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1 Introduction

By the theorems of Gelfand and Gelfand-Naimark we know that we can repre-
sent commutative Banach algebras and commutative C∗-algebras respectively by
spaces of continuous functions. For non-commutative C∗-algebras we have the GNS-
construction.

In our paper we will show that under mild assumptions a non-commutative C∗-
algebra can be represented by a space of continuous mappings. This can be done
just in the same way as in the commutative case.

For the presentation and proofs of the results we will use definitions and results from
our paper [4].

In part 2 of the present paper we consider the C∗-algebra Mn( /C ) of complex n×n-
matrices. Finally, in part 3 we treat general C∗-algebras.

Without proof we state two important results concerning homomorphisms between
C∗-algebras (see [2]). The assertion holds for arbitrary C∗-algebras and can be
proved without commutativity arguments.
If X, Y are C∗-algebras with units, h : X → Y is called an algebra homomorphism
iff h is linear, multiplicative and involutary; h is also called a ∗-homomorphism since
often the involution is denoted by x → x∗.

1.1 Proposition
Let X,Y be C∗-algebras with units; let h : X → Y be an algebra-homomorphism.
Then holds:

(a) ∀x ∈ X : ||h(x)|| ≤ ||x||.
Hence h is continuous and ||h|| := sup||x||≤1 ||h(x)|| ≤ 1.

(b) The range h(X) := {h(x)| x ∈ X} of h is a C∗-subalgebra of Y ; that means
especially that h(X) is closed in Y w.r.t. the norm-topology τ||.|| in Y .
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1.2 Corollary
With the assumptions of proposition 1.1 we get the equivalence of the following:

(a) h is injective.

(b) ker(h) = {0}.

(c) ∀x ∈ X : ||h(x)|| = ||x||, hence h is an isometric isomorphism from X onto
h(X) ⊆ Y .

Proof: (a)⇔(b) and (c)⇒(a) are obvious; we show (a)⇒(c): by 1.1(b) we know
that h(X) is a C∗-subalgebra of Y ; since h is injective, h−1 exists uniquely and
∀x ∈ X : h−1(h(x)) = x, hence h−1 maps h(X) onto X; h−1 is an algebra homomor-
phism. (Linearity and multiplicativity are trivial by injectivity and the homomor-
phy of h, so we show only that h−1(h(x)∗) = (h−1(h(x)))∗ holds: h−1(h(x)∗) =
h−1(h(x∗)) = x∗ = (h−1(h(x)))∗). Now by 1.1(a) we find ∀x ∈ X : ||x|| =
||h−1(h(x))|| ≤ ||h(x)|| ≤ ||x|| ⇒ ||x|| ≤ ||h(x)|| ≤ ||x||.

Now we generalize proposition 4.3. of [4] assuming that for the space Y not only
Y ∈ {IR, /C } is allowed, but that Y is an arbitrary normed space.
Let X,Y be IK-normed spaces and let in addition exist finitely many algebraic
operations in X and in Y respectively, such that X, Y belong to the same class of
such spaces. We assume that we can assign to each algebraic operation in X an
algebraic operation in Y (in a natural manner). According to definition 2.1. of [5]
we define the dual space Xd of X w.r.t. Y :

1.3 Definition
Xd := {h : X → Y | h is linear, continuous and a homomorphism w.r.t. each pair of
corresponding algebraic operations in X, Y }.
Remark: In the paper [4] one finds precise definitions of an abstract dual space
Xd (definition 3.2.) and an abstract second dual space Xdd (definition 4.2.), and
also the properties of the canonical map J : X → Xdd, where ∀x ∈ X : Jx = ω(x, .),
ω(x, .) : Xd → Y : ∀h ∈ Xd : ω(x, .)(h) = ω(x, h) = h(x), where ω is just the
evaluation map.

1.4 Proposition
Let X, Y be /C -Banach algebras with units. Let L(X,Y ) be the set of all linear and
continuous maps from X to Y ; then Xd ⊆ L(X,Y ) and for L(X,Y ) we consider the
operator norm: ||h|| := sup||x||≤1 ||h(x)|| and we restrict this norm to Xd. Let A ⊆
Xd with A 6= ∅ and A 6= {0} be given, where 0 here denotes the zero-homomorphism
in Xd. Now let hold:

(a) ∀h ∈ A : ||h|| ≤ 1
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(b) J(X) ⊆ (Cb((A, τp), Y ), ||.||sup).
Here are: τp the pointwise topology, Cb((A, τp), Y ) the space of bounded functions

from A to the metric space Y ; ||.||sup is the supremum-norm (Tchebycheff-norm).

