In Section 4, transitivity of this ’new’ (it isn’t)
induction process is proved by giving an explicit description of the sets and maps involved.
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1 G-Sets

We need a few facts about G-sets. They are all very elementary and probably well known.
We state them to get the generalities out of the way. Notation is standard; in particular,
stabilizers in G are denoted by subscripts. Maps are mostly written on the right, as is
the G-action. In the following, X and Y are G-sets.

1.1 Lemma: Orbits

Let α : X → Y be a G-map and let Y =
·⋃

j∈J

jG. For every j, let Xj = {x ∈ X | xα = j}.

Then Xj is a Gj-set (possibly empty). If Xj =
·⋃

i∈Ij

iGj, then X =
·⋃

i∈I

iG, where I =
·⋃

j∈J

Ij.

Proof: Easy.

1.2 Lemma: G-Maps

Let X and Y be G-sets and let X =
·⋃

i∈I

iG. Denote Y i = FixY (Gi), the set of fixed points,

and let [X, Y ]G be the set of G-maps X → Y . Then α 7→ (iα)i∈I is a bijection from
[X,Y ]G onto the direct product

∏
i∈I

Y i.

Proof: The inverse sends (yi)i∈I to the G-map α well-defined by igα = yig.

In the following, as in the next sections, R is a commutative ring with 1.

1.3 Lemma: Distributivity

Keep the notation of the previous lemma and assume that X and Y are finite. Further
let T : Y → R be any map. Then the following holds:

∏
i∈I

∑

y∈Y i

T (y) =
∑

α∈[X,Y ]G

∏
i∈I

T (iα).

Let in addition µ : Y → X be a G-map, and denote Y (i) = Y (i, µ) = {y ∈ Y i | yµ = i}.
Then ∏

i∈I

∑

y∈Y (i)

T (y) =
∑

α∈[X,Y ]G
αµ=idX

∏
i∈I

T (iα) .

Proof: The first statement is just distributivity in R combined with 1.2. The second
follows from this by observing that for α ∈ [X,Y ]G, one has αµ = idX if and only if
iα ∈ Y (i) ∀i ∈ I.
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1.4 Definition: Tensor products of G-sets

Only part of the following construction is needed in this paper. Still, it may clarify the
concept to state it in more generality. So let X and Y be G-sets. Then their tensor product
X ⊗G Y = (X × Y )/G is by definition simply the set of G-orbits on X × Y ; one then
denotes by x⊗y the orbit containing (x, y) . This will look more familiar if Y is considered
as a left G-set by defining gy = yg−1 because then xg ⊗ y = x⊗ gy.

1.5 Remark:

So far, X⊗G Y is just a set, but it will be an H-set in the obvious way if Y is a G-H-biset,
i.e. a G ×H-set. Similarly, the H-maps [Y, Z]H form a G-set, if Z is an H-set and Y a
G-H-biset.
The name ’tensor product’ is justified by the fact that the tensor functor is adjoint to the
Hom functor: if X is a G-set, Y is G-H-biset and Z is an H-set, then

[X ⊗G Y, Z]H ∼= [X, [Y, Z]H ]G (naturally) .

This is easily seen by observing that the natural isomorphism of sets

[X × Y, Z] ∼= [X, [Y, Z]]

is an G × H-map, and then taking fixed points. We concentrate here on two special
instances:
First, let G ≤ H and Y = GHH . Then X ⊗G HH is often written as XH and called the
induced H-set (this will be used below). Since [H, Z]H ∼= Z|G as G-sets, the isomorphism
above becomes [XH , Z]H ∼= [X, Z|G]G. This is a form of Frobenius reciprocity.
Second, let H ≤ G. With Y = GGH then, X ⊗G GH

∼= X|H , so the above isomorphism
reads [XH , Z]H ∼= [X, [G,Z]H ]G. A certain amount of confusion is perhaps generated by
the fact that the functor Z 7→ [G,Z]H is known as tensor induction (instead of ’Hom
induction’ or some such) and written as Z⊗G. Then the isomorphism can be rephrased
again as [X|H , Z]H ∼= [X,Z⊗G]G. This may be called Dress reciprocity.
The reason for the name ’tensor induction’ will become clear in 2.2 below. The reader
is referred to [2], §80 for more information. In particular, Theorems 80.26 and 80.37
in [2] (minus the finiteness assumptions made there) are precisely Frobenius and Dress
reciprocity.

1.6 Remarks:

Let H ≤ G.

(i) If the H-set X contains just one element, then XG is sometimes also written as
[G : H] and is isomorphic to the G-set consisting of the (right) cosets of H in G. In
this case, [X,Z|H ]H is naturally isomorphic to FixZ(H), so [[G : H], Z]G ∼= FixZ(H).
With different notation, this is a special case of Lemma 1.2 (assume that X is
transitive).

(ii) Let N / G and G = G/N . If X is a G-set, we can form the G-set X = X/N
consisting of the N -orbits on X; clearly X is isomorphic to X ⊗G GG.
A natural example of this kind is X = N with G acting by conjugation. Then X/N
consists of the conjugacy classes of N , permuted by G (or G).
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(iii) A word of warning is in order: If M is an RH-module, then it is also an H-set.
One can therefore use it to construct the induced G-set M ⊗H G as just described.
However, it is not a good idea to denote the result by MG, because this notation
is routinely used for the Frobenius induced of M , i.e. for M ⊗RH RG, which is a
G-module (and therefore also a G-set). If H 6= G, the induced set and the induced
module are not isomorphic as G-sets: the induced module contains a point (namely
0) fixed by G, whereas all stabilizers of elements of the induced set are conjugate to
subgroups of H.

