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1 Introduction

By IR and /C we denote the reals and the complex numbers respectively and by
IK we mean IR or /C . Now let (X, || · ||) be a normed IK–vector space and X ′ :=
{f : X → IK| f linear and continuous} the (first) dual space (dual) of X. Hence
X ′ consists of functions which at the same time are an algebraic homomorphism
(a linear map) and a topological homomorphism (a continuous map). By the usual
operatornorm, (X ′, || · ||) again becomes a normed space (even a Banach–space)
meaning that X and X ′ belong to the same class of spaces. Hence at once we can
construct the second dual space (bidual) X ′′ by: X ′′ := ((X, || · ||)′, || · ||)′.
Then the canonical map J : X → X ′′ is defined via the evaluation map(1) ω :
X × IKX → IK by J(x) := ω(x, ·) ∈ X ′′ with ∀x ∈ X : ω(x, ·) : X ′ → IK, ∀x′ ∈
X ′ : ω(x, ·)(x′) = ω(x, x′) = x′(x).

1.1 Proposition
ω(x, ·) : (IKX , τp) → IK is continuous for all x ∈ X.

Proof: For any net (fi)i∈I from IKX , f ∈ IKX , fi
τp−→ f implies especially

fi(x) → f(x) and thus ω(x, fi) = fi(x) → f(x) = ω(x, f).

1.2 Remark
So the map J is well–defined since we have ∀x ∈ X : ω(x, ·) ∈ X ′′, i.e. ω(x, ·) :
(X ′, || · ||) → IK is linear and continuous (w.r.t. the pointwise topology τp).

Proof: For x′, y′ ∈ X ′, α, β ∈ IK we find ω(x, αx′ + βy′) = (αx′ + βy′)(x) =
αx′(x) + βy′(x) = αω(x, x′) + βω(x, y′) showing that ω(x, ·) is linear. Continuity is
ensured by the even more general proposition 1.1.

1.3 Corollary
(a) ∀x ∈ X : ω(x, ·) : (X ′, τp) → IK is continuous.

(1)Given sets X, Y , ω is defined to map ω : X × Y X → Y with ω(x, f) := f(x)
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(b) ∀x ∈ X : ω(x, ·) : (X ′, || · ||) → IK is continuous.

(c) If σ is an arbitrary topology for X ′, then τp ≤ σ implies ω(x, ·) : (X ′, σ) → IK
is continuous.

Now we consider another quite different example. Let X, Y be rings and for simplic-
ity let us assume that X,Y are commutative rings with units. Then we can consider
Xd := {h ∈ Y X | h is a ring homomorphism } as the first dual space of X (w.r.t. Y );
in the usual pointwise manner we can in Y X define an addition and a multiplication
but then in general Xd is absolutely not closed under this operations, i.e. f +g, f ·g
may not be homomorphisms if f, g are.

Of course, we can ask now:

Question 1: How to define the second dual space Xdd?

We come back to our standard example: a normed space (X, ||.||) and to the canon-
ical map J : Y → X ′′. There exists still a homomorphic map X → C(A, IK) to
a space of continuous functions, where A is a suitable topological space (see for
instance [2]).

Question 2: Is this embedding completely different from J : X → X ′′?
Starting from these examples and generalizing the situation we will establish an
abstract scheme for the construction of a first and a second dual space for a suitable
space X. We will consider spaces X with algebraic or with algebraic–topological
structures. We give some general assertions within this context and we will finally
subsume some important well-known possibilities to embed X into Xdd by the map
J (which may be regarded as representation of X by Xdd) using our scheme. Our
approach will in the general context be based on topological arguments. And within
this context we will answer the questions.

2 Basic topological and algebraic Notions

What is an algebraic operation on a set X?
An unitary operation is simply a function from the set into itself, a binary operation
is a function from the set X × X of all ordered pairs into X, and so on. But, of
course, we may think of any n–ary operation on X as a function from XIN into
X by identifying a n–ary operation o : Xn → X with the map o′ : XIN → X :
o′ ((xi)i∈IN) := o(x1, ..., xn). To choose IN above is not necessary, it can be replaced
by any other set – even by finite ones (with at least n elements), if we restrict our
observation to operations with few arguments. So we have generalized the notion of
an algebraic operation here in topological looking.

Now, we first define an algebraic structure in a quite rough manner:
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2.4 Definition
Given sets X, B and O ⊆ X(XB), we call the pair (X, O) a B–algebraic structure
on X.

Second, we have to observe, that, whenever we are interested in homomorphic map-
pings between algebraic structures with more than one operation, we have to respect
a (mostly “natural given”) map between the sets of operations for this structures.
If we have, for instance, two rings (R1, +1, ∗1) and (R2, +2, ∗2), we will require
∀x, y ∈ R1 : f(x ∗1 y) = f(x) ∗2 f(y) and f(x +1 y) = f(x) +2 f(y) for a map
f to be a homomorphism, but not f(x +1 y) = f(x) ∗2 f(y). So our requirement
respects the map {(+1, +2), (∗1, ∗2)}. This is natural, because of our wish to get
some more than trivial homomorphisms - which will fail in general if the operations
are switched. But we will keep in mind the existence of this mapping between the
sets of operations – in order to preserve the possibility to change it, if a trivially
given one is “unprofitable”, sometime. The remarks above lead to

2.5 Definition
If (X1, O1) and (X2, O2) are B–algebraic structures, we call a pair of mappings (ϕ, Ω)
with ϕ : X1 → X2 and Ω : O1 → O2 to be a free generalized homomorphism iff

∀o ∈ O1, x ∈ XB
1 : ϕ ( o(x) ) = Ω(o) ( ϕ(x) ) .