Then hold:

(c) ∀x ∈ X : ||Jx||sup ≤ ||x||,
(d) J is uniformly continuous and hence continuous, and

(e) J separates the points of A.

Proof: (c) ||Jx||sup = suph∈A ||(Jx)(h)|| = suph∈A ||ωx, h|| = suph∈A ||h(x)|| ≤
suph∈A(||h|| · ||x||) ≤ suph∈A ||x|| = ||x||.

(d) From theorem 4.1. of [4] we know that J is linear; hence by (a) we get
∀x, y ∈ X : ||Jx− Jy|| = ||J(x− y)|| ≤ ||x− y||.

(e) Let f, g ∈ A with f 6= g, i.e. ∃x0 ∈ X : f(x0) 6= g(x0). So, Jx0 = ω(x0, .)
separates f, g.

2 The C∗-algebra Mn( /C )

We want to test the possibility to represent Mn( /C ) by a space of continuous map-
pings. By Mn( /C ), we mean the family of all n × n-matrices with complex entries
and with n strictly greater than 1. This becomes a /C -vector space by the usual
addition of matrices and scalar multiplication with elements of /C . By the usual
multiplication of matrices it becomes an algebra with unit.

Now, for /C n we can define the Euclidian norm ||(z1, ..., zn)|| := √∑n
i=1 |zi|2. Hence,

we can consider L( /C n, /C n). But we see at once, that the vector spaces L( /C n, /C n)
and Mn( /C ) are isomorphic: For h ∈ L( /C n, /C n) there exists a unique matrix
Ah ∈ Mn( /C ) : ∀x ∈ /C n : h(x) = Ah · xT ; but for each B ∈ Mn( /C ) the function
gB : /C n → /C n : gB(x) := B ·xT is clearly linear and - since /C n with euclidian norm
is a finite dimensional normed space - gB is continuous, too; thus gB ∈ L( /C n, /C n).

For L( /C n, /C n) we can define the operator norm: ∀h ∈ L( /C n, /C n) : ||h|| :=
sup||x||≤1 ||h(x)||; but now we can carry over this norm to Mn( /C ): ∀A ∈ Mn( /C ) :

||A|| := sup||x||≤1 ||A · xT ||, where x ∈ /C n.

As is well known, to compute ||A|| for A ∈ Mn( /C ), we can use the fact, that
this norm coincide with the spectral norm: let A∗ the conjugate transpose of A (if
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A = (aij) then A∗ = (aji) ), then the spectral norm of A is defined as the square
root of the largest eigenvalue of the positive semidefinit matrix A∗A.
Remark: With these norm, Mn( /C ) is a Banach algebra, as we know. It is a
C∗-algebra, too, where A → A∗ is the involution.

First dual spaces of Mn( /C ):

(1) Using definition 1.3 we set X = Mn( /C ) and Y = /C ; hence Mn( /C )d = {h :
Mn( /C ) → /C | h is linear, multiplicative and involutory} = {h : Mn( /C )| h is
an algebra (ring) homomorphism, h(A∗) = h(A), and h is continuous }.
2.1 Lemma
Let 0 ∈ Mn( /C )d be the zero map. Then Mn( /C )d = {0}.

Proof: For n = 2 we have E :=

(
1 0
0 1

)
=

(−1
2

1
2

1
2

1
2

)(−1 1
1 1

)
and

(−1 1
1 1

)
=

(
1 0
1 0

)(
1 1
0 0

)
−

(
1 1
0 0

)(
1 0
1 0

)
. Now assume ∃h ∈ Mn( /C )d : h 6= 0. Since

h is a ring homomorphism with h 6= 0, we find h(E) = 1 and 1 = h(E) =

h

(−1
2

1
2

1
2

1
2

)
h

(−1 1
1 1

)
, thus h

(−1 1
1 1

)
6= 0.

Otherwise, h

(−1 1
1 1

)
= h

(
1 0
1 0

)
h

(
1 1
0 0

)
− h

(
1 1
0 0

)
h

(
1 0
1 0

)
= 0 be-

cause the multiplication is commutative in the range space /C . So, we get a
contradiction, yielding Mn( /C ) = {0} here.

