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Abstract: Goodness of �t tests based on the empirical distribution function
fail to be asymptotically distribution free if parameters are estimated. As-
ymptotically, the empirical process with estimated parameters is a centered
Gaussian process with a covariance that di¤ers from the covariance func-
tion of the Brownian bridge. If the maximum likelihood estimator is used
then the new covariance function is smaller, in the Loewner semiorder, than
the covariance function of the Brownian bridge. Therefore one may trans-
form the empirical process with estimated parameters back to a Brownian
bridge by adding an independent process that is suitably constructed. Clas-
sical goodness of �t statistics have aftzer this transformation an asymptotic
distribution as in the case of known parameters. The power under local alter-
natives of this new goodness of �t tests is studied and computer simulations
compare the new test with their bootstrap versions.
Keywords: Goodness of �t tests with estimated parameters, Kolmogorov-
Smirnov test, Cramer-von Mises test, Bootstrap
AMS Classi�cation: 62E17; 62E20

1 Empirical distribution functions with esti-
mated parameters

For independent and uniformly on [0; 1] distributed random variables U1; U2; :::
we denote by

Un(t) =
1p
n

Xn

i=1
(I[0;t](Ui)� t) (1)

the uniform empirical process which is a random element of the Skorokhod
space D[0; 1] that we equip with the Skorokhod metric under which D[0; 1]
is a complete and separable metric space, see Billingsley (1968). For i.i.d.
X1; X2; :::with common distribution F we denote by

bFn(t) = 1

n

Xn

i=1
I(�1;t](Xi); and Gn =

p
n( bFn � F ):
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the empirical distribution function and the empirical process, respectively.
Gn is a random element of the Skorokhod space D[�1;1] that is again
equipped with the Skorokhod metric. The Donsker theorem, see p. 97 in
Pollard (1984), originally proved for D[0; 1]; states in the general situation,

L(Gn)) L(B(F ));

where) is the symbol of weak convergence of distributions on the Skorokhod
space D[�1;1]; and B is the Brownian bridge on [0; 1]: This means that B
is a centered continuous Gaussian process with covariance function

E(B(s)B(t)) = s ^ t� st:

For a given parametric family (P�)�2� of distributions we want to test whether
the common distribution of the i.i.d. sample X1; :::; Xn originates from the
model (P�)�2�: To this end we set F�(t) = P�((�1; t]) and compare the
empirical distribution function bFn with the estimation obtained by plugging
in an estimator b�n into F�: This leads to the estimated empirical processbGn = pn( bFn � Fb�n):
The asymptotic distribution of bGn has been established by many authors
starting with Durbin (1973a) and (1973b). The results of di¤erent authors
di¤er in the type of regularity conditions that are necessary to make a suitable
Taylor expansion, see Shorack andWellner (1986), Section 5.5. Our approach
follows van der Vaart (1998) and Genz and Haeusler (2006). We suppose
that � is an open subset of Rd and the sequence of estimators b�n is strongly
consistent, i.e. b�n(X1; :::; Xn)! � a:s: (2)

Moreover we assume that b�n admits a �rst order Taylor expansion in the
sense that there exists a measurable function h� : R! Rd such that

p
n(b�n(X1; :::; Xn)� �) =

1p
n

Xn

i=1
h�(Xi) + oP (1) (3)

E� kh�(X1)k2 < 1; E�h�(X1) = 0 (4)

J(�) : = E�h�(X1)h
T
� (X1): (5)

Here kxk denotes the Euclidean norm of the column vector x and the super-
script T is the symbol for transposition. We suppose that for every �0 2 �
there is a neighborhood U(�0) � � such that � 7�! F�(t); � 2 U(�0) is
di¤erentiable and

_F�(t) = (
@

@�1
F�(t); :::;

@

@�d
F�(t))

T : (6)
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is a continuous function � 2 U(�0);�1 � t � 1: Furthermore we suppose
that

sup
t2[�1;1];�2U(�0)

jF�+h(t)� F�(t)� _F T� (t)hj = o(khk) as h! 0; (7)

The next version of Durbin�s Theorem was proved in van der Vaart (1998).

Theorem 1 Under the assumptions (3), (4) and (7) it holds

sup
t

���bGn(t)� n�1=2Xn

i=1
(I(�1;t](Xi)� F�(t)� _F T� (t)h�(Xi))

��� = oP (1) (8)

and
L(bGn)) L(Z);

where Z is a centered and continuous Gaussian process with covariance func-
tion

cov(Z(s); Z(t)) = F�(s ^ t)� F�(s)F�(t) + _F T� (s)J(�)
_F�(t) (9)

� _F T� (s)Eh�(X1)I(�1;t](X1)� _F T� (t)Eh�(X1)I(�1;s](X1)

for every s; t 2 [�1;1]:

We analyze the covariance function in the case if b�n is the maximum
likelihood estimator (MLE). To this end it is supposed that the family (P�)�2�
is dominated by a �-�nite measure and atomless measure �: Denote by f� =
dP�=d�; � 2 �; the corresponding densities. As � is atomless the distribution
functions

F�(t) =

Z
I(�1;t](s)f�(s)�(ds) (10)

are continuous in t: We impose the following conditions on the densities

f�(x) =
dP�
d�
(x) > 0 �� a:s and � 2 �

� 7�! f� (x) is continuously di¤erentiable for every xR 


 _f�(x)


2 1
f�(x)

�(dx) <1

� ! I(�) =
R
_f�(x) _f

T
� (x)

1
f�(x)

�(dx) is continuous,

det(I(�)) 6= 0 for every � 2 �R
I(�1;t](x) _f�(x)�(dx) = _F�(t); �1 < t <1:

(11)

where _f� := ( @
@�1
f�; :::;

@
@�d
f�)

T : The last condition in (11) means that one may
interchange the derivative with respect to � and the integral with respect to
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x in (10). Moreover I(�) is the Fisher information matrix. If (11) is ful�lled
then under weak additional conditions the MLE b�n satis�es (3) with

h� = I
�1(�) _l� where _l� = (_l1;�; :::; _ld;�)

T :=
1

f�
_f�: (12)

We consider the covariance function in Theorem 1. It holds

_F T� (t)Eh�(X1)I(�1;t](X1)

= _F�(t)
T

Z
I(�1;t](x)I

�1(�) _l�(x)P�(dx)

= _F�(t)
T

Z
I(�1;t](x)I

�1(�)
_f�(x)

f�(x)
f�(x)�(dx)

= _F�(t)
T I�1(�)

Z
I(�1;t](x) _f�(x)�(dx)

= _F�(t)
T I�1(�) _F�(t);

where the last equality follows from the last condition in (11). Hence the
covariance function in (9) turns into

cov(Z(s); Z(t)) = F�(s ^ t)� F�(s)F�(t)� _F T� (t)I
�1(�) _F�(s): (13)

Corollary 2 Suppose that the conditions in (11) are satis�ed, and the MLEb�n satis�es (3) with h� = I�1(�) _l�: If (7) holds then
L(bGn)) L(Z);

where Z is a centered and continuous Gaussian process whose covariance
function is given in (13).