It’s easy to check, that, for instance, the only “unusual” free generalized homomor-
phism between rings as above, which we possibly get more by this definition, is
(ϕ0, Ω0) with the constant map ϕ0(x) = 1; ∀x ∈ R1 and Ω0 = {(+1, ∗2), (∗1, ∗2)}, if
R2 has an multiplicative identity 1.

The “roughly defined” notions above hopefully illustrates the idea to look at alge-
braic operations as a kind of functionals into a set X from special function spaces
over X. But they don’t respect carefully the arity of the algebraic operations, be-
cause of the automatic B–arity of all operations in a B–algebraic structure. So we
are not able to require for a generalized homomorphism to map n–ary operations
onto n–ary ones, for example, which we may wish to do sometimes. This motivates
the following little more sophisticated explanations.

2.6 Definition
Given sets X,O and a family (Bo)o∈O with o ∈ X(XBo ), ∀o ∈ O, we call the triple
(X,O, (Bo)o∈O) a (Bo)o∈O–algebraic structure. We assume that the elements of the
family (Bo)o∈O are cardinals, where we for simplicity denote at the same time by Bo

also a set representing the cardinal Bo, such that XBo is the set of all maps from
Bo to X. (If Bo is finite, Bo = n ∈ IN , then we write Xn instead of X{1,...,n} for
instance.)

Here we may choose all Bo equal, so we get back the case of definition 2.4. For
abbreviation we will say “algebraic structure” if no trouble seems to be possible.
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If X = (X, O, (Bo)o∈O) is an algebraic structure and A ⊆ X, then we call the set
opcO(A) :=

⋂{M | A ⊆ M ⊆ X, ∀o ∈ O, m ∈ MBo : o(m) ∈ M} the operational
closure of A w.r.t. O.

2.7 Definition
If (X1, O1, (Bo)o∈O1) and (X2, O2, (Cp)p∈O2) are (Bo)– and (Cp)–algebraic structures,
we call a pair (ϕ, Ω) of mappings ϕ : X1 → X2 and Ω : O1 → O2 a generalized
homomorphism iff

(a) (Bo)o∈O1 is a subfamily of (Cp)p∈O2 such that ∀o ∈ O1 : Bo = CΩ(o)

(b) ∀o ∈ O1, x ∈ XBo
1 : ϕ (o(x)) = Ω(o) (ϕ(x)),

where ϕ(x) = ϕ((xi)i∈Bo) := (ϕ(xi))i∈Bo ∈ X
CΩ(o)

2 = XBo
2 .

The family of all generalized homomorphisms from X to Y we denote by GHom(X,Y ).

2.8 Remark
If (X1, O1, (Bo)o∈O1), (X2, O2, (Cp)p∈O2) and (X3, O3, (Dq)q∈O2) are algebraic struc-
tures, (ϕ, Ω) ∈ GHom(X1, X2) and (ψ, Σ) ∈ GHom(X2, X3) then
(ψ ◦ ϕ, Σ ◦ Ω) ∈ GHom(X1, X3).

3 Definition of an abstract (first) dual space

At first we want to explain, how to define algebraic operations in Y X if Y carries
algebraic operations:

3.9 Definition
For an arbitrary set X and an algebraic structure Y = (Y, P, (Cp)p∈P ) we can define

operations for Y X using these in Y pointwise: for p ∈ P define p′ ∈ (Y X)[(Y
X)Cp ]

by ∀f ∈ (Y X)Cp , x ∈ X : p′(f)(x) := p(f(x)), where f is a vector f = (fi)i∈Cp from

(Y X)Cp and (f(x)) = (fi(x))i∈Cp .

3.10 Assumption
From now on, Y has always a topology σ; if Y has no “natural” topology, then let
σ be the discrete topology on Y .

3.11 Remark
If Y has a natural topology σ, then we have the advantage that then the pointwise
topology τp on Y X is defined. In our considerations τp will play an important role.
One reason for that is, that for a normed space X the weak topology in X ′, τw∗ ,
also called weak star topology coincides with the pointwise topology: τw∗ = τp
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3.12 Definition
Let X = (X, O, (Bo)o∈O) and Y = (Y, P, (Cp)p∈P ) be algebraic structures and σ a
topology on Y such that the assumptions of definition 2.7 are fulfilled; especially let
Ω : O → P be a fixed map and we identify (ϕ, Ω) with ϕ.
Then we define:

Xd := {ϕ ∈ Y X | (ϕ, Ω) ∈ GHom(X,Y )} ;

if X has a topology, too, we assume in addition that each ϕ ∈ Xd is continuous.
We also provide Xd with a topology ρ such that τp ≤ ρ holds. The space (Xd, ρ) is
called the Y -dual of X or the (generalized) dual space of X with respect to Ω, (Y, σ)
and ρ.

3.13 Remark
In general the attempt to define algebraic operations in Xd, corresponding to them
in X or Y , in a natural way will fail. Here we mean, the “main” natural way
would be the pointwise, mentioned in definition 3.9. But in general we can not
ensure, that any function we get in this manner as the result of pointwise defined
operations from homomorphisms is a homomorphism again. (The pointwise sum of
two ring–homomorphisms, for example, is not a ring–homomorphism in most cases.)

3.14 Examples

(1) Let (X, ||.||) be a normed space; we have Xd = X ′ = (X ′, ||.||), ρ = τ||.||;
τp ≤ τ||.|| since τp is the weak topology in τ||.||.

(2) Let X,Y be our rings (see the introduction); we assume that Y has no natural
topology and hence let σ be the discrete topology for Y . Then τp is defined in
Xd and we define ρ := τp and get (Xd, τp) as a generalized dual space.