(iv) On the positive side, the notation suggests the correct result when inducing per-
mutation modules, i.e. R[X]G ∼= R[XG] for any H-set X (module induction on the
left, set induction on the right).

(v) To describe the induced module MG as G-set (for an H-module M), one can use
tensor induction of sets:

[G,M ]H ∼= MG

if the index |G : H| is finite. If {r1, . . . , rn} is a set of right coset representatives for
H in G, then

[G,M ]H 3 a 7→
∑

i

r−1
i a⊗ ri ∈ MG

is an isomorphism of G-sets, in fact of G-modules (note that [G,M ]H has a natural
G-module structure). Moreover, the map is natural and independent of the choice
of the ri’s.
For RH-modules, the notation M⊗G (which was used bevor as synonymous with
[G,M ]H) will be given another meaning in 2.1.

(vi) For any H-set, X 3 x 7→ x⊗ 1 defines an injective H-map X → XG, so we view X
as a subset of XG. Inclusion then maps the H-orbits of X bijectively to the G-orbits
of XG. In particular, XG is transitive if and only if X is.

(vii) This is not true for tensor induction: The transitivity of X is a necessary, but not
sufficient condition for the transitivity of X⊗G.

To see necessity, observe that for x, y ∈ X and G =
·⋃

i∈I

giH, we can define a, b ∈
X⊗G = [G,X]H by (gih)a = xh and (gih)b = yh. If a and b belong to the same
G-orbit, then x and y belong to the same H-orbit, as is easily seen.
For finite G, let n = |G : H| and let X be a regular H-set. Then X is transitive.
Since |X⊗G| = |X|n = |H|n is usually much larger than |G| = |H|n, the G-set X⊗G

cannot be transitive. In fact, for 1 < H < G, there is only one exception, namely
G = C4.

1.7 Remark: Piecemeal G-sets

If Y =
·⋃

j∈J

jG is a G-set and for every j ∈ J a Gj-set Xj is given, then one can construct

a G-set X =
·⋃

j∈J

XG
j =

·⋃
j∈J

Xj ⊗Gj
G and define a canonical G-map α : X → Y by

(x⊗ g)α = jg if x ∈ Xj. Again, we will use the notation Xy = {x ∈ X | xα = y}. There
is a slight ambiguity here for the Xj’s. However, Xj is canonically embedded into X, and
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its image is just the inverse image of j under α.
This construction can be extended to maps: if for any j ∈ J a Gj-map ϕj : Xj → Z

is given, where Z is some G-set, then a G-map ϕ =
·⋃

j∈J

ϕG
j : X → Z is defined by

(x⊗ g)ϕ = xϕjg if x ∈ Xj.
Similarly, if for any j ∈ J a Gj-map ϕj : Xj → Zj is given, where Zj is some Gj-set, then

a G-map ϕ =
·⋃

j∈J

ϕG
j : X → Z =

·⋃
j∈J

ZG
j =

·⋃
j∈J

Zj ⊗Gj
G is defined by (x⊗ g)ϕ = xϕj ⊗ g

if x ∈ Xj.
These constructions will be repeatedly used in the Section 4.

2 Inductible Maps

Everybody working in group representation theory is familiar with Frobenius induction,
which constructs to a class function ϕ of a subgroup H ≤ G a class function ϕG of G by

ϕG(g) =
∑

Hx∈[G:H]
Hxg=Hx

ϕx(g).

Of course, this may not make sense if |G : H| is infinite. So we assume from now on
for the rest of this paper that all groups G considered and all occurring G-sets are finite,
unless otherwise stated.
Somewhat less popular then Frobenius induction, but occasionally useful, is tensor in-
duction, introduced by Berger in [1] and also used by Dade and Isaacs. For the readers
convenience, we review the construction briefly.

2.1 Definition: Tensor induction

Let X be an R-module on which the group H acts; for every n ∈ N then, Hn acts in the
obvious way on the n-fold tensor product X ⊗R . . .⊗R X. We have also a natural action
of the symmetric group Sn on X ⊗ . . .⊗X by (x1 ⊗ . . .⊗ xn)σ = x1σ−1 ⊗ . . .⊗ xnσ−1 for
σ ∈ Sn. Similarly, Sn acts on Hn ; these actions are compatible. Therefore, X⊗ . . .⊗X is
a module for the semidirect product SnHn; this group is also known as the wreath product
H o Sn.
Now let G be a group containing H as a subgroup of index n, say, and let {r1, . . . , rn} be
a set of right coset representatives. Then for any c ∈ G, we have ric = hiriσ for uniquely
defined elements hi = hi(c) ∈ H, i = 1, . . . , n and a unique permutation σ = σ(c) ∈ Sn.
Therefore, cϕ = σh1σ−1 . . . hnσ−1 ∈ H o Sn. Since ϕ : G → H o Sn turns out to be a
homomorphism, we can view X ⊗ . . .⊗X as G-module via ϕ. This module is then called
the tensor induced module and written as X⊗G. The notation is justified by the (easily
checked) fact that a different choice of representatives r′i = airiτ (with ai ∈ H and a
permutation τ) will lead to a map ϕ′ which differs from ϕ only by an inner automorphism
of H o Sn (more precisely, ϕ is ϕ′ followed by conjugation with τa1τ−1 . . . anτ−1 ∈ H o Sn),
and will therefore define an isomorphic G-module.
If X has a finite R-basis, then so has X⊗G and one can calculate the trace of c ∈ G on
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X⊗G: Let C =< c >and let G =
·⋃

j=1,...,s

HgjC be the double coset decomposition (i.e. the

decomposition of [G : H] into C-orbits). If nj := |HgjC : H| is the orbit length, then a
set of coset representatives for H in HgjC is {gjc

t | t = 0, . . . , nj − 1}. Using these and
writing kj = gjc

njg−1
j (∈ H), the action of c on X⊗G is given by

[ (x1,1 ⊗ x1,2 ⊗ . . .⊗ x1,n1) ⊗ . . .⊗ ( xs,1 ⊗ xs,2 ⊗ . . .⊗ xs,ns) ] · c =
(x1,n1k1 ⊗ x1,1 ⊗ . . .⊗ x1,n1−1) ⊗ . . .⊗ (xs,nsks ⊗ xs,1 ⊗ . . .⊗ xs,ns−1) .