It is easy to see that covariance matrix cov(Z(ti); Z(tj)); i; j = 1; :::; n is
not larger in the Loewner semiorder of matrices than the covariance matrix
F�(ti^ tj)�F�(ti)F�(tj); i; j = 1; :::; n: This means that we can eliminate the
additional term _F T� (t)I

�1(�) _F�(s) on the right hand side of (13) by adding a
suitable process to bGn: Subsequently I�1=2(�) stands for the positive de�nite
symmetric matrix with I�1=2(�)I�1=2(�) = I�1(�): We set for standard nor-
mal random vectors Vn that are independent of X1; X2; ::: and a consistent
estimator e�n

Rn(�) = bGn + _F T� I
�1=2(�)Vn (14)

Rn(e�n) = bGn + _F Te�nI�1=2(e�n)Vn: (15)
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Theorem 3 Suppose the conditions in Corollary 2 are ful�lled, Vn are stan-
dard normal random vectors that are independent of X1; X2; ::: and e�n is a
consistent estimator. Then

L(Rn(�))) L(B(F�)):

and
L(Rn(e�n))) L(B(F�)):

Proof. Suppose that Z is a centered Gaussian process that is independent
of V and has the covariance function in (13) whereas V is any standard
normal random vector that is independent of Z: Then the convergence

L(bGn + _F T� I
�1=2(�)Vn) =) L(Z + _F t�I

�1=2(�)V )

is obvious. It remains to calculate the covariance function of the centered
Gaussian process Z + _F t�I

�1=2(�)V: The independence of Z and V yields

cov(Z(s) + _F T� (s)I
�1=2(�)V; Z(t) + _F T� (t)I

�1=2(�)V )

= cov(Z(s); Z(t)) + cov( _F T� (s)I
�1=2(�)V ); _F T� (t)I

�1=2(�)V )

= cov(Z(s); Z(t)) + E( _F T� (s)I
�1=2(�)V ))( _F T� (t)I

�1=2(�)V )T

= cov(Z(s); Z(t)) + _F T� (s)I
�1(�) _F�(t)

= F�(s ^ t)� F�(s)F�(t)

where the last equality follows from (13). The second statement follows from
Slutsky�s lemma.
Technically it is sometimes more appropriate to deal with the interpolated

empirical distribution function. More precisely, let eFn(t) be any piecewise
linear continuous function that satis�es

bFn(t� 0) = 1

n

Xn

i=1
I(�1;t)(Xi) � eFn(t) � bFn(t) = 1

n

Xn

i=1
I(�1;t](Xi):

Set eGn = pn( eFn � Fb�n). Then
sup
t
j bFn(t)� eFn(t)j � 1p

n
and sup

t
jeGn � bGnj � 1p

n
:

It is clear that eGn may be considered as a random element of C[�1;1] that
we equip with the sup-norm and the �-algebra of Borel sets. The mapping
T (f) = supt jf(t)j is continuous on C[�1;1] and the continuous mapping
theorem yields that under the assumptions of Theorem 3

L(sup
t
jeGn(t)+ _F Te�n(t)I�1=2(e�n)V j) =) L(sup

t
jB(F�0(t))j) = L(sup

s
jB(s)j) =: K
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where K is the Kolmogorov distribution with the distribution function

K([0; x]) = 1� 2
X1

k=1
(�1)k+1 expf�2k2x2g: (16)

For Rn(e�n) in (15) we introduce the randomized Kolmogorov-Smirnov statistic
by

Kn = sup
t
jbGn(t) + _F Te�n(t)I�1=2(e�n)Vnj (17)

Then under the assumptions of Theorem 3

L(Kn)) K (18)

A similar statement holds for statistics of the Cramer von Mises type. Denote
byXn:1 � ��� � Xn:n the order statistic and introduce the randomized Cramer
von Mises statistic by

Cn :=
Xn

i=1
((
i

n
� Fb�n(Xn:i) +

1p
n
_F Te�n(Xn:i)I

�1=2(e�n)Vn)2: (19)

To study the asymptotic behavior of Cn we note that for any compact K �
C[�1;1] and i.i.d. X1; X2; ::: with common distribution F� the Glivenko-
Cantelli Theorem gives

sup
f2K

����Z fd bFn � Z fdP�

����! 0 a:s: (20)

The continuity of F� yields bFn(Xn:i) = i=n a.s. and

Cn =
Xn

i=1
((
i

n
� Fb�n(Xn:i) +

1p
n
_F Te�n(Xn:i)I

�1=2(e�n)Vn)2 (21)

=

Z
(
p
n( bFn(t)� Fb�n(t)) + _F Te�n(t)I�1=2(e�n)Vn)2d bFn(t):

The tightness of the distributions of the sequence
p
n( bFn�F�� _F Te�nI�1=2(e�n)Vn)

and (20) give

Cn =

Z
(
p
n( bFn(t)� Fb�n(t)) + _F Te�n(t)I�1=2(e�n)Vn)2P�(dt) + oP (1)

=

Z
(eGn(t)� _F Te�n(t)I�1=2(e�n)Vn)2P�(dt) + oP (1) (22)

Since f 7!
R
f 2dP� is a continuous function on C[�1;1] we get from The-

orem 3
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L(Cn)) L(
Z 1

0

B2(s)ds) =: C; (23)

where we have used the fact that the continuity of F� impliesZ
B2(F�)dP� =

Z 1

0

B2(s)ds:

It is well known, see e.g. Shorack and Wellner (1986). p. 215, that

C([0; x]) = P (
X1

k=1

1

(k�)2
Z2k � x); (24)

where the Z1; Z2; ::: are i.i.d. standard normal. We denote by k1�� and c1��
the 1 � � quantile of the Kolmogorov distribution K and the Cramer-von
Mises distribution C; respectively. Based on the tests statistic Kn we intro-
duce the randomized Kolmogorov-Smirnov test and the randomized Cramer-
von Mises test by

'Kn = I[k1��;1)(Kn) and 'Cn = I[c1��;1)(Cn): (25)

The next statement is a simple consequence of Theorem 3 and the relations
(23) and (18).