(3) Let X,Y be IK-normed spaces, then Xd = L(X, Y ) = {h : X → Y | h is linear
and continuous } is the “natural ”Y -dual of X, ρ = τ||.||, where ||.|| denotes
the operator-norm.

4 The notion of a second dual space of X w.r.t. a

space Y

In order to define the second dual space Xdd of X with respect to Y , we must
consider a bifurcation: We come back to the definition of Xd ⊆ Y X .
Let be Y = (Y, O, (Bo)o∈O). We know (see definition 3.9): to each o ∈ O we
can assign an operation in Y X by pointwise definition on X; for instance: o ≡ +,
f1, f2 ∈ Y X , f1 + f2 : ∀x ∈ X : (f1 + f2)(x) = f1(x) + f2(x).
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4.15 Definition
We say that Xd has the defect D iff ∃(o, n, f) ∈ O× (IN \{0})× (Xd)n, Bo = n, f =

(f1, ..., fk) ∈ (Xd)n : o(f) 6∈ Xd. We abbreviate the two possible cases:

• non D: Xd has not the defect D;

• D: Xd has the defect D.

4.16 Definition

Xdd :=

{ (
(Xd, ρ)d, µ

) ⊆ Y Xd
: if non D(

C((Xd, τp), (Y, σ)), µ
) ⊆ Y Xd

: if D
,

with τp ≤ µ in Y Xd
, is called the second dual space (bidual) of X w.r.t. Y, σ, ρ, µ.

What do we need?

We must prove several important properties of the dual system

(X, Y, Xd, Xdd, J : X → Xdd)

in order that our approach becomes workable.

4.1 Introduction of pointwise defined algebraic operations
in Xdd

4.17 Definition
Now we use again our standard notations: X = (X,O, (Bo)o∈O), Y = (Y, P, (Cp)p∈P ).

We have Xdd ⊆ Y Xd
; for all p ∈ P we denote the map p → p′ as defined in definition

3.9, where

p′ :
(
Y Xd

)Cp → Y Xd

,

by ∆, ∆ : p → p′. We assume that P has no redundant elements and that ∆ is
injective. Let Q := ∆(P ), q = ∆(p), Dq = D∆(p) := Cp. Hence (Y Xd

, Q, (Dq)q∈Q) is

an algebraic structure for Y Xd
, and we can restrict this structure to Xdd.

4.18 Remark
Concerning our maps we get: Ω : O → P and ∆ : P → Q, hence ∆ ◦ Ω : O → Q.

4.2 When does J(X) ⊆ Xdd hold?

We have: J : X → Y Xd
: ∀x ∈ X : J(x) = ω(x, .); ω(x, .) : Xd → Y : ∀f ∈ Xd :

ω(x, f) = f(x) ∈ Y .

In order to show that J(X) ⊆ Xdd holds, we provide a lemma.
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4.19 Lemma
We consider the assumptions of definition 3.12 and remark 3.13. According to
definition 4.16 we endow Xd in case D with pointwise topology and in case non D
with a topology ρ ≥ τp.
Then holds for all x ∈ X:

(1) In both cases ω(x, .) : (Xd) → Y is continuous.

(2) In case non D, ω(x, .) is a homomorphism from Xd to Y .

Proof: (1) Let (fi)i∈I a net in Xd, f ∈ Xd and fi
τp−→ f , then fi(x) → f(x) in

Y and we have ω(x, fi) = fi(x) → f(x) = ω(x, f), hence ω(x, fi) → f , so ω(x, .) :
(Xd, τp) → Y is continuous. Because of τp ≤ ρ, this holds for ω(x, .) : (Xd, ρ) → Y ,
too.
(2) Let p ∈ P be given, with arity Cp = k ∈ IN, k ≥ 1, and let f1, ..., fk ∈ Xd; since
we have case non D, p′ as defined in 3.9 yields p′(f1, ..., fk) ∈ Xd. So we find ∀x ∈ X :
ω(x, p′(f1, ..., fk)) = p′(f1, ..., fk)(x) = p(f1(x), ..., fk(x)) = p(ω(x, f1), ..., p(x, fk)).

4.20 Corollary
In both cases J(X) ⊆ Xdd holds.

4.3 Redefinition of Xd

It would be very useful if (Xd, ρ) and especially (Xd, τp) have nice topological prop-
erties, for instance, that (Xd, τp) is compact. This would enforce, that for all
f ∈ C

(
(Xd, τp), (Y, σ)

)
the image f(Xd) is compact in Y and hence is bounded

if (Y, σ) is metrizable.

But to get τp-compactness for Xd ⊆ Y X often is a difficult problem. Therefore we
will allow in some cases to substitute Xd by a suitable subspace A ⊆ Xd. But we
assume always that A 6= ∅ and if a zero-element 0 of Xd belongs to A, then even
A 6= {0} holds.

Now using such a subspace, we define Xd := A to be the new Y -dual of X. By the
same arguments as above, we find that for A ⊆ Y A holds either D or non D, too.

A simple example: in some cases we must work with A := Xd \ {0} instead of Xd,
where 0 is the zero-homomorphism.
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4.4 The homomorphy theorem for the map J

We consider the algebraic structures

X = (X,O, (Bo)o∈O) ,

Y = (Y, P, (Cp)p∈P ) ,

YXd

= (Y Xd

, Q, (Dq)q∈Q) ,

Xdd = (Xdd, Q, (Dq)q∈Q) ,

we use fixed mappings Ω : O → P , ∆ : P → Q, and ∀o ∈ O : D(∆◦Ω)(o) = CΩ(o) = Bo.