Now let {b1, . . . , bd} be a basis of X. Then the elements

Bf := b1f ⊗ . . .⊗ bnf , f : {1, . . . , n} → {1, . . . , d}
form a basis of X⊗G, as is well known. It is clear from the above that the contribution
of Bf to the trace of c on X⊗G is 0 unless f is constant on the orbits of σ. If this is the
case, say if = jt for i in the j-th orbit of σ, then the contribution of Bf is the product
for j = 1, . . . , s of the contributions of bjt to the trace of kj on X . Summation over all
f ’s which are constant on σ-orbits gives

trX⊗G(c) =
s∏

j=1

trX(kj) .

If one replaces trX on the right hand side of this formula by an arbitrary class function γ
of H, then

γ⊗G(c) =
s∏

j=1

γ(kj) .

defines a class function γ⊗G of G. The map γ 7→ γ⊗G is called tensor induction. The con-
nection with the module construction just described motivates the name and shows that
the tensor induced of a character is a character. (For more details on tensor induction,
see [2], § 13, and [1].)

2.2 Remarks:

(i) At this point, we have defined tensor induction to construct a G-module from an
H-module (H ≤ G), but also to construct a G-set from an H-set (in 1.4). As for
Frobenius induction, one has to be careful in case M is an RH-module (compare
1.6), because then set tensor induction and module tensor induction can both be
applied to M , but will in general produce non-isomorphic G-sets. In this case, we
use the notation M⊗G only for module tensor induction.

(ii) Again, permutation modules are well-behaved: If X is an H-set, then the permuta-
tion G-module over the tensor induced set X⊗G is isomorphic to the module obtained
by tensor inducing the permutation H-module R[X], i.e.

R[X⊗G] ∼= R[X]⊗G

(see [2], Prop. 80.38). In fact, if G =
·⋃

i=1,...,n

Hri and a ∈ X⊗G = [G,X]H , then

define aτ = r−1
1 a⊗ · · · ⊗ r−1

n a . It turns out that τ is compatible with the action of
G and maps a basis of R[X⊗G] bijectively onto a basis of R[X]⊗G.
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(iii) When calculating determinants of Frobenius induced modules, tensor induction (of
linear characters) introduces itself naturally:

det(MG) = (sign[G:H])
dim M · (det M)⊗G ,

if M is a module (with finite basis) for the subgroup H (see [2], Prop. 13.15).

(iv) For an H-module M , there is a canonical map κ : MG → M⊗G: if again G =
·⋃

i=1,...,n

Hri , then (
∑
i

mi ⊗ ri)κ = m1 ⊗ · · · ⊗mn. It turns out that κ is a G-map,

but if H < G and M 6= 0, then κ is definitely not R-linear and not injective; it
is surjective if and only if dimRM = 1. It may well happen that the only G-map
M⊗G → MG is the 0-map.

(v) There are at least two good reasons for the general preference of Frobenius induction
over tensor induction: First, the degrees of characters remain more manageable
(with the exception of linear characters, but these tend to become trivial under
tensor induction). Second, there is no analog of Frobenius reciprocity (which is one
of the most useful tools in character theory), not even if one starts dreaming of
’tensor restriction’.

We wish to study a more general procedure which generates a class function of a group
from class functions of subgroups and still call it ’induction’. To justify the name, such a
procedure should certainly have some good properties (respecting characters and invari-
ance under field (or ring) automorphisms come to mind), but I am unable to state these;
in other words, I cannot define ’induction’. Instead, I will give an example.

2.3 Notation:

Let R be a commutative ring with 1. For any subgroup U of G, let U∗ be the set of all

maps from U to R, written on the left (against the convention above). Let G̃ =
·⋃

U≤G

U∗.

If a ∈ U∗ and g ∈ G, define (as usual) ag ∈ (U g)∗ by ag(v) = a(vg−1
) for v ∈ U g . Clearly,

this defines a G-action on G̃ ; this G-set of course is infinite if R is.

2.4 Definition: Inductible maps

Let M be a G-set. An inductible map (for G on M) is a G-map θ : M → G̃ with
mθ ∈ (Gm)∗ for all m ∈ M .

2.5 Examples:

(i) Let H ≤ G be a subgroup and ϕ a class function of H. Let M = [G : H] and define

θ : M → G̃ by (Hg)θ = ϕg. Then θ is inductible.

(ii) Let γ be a complex valued class function of G and N / G a normal subgroup. Then
M = Irr (N) is a G-set. For any τ ∈ M , let eτ ∈ CN be the corresponding central

idempotent. Define θ : M → G̃ by (τθ)(g) = γ(geτ ) for g ∈ Gτ . Then θ is inductible.
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(iii) Let K ≤ N both be normal subgroups of G and κ a G-stable linear character of K.
Then M := N/K is a G-set under conjugation. If m = n ∈ M and c ∈ Gm, then the
commutator [n, c] ∈ K and (mθ)(c) = κ[n, c] defines a linear character mθ of Gm.

As before, θ : M → G̃ is inductible. In fact, M can be viewed as a G = G/K-set
and mθ as character of Gm = Gm/K, thereby defining an inductible map for G.