Proposition 4 Under the assumptions of Theorem 3 the tests 'Kn and 'Cn
are asymptotic level ��tests for testing

H0 : L(X1) 2 fP�; � 2 �g versus HA : L(X1) =2 fP�; � 2 �g:

2 Power under local alternatives

Suppose Qn and Q are distributions on (X ;A), assume Qn � Q and put
gn = dQn=dQ;

an = 2
p
n(
p
gn � 1): (26)

Then Z
(1 +

1

2
p
n
an)

2dQ = 1Z
andQ = � 1

4
p
n

Z
a2ndQ: (27)

Suppose there is some a 2 L2(Q) with

lim
n!1

Z
(an(x)� a(x))2Q(dx) = 0: (28)
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Then (27) yields. Z
adQ = 0: (29)

Denote by X1; :::; Xn the projections of X n onto X : The next statement
is a special case of Theorem 3 in Shorack and Wellner (1986). p. 154. Under
the assumption (28) the sequence Q
nn satis�es the LAN-condition in the
sense that

lnLn =
1p
n

Xn

i=1
a(Xi)�

1

2

Z 1

0

a2(x)Q(dx) + oQ
n(1): (30)

Ln =
dQ
nn
dQ
n

(X1; :::; Xn):

We study the asymptotic behavior of the linear statistics

Tn =
1p
n

Xn

i=1
bn(Xi); (31)

where bn; b 2 L02(Q) with

lim
n!1

Z
(bn � b)2dQ = 0:

The representations (30), (31) and the central limit theorem yield

L((Tn; lnLn)T jQ
n)) N

 �
0

�1
2

R 1
0
a2dQ

�
;

 R 1
0
b2dQ

R
abdQR

abdQ
R 1
0
a2dQ

!!
:

From here and LeCam�s third Lemma , see Theorem 4, in Shorack and Well-
ner (1986), p. 154, we get the asymptotic distribution of Tn under Q
nn

L(TnjQ
nn )) N(

Z
abdQ;

Z
b2dQ): (32)

Let us return to the parametric model (P�)�2�, set Q = P� for any �xed �
and suppose that there is a sequence Qn � Q such that (28) is satis�ed. Our
aim is to study the randomized Kolmogorov-Smirnov and Cramer-von Mises
statistics under Q
nn : For any real numbers aj it holds under the assumptions
of Theorem 3Xn

j=1
ajbGn(tj)

=
1p
n

Xn

i=1
(
Xn

j=1
aj(I(�1;tj ](Xi)� F�(tj)� _F T� (tj)I

�1(�) _l�(Xi)) + oP (1)

=
1p
n

Xn

i=1
b(Xi) + oP (1);
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where

b(s) =
Xn

j=1
aj��(tj; s)

��(t; s) = I(�1;t](s)� F�(t)� _F T� (t)I
�1(�) _l�(s): (33)

An application of the central limit theorem to

1p
n

Xn

i=1
(a(Xi); b(Xi))

T

and (32) provide the �di-convergence of bGn under Q
nn to the process Z+��a
where Z is a Gaussian process with covariance function (13) and

(��a)(t) =

Z
��(t; s)a(s)P�(ds): (34)

The LAN-property (30) and LeCam�s �rst lemma imply the contiguity of
Q
nn with respect to Q
n; see Shorack and Wellner (1986), p.157. We get
that the sequence of distributions of bGn is tight under Q
nn as well, where
tightness is to be understood with respect to the modulus of continuity of
the Skorokhod space, see Pollard (1984), p.131. Using the independence ofbGn and _F T� I

�1=2(�)Vn and the tightness of _F T� I
�1=2(�)Vn we arrive at the

following result.

Theorem 5 If the assumptions in Theorem 3 are ful�lled and the condition
(28) holds then

L(bGn + _F Te�nI�1=2(e�n)VnjQ
nn ) =) L(B(F�) + ��a);

where ��a is de�ned in (34).

If the distribution of the local alternativeQn comes from inside the model,
i.e. Qn = P�+h=pn; then by a result of Hajek the conditions in (11) imply
that the model (P�)�2� is L2-di¤erentiable with derivative _l�, see Bickel et
al. (1993), p.13. Then by Shorack and Wellner (1986), p. 157 it follows that
(30) is satis�ed with a = hT _l�: Furthermore,

(��h
T _l�)(t) =

Z
[I(�1;t](s)� F�(t)� _F T� (t)I

�1(�) _l�(s)]h
T _l�(s)P�(ds)

= hT _F�(t)� hT _F�(t) = 0;
where the second equality follows fromZ

_l�(s)P�(ds) = 0Z
(I(�1;t](s) _l

T
� (s)P�(ds) = _F T� (t)
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which are consequences of (11). Thus we have obtained the following result.

Proposition 6 Suppose the assumptions in Theorem 3 are ful�lled and Qn =
P�+h=pn then

L(bGn + _F Te�nI�1=2(e�n)VnjQ
nn ) =) L(B(F�)):

We see that asymptotic level � tests that are based on Rn(e�n) in (15)
have only the power � as long as the local alternatives come from inside of
the model, i.e. Qn 2 fP�; � 2 �g:
We recall to the Kac-Siegert decomposition of the Brownian bridge B(t); 0 �

t � 1 which has the covariance function K(s; t) = s^ t� st: The eigenvalues
and the normalized eigenfunctions of this kernel are

�k =
1

(k�)2
and 'k(t) =

p
2 sin k�t; k = 1; 2; :::

The Kac-Siegert decomposition of the Brownian bridge reads

B(t) =
p
2
X1

k=1
Zk
sin k�t

k�
:

where Zi = k�
R 1
0
B(t)'k(t)dt and the Z1; Z2; ::: are i.i.d. standard normal.