For n = 3 observe that the matrix A :=




1 0 1
0 0 0
0 1 0


 yields an invertible

B := AAT − AT A =




1 0 −1
0 −1 0
−1 0 0


 leading to the same contradiction as

above, when used at the place of

(
1 0
1 0

)
.

Now, by building block matrices, the assumption will follow for all n > 1.

(2) As we have seen, the problem in the foregoing case was the commutativity
of the multiplication in /C . Now, the multiplication in Y = Mn( /C ) is non-
commutative, hence we chose here Y = X = Mn( /C ).

Thus, Mn( /C )d = {h : Mn( /C ) → Mn( /C )| h is linear, multiplicative and in-
volutory } = {h : Mn( /C ) → Mn( /C )| h is linear, multiplicative, involutory
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and continuous }. (The continuity follows from the fact, that X = Mn( /C ) is
finite-dimensional as /C -algebra.)

Here we have the advantage, that the identity map 11 : Mn( /C ) → Mn( /C ) :
11(A) := A belongs to Mn( /C )d. But we find still more elements of Mn( /C )d.

2.2 Proposition
(a) Let U ∈ Mn( /C ) be invertible; for the map hU : Mn( /C ) → Mn( /C ) :

hU(A) := UAU−1 hold:

(i) hU is linear,

(ii) hU is multiplicative,

(iii) hU is bijective,

(iv) hU(En) = En where En means the unit matrix in X = Y = Mn( /C ).

(v) hU is continuous.

(b) If U is an unitary matrix, then additionally holds

(vi) ∀A ∈ Mn( /C ) : hU(A∗) = (hU(A))∗.

Proof: (i), (ii), (iii), (iv) and (vi) are straightforward matrix calculations, (v)
again follows from the fact, that Mn( /C ) is a finite dimensional normed space.

By definition of Mn( /C )d we get Mn( /C )d ⊆ L((Mn( /C ), ||.||), (Mn( /C ), ||.||)) =
L(Mn( /C ),Mn( /C )), and for L(Mn( /C ),Mn( /C )) we consider the operator norm
||.|| : ∀h ∈ L(Mn( /C ),Mn( /C )) : ||h|| = supnormA≤1 ||h(A)|| = sup||A||=1 ||h(A)||
and we restrict ||.|| to Mn( /C )d. For instance, 11 ∈ Mn( /C )d: ||11|| = sup||A||=1 ||11(A)|| =
1.

2.3 Lemma
The algebraic operations on Y = Mn( /C ) (addition and multiplication of ma-
trices, scalar multiplication, involution) are continuous w.r.t. the operator
norm.

Proof: For the finite dimensional Banach space (Mn( /C ), ||.||) the vector space
operations are contiuous, in arbitrary normed algebra, hence in Mn( /C ) too,
the multiplication is continuous. (And is easy to compute by the obvious sub-
multiplicativity of the norm.) Now, we have ∀A ∈ Mn( /C ) : ||A|| = ||A∗||. Let
a net (An) in Mn( /C ) be given with An → 0 w.r.t. the norm topology τ||.||,

just meaning ||An|| → 0, hence ||A∗
n − 0|| = ||A∗

n|| = ||An||
τ||.||→ 0; thus the

involution is continuous on Mn( /C ), too.
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2.4 Proposition
(a) Mn( /C )d has a zero-homomorphism

h0 : ∀A ∈ X = Mn( /C ) : h0(A) = Zn ∈ Mn( /C ) = Y , where Zn means
the zero-matrix.

(b) ∀h ∈ Mn( /C )d : ||h|| ≤ 1.

(c) Since Mn( /C )d ⊆ Mn( /C )Mn( /C ), using the algebraic operations in Y =
Mn( /C ) by pointwise definition, we can carry over these operations to
Mn( /C )d. Endowed with these pointwise operations, Mn( /C )d is not an
algebra.

Proof: (a) is evident, since Zn is a zero-element of Y = Mn( /C ).
(b) follows from proposition 1.1(a).
(c) Mn( /C )d is no vector space: 11 ∈ Mn( /C )d and ||11|| = 1; hence ||2 · 11|| =
2 > 1, implying 2 · 11 6∈ Mn( /C )d by (a).