2.6 Remarks:

(i) If θ is inductible and g, h ∈ Gm for some m ∈ M , then (mθ)(hgh−1) = (mθ)h(g) =
(mhθ)(g) = (mθ)(g), so mθ is not arbitrary Gm → R, but a class function. We
may therefore think of θ as providing class functions of certain subgroups of G (the
Gm’s), and of doing so in a reasonably coherent way.

(ii) Let θ : M → G̃ be inductible and let N be a normal subgroup of G. We wish to

define an inductible map θ : M → G̃, where G = G/N and M = M/N is the G-set
of N -orbits on M . To make the construction more suggestive, we assume that |N |
is a unit in R. For any m ∈ M then, mθ is a class function of Gm, which can be
used to construct a class function mθ of Gm/Nm by taking the mean

(mθ)(gNm) =
1

|Nm|
∑

x∈gNm

(mθ)(x)

for g ∈ Gm; careful, the ’bar’ has nothing to do with complex conjugation, even if
R = C. If g = gN ∈ Gm = GmN/N ∼= Gm/Nm, then gn ∈ Gm for a suitable n ∈ N .
We may now define (mθ)(g) = (mθ)(gnNm). The reader can easily check that

θ : M → G̃ is a well-defined inductible map for G. We can call (M, θ)/N := (M, θ)
the factor inductible map (modulo N).

(iii) If ηj : Pj → H̃j ⊆ G̃ are inductible maps for subgroups Hj ≤ G, then according to
1.7, one can construct

η =
·⋃
j

ηG
j : P =

·⋃
j

PG
j → G̃ ,

which is an inductible map.
It is tempting to call this process ’induction’ (of inductible maps), but we reserve
this name for another concept. Instead, just the notation will have to do. Since
it is also used for Frobenius induction of class functions of subgroups, this may be
dangerous. Still, it should always be clear from context if one is dealing with class
functions or with inductible maps.

(iv) Let H be a subgroup of G. An inductible map for G on M can be ’restricted’ to
an inductible map for H on M since restriction maps G∗

m to H∗
m. More generaly:

if ϕ : H → G is a group homomorphism and θ : M → G̃ an inductible map for G,
then M is an H-set via ϕ and (mη)(h) = (mθ)(hϕ) for h ∈ Hm defines an inductible
map η for H on M .

(v) An inductible map for G can be ’induced’, i.e. used to construct from it a class
function of G. In fact, there are usually several ways to do so. The next definition
describes how.
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2.7 Definition: Inducing an inductible map

Let θ : M → G̃ be an inductible map and let α : M → A be a G-map into a G-
set A. We will define a class function θα : G → R, called the α-induced of θ, or
θ induced with respect to α ; this is done in two steps.
First, fix a ∈ A and let Ma = {m ∈ M | mα = a}, so this is a Ga-subset of M . For

c ∈ Ga, denote C =< c > and let Ma =
·⋃

i∈I

iC. For every i ∈ I, let ni =| iC | and ci = cni ,

so Ci =< ci >; in particular, ci ∈ Gi. Then define

θα
a (c) =

∏
i∈I

(iθ)(ci) ;

note that this does not depend on the choice of I. So far, we have a map θα
a : Ga → R.

Now the second step is simple: θα(c) for any c ∈ G is defined by

θα(c) =
∑
a∈A
ac=a

θα
a (c) .

As usual, an empty sum is 0, an empty product 1 (both in R) per definition.

2.8 Examples:

(i) The simplest and most important situation is A = M and α = id. Then Mm = {m}
and θid

m = mθ. Therefore

θid(c) =
∑
m∈M
mc=m

(mθ)(c) .

(ii) Let θ1, . . . , θm be class functions of G and let M = {1, . . . ,m} with trivial G-action.

Define θ : M → G̃ by iθ = θi. If A = {a} has only one element, so iα = a for all
i ∈ M , then θα = θα

a =
∏
i

θi is precisely the product.

(iii) Let M and θ be as in (ii). Then θid =
∑
i

θi is simply the sum.

(iv) Let M and θ be as in 2.5, (i). Then θid = ϕG is just Frobenius induction.

(v) With M and θ as in (iv), let A = {a}. Then θα = θα
a = ϕ⊗G is tensor induction.

(vi) Let M and θ be as in 2.5, (ii). Then θid = γ. To see this, note that

γ(c) = γ(c ·
∑
τ∈M

eτ ) =
∑
τ∈M

γ(ceτ ) =
∑
τ∈M
τc=τ

γ(ceτ ) =
∑
τ∈M
τc=τ

(τθ)(c) ,

because
γ(ceτ ) = γ(ce2

τ ) = γ(eτceτ ) = γ(cec
τeτ ) = γ(ceτceτ ) = 0 ,

if τ c 6= τ .
This example can be taken as a starting point for Clifford theory.
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(vii) Assume that G acts faithfully on M as a Frobenius group with Frobenius kernel K
and complement Gm for some fixed m ∈ M . Let α : M → A be a surjective G-map
and a := mα. Then Ga = Gm · H for H = Ga ∩ K, a Gm-stable subgroup of K.
Let ϕ be a class function of Gm; as bevor, define θ : M → G̃ by (mg)θ = ϕg and let
C :=< c > for c ∈ G. We leave it to the reader to check

θα(c) =

{
1K

H(c)ϕ(1) |H| /|C| if c ∈ K

ϕ(c)ϕ(1) (|H|−1) /|C| if c ∈ G×
m .