As the system of eigenfunctions f'kg is complete we may expand any square
integrable function c in a Fourier series

c(t) =
X1

k=1
ck sin k�t ck =

p
2

Z 1

0

c(s) sin k�sds:

This yields

L(
Z 1

0

(B(t) + c(t))2dt) = L(
X1

k=1

1

(k�)2
(Zk + dk)

2)

where dk = k�ck. From here we get a similar statement for the process
B(F�): Indeed, if F� is continuous then the mapping ' 7! '(F�) is a isometry
between L2[0; 1] and L2(P�) which gives

L(
Z
(B(F�) + b)

2dP�) = L(
X1

k=1

1

(k�)2
(Zk + dk)

2);

Zk = k�

Z
B(F�)'k(F�)dP� and dk = k�

Z
'k(F�)bdP�:

The next result follows from Theorem 5.
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Theorem 7 Suppose the assumptions in Theorem 5 are ful�lled. Then the
asymptotic power of the randomized Cramer-von Mises test 'Cn in (25) under
the local alternative Q
nn is given by

lim
n!1

Q
nn ('Cn = 1) = P (
Xn

k=1

1

(k�)2
(Zk + bk)

2 > c1��)

bk = k�
p
2

Z
sin(k�F�(t))(��a)(t)P�(dt):

3 Bootstrap of the Randomized Process

Bootstrap approximations to the estimated empirical process have been con-
sidered by several authors, see e.g. Stute et al. (1993), Genz and Haeusler
(2006), van der Vaart and Wellner (1996) and the references therein. These
authors mainly used the bootstrap approximation for cases where the quan-
tiles of the asymptotic distribution of the test statistic are not available.
Although in our case the limit distribution is known we use the bootstrap to
check whether the bootstrap approximation improves the asymptotic.
We now suppose that the condition (3) for the MLE holds not only for

any �xed � but for every convergent sequence �n ! �; i.e. we suppose that
the MLE b�n satis�es

p
n(b�n(Xn;1; :::; Xn;n)� �n) =

1p
n

Xn

i=1
I�1(�n) _l�n(Xn;i) + oP (1)(35)

L(Xn;i) = F�n ; �n ! �:

Furthermore we assume that F�(t) and _F�(t) are continuous functions of
(�; t) 2 �� [�1;1] and

sup
t2[�1;1];�2U(�0)

jF�+h(t)� F�(t)� _F T� (t)hj = o(khk) as h! 0: (36)

The following lemma is contained in the one or other form in all papers
dealing with bootstrap of empirical processes with estimated parameters.

Lemma 8 Under the assumptions (35) and (36) it holds

sup
t

���bGn(t)� (pn( bFn(t)� F�n(t))� _F T�n(t)
p
n(b�n � �n)��� = oP (1) as n!1:

(37)
where bGn = pn( bFn � Fb�n(t)) andbFn(t) = 1

n

Xn

i=1
I(�1;t](Xn;i)

11



Proof. It holds

bGn(t) = pn( bFn(t)� F�n(t))�pn(Fb�n(t)� F�n(t)):
For Un in (1) the processes Un(F�n) and

p
n( bFn(t) � F�n(t)) have the same

distributions. As F�n converges uniformly to F� the tightness of Un(F�n)
follows from the tightness of Un: The tightness of _F T�n(t)

p
n(b�n � �n) follows

from the continuity of (�; t) 7! _F�(t) and (35). The condition (36) together
with

p
n(b�n � �n) = OP (1) yield that pn(Fb�n � F�n) is also tight. Hence it

remains to prove that for every �xed t

p
n(Fb�n(t)� F�n(t))� _F T�n(t)

p
n(b�n � �n) = oP (1):

But this follows from (36).
We denote by Xn;1; :::; Xn;n i.i.d. random variables with distribution P�n

and by X1; :::; Xn i.i.d. random variables with distribution P�: A special
construction for the Xn;i and Xi is given by

Xn;i = F
�1
�n
(Ui) and Xi = F

�1
� (Ui); i = 1; :::; n: (38)

Lemma 9 Suppose that (35), (36) and the conditions in Theorem 3 are
ful�lled and it holds

E



 _l�n(Xn;1)� _l�(X1)




2 ! 0 (39)

for the special construction (38) as �n ! �: If the standard normal Vn is
independent of Xn;1; :::; Xn;n then for every sequence �n ! � it holds

L(bGn + _F Tb�nI�1=2(b�n)VnjP
n�n ) =) L(B(F�))

Proof. Let V be a standard normal random vector. The continuity of
I�1=2(�) and _F� implies

L( _F Tb�nI�1=2(b�n)Vn) =) L( _F T� I�1=2(�)V ):

As bGn and Vn are independent and it su¢ ces to deal with bGn(t) or in view of
Lemma 8 with the processes

Zn(t) = Zn;1(t) + Zn;2(t)

=
p
n( bFn(t)� F�n(t))� _F T�n(t)

p
n(b�n � �n):

12



We have already proved the tightness of the processes Zn;1; Zn;2 in the proof
of Lemma 8. It remains to establish the �di-convergence. Note that (35) and
(39) imply for the special construction of Xn;i and Xi in (38)

p
n(b�n(Xn;1; :::; Xn;n)� �n)�

p
n(b�n(X1; :::; Xn)� �) = oP (1):

Furthermore

E

�
1p
n

Xn

i=1
(I(�1;t](Xn;i)� F�n(t))�

1p
n

Xn

i=1
(I(�1;t](Xi)� F�(t))

�2
� E((I(�1;t](Xn;1)� F�n(t))� (I(�1;t](X1)� F�(t)))2

� 2E((I(�1;t](F�1�n (U1))� I(�1;t](F
�1
� (U1)))

2 + 2(F�n(t)� F�(t))2

= 2E((I(�1;F�n (t)](U1)� I(�1;F�(t)](U1))
2 + 2(F�n(t)� F�(t))2 ! 0

by the continuity of � 7! F�(t): By Slutsky�s lemma it remains to investigate
the �nite dimensional distributions of

1p
n

Xn

i=1
(I(�1;t](Xi)� F�(t))� _F T� (t)

p
n(b�n(X1; :::; Xn)� �)

which has been done in the proof of Theorem 1.
Suppose that X1; :::; Xn are i.i.d. with common distribution P�: For every

n and every realization x1; :::; xn we denote by X�
n;1; :::; X

�
n;n i.i.d. random

variables with common distribution P
nb�n(x1;:::;xn): We callb��n = b�n(Xn;1; :::; Xn;n)

the bootstrap estimator and introduce the bootstrapped empirical process
with estimated parameters by

bG�n(t) = 1p
n

Xn

i=1
(I(�1;t](X

�
n;i)� Fb��n(t)):

Suppose that Vn is standard normal and independent ofX�
n;1; :::; X

�
n;n; X1; :::; Xn:

Theorem 10 If the conditions of Lemma 9 are ful�lled and the MLE b�n is
strongly consistent then

L(bG�n + _F Tb��nI�1=2(b��n)VnjP
nb�n ) =) L(B(F�)) a:s: as n!1:

Proof. Set N = f1; 2; :::g; �x a set A 2 B
N with P
N� -probability one
so that b�n converges pointwise to � on A: The application of Lemma 9 for
every sequence (x1; x2; :::) 2 A yields the statement.