By (c) and the definitions of an abstract second dual space in [4], definition
4.2., and by [4], corollary 4.1. we obtain:

2.5 Corollary
The second dual space of X = Mn( /C ) w.r.t. Y = Mn( /C ) is

Mn( /C )dd = C
((

Mn( /C )d, τp

)
, (Mn( /C ), ||.||))

and for the canonical map J holds J(Mn( /C )) ⊆ Mn( /C )dd.

2.6 Proposition
(a) (Mn( /C )d, τp) is a Hausdorff and compact topological space.

(b) The zero-homomorphism 0 ∈ Mn( /C )d is an isolated point of Mn( /C )d in(
Mn( /C )Mn( /C ), τp

)
.

(c) Mn( /C )d \ {0} is a Hausdorff compact space, too.

Proof: (a) Y = Mn( /C ) is a finite-dimensional normed space and by lemma
2.3 the algebraic operations in Y are τ||.||-continuous; especially, Y is Hausdorff.
Then by the generalized Alaoglu theorem in [5], corollary 3.3., (Mn( /C )d, τp) =(
{h ∈ Mn( /C )Mn( /C )| h is a continuous algebra homomorphism and ||h|| ≤ 1}, τp

)

is a compact Hausdorff topological space.
(b) By proposition 2.6 there exists a h ∈ Mn( /C )d with h 6= 0 and h(En) = En,
where En is the unit-matrix in Mn( /C ). Then [4], lemma 4.3., yields the as-
sertion.
. (c) follows from (a) and (b).
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Notation: Following the arguments of [4], lemma 4.2 and section 4.3 (“Re-
definition of Xd”) we consider Mn( /C )d\{0} as new dual space of X = Mn( /C )
and denote this space again by the symbol Mn( /C )d, from now on.

2.7 Theorem
Let

Cb ((Mn( /C ), τp) , (Mn( /C ), ||.||))
be the space of all bounded continuous functions from (Mn( /C ), τp) into (Mn( /C ), ||.||)
and let this space be endowed with the supremum-norm. Then hold:

(a) The redefined (Mn( /C )d, τp) is a compact Hausdorff topological space.

(b) Mn( /C )dd = Cb ((Mn( /C ), τp) , (Mn( /C ), ||.||)) and

(Cb ((Mn( /C ), τp) , (Mn( /C ), ||.||)) , ||.||sup)

is a C∗-algebra with unit 1: ∀h ∈ Mn( /C )d : 1(h) := En ∈ Y = Mn( /C ).

(c) J : (Mn( /C ), ||.||) → Mn( /C )dd is an isomorphism, i.e. an injective alge-
bra homomorphism from Mn( /C ) onto the C∗-subalgebra J(Mn( /C )) ⊆
(Cb ((Mn( /C ), τp) , (Mn( /C ), ||.||)) , ||.||sup).

(d) J is is an isometric map, i.e. ∀A ∈ Mn( /C ) : ||J(A)||sup = ||A||.

Proof: (a) is just 2.6(c).
(b) Since (Mn( /C ), τp) is compact and Hausdorff, we get
Mn( /C )dd = C ((Mn( /C ), τp) , (Mn( /C ), ||.||)) = Cb ((Mn( /C ), τp) , (Mn( /C ), ||.||))
and in [4], proposition 4.2., was proved that the space
Cb ((Mn( /C ), τp) , (Mn( /C ), ||.||)) is a C∗-algebra and a space of continuous
functions, which has a natural unit.
(c) By the homomorphy theorem in [4], theorem 4.1., we get that J : (Mn( /C ), ||.||) →
Mn( /C )dd is an algebra homomorphism; but then by 1.1(b) J(Mn( /C )) is a C∗-
subalgebra of (Mn( /C )dd, ||.||sup).
Now, 11 ∈ Mn( /C )d implies, that Mn( /C )d separates the points of X = Mn( /C )
and hence by [4], proposition 4.5., J is injective, yielding by corollary 1.2, that
hold: ∀A ∈ Mn( /C ) : ||J(A)||sup = ||A||. So, (d) is proved.

3 Representing arbitrary non-commutative C∗-algebras

Let X be a (nontrivial) non-commutative C∗-algebra with unit e; we want to define
the dual space Xd (in the sense of our approach), the second dual space Xdd and to
prove a representation theorem.