Note that this describes θα, as each c belongs either to K or – up to conjugation –
to G×

m. Note also that |C| divides |H| if c ∈ K and 1K
H(c) 6= 0, while |C| divides

|H| − 1 if c ∈ Gm.
Of course, to use this formula may be difficult. It is greatly simplified in two cases:

(α) A = M, α = id, ϕ(1) = 0. Then H = 1, so θα is an extension of ϕ to G which
is constantly 0 on K.

(β) A = {a}, ϕ(1) = 1. Then H = K, so again θα is an extension of ϕ to G, this
time constantly 1 on K.

Either of these cases can be used to prove the existence of the Frobenius kernel; if
χ is a character of Gm, subtract a suitable multiple of the trivial character to get
ϕ. Together, this means that (ϕ + 1Gm)⊗G = ϕG + 1G if ϕ(1) = 0. This is a special
instance of a general – and more complicated – formula, as we will see in the next
section.

2.9 Remarks:

(i) The reader should check that θα as defined in 2.7 is indeed a class function!

(ii) If a ∈ A \ Im (α), then θα
a = 1Ga , since Ma = ∅. Therefore the contribution of

A \ Im (α) to θα is just a permutation character.

(iii) The first of the two induction steps in 2.7 is clearly multiplicative: if θ and γ are
two inductible maps on M , then so is θγ (or θ + γ, . . . ) and (θα

a )(γα
a ) = (θγ)α

a for
every a ∈ A.

(iv) The reader will have guessed by now that ’A’ stands for ’addition’ and ’M ’ for
’multiplication’. The above examples show that these two operations as well as
Frobenius induction and tensor induction can be described by special inductible
maps and special α’s. The next result will show that inducing an inductible map
can always be expressed as a combination of these four operations. So inductible
maps introduce no new concepts. One should rather look at them as a notational
device which allows to describe uniformly such messy things as ’tensor induction of
sums of (Frobenius) induced characters’ by storing all the information in two G-sets
(M and A) and two G-maps (θ and α).

(v) To think of addition or multiplication of class functions in terms of inductible maps
may seem strange, and indeed it is. For Frobenius induction, it takes perhaps some
getting used to the G-set [G : H] and the corresponding inductible map. The second
example in 2.5 as continued in 2.8, (vi) seems quite natural in view of Clifford theory.
The third example there will be taken up in a forthcoming paper. There are other
examples where the relevant G-sets and G-maps are naturally given.

10



(vi) Why not interchange the order of addition and multiplication in 2.7? Couldn’t
one equally well define a class function the other way round? Yes, one could, but
not equally well. The reason is the asymmetry between addition and multiplication
introduced by distributivity: every product of sums can be expanded into a sum of
products, but rare is the sum of products which is a product of sums. More on the
expansion in the next section.

(vii) Let g ∈ G ≥ H and let θ : M → H̃ be an inductible map on the H-set M . Further
let α : M → A be an H-map into some H-set A. Then M g and Ag are Hg-sets,
θg : M g → H̃g is inductible and αg : M g → Ag is an Hg-map. It is straightforward
to check that (θg)αg

= (θα)g.

2.10 Proposition:

Let an inductible map θ and α as in 2.7 be given.

(1) Fix a ∈ A and let Ma =
·⋃

j∈J

jGa. Then θα
a =

∏
j∈J

(jθ)⊗Ga

(a product of tensor induced class functions).

(2) Let A =
·⋃

b∈B

bG. Then θα =
∑
b∈B

(θα
b )G

(a sum of Frobenius induced class functions).

(3) If mθ is a (generalized) character of Gm for every m, then θα is a (generalized)
character of G.

(Of course, ’character of G’ means ’trace of G on some RG-module with finite R-basis’,
and a generalized character is a difference of two characters.)

Proof: The first statement follows directly from the definition of tensor induction, the
second from the definition of Frobenius induction. It is well known that Frobenius in-
duction takes (generalized) characters to (generalized) characters. The same holds for
tensor induction: for characters, we have written down the module in 2.1. For generalized
characters, the proof is more complicated. For the case R = C, i.e. ordinary generalized
characters, an argument was given in [5], Prop. 1.8., using Brauer’s characterization of
characters. A simpler proof for this fact (and also for generalized permutation charac-
ters) was given by Gluck and Isaacs in [3]; their proof argues with the Galois group and
algebraic integers. An elementary proof for general R will be given in 3.5 at the end of
the next section.

2.11 Remark:

The last result cries out for a shorthand notation for a set of representatives of the G-
orbits on some G-set M . We denote these simply by M/G and can then write θα

a =∏
j∈Ma/Ga

(jθ)⊗Ga and θα =
∑

b∈A/G

(θα
b )G . Strictly speaking of course, M/G is the set of

G-orbits on M , but all the constructions are independent of the choice of representatives.
Using this notation, the simplest special case of the proposition is θid =

∑
m∈M/G

(mθ)G .
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2.12 Lemma: Mean and Induction

Let θ : M → G̃ be inductible and N / G; assume that |N | is a unit in R. Let (M, θ) be
the factor inductible map as in 2.6, (ii). Then

θ
id

= θid .