13



Let Tn(X1; :::; Xn) be a sequence of statistics and assume that

L(Tn(X1; :::; Xn)jP
n� )) Q�: (40)

Suppose that the distribution function G�(t) = Q�((�1; t]) is continuous
in (�; t): To construct a bootstrap approximation to the quantiles of the
distribution of the test statistic we generate conditionally i.i.d. X�

n;1; :::; X
�
n;n

with common distribution Pb�n : Assume that the bootstrap is consistent, i.e.Z
'(Tn(X

�
n;1; :::; X

�
n;n))dP


nb�n !P
n�

Z
'Q�; n!1 (41)

for every bounded and continuous function ' and suppose that

X�
n;1; :::; X

�
n;n; X

�
n;n+1; :::; X

�
n;2n; :::; X

�
n;(B�1)n+1; :::; X

�
n;B�n

are conditionally i.i.d. with common distribution Pb�n : Applying Tn to the B
independent blocks each with length n we get

T �n;i = Tn(X
�
n;(i�1)n+1; :::; X

�
n;in); i = 1; :::; B:

Put
G�n;B(t) :=

1

B

XB

i=1
I(�1;t](T

�
n;i):

To study the convergence of G�n;B(t) we set

Gn(tjb�n) = P
nb�n (T �n;1 � t):
Then

E(G�n;B(t)�G�(t))2 � 2(E(G�n;B(t)�Gn(tjb�n))2 + E(Gn(tjb�n)�G�(t))2):
The T �n;i; i = 1; :::; B are i.i.d. conditionally on b�n: This gives
E(G�n;B(t)�Gn(tjb�n))2jb�n) = 1

B
E((I(�1;t](T

�
n;1)�Gn(tjb�n))2jb�n) � 1

B
;

so that the left hand term tends stochastically to zero as B !1: The second
term tends to zero as n ! 1 in view of (41) and the continuity of G�(t):
Hence G�n;B(t) tends stochastically to G�(t) for every �xed t: The continuity
of G�(t) implies for n;B !1

sup
t

��G�n;B(t)�G�(t)��!P 0:

14



If G� is strictly increasing we may conclude

(G�n;B)
�1(�)!P G�1� (�) (42)

for every 0 < � < 1:We use the statistics Tn to construct a sequence of tests.

'Tn = I[G�1� (1��);1)(Tn):

The 'Tn are asymptotic level �-tests in the sense that limn!1E'Tn = �:
The bootstrap version of the test 'Tn is then given by

'�Tn = I[(G�n;B)�1(1��);1)(Tn):

It follows from (42) that under conditions (40) and (41) the bootstrap test
'�Tn is consistent in the sense that

lim
n;B!1

E'�Tn = lim
n!1

E'Tn = �:

Let us now specialize the statistics Tn: We use the randomized Kolmogorov-
Smirnov statistic Kn and the randomized Cramer von Mises statistic Cn

Kn = sup
t
jbGn(t) + _F Tb�n(t)I�1=2(b�n)Vnj

Cn =
Xn

i=1
((
i

n
� Fb�n(Xn:i) +

1p
n
_F Tb�n(Xn:i)I

�1=2(b�n)Vn)2:
The conditions (40) and (41) for these statistics follow from Theorem 1 and
Theorem 10 under the conditions formulated there. Thus we have obtained
the following result.

Theorem 11 Under the assumptions of the Theorems 1 and 10 the bootstrap
tests 'Kn and 'Cn in (25) based on the randomized Kolmogorov-Smirnov
statistic Kn and the randomized Cramer von Mises statistic Cn are consistent.

4 Examples

4.1 Normal distribution

4.1.1 Normal distribution with unknown �

Let N(�; �2) be the normal distribution with expectation � and variance �2:
Denote by � and ' (x) be the distribution function and density function,
respectively, of N(0; 1). As �2 is known we may assume �2 = 1 without loss
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of generality. The Gaussian location model is then given by P� = N(�; 1);
� = � 2 R and

F� (t) = � (t� �) and _F� (t) = �' (t� �) :

The condition (7) is obviously satis�ed. The MLE of � is Xn and the con-
ditions (3), (4) and (5) are clear with h�(x) = x and J(�) = I(�) = 1:
Furthermore, the regularity conditions (11) are ful�lled. Thus we get that
the empirical process with estimated parameters

bGn (t) = pn( bFn(t)� � �t�Xn

�
)

satis�es L(bGn)) L(Z�) where Z� is a centered Gaussian process where the
covariance function is according to (13) given by

cov(Z�((s); Z�(t)) = � ((s ^ t)� �)�� (s� �) � (t� �)�' (s� �)' (t� �) :

We set

Mn = n

Z �
F̂n (t)� �

�
t�Xn

��2
N(�; 1)(dt)

and consider two versions of the Cramer-von Mises statistic

Mn;1 = n

Z �
F̂n (t)� �

�
t�Xn

��2
N(Xn; 1)(dt); (43)

Mn;2 = n

Z �
F̂n (t)� �

�
t�Xn

��2
dF̂n (t) :

By similar considerations that have led us to (22) one can see that

Mn;1 = Mn;2 + oP (1) = Mn + oP (1):

Finally, by the continuous mapping theorem

L(Mn)) L(
Z
Z2�(t)N(�; 1)(dt)) = L(

Z
Z20(t)N(0; 1)(dt))

and therefore

L(Mn;i)) L(
Z
Z20(t)N(0; 1)(dt)); i = 1; 2.