By corollary 4.20 we have J(X) ⊆ Xdd. We will still remember, that we use the
common notion of equality of functions: let x1, x2 ∈ X, then J(x1) = J(x2) ⇔
ω(x1, .) = ω(x2, .) ⇔ ∀h ∈ Xd : ω(x1, .)(h) = ω(x2, .)(h).

If x is a vector from XBo , we write for brevity (ω(xi, .))i∈Bo = ω(x, .) and (J(xi))i∈Bo =
J(x).

Now we come to our homomorphy theorem for J .

4.21 Theorem
(1) J : X → Xdd is a (J, ∆ ◦ Ω)-homomorphism.

(2) If X has a topology τ , then J : (X, τ) → (Xdd, τp) is continuous.

Proof: (1) Let o ∈ O, x ∈ XBo ; we want to show that J(o(x)) = (∆ ◦Ω(o))(J(x))
holds:
∀h ∈ Xd : J(o(x))(h) = ω(o(x), .)(h) = h(o(x)) = Ω(o)(h(x)), since by definition
3.12 each h ∈ Xd is a (h, Ω)-homomorphism. And we have CΩ(o) = Bo. Now we
find,

Ω(o)(h(x)) = Ω(o)((h(xi))i∈Bo) = Ω(o)((ω(xi, h))i∈Bo)

= (∆(Ω(o))(ω(xi, .)i∈D∆◦Ω(o)
))(h)

= (∆(Ω(o))(ω(x, .)))(h) = ((∆ ◦ Ω)(o)(J(x))(h)

= (((∆ ◦ Ω)(o))(J(x)))(h) ,

implying J(o(x))(h) = ((∆ ◦ Ω)(o)J(x))(h), yielding J(o(x)) = (∆ ◦ Ω(o))(J(x)).
This holds in Y Xd

, but o(x) ∈ X implies J(o(x)) ∈ Xdd, thus ((∆ ◦ Ω)(o))(J(x)) ∈
Xdd, and hence J(o(x)) = (∆ ◦ Ω(o))(J(x)) in Xdd.

(2) If X has a topology, too, by definition 3.12 we find Xd ⊆ C((X, τ), (Y, σ)). Now,
let (xi)i∈I be a net in X, x ∈ X and xi

τ−→ x. Since J(X) ⊆ Xdd holds, we have
J(x) ∈ Xdd and ∀i ∈ I : J(xi) ∈ Xdd; J(xi) = ω(xi, .), J(x) = ω(x, .). We have
∀h ∈ Xd : ω(xi, .)(h) = ω(xi, h) = h(xi) → h(x) = ω(x, h) = ω(x, .)(h) in Y be-
cause of the continuity of each h here. Thus, (J(xi))i∈I converges pointwise to J(x).
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4.5 Algebraic properties of spaces of continuous functions
which can serve as second dual spaces

At first we consider rings X, X, where Y is a topological ring. We easily find:

4.22 Proposition
Let X be a topological space and Y a topological ring; if we define addition and
multiplication in C(X,Y ) pointwise, then C(X, Y ) becomes a ring, too. If Y is
commutative, then so is C(X,Y ). If Y has a unit 1, then the constant function
1(x) ≡ 1 is a unit in C(X, Y ).

4.23 Corollary
Let (Y, σ) be a topological commutative ring with unit. Then C((Xd, τp), (Y, σ))
with pointwise topology and operations is a commutative ring with unit.

4.24 Proposition
Let X be a completely regular topological space; let Y be

(1) an algebra

(2) a normed algebra

(3) a Banach algebra

(4) a C∗-algebra;

let in cases (2), (3), (4) (C∗(X, Y ), ||.||sup) denote the set of bounded continous
functions with the supremum-norm (yielding the Tchebycheff-metric). For cases
(1), (2), (3) we consider the scalar field IK, for case (4) we use /C . Then with
pointwise defined algebraic operations in Y X and C∗(X, Y ), respectively, we get:

(1) Y X is an algebra.

(2) (C∗(X,Y ), ||.||sup) is a normed algebra.

(3) (C∗(X,Y ), ||.||sup) is a Banach-algebra.

(4) (C∗(X,Y ), ||.||sup) is a C∗-algebra.

Proof: (1) Clearly Y X is a IK-vector space and Y X is a ring, where the ad-
ditive group is the same for the vector space as for the ring. We still show:
∀f, g ∈ Y X , α ∈ IK : α(fg) = (αf)g = f(αg), by simply calculating ∀x ∈
X : α(fg)(x) = α(f(x)g(x)) = (αf(x))g(x) = ((αf)g)(x) and similar ∀x ∈ X :
α(fg)(x) = α(f(x)g(x)) = f(x)(αg(x)) = f(αg)(x).

(2) Since the algebraic operations in Y are continuous, we find: f, g ∈ C∗(X, Y ) ⇒
f + g, αf, fg ∈ C(X, Y ) and we still must show, that these functions are bounded,
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too. f, g ∈ C∗(X, Y ) ⇒ ∃c1, c2 ∈ IR, c1 > 0, c2 > 0 : ∀x ∈ X : ||f(x)|| ≤
c1, ||g(x)|| ≤ c2, immediately implying ||f(x) + g(x)|| ≤ ||f(x)||+ ||g(x)|| ≤ c1 + c2,
thus f + g ∈ C∗(X,Y ), and analogously for α ∈ IK, αf(x) ≤ |α| · ||f(x)|| ≤ |α|c1 as
well as ||f(x)g(x)|| ≤ ||f(x)|| · ||g(x)|| ≤ c1c2.
As is well known, ||.||sup : ||f ||sup := supx∈X ||f(x)|| is a norm in C∗(X, Y ); finally:
∀f, g ∈ C∗(X, Y ) : ||fg||sup = supx∈X ||f(x)g(x)|| ≤ supx∈X(||f(x)|| · ||g(x)||) ≤
(supx∈X ||f(x)||) · (supx∈X ||g(x)||) = ||f ||sup · ||.g||sup, since ∀z ∈ X : 0 ≤ ||f(z)|| ≤
supx∈X ||f(x)||, 0 ≤ ||g(z)|| ≤ supx∈X ||g(x)|| ⇒ 0 ≤ ||f(z)||·||g(z)|| ≤ (supx∈X ||f(x)||)·
(supx∈X ||g(x)||) ⇒ supz∈X(||f(z)|| · ||g(z)||) ≤ (supx∈X ||f(x)||) · (supx∈X ||g(x)||).