Proof: We have to show that

|N | · θid
(gN) =

∑
x∈gN

θid(x)

for every g ∈ G. For given m ∈ M , there is an x ∈ gN = g with mx = m if and only if
m g = m. If so, then the elements y in gN with this property form precisely one coset
xNm and

∑
y∈gN
my=m

(mθ)(y) =
∑

y∈xNm

(mθ)(y) = |Nm| · (mθ)(xNm) = |Nm| · (mθ)(g)

by definition of θ. Summing over the |N : Nm| elements in the N -orbit m of m gives
therefore precisely ∑

y∈gN
mu′∈m

mu′y=m′

(m′θ)(y) = |N | · (mθ)(g) ,

still under the assumption that m g = m. Hence

∑
y∈gN

θid(y) =
∑

y∈gN
mu∈M
my=m

(mθ)(y)

=
∑

m∈M

m g=m

∑
y∈gN

mu′∈m
mu′y=m′

(m′θ)(y)

= |N | ∑
m∈M

m g=m

(mθ)(g)

= |N | · θid
(g)

2.13 Remark:

To rephrase the last result in more familiar terms, consider the situation where a normal
subgroup N of G and a class function ϕ of a subgroup H are given; we wish to construct
a class function of G = G/N from these data. Two ways of doing so come to mind:
First, use Frobenius induction to obtain the class function ϕG of G, then take the mean
over cosets of N to get ϕG, a class function of G.
Second, take the mean of ϕ over cosets of the normal subgroup H ∩ N of H to obtain
the class function ϕ of H/(H ∩ N) . Since H/(H ∩ N) ∼= HN/N = H, we can view ϕ
as a class function of H, using the canonical isomorphism. But H is a subgroup of G, so
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Frobenius induction produces the class function ϕG of G.
The content of the lemma is that these two methods lead to the same result. This is
no surprise; however, the corresponding statement with Frobenius induction replaced by
tensor induction is false in general.

3 Distributivity

We now reverse the order of tensor induction and Frobenius induction in 2.7. So let P
and S be G-sets, ϕ : P → G̃ an inductible map, and π : P → S a G-map. For s ∈ S,
consider the Gs-set Ps = {p ∈ P | pπ = s}. Denote

π
s ϕ =

∑

p∈Ps/Gs

(pϕ)Gs ,

so this is a class function of Gs, and

πϕ =
∏

s∈S/G

(π
s ϕ)⊗G .

Note the analogy and the difference to 2.10. In a good sense, πϕ is a product of sums.
We wish to expand this product. The obvious approach works.

3.1 Proposition: Distributivity of induction

Let A = {a : S → P | aπ = idS}. This is a G-set under conjugation. Also, M = S ×A is
a G-set, and (s, a)α = a defines a G-map α : M → A. Further, let (s, a)ϑ = (saϕ)|G(s,a)

.

Then ϑ : M → G̃ is an inductible map and

πϕ = ϑα . (1)

Proof: Clearly, agπ = (aπ)g = idS for a ∈ A and g ∈ G, so ag ∈ A and A is a G-set.
The statements about M and α are then trivial. For s ∈ S, we have (sa)g = sgag,
hence G(s,a) ≤ Gsa. Since saϕ ∈ (Gsa)

∗ by assumption on ϕ, we can restrict it to get
(s, a)ϑ ∈ (G(s,a))

∗. Moreover,

(s, a)gϑ = (sgagϕ)|G(sg,ag)

= (sagϕ)|Gg
(s,a)

= (saϕ)g
|Gg

(s,a)
since ϕ is a G-map

= [(saϕ)|G(s,a)
]g

= [(s, a)ϑ]g ,

so ϑ is a G-map and therefore inductible. It remains to proof (1).

So let C =< c > for c ∈ G and let S =
·⋃

i∈I

iC (compare 2.7). Then

πϕ(c) =
∏

i

π
i ϕ(ci) .
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For any i, by definition,
π
i ϕ(ci) =

∑
p∈Pi
pci=p

(pϕ)(ci) ,

so
πϕ(c) =

∏
i∈I

∑
p∈Pi
pci=p

(pϕ)(ci) .

Now use 1.3 with G = C, X = S, Y = P, µ = π and T (p) = (pϕ)(ci) for p ∈ Pi. Note
that

Y (i) = {p ∈ P | p fixed by Ci and pπ = i}
= {p ∈ Pi | pci = p} .

Therefore
πϕ(c) =

∑
a∈[S,P ]C
aπ=idS

∏
i∈I

(iaϕ)(ci)

=
∑
a∈A
ac=a

∏
i∈I

(i, a)ϑ(ci)

=
∑
a∈A
ac=a

ϑα
a (c)

= ϑα(c) .

(For the third equality, note that Ma = S × {a} =
·⋃

i∈I

(i, a)C if ac = a.)

3.2 Remarks:

(i) Explicitly, (1) can be rewritten as
∏

s∈S/G

[
∑

p∈Ps/Gs

(pϕ)Gs]
⊗G

=
∑

a∈A/G

[
∏

s∈S/Ga

(saϕ|G(s,a)
)⊗Ga]

G
(2)

This is the expansion mentioned above.
Note that on the right of this formula, tensor induction is only applied to restrictions
of class functions pϕ, not to sums of these nor to class functions obtained from them
by Frobenius induction. As an immediate consequence, one gets the first corollary
below.

(ii) We look more closely at the case that Gs acts trivially on Ps for all s ∈ S. For a
later application, we give first a different description of this situation.
Assume that for all s ∈ S, there is an index set Is, depending only on the G-orbit
of s, i.e. Is = Isg , and class functions ϕs,i of Gs such that ϕg

s,i = ϕsg,i for all g, s
and i ∈ Is. Define the G-set P := {(s, i) | s ∈ S, i ∈ Is} with G-action only on

the first component; also define ϕ : P → G̃ by (s, i)ϕ = ϕs,i. Then ϕ is inductible;
the projection π : P → S is clearly a G-map. With the notation introduced at the
beginning of this section, we have

π
s ϕ =

∑
i∈Is

ϕs,i .
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The set A then also has a simple description, namely A =
∏
s∈S

Is. (Strictly speaking,

we use the canonical isomorphism
∏
s∈S

Is 3 f 7→ af ∈ A , where af is defined by

saf = (s, sf), to identify the two sets.) Using (2), we get

∏

s∈S/G

[
∑
i∈Is

ϕs,i]
⊗G

=
∑

a∈A/G

ϕG
a , (3)

where
ϕa =

∏

s∈S/Ga

(ϕs,sa)
⊗Ga

|Gs,a
.