Thus we get the well known result, that for a location model the asymptotic
distribution of the Cramer- von Mises statistic of the empirical process with
estimated parameters does not depend on the special value of �: But the
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distribution does depend on the parent distribution that generates the model.
A similar statement holds for the Kolmogorov-Smirnov statistic

Sn =
p
n sup

t
jF̂n (t)� �

�
t�Xn

�
j: (44)

It holds
L(Sn)) L(sup

t
jZ�(t)j) = L(sup

t
jZ0(t)j):

The process Rn(e�n) in (15) is given by
Rn(e�n) = pn( bFn(t)� � �t�Xn

�
)� '

�
s�Xn

�
Vn;

where we used e�n = Xn and Vn is standard normal and independent of
X1; :::; Xn: Then we get from Theorem 3 that

L(
p
n( bFn � � �� �Xn

�
)� '

�
� �Xn

�
Vn)) L(B(� (� � �))): (45)

In the special case under consideration the randomized Cramer von Mises
Statistic in (19) and the randomized Kolmogorov-Smirnov statistic in (17),
are given by

Cn =
Xn

i=1
(
i

n
� �

�
Xn:i �Xn

�
� 1p

n
'
�
Xn:i �Xn

�
Vn)

2 (46)

Kn = sup
t

���pn( bFn(t)� � �t�Xn

�
)� '

�
t�Xn

�
Vn

��� : (47)

Using the notations in (16) and (24) we get from (45)

L(Cn)) C and L(Kn)) K:

4.1.2 Normal distribution with unknown � and �2

Now we allow the variance to be unknown and arrive at a location-scale
model generated by the standard normal distribution. Hence P� = N(�; �2);
� = (�; �2); � 2 R; �2 > 0: Then F� (t) = �

�
t��
�

�
and

_F� (t) =

�
@

@�
�

�
t� �
�

�
; )
@

@�2
�

�
t� �
�

��T
=

�
� 1
�
'

�
t� �
�

�
;�(t� �)

2�3
'

�
t� �
�

��T

17



and the condition (7) is again satis�ed. The MLE of � = (�; �2) is

b�n = (Xn; S
2
n)
T ; and S2n =

1

n

Xn

i=1
(Xi �Xn)

2:

As
p
n(Xn � �)2 = oP (1) it follows

p
n

�
Xn � �
S2n � �2

�
=

1p
n

nX
i=1

�
Xi � �

(Xi � �)2 � �2
�
+ oP (1):

and

L
�p

n

�
Xn � �
S2n � �2

��
) N(0;�)

where X
=

�
�2 0
0 2�4

�
= I�1(�):

Hence the conditions (3), (4) and (5) are satis�ed. Furthermore, the regular-
ity conditions (11) are ful�lled. Thus the empirical process with estimated
parameters bGn (t) = pn�bFn(t)� ��t�Xn

Sn

��
satis�es L(bGn) ) L(Z(�;�2)) where Z(�;�2) is a centered Gaussian process
where the covariance function is, according to (13), given by

cov(Z(�;�2)((s); Z(�;�2)(t)) = �

�
(s ^ t)� �

�

�
� �

�
s� �
�

�
�

�
t� �
�

�
� '

�
s� �
�

�
'

�
t� �
�

�
� (s� �)(t� �)

2�2
'

�
s� �
�

�
'

�
t� �
�

�
:

We set

Mn = n

Z �
F̂n (t)� �

�
t�Xn

Sn

��2
N(�; �2)(dt)

and consider two versions of the Cramer-von Mises statistic

Mn;1 = n

Z �
F̂n (t)� �

�
t�Xn

Sn

��2
N(Xn; Sn)(dt); (48)

Mn;2 = n

Z �
F̂n (t)� �

�
t�Xn

Sn

��2
dF̂n (t) :

Again one can see that

Mn;1 = Mn;2 + oP (1) = Mn + oP (1):
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Finally, by the continuous mapping theorem

L(Mn)) L(
Z
Z2(�;�2)(t)N(�; �

2)(dt)) = L(
Z
Z2(0;1)(t)N(0; 1)(dt));

and therefore

L(Mn;i)) L(
Z
Z2(0;1)(t)N(0; 1)(dt)); i = 1; 2. (49)

where Z(0;1) is the centered Gaussian process with covariance function

cov(Z(0;1)((s); Z(0;1)(t)) = � (s ^ t)�� (s) � (t)� ' (s)' (t)�
1

2
st' (s)' (t) :

Denote by

Sn =
p
n sup

t

����F̂n (t)� ��t�Xn

Sn

����� : (50)

the Kolmogorov-Smirnov statistic. It holds

L(Sn)) L(sup
t
jZ(�;�2)(t)j) = L(sup

t
jZ(0;1)(t)j):

The randomized process Rn(e�n) in (15) is given by
Rn(e�n) = pn�bFn(t)� ��t�Xn

Sn

��
� 1p

n
'

�
t�Xn

Sn

�
V1;n

� (t�Xn)p
2nSn

'

�
t�Xn

Sn

�
V2;n;

where we used e�n = (Xn; S
2
n) and V1;n; V2;n are independent, standard normal

and independent of X1; :::; Xn: We get from Theorem 3 that

L
�bGn + _F Te�nI�1=2(e�n)Vn�) L (B(�((� � �)=�)) :

In the special case under consideration the randomized Cramer-von Mises
statistic in (19) and the randomized Kolmogorov-Smirnov statistic in (17),
respectively, are given by

Cn =
Xn

i=1

�
i

n
� �

�
(Xn:i �Xn

�
=Sn) (51)

� 1p
n
'
��
Xn:i �Xn

�
=Sn
�
V1;n �

(Xn:i �Xn)p
2nSn

'
��
Xn:i �Xn

�
=Sn
�
V2;n

�2
Kn = sup

t

����pn( bFn(t)� � �t�Xn

�
)� 1

Sn
'
��
t�Xn

�
=Sn
�
V1;n (52)

�(Xn:i �Xn)p
2Sn

'
��
t�Xn

�
=Sn
�
V2;n

���� :
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Using the notations in (16) and (24) we get from (45)

L(Cn)) C and L(Kn)) K:

4.1.3 Exponential distribution with unknown parameter

Finally we apply the general results to the family of exponential distributions
with parameter � > 0. Let

G(t) = I[0;1)(t)(1� expf�tg) and g (t) = I[0;1)(t) expf�tg;

be the distribution function and density function of the standard exponential
distribution, respectively. The exponential distribution model is then given
by P� = G(�t); � = � 2 R+ and we have

G� (t) = I[0;1)(t)(1� exp f��tg) and _G� (t) = I[0;1)(t)(t exp f��tg).