(3) Having proven (2), we only must show, that (C∗(X,Y ), ||.||sup) is complete, when-
ever Y is: Let (fn) be a Cauchy sequence in C∗(X, Y ); ∀x ∈ X, k, l ∈ IN : ||fk(x)−
fl(x)|| ≤ ||fk−fl||sup ⇒ (fn(x)) is Cauchy in Y , thus (fn(x)) converges to an uniquely
determined element yx ∈ Y , yielding a function f : X → Y : f(x) := yx with
(fn(x)) → f(x) for all x ∈ X. Now, ∀ε > 0 : ∃nε ∈ IN : ∀k, l ≥ nε : ||fk − fl||sup < ε
⇒ ∀x ∈ X : ∀m ≥ nε : ||fm(x) − fnε|| < ε, so from fm(x) → f(x) just follows
fm(x)− fnε(x) → f(x)− fnε(x), implying ||fm(x)− fnε(x)|| → ||f(x)− fnε(x)|| and
hence ||f(x)−fnε(x)|| ≤ ε; now ||f(x)||−||fnε(x)|| ≤ ε, thus ||f(x)|| ≤ ε+||fnε(x)|| ≤
ε + ||fnε ||sup, showing that f is bounded.
Furthermore, we have ∀x ∈ X : ∀n ≥ nε : ||fn(x) − f(x)|| ≤ ||fn(x) − fnε(x)|| +
||fnε(x) − f(x)|| < 2ε; hence the sequence (fn) converges uniformly to f in the
space of all bounded functions from X to Y , showing, that f is continuous. Thus
(C∗(X, Y ), ||.||sup) is complete.

(4) Let y → y denote the involution in Y ; then we define: ∀f ∈ C∗(X, Y ) : f : X →
Y : f(x) := f(x); of course f → f fulfills all general properties of an involution,
because y → y does. Finally: ||ff ||sup = supx∈X ||ff(x)|| = supx∈X ||f(x)f(x)|| =
supx∈X(||f(x)||2) = (supx∈X ||f(x)||)2 = ||f ||2sup.

4.6 Properties of the canonical map J for normed spaces

4.25 Proposition
Let (X, ||.||) be a normed space, Xd = (X ′, ||.||) the dual space; let ∅ 6= A ⊆ Xd, A 6=
{0}, when 0 is the zero-map. Let hold for A:

(a) ∀h ∈ A : ||h|| ≤ 1 and

(b) J(X) ⊆ (C∗((A, τp), IK), ||.||sup).

Then

(1) ∀x ∈ X : ||J(x)||sup ≤ ||x||.
(2) J is uniformly continuous and hence continuous.
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(3) If in addition for A holds ∀x ∈ X, x 6= 0 : ∃h ∈ A : ||x|| ≤ |h(x)| then
||x|| ≤ ||J(x)||sup holds, too.

(4) J(X) separates the points of A.

Proof: (1) ||J(x)||sup = suph∈A |(J(x))(h)| = suph∈A |ω(x, h)| = suph∈A h(x)| ≤
suph∈A(||h|| · ||x||) ≤ suph∈A ||x||, since ||h|| ≤ 1.

(2) By (1) we find ∀x, y ∈ X : ||J(x)− J(y)|| = ||J(x− y)|| ≤ ||x− y||.

(3) By assumption, ∀x ∈ X, x 6= 0 : ∃h ∈ A : ||x|| ≤ |h(x)|, hence ||x|| ≤ |h(x)| ≤
supg∈A |g(x)| = ||J(x)||sup.

(4) Let f, g ∈ A, f 6= g ⇒ ∃x ∈ X : f(x) 6= g(x); ω(x, .) ∈ J(X) and ω(x, .)(f) 6=
ω(x, .)(g).

4.7 Features of the zero-homomorphism 0 ∈ Xd

In some cases when a zero-homomorphism 0 ∈ Xd is defined, this homomorphism
can have special properties which we must observe. We formulate these facts in two
lemmas.

(1) We consider the dual system (X, Y, Xd, Xdd, J : X → Xdd) as defined in 3.12,
4.16 and 4.17. We assume that within the algebraic structures of X, Y and
Xdd respectively are included ring structures (+, ∗) and the ring structure for
X corresponds to the ring structure for Xdd via the ring structure for Y . Let
these ring structures be commutative with units. If 0Y is the +-unit in Y , the
zero-homomorphism 0 ∈ Xd is defined: ∀x ∈ X : 0(x) = 0Y .; by 1Y we mean
the ∗-unit and we assume 0Y 6= 1Y .

4.26 Lemma
Let e, 1 be the units in X and Xdd respectively. By the homomorphy theorem
4.21 holds J(e) = 1. Then this equality does not hold on Xd, but only on
Xd \ {0}.

Proof: J(e) = 1 means ∀h ∈ Xd : (J(e))(h) = 1(h), hence ω(e, h) = h(e) =
1Y , but for h = 0 we have (J(e))(0) = ω(e, 0) = 0(e) = 0Y by definition of the
zero-homomorphism.