To define Xd we set Y = (Mn( /C ), ||.||).
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3.1 Definition
Xd := {h : X → Mn( /C )| h is a continuous, linear ring-homomorphism with h(x∗) =
h(x)∗} is called the first dual space of X w.r.t. Y = Mn( /C ).

Remark: By 1.1(a) we know, that it is enough to say, that each h is an alge-
bra homomorphism onto it’s image. Now we can follow the procedure of the case
X = Mn( /C ) and Y = Mn( /C ). Again we have here Xd ⊆ L(X, Y ) = L(X, Mn( /C ));
hence we can define the operator norm for Xd.
Then by 1.1(a) we get: ∀h ∈ Xd : ||h|| ≤ 1; thus Xd = {h : X → Mn( /C )| h is
continuous algebra homomorphism with ||h|| ≤ 1}.

Xd has a zero-element 0 and we assume, that Xd 6= {0}.
3.2 Proposition
(1) (Xd, τp) is a compact Hausdorff topological space.

(2) The zero homomorphism 0 ∈ Xd is an isolated point of Xd in (Mn( /C )X , τp).

(3) Xd \ {0} is a compact Hausdorff topological space, too.

Proof: (a) We know: Y = (Mn( /C ), ||.||) is Hausdorff, finite dimensional and all
concerned algebraic operations on Mn( /C ) are τ||.||-continuous. Thus using again the
generalized Alaoglu theorem [5], corollary 3.3., we get (Xd, τp) being compact and
Hausdorff.
(b) Sinve Xd 6= {0} by assumtion we can prove (b) quite analogously to part (b) of
proposition 2.6 - and (c) will follow immediately.

Hence again we define Xd \ {0} as the new dual space and redefine from this point
on the symbol Xd to denote this new dual.

Thus Xd = {h : X → Mn( /C )| h is a continuous algebra homomorphism and h 6= 0}.

3.1 Definition of the second dual space

Again we have Xd ⊆ Mn( /C )X and by using the algebraic operations on Y = Mn( /C ),
we can pointwise define similar those operations on Xd, too. In general Xd then will
not be a vector space, as we know from the case X = Mn( /C ). In fact, whenever
there exists an h ∈ Xd with h 6= 0, then follows ∃x ∈ X : h(x) 6= 0, implying
x 6= 0, so || 1

||x||h(x)|| > 0, yielding ∃n ∈ IN : 1
n

< || 1
||x||h(x)||. From the assump-

tion, that Xd is a vector space, we get nh ∈ Xd, but we have 1 < || n
||x||h(x)||

= ||(nh)( x
||x||)|| ≤ ||nh|| ≤ 1 - a contradiction. So, Xd is not an algebra if it is

nontrivial.

By the definition of an abstract second dual space in [4], definition 4.2., and by [4],
corollary 4.1., we obtain:
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3.3 Proposition
The second dual space of X w.r.t. Y = Mn( /C ) is

Xdd := C
(
(Xd, τp), (Mn( /C ), ||.||))

endowed with supremum-norm, and for the canonical map J holds J(X) ⊆ Xdd.

3.4 Theorem
Let X be a non-commutative C∗-algebra with unit; we assume ∃h ∈ Xd : h 6= 0.
Then hold:

(1) (The redefined) (Xd, τp) is a Hausdorff and compact topological space.

(2) (
Cb

(
(Xd, τp), (Mn( /C ), ||.||)) , ||.||sup

)

is a (non-commutative) C∗-algebra with unit, the canonical map

J : X → C
(
(Xd, τp), (Mn( /C ), ||.||))

is an algebra homomorphism and J(X) is a C∗-subalgebra of Xdd.

(3) ∀x ∈ X : ||Jx||sup ≤ ||x||.
(4) J is uniformly continuous and hence continuous.

(5) J(X) separates the points of Xd.

Proof: (a) comes from 3.2(a),(c).
(b) Since (Xd, τp) is compact and Hausdorff, Xdd equals the space of bounded con-
tinuous mappings, and by [4], proposition 4.2., this space is a C∗-algebra. The
homomorphy theorem [4], theorem 4.1., shows that J : X → Xdd is an algebra-
homomorphism. By 1.1(b) we know, that J(X) is a C∗-subalgebra of Xdd.
Assertions (c), (d) and (e) we obtain from proposition 1.4.
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