The condition (7) is satis�ed. The MLE of � is b�n = 1=Xn and it holds

p
n(

1

Xn

� �) = � �

Xn

1p
n

Xn

i=1
(Xi �

1

�
):

As V (Xi) =
1
�2
we see that the conditions (3), (4) and (5) are satis�ed with

h�(x) = �
2 (1=�� x) and J(�) = I(�) = 1=�2: Furthermore, the regularity

conditions (11) are ful�lled. Thus we get that the empirical process with
estimated parameters

bGn (t) = pn( bFn(t)�G1=Xn
(t))

satis�es L(bGn) ) L(Z�): The process Z� is a centered Gaussian process
where the covariance function for 0 � s; t <1 is according to (13) given by

cov(Z�(s); Z�(t)) = G� (s ^ t)�G� (s)G� (t)� �2 _G� (s) _G� (t)
= 1� exp f�� (s ^ t)g � (1� exp f��sg) (1� exp f��tg)

��2st exp f��tg exp f��sg :

We consider two versions of the Cramer-von Mises statistic

Mn;1 = n

Z 1

0

�
F̂n (t)�G1=Xn

(t)
�2 1

Xn

exp

�
� t

Xn

�
dt (53)

Mn;2 = n

Z �
F̂n (t)�G1=Xn

(t)
�2
dF̂n (t)
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The same arguments that proved (22) yield

L(Mn;i)) L(
Z 1

0

Z21(t) expf�tgdt; i = 1; 2.

For the Kolmogorov-Smirnov statistic

Sn =
p
n sup

t
jF̂n (t)�G1=Xn

(t) j (54)

a similar statement holds

L(Sn)) L(sup
t
jZ1(t)j) = L(sup

t
jZ1(t)j):

The randomized Cramer-von Mises statistic in (19) and the randomized
Kolmogorov-Smirnov statistic in (17), in the special case under considera-
tion, are given by

Cn =
Xn

i=1

�
i

n
� (1� expf�Xn:i=Xng) (55)

� Vnp
n

Xn:i

Xn

expf�Xn:i=Xng
�2

Kn = sup
t

����pn( bFn(t)� �1� expf�t=Xng
�
� tVn
Xn

expf�t=Xng
���� : (56)

We get from (45)
L(Cn)) C and L(Kn)) K:

5 Simulations

5.1 Randomized tests

Monte Carlo sampling experiments to check the grade of accuracy of the
approximation by the limit distribution of the Cramer- von Mises statistics
and the Kolmogorov-Smirnov statistic, respectively, have been carried out
by several authors, see e.g. Stephens (1974) and (1976). In this section we
check the actual signi�cance level of tests that are based on the randomized
statistics in (19) and (17).
The simulation experiment is performed according to the following steps.

Let F� be a normal or an exponential distribution and let Tn stand for one
of the following statistics, where the number in the display refers to the
corresponding formula

Randomized Cramer-von Mises statistics (46), (51), (55)
Randomized Kolmogorov-Smirnov statistic (47), (52), (56).

(57)
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To carry out the simulations we used the programm R. The implemented
pseudo random generator is the Mersenne-Twister generator, see Matsumoto
and Nishimura (1998).

1. For n = 20; 50; 100 we generate X1; :::; Xn from F�.

2. Calculate the MLE �̂n:

3. Calculate the values of the statistics Tn from the display (57).

4. Carry out the test

'n =

�
1 ; Tn > c1��
0 ; else

;

where c1�� is the 1 � � quantile of Tn: As an approximation of c1��
for di¤erent n we used the modi�ed statistics in Table 1, page 239 in
Shorack and Wellner (1986). The corresponding values are listed in the
tables below in the rows that are named "CM exact" and "KS exact".

5. Repeat the steps 1.-4. N times and estimate the actual con�dence level
by

�̂Tn =
number of rejections of H0

N
:

We used N = 10000 in our simulations.

5.2 Bootstrap approximation

We have used computer simulations to study the grade of accuracy of the
actual distribution of the test statistics by the asymptotic distribution in the
previous section. Now we apply bootstrap approximations and check whether
there is a signi�cant improvement of the accuracy. The bootstrap simulations
are carried out according to the following scheme that corresponds to the
approach in Stute et al. (1993).

1. For n = 20; 50; 100 we generate pseudo random numbers from F�, where
again F� stands either for the normal or for the exponential distribution.

2. Calculate the MLE �̂n of �

3. Calculate the values of the statistics Tn from the display (57).
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4. Generate B � n i.i.d. random variables

X�
1;1 � � � X�

1;n
...

. . .
...

X�
B;1 � � � X�

B;n

with common distribution function F�̂n :

5. Calculate the bootstrap MLE �̂
�
1;n; :::; �̂

�
B;n

6. Calculate the bootstrap version T �1;n; :::; T
�
B;n of the statistics listed in

display (57)

7. Calculate the 1�� quantile c�1�� of the bootstrap empirical distribution
function F �B(t) =

1
B

PB
i=1 I(�1;t)(T

�
i;n)

8. Carry out the bootstrap test

'�n =

�
1 if Tn > c

�
1��

0 else

9. Repeat the steps 1.-8. N = 1000 times and estimate the actual �rst
kind error probability by

�̂ =
number of rejections of H0

N
:

10. Calculate the arithmetic mean c�1��of the bootstrap quantiles obtained
from the N = 1000 replications of the steps 1.-8.

5.3 Results of the computer simulations

Subsequently �(CMR) denotes the actual level of the randomized Cramer-
von Mises test. �(BCMR) is the actual level of the bootstrap version of
the randomized Cramer-von Mises test. cn;1�� is the exact critical value for
the Cramer- von Mises test. We calculated these values with the help of
the modi�ed test statistic in Table 6 p. 149 in Shorack and Wellner (1986).
c(CMR) is the actual critical values obtained from computer simulations with
10000 replications for the Cramer-von Mises test. Similarly c(BCMR) = c�1��
is the arithmetic mean of the bootstrap quantiles from N = 1000 replications
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for the Cramer-von Mises test.