This shows how to change the order of summation and tensor induction.

(iii) In case S is a transitive G-set, one may think of (3) as the character theoretical

analog of the multinomial formula (
t∑

i=1

xi)
n =

∑
ν

(
n
ν

)
xν , where the second sum runs

over all tupels ν = (ν1, . . . , νt) ∈ Nt
0 with n =

∑
i

νi and where xν is shorthand

for
∏
i

xνi
i . Indeed, this formula follows with t = |Is| by specializing to G = Sn,

the symmetric group, acting naturally on S = {1, . . . , n} and then evaluating at 1.
Here, of course, xi = ϕi(1) ; the Ga’s are then Young subgroups.

(iv) The statement and the proof of the last proposition come naturally if one looks at
induction in terms of G-sets and inductible maps. This may justify the definition.

3.3 Corollary: Tensor induction of monomial characters

Tensor-inducing a sum of monomial characters gives again a sum of monomial characters.

Proof: Restricting, conjugating or tensor-inducing a linear character gives a linear char-
acter. Also, products of linear characters are linear. Now use formula (2) with all pϕ
linear.

3.4 Remark:

It is clear from the argument that one may take other class functions instead of the linear
characters, provided they are closed under these four operations. For instance, one could
take all linear characters λ with order(λ) ∈ T if T ⊆ N is closed under divisors and least
common multiples, i.e. d|t ∈ T ⇒ d ∈ T and s, t ∈ T ⇒ lcm(s, t) ∈ T (e.g. all divisors
of some fixed n ∈ N, all powers of some fixed prime,...). The case T = {1} leads to the
permutation characters considered in 2.2. Also, the statement remains true if, in addition,
one allows taking products.

3.5 Corollary: Tensor induction of generalized characters

Let γ be a generalized character of some subgroup H of G. Then γ⊗G is a generalized
character of G. More precisely, let α and β be class function of H and write S = [G : H]
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(so S is a G-set); then

(α− β)⊗G =
∑

{X⊆S}/G

ϕG
X ,

where
ϕX = (−1)|X| · signX

∏

s∈(S\X)/GX

(αs) ⊗GX

|Gs,X
·

∏

s∈X/GX

(βs) ⊗GX

|Gs,X

and signX is the sign character of GX acting on X. So if α and β are characters, then
(α− β)⊗G is an alternating sum of characters.

Proof: Use (3) to expand (α − β)⊗G and identify the maps a : S 7→ {α,−β} with
the subsets X of S by x ∈ X ⇔ xa = −β. This gives

(α− β)⊗G =
∑

{X⊆S}/G

ϕG
X

with
ϕX =

∏

s∈(S\X)/GX

(αs)⊗GX

|Gs,X
·

∏

s∈X/GX

(−βs)⊗GX

|Gs,X
.

Since tensor induction is multiplicative, it is enough to show that
∏

s∈X/GX

(−1Gs,X
)⊗GX = (−1)|X| · signX

and this follows easily from observing that
∏

s∈X/GX

(−1Gs,X
)⊗GX (c) = (−1)o(c)

where o(c) is the number of orbits of c ∈ GX on X.

3.6 Remark:

The last two results can be combined: If µ =
∑
i

ziλ
H
i is a generalized monomial character

of a subgroup H ≤ G, where the the linear characters λi belong to a subset of all linear
characters as in the last remark, then µ⊗G is of the same type; note that the sign character
is 1Sn

An
− 1Sn , so is a generalized permutation character. In particular, tensor inducing a

generalized permutation character gives a generalized permutation character (for R = C,
this is the result of Gluck and Isaacs mentioned above; recall that all results in this section
hold for any commutative ring R.) Of course, taking all linear characters makes the result
trivial, since every generalized character is a generalized monomial character by Brauer’s
theorem on induced characters (again for R = C).

4 Transitivity

We observed in 2.10 that inducing an inductible map means essentially – apart from
products and sums – first tensor induction (Ti), then Frobenius induction (Fi). Repeating
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the process gives therefore Ti · Fi · Ti · Fi . As shown in the last section, the second and
third operation can be rewritten as Ti · Fi. Since both tensor induction and Frobenius
induction are transitive, it comes as no surprise that induction of inductible maps is also
transitive. For the sake of completeness, we give an explicit description in this section.
Unfortunately, the result is rather technical.
So let an inductible map ϑ : M → G̃ be given and assume that the mϑ’s are defined by
inducing suitable inductible maps for the subgroups Gm with respect to some Gm-maps.
We wish to calculate ϑα (for some α : M → A) directly from these maps.
Before describing the result, we have to deal with the difficulty that the relevant sets for
the subgroups Gm may not be compatible, even though the induced class functions are
conjugate. This may happen even for Frobenius induction. For example, if U ≤ H ≤ G
and V ≤ Hg ≤ G for some g ∈ G and if further λ and µ are characters of U and V ,
respectively, such that (λH)g = µ(Hg), then this does not imply that µ = λg nor even
V = U g.
However, if we are only interested in the induced characters, we can replace V by U g

and µ by λg (or vice versa), that is, we can assume that the underlying structures are
conjugate (but we do make a choice). This is what we will do in general for inductible
maps:

So let M =
·⋃

j∈J

jG be the orbit decompositions (here, we choose the representatives). For

every j then, jϑ is a class function of Gj which by assumption is given by inducing an

inductible map, say jϑ = η
τj

j , where ηj : Pj → G̃j is an inductible map on some Gj-set

Pj and τj : Pj → Sj is some Gj-map. Denote S =
·⋃
j

SG
j and let σ : S → M be the

canonical G-map defined by (s ⊗ g)σ = jg if s ∈ Sj (compare 1.7), so S =
·⋃

m∈M

Sm,

where Sm = {s ∈ S | sσ = m}. In the same way, define π : P =
·⋃
j

PG
j → M and

the corresponding subsets Pm. Define τ : P → S by (p ⊗ g)τ = pτj ⊗ g if p ∈ Pj.