4.27 Remark
In such situations we (have to) consider Xd \ {0} instead of Xd as the first
dual space of X w.r.t. Y .
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(2) We consider now an important property of the pointwise topology τp.

4.28 Lemma
(On τp-isolated points)
Let X be a set containing at least two distinct elements a, b; let (Y, σ) be a
Hausdorff topological space containing at least the elements y0, y1 with y0 6=
y1; let H ⊆ Y X with cardinality at least 2; let h0 denote the constant map
h0(x) ≡ y0. Now let H have the properties

(a) h0 ∈ H,

(b) h ∈ H and h 6= h0 implies h(b) = y1.

Then h0 is an isolated point of H in (Y X , τp).

Proof: In Y we find open sets U, V such that y0 ∈ U , y1 ∈ V and U ∩V = ∅;
now, we have ({b}, U) ∈ τp and h0 ∈ ({b}, U); we find ({b}, U) ∩ H = {h0}.
So, h0 is a τp-isolated point of H.

We still need a simple topological fact.

4.29 Lemma
Let (X, τ) be a Hausdorff topological space; B a compact subset of X, B 6= X
and a ∈ B. Then are equivalent:

(a) B \ {a} is compact.

(b) a is an isolated point of B.

Now, we want to give a simple example for an application of the lemma on
isolated points.

4.30 Proposition
Let (X, +, ∗, e) be a non-trivial ring with unit e, F2 = {0, 1} the two-element
ring (field) and we provide F2 with the discrete topology; we have Xd = {h :
X → F2 | h is a ring homomorphism }; let H ⊆ Xd contain at least two
elemets; h0 denotes the zero-homomorphism, i.e. ∀x ∈ X : h0(x) = 0 ∈ F2;
now let H fulfill the properties

(a) h0 ∈ H

(b) ∀h ∈ H, h 6= h0 : h(e) = 1 ∈ F2.

Then h0 is an isolated point of H in (FX
2 , τp).
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4.8 When is the map J injective?

We remind of the definition of the evaluation map for sets X, Y ω : X × Y X → Y :
ω(x, f) := f(x); let A ⊆ Y X , A 6= ∅ and we restrict ω to X × A : X × A → Y, J :
X → Y ; then holds:

4.31 Proposition
J is injective if and only if A separates the points of X.

Proof: Let J be injective. ∀x, y ∈ X, x 6= y ⇔ J(x) = ω(x, .) 6= ω(y, .) = J(y) ⇔
∃f ∈ A : ω(x, f) 6= ω(y, f) ⇔ f(x) 6= f(y), thus A separates the points of X.

4.9 Algebraic closedness of Xd in (Y X , τp)

We consider Xd as is defined in 3.12; since by assumtion 3.10 Y has a topology σ, we
find with (Xd)alg := {ϕ ∈ Y X | (ϕ, Ω) ∈ GHom(X,Y )} w.r.t. a fixed Ω: if X has no
topology, then Xd = (Xd)alg; otherwise by definition 3.12 Xd = (Xd)alg ∩ C(X,Y ).

4.32 Proposition
We assume (Y, σ) to be Hausdorff and all algebraic operations in Y being continuous
w.r.t. σ. Then (Xd)alg is τp-closed in Y X .

Remark: Compare proposition 3.1 of the paper [4], where the (uncomplicated)
proof can be found.

5 Some examples and applications

At first we want to answer our questions.

(1) Let X,Y be commutative rings, either both with units or both without. We
assume that Xd has D in the sense of definition 4.15. In most concrete cases
this will happen. We set ρ = τp, σ discrete topology on Y , µ = τp; then by
definition 4.16: Xdd =

(
C((Xd, τp), (Y, σ)), τp

)
. If X and Y have units and

0 ∈ Xd is the zero-homomorphism, we use as (new) dual space Xd \ {0} (see
4.26 and 4.27); then

Xdd =
(

C((Xd \ {0}, τp), (Y, σ)), τp

)
.

And this is the answer to question 1.
By the homomorphy theorem 4.21 we get

(a) J : X → Xdd is a homomorphism.

(b) If X has a topology τ , J : (X, τ) → (Xdd, τp) is continuous.

13



(2) Let (X, ||.||) be a (non-trivial) normed space, B′ ⊆ X ′ the (norm-)closed unit-
ball in X ′; we use Xd (= A) = B′ as dual space of X (see 4.3, redefini-
tion of Xd); of course, since (X, ||.||) is non-trivial, ∅ 6= B′ 6= {0}; B′ is no
vector-subspace of X ′; hence by definition 4.16 Xdd = C((B′, τp), (IK, τ|.|))
=

(
Cb((B

′, τp), (IK, τ|.|)), τ||.||sup

)
, since by Alaoglu’s theorem (B′, τp) is com-

pact. By the homomorphy theorem and by proposition 4.25 we get:

(a) J : X → Xdd is a homomorphism, i.e. a linear map.

(b) ∀x ∈ X : ||J(x)||sup = ||x||; finally: J is a linear isometry from X to
the subspace J(X) ⊆ (

Cb((B
′, τp), (IK, τ|.|)), τ||.||sup

)
. If X is a Banach

space, then J(X) is closed in
(

Cb((B
′, τp), (IK, τ|.|)), τ||.||sup

)
.

Hence the answer to question 2 is simple: the representation of (X, ||.||) by
a space of continuous functions follows informally from our general duality
approach.

(3) Within our approach we want to prove the theorem of M.H. Stone on repre-
sentation of Boolean rings. At first we will recall some definitions and facts.

5.33 Definition
A ring (X, +, ·) is called a Boolean ring, iff ∀x ∈ X : x2 = x holds.

In a Boolean ring (X, +, ·) we have

• ∀x ∈ X : x + x = 0

• X is commutative.