Normal distribution with known �2 and unknown �
� �(CMR) �(BCMR) cn;1�� c(CMR) c(BCMR)
0.100 0.112 0.117 0.349 0.367 0.377

n=20 0.050 0.058 0.063 0.458 0.492 0.509
0.010 0.013 0.014 0.726 0.806 0.797
0.100 0.104 0.106 0.348 0.353 0.357

n=50 0.050 0.051 0.058 0.460 0.465 0.483
0.010 0.010 0.012 0.736 0.740 0.779
0.100 0.110 0.103 0.348 0.361 0.353

n=100 0.050 0.054 0.052 0.460 0.473 0.465
0.010 0.010 0.013 0.740 0.744 0.793
0.100 0.096 0.108 0.347 0.351 0.348

n=1000 0.050 0.052 0.050 0.461 0.457 0.458
0.010 0.011 0.011 0.743 0.736 0.768

The next table shows the numerical results if both parameters are unknown.

Normal distribution with unknown � und �2

� �(CMR) �(BCMR) cn;1�� c(CMR) c(BCMR)
0.100 0.114 0.109 0.349 0.372 0.371

n=20 0.050 0.060 0.060 0.458 0.502 0.495
0.010 0.013 0.015 0.726 0.783 0.790
0.100 0.104 0.104 0.348 0.354 0.356

n=50 0.050 0.052 0.049 0.460 0.471 0.473
0.010 0.010 0.012 0.736 0.755 0.751
0.100 0.107 0.096 0.348 0.360 0.350

n=100 0.050 0.053 0.045 0.460 0.469 0.467
0.010 0.010 0.011 0.740 0.751 0.471
0.100 0.099 0.093 0.347 0.346 0.347

n=1000 0.050 0.047 0.052 0.461 0.453 0.458
0.010 0.010 0.009 0.743 0.758 0.720

The subsequent table shows the simulation results for the family of exponen-
tial distributions with unknown parameter �:
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Exponential distribution with unknown �
� �(CMR) �(BCMR) cn;1�� c(CMR) c(BCMR)
0.100 0.108 0.107 0.349 0.359 0.355

n=20 0.050 0.055 0.053 0.458 0.480 0.469
0.010 0.012 0.010 0.726 0.777 0.741
0.100 0.104 0.110 0.348 0.353 0.351

n=50 0.050 0.051 0.058 0.460 0.467 0.463
0.010 0.012 0.011 0.736 0.791 0.734
0.100 0.105 0.109 0.348 0.355 0.348

n=100 0.050 0.053 0.056 0.460 0.471 0.461
0.010 0.012 0.013 0.740 0.726 0.730
0.100 0.099 0.098 0.347 0.346 0.348

n=1000 0.050 0.049 0.048 0.461 0.459 0.458
0.010 0.009 0.017 0.743 0.731 0.728

Parallel to the inspection of the actual level we compared the critical
values of the limit distribution listed in the column cn;1�� with the actual
0:90; 0:95 and 0:99 quantiles listed in the last two columns.
Now we turn to the Kolmogorov-Smirnov test and use similar abbrevia-

tions.

Normal distribution with unknown �
� �(KS) �(BKS) kn;1�� k(KS) k(BKS)
0.100 0.079 0.081 1.186 1.179 1.187

n=20 0.050 0.039 0.041 1.135 1.134 1.318
0.010 0.006 0.012 1.577 1.158 1.572
0.100 0.089 0.105 1.201 1.199 1.200

n=50 0.050 0.044 0.059 1.332 1.341 1.333
0.010 0.008 0.007 1.597 1.594 1.591
0.100 0.090 0.106 1.208 1.203 1.207

n=100 0.050 0.044 0.056 1.240 1.337 1.339
0.010 0.008 0.012 1.607 1.592 1.596
0.100 0,094 0.106 1.219 1.211 1.217

n=1000 0.050 0.049 0.055 1.353 1.354 1.349
0.010 0.010 0.016 1.622 1.622 1.604
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Normal distribution with unknown � und �2

� �(KS) �(BKS) kn;1�� k(KS) k(BKS)
0.100 0.079 0,092 1.186 1,174 1,181

n=20 0.050 0,037 0,049 1.135 1,306 1,312
0.010 0,007 0,010 1.577 0,574 1,565
0.100 0,087 0,085 1.201 1,192 1,196

n=50 0.050 0,043 0,047 1.332 1,330 1,328
0.010 0,009 0,012 1.597 1,608 1,583
0.100 0,089 0,104 1.208 1,201 1,205

n=100 0.050 0,045 0,055 1.240 1,338 1,337
0.010 0,009 0,011 1.607 1,606 1,595
0.100 0,095 0,105 1.219 1,213 1,215

n=1000 0.050 0,047 0,049 1.353 1,346 1,348
0.010 0,009 0,014 1.622 1,615 1,605

Exponential distribution with unknown �
� �(KS) �(BKS) kn;1�� k(KS) k(BKS)
0.100 0.081 0.105 1.186 1.180 1.184

n=20 0.050 0.039 0.059 1.135 1.313 1.315
0.010 0.007 0.016 1.577 1.567 1.571
0.100 0.086 0.087 1.201 1.195 1.199

n=50 0.050 0.042 0.045 1.332 1.327 1.329
0.010 0.008 0.006 1.597 1.587 1.583
0.100 0.091 0.103 1.208 1.205 1.204

n=100 0.050 0.045 0.050 1.240 1.341 1.337
0.010 0.008 0.018 1.607 1.608 1.596
0.100 0.096 0.086 1.219 1.215 1.216

n=1000 0.050 0.049 0.046 1.353 1.353 1.349
0.010 0.009 0.014 1.622 1.619 1.604

Again we compared the critical values of the limit distribution in column
kn;1�� with the actual 0:90; 0:95 and 0:99 quantiles listed in the last two
columns.
From the above tables we may conclude that the randomized goodness of

�t test statistics even for small sample sizes behave very similar as the cor-
responding goodness of �t test statistics for simple null hypothesis. This is
demonstrated by the fact that the actual level of the tests for n = 20; 50; 100; 100
are very close to the predetermined � if the critical values are chosen as it
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has to be done for simple null hypothesis. These critical values are the num-
ber cn;1�� and kn;1��; respectively, in the above tables. As to the bootstrap
versions one can say that in most cases they correct the test in the right
direction and takes the actual level of the test closer to the required one.
Sometimes this leads to an overcorrection. Only in few cases the bootstrap
modi�es the test in the false direction. But altogether we have the result
that the bootstrap does not provide substantial improvements. Presumably,
bootstrap approximations of tests lead to considerable improvements of the
actual level only when the actual level of the test to be bootstrapped di¤ers
considerably from the required one.
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