Finally, let η : P → G̃ be the inductible map defined by (p ⊗ g)η = (pηj)
g if p ∈ Pj

(compare 2.6, (iii)); note that P and η depend on the Pj’s and the ηj’s (so on the choice
of J), but not on the σj’s or α. Then we have a commutative diagram of G-maps:

S ¾ τ P -η
G̃

?

π

M

@
@

@
@

@
@R

σ

-α A

Let τm = τ|Pm the restriction, viewed as Gm-map into Sm, and ηm = η|Pm , viewed as

Gm-map into G̃m. If M 3 m = jg, then it is easy to check that ηm = ηg
j and τm = τ g

j .

Therefore ητm
m = (ηg

j )
τg
j = (η

τj

j )g = (jθ)g = (jg)θ = mθ (compare 2.9, (vii)).
So far, we have just argued that not only the class functions mϑ and (mg)ϑ are conjugate,
but that they can be obtained by inducing conjugate inductible maps ( i.e. Pmg = Pmg
and ηmg = ηg

m ) with respect to conjugate maps ( i.e. also Smg = Smg and τmg = τ g
m). We
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are now ready for transitivity:

4.1 Notation:

As before, let Ma = {m ∈ M | mα = a} for every a ∈ A. Define

Fa = {f : Ma → S | mfσ = m ∀m ∈ Ma} .

Note that f g ∈ Fag if f ∈ Fa and that F =
·⋃
a

Fa is a G-set with this action. It is easy to

check that
Q := {(p, f) | p ∈ P, f ∈ Fpπα, pτ = pπf}

is a G-subset of P × F . Define ϕ : Q → G̃ by (p, f)ϕ = (pη)|Gp,f
, the restriction of the

class function pη of Gp to the subgroup Gp,f . Then ϕ is an inductible map for G on Q.
We let β : Q → F be the projection, i.e. (p, f)β = f ; this is clearly a G-map.

4.2 Theorem: Transitivity

Keep the above notation. Then ϑα = ϕβ.

Proof: Take c ∈ G. By definition,

ϑα(c) =
∑
a∈A
ac=a

ϑα
a (c) ,

and
ϕβ(c) =

∑

f∈F
fc=f

ϕβ
f (c) =

∑
a∈A
ac=a

∑

f∈Fa
fc=f

ϕβ
f (c) ,

so it is clearly enough to show that

ϑα
a (c) =

∑

f∈Fa
fc=f

ϕβ
f (c) (4)

for every a ∈ A and c ∈ Ga. So fix such a and c.
Now, by definition,

ϑα
a (c) =

∏
i∈I

(iϑ)(ci) , (5)

where Ma =
·⋃

i∈I

iC. But iϑ = ητi
i , so

(iϑ)(ci) =
∑
s∈Si
sci=s

ητi
i,s(ci) . (6)

Now use the definition of ητi
i,s :

ητi
i,s(ci) =

∏
j∈Js

(jηi)(cj) ,
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where

Pi,s = {p ∈ Pi | pτi = s} =
·⋃

j∈Js

jCi . (7)

Write
T (s) =

∏
j∈Js

(jηi)(cj) = ητi
i,s(ci) (8)

for short (still s ∈ Si). Then

(iϑ)(ci) =
∑
s∈Si
sci=s

T (s) (9)

by (6) and therefore

ϑα
a (c) =

∏
i∈I

∑
s∈Si
sci=s

T (s) (10)

from (5) and (9).
So much for the left hand side of (4). Now for the right: To calculate ϕβ

f (c) for f ∈ Fa

with f c = f , we need the decomposition of

Qf = {q ∈ Q | qβ = f} = {(p, f) | p ∈ P, pπα = a, pτ = pπf}
into orbits under C. Let Pf = {p ∈ P | (p, f) ∈ Qf}. Then Pf ⊆ Pa := {p ∈ P | pπ ∈
Ma}, so π : Pf → Ma is a Gf -map, in particular a C-map. According to 1.1, we get

the orbit decomposition of Pf (hence of Qf ) by first decomposing Ma =
·⋃

i∈I

iC (see above

under (5)), and then further decomposing the inverse image of i under π in Pf into orbits
under Ci . But

{p ∈ Pf | pπ = i} = {p ∈ Pi | pτi = if} = Pi,if

(see (7) and recall that τi is just the restriction of τ to Pi). Therefore the contribution to
ϕβ

f (c) for some fixed i ∈ I is just T (if) (compare (8) and recall that (p, f)ϕ is obtained
by restricting pη = pηi). It follows that

ϕβ
f (c) =

∏
i∈I

T (if) . (11)

Therefore, using (10) and (11), to prove (4), we need
∏
i∈I

∑
s∈Si
sci=s

T (s) =
∑

f∈Fa
fc=f

∏
i∈I

T (if) .

This follows from the second part of 1.3 with G = C, X = Ma, Y = Sa :=
·⋃

m∈Ma

Sm and

µ = σ|Sa . Note that then

Y (i) = {y ∈ Y | yµ = i and yGi = y}
= {s ∈ Si | sci = s}

and

{f ∈ [X, Y ]G | fµ = idX} = {f : Ma → Sa | f c = f and mfσ = m ∀m ∈ Ma}
= {f ∈ Fa | f c = f} .
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