In proposition 4.30 we mentioned the smallest (non-degenerated, commuta-
tive) ring with unit F2 = {0, 1}, which is just a field - and a Boolean ring, too.
Conversely, we find:

5.34 Proposition
Each Boolean ring with unit, which is a field, is isomorphic to F2.

We still need the following facts:

5.35 Proposition
Let X be a Boolean ring with unit e; let I be an ideal of X; then hold:

(a) The factor ring X/I is a Boolean ring.

(b) If M is a maximal ideal of X, then X/M is isomorphic to F2.
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The first dual space Xd of a Boolean ring:

We set Y = F2 and hence by definition 3.12 Xd = {h : X → F2| h is a
ring-homomorphism }. If X has a unit e, by simple properties of homomor-
phisms we get Xd \ {0} = {h ∈ Xd| h(e) = 1}, where 0 denotes the zero-
homomorphism.

Now, according to 3.10, we consider for F2 the discrete topology and since
Xd ⊆ FX

2 , for Xd the pointwise topology is defined. But then proposition 4.30
yield at once:

5.36 Proposition
The zero-homomorphism 0 ∈ Xd is an isolated point of Xd in (FX

2 , τp).

Now we can prove the essential properties of (Xd, τp) and (Xd \ {0}, τp), re-
spectively.

5.37 Theorem
Let (X, +, ·) be a Boolean ring with unit e; then both (Xd, τp) and (Xd \
{0}, τp)) are Hausdorff, compact and totally disconnected.

Proof: Hausdorffness, compactness and totally disconnectedness are stable
under formation of arbitrary products, F2 with discrete topology has all these
properties, and so (FX

2 , τp) does. Hausdorffness and totally disconnectedness
are stable under formation of subspaces, so Xd and Xd \ {0} are Hausdorff
and totally disconnected. Xd is compact as a closed subspace of the compact
space FX

2 (4.32), and Xd\{0} is compact because 0 is an isolated point of Xd.

By the following we show, that X admits non-trivial homomorphisms.

5.38 Lemma
Let (X, +, ·) be a Boolean ring with unit e, X 6= {0}; then Xd separates the
points of X.

Proof: Since X is a ring, it is enough to show that ∀0 6= x ∈ X :
∃h ∈ Xd : h(x) = 1. So, let an arbitrary 0 6= x ∈ X be given. Then
I := {(x + e) · z | z ∈ X} is an ideal in X; we have (x + e) = e · (x + e) ∈ I
and hence ∅ 6= I. If e ∈ I we find z ∈ X such that e = z(x + e), implying
e = z(x + e) = z(x + e)(x + e) = e(x + e) = x + e, thus x = 0, a contra-
diction. e 6∈ I implies I 6= X, and hence I is contained in a maximal Ideal
M ; let h : X → X/M = F2 be the canonical homomorphism, then M is
the kernel of h; now, e(x + e) = x + e ∈ I implies x + e ∈ M and hence
h(e) + h(x) = h(x + e) = 0, thus h(x) = −h(e) = h(e) = 1.
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Finally we want to state some special properties of the pointwise topology
τp for Xd. These properties are induced by the fact, that F2 is considered
with discrete topology. Let X be a set, (Y, σ) a topological space and Y X

(as usual) the space of all maps from X to Y ; for A ⊆ X, B ⊆ Y , we define
(A,B) := {f ∈ Y X | f(A) ⊆ B}; then { ({x}, H)| x ∈ X, H ∈ σ} is an open
subbase for τp on Y X . Now let us come back to the situation that X is a
Boolean ring with unit e and Y = F2 with discrete topology. Then nontrivial
open sets of F2 are {0}, {1} and hence τp has as a subbase the family of all
({x}, {0}) and ({x}, {1}) and we write for brevity (x, 0) and (x, 1), respectively,
for them.

5.39 Lemma
(a) Xd \ (x, 1) = (x, 0) in FX

2

(b) (x, 0) = (x + e, 1) in Xd

(c) (x, 1) ∩ (y, 1) = (xy, 1) in Xd

5.40 Corollary
The family {(x, 1)| x ∈ X} is a base for τp in Xd.

Proof: Let G ⊆ Xd be τp-open and let h ∈ G; we find subbase elements
S1, ..., Sn such that h ∈ ⋂n

i=1 Si ⊆ G, where Si = (xi, 1) or Sj = (yj, 0); but by
the foregoing lemma we have (yj, 0) = (yj + e, 1), so we denote these yj + e by
xj and finally we get from the third part of the lemma

⋂n
i=1 Si = (x1x2...xn, 1).

5.41 Lemma
Let A be open and closed in Xd (= {h : X → F2| h is a homomorphism and
h 6= 0}); then there exists a point xA ∈ X such that A = (xA, 1).

Proof: Xd \ A is τp-open in Xd and hence ∀h ∈ Xd \ A : ∃xh ∈ X : h ∈
(xh, 1) ⊆ Xd \A by 5.40, implying Xd \A =

⋃
h∈Xd\A(xh, 1); Xd \A is closed,

too, and hence it is compact, thus Xd \ A =
⋃n

i=1(xhi
, 1) with suitable xhi

;
now we have A =

⋂n
i=1 Xd \ (xhi

, 1) =
⋂n

i=1(xhi
, 0) =

⋂n
i=1(xhi

+ e, 1) = (xA, 1)
where xA := (xh1 + e) · · · (xhn + e).

The second dual space Xdd of a Boolean ring:

If X is a (non-trivial) Boolean ring and if f, g ∈ Xd are given, if we define
addition and multiplication in Xd pointwise, then in general f + g is not
a multiplicative homomorphism between the rings X and F2. Therefore by
definition 4.16 we let be Xdd = C((Xd, τp), F2), and it is not hard to see
that C((Xd, τp), F2) is a Boolean ring with unit, too. Now, we can prove the
representation theorem of M.H. Stone for Boolean rings.
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5.42 Theorem
Let X be a (non-trivial) Boolean ring with unit and let be Xd = {h : X →
F2| h is a homomorphism and h 6= 0}. J : X → Xdd = C((Xd, τp), F2)
is an isomorphic map from X onto Xdd, and (Xd, τp) is a Hausdorff, totally
disconnected and compact space.

Proof: The properties of (Xd, τp) we proved in 5.37. By 4.20 J(X) ⊆ Xdd

holds and then by theorem 4.21 J is a homomorphism from X into Xdd. By
lemma 5.38 and proposition 4.31 we easily find that J is injective, thus J is
an isomorphism. It remains only to show, that J is surjective: it is evident,
that the space of continuous maps C((Xd, τp), F2) consists of all characteristic
functions χA : Xd → F2 where ∅ 6= A ⊆ Xd is open and closed (w.r.t. τp);
now let be χA ∈ Xdd; by lemma 5.41 we find a xA ∈ X such that A = (xA, 1),
implying J(xA) = ω(xA, .) = χA : ∀h ∈ A : ω(xA, h) = h(xA) = 1 = χA(h);
∀h ∈ Xd \ A : ω(xA, h) = h(xA) = 0 = χA(h).

(4) Finally we consider commutative Banach-algebras (with units).

We assume here, that the elementary theory of commutative Banach-algebras
is known.

Let X be a commutative /C -Banach algebra with unit e. By definition 3.12
we get Xd = {h : X → /C | h is linear, continuous, multiplicative }; Xd ⊆
L(X, /C ) and for Xd we consider the operator norm. By the Banach algebra
theory we find:

5.43 Proposition
(a) Xd has a zero-homomorphism 0 and ||0|| = 0.

(b) {h ∈ Xd| ||h|| ≤ 1} = Xd, since ||0|| = 0 and h 6= 0 implies ||h|| = 1.

(c) {h ∈ Xd| h(e) = 1} = {h ∈ Xd| h 6= 0} = Xd \ {0}.
(d) Xd is no vector subspace of /C X , since, for instance, if h ∈ Xd, h 6= 0,

then ||2h|| = 2||h|| = 2 6= 1. Using definition 4.15 we find that Xd has
defect D. Hence by definition 4.16 we get for the second dual space of
the Banach algebra X: Xdd =

(
C((Xd, τp), ( /C , τ|.|)), µ

)
.

5.44 Proposition
(a) (Xd, τp) is a Hausdorff compact topological space.

(b) The zero-homomorphism 0 ∈ Xd is an isolated point of Xd in ( /C X , τp).

(c) Xd \ {0} is a Hausdorff compact space, too.

Proof:
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(a) Let X ′ := {h ∈ /C X | h is linear and continuous} the dual space of the
Banach space (X, ||.||) and BX′ the (norm-)closed unit ball in X ′. Then
by the Alaoglu theorem BX′ is τp-compact in X ′ and hence BX′ is compact
in ( /C X , τp), too; ( /C X , τp) is Hausdorff since /C with Euclidian τ|.| is; thus
BX′ is closed in ( /C X , τp). Let Arm = {h ∈ /C X | h is ring multiplicative}.
Then Xd = BX′∩Arm.(Xd ⊆ BX′ and Xd ⊆ Arm; otherwise let h ∈ BX′∩
Arm, then h ∈ /C X and ||h|| ≤ 1, h is linear, continuous, multiplicative,
hence h ∈ Xd.) Now, Arm is closed in ( /C X , τp) by proposition 4.32 since
of course the multiplication in /C is continuous. Thus BX′ ∩ Arm = Xd

is closed in ( /C X , τp); Xd is also τp-closed in BX′ yielding that (Xd, τp) is
compact; but (Xd, τp) is Hausdorff, too.

(b) /C has the units 0, 1 and 0 6= 1; hence we can apply the lemma 4.28 on
τp-isolated points.

(c) This follows from lemma 4.29.

5.45 Remark
We now use as (new) dual space of X the space Xd \ {0} and denote it again
by Xd. Hence Xd = {h ∈ /C X | h 6= 0, h linear, continuous and multiplicative}.
And (Xd, τp) is Hausdorff and compact. Here, (Xd, τp) is also called Gelfand-
space of X.

Since (Xd, τp) is compact and by proposition 4.24 we obtain

5.46 Corollary
(a)

(
C((Xd, τp), ( /C , τ|.|)), µ

)
=

(
C∗((Xd, τp), ( /C , τ|.|)), τ||.||sup

)

(b)
(

C∗((Xd, τp), ( /C , τ|.|)), τ||.||sup

)
is a commutative Banach algebra with

unit.

By 4.20, the homomorphy theorem 4.21, propositions 4.25, 5.44 and corollary
5.46 we get the representation theorem of Gelfand.

5.47 Theorem
Let X be a (nontrivial) commutative Banach algebra with unit. Then hold

(a) (Xd, τp) is a compact Hausdorff space.

(b)

J : X → Xdd =
(
C∗((Xd, τp), ( /C , τ|.|), τ||.||sup

)

is an algebra homomorphism.

(c) ∀x ∈ X : ||J(x)||sup ≤ ||x||.
(d) J is uniformly continuous and hence continuous.
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1967

Harry Poppe
Dept. of Math., University of Rostock
Ulmenstrasse 69
18057 Rostock (Germany)

email: harry.poppe@uni-rostock.de
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