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Dedicated to Professor Dr. Götz Alefeld on the occasion of his 70th birthday.

Abstract

We give a survey on the symmetric solution set of linear systems of equa-
tions with perturbed input data starting with a description of its form and
presenting several algorithms whose resulting interval vector encloses it. In
particular, we derive the describing inequalities in a new way and represent
them in a modified form as compared with a recent result by Hlad́ık. This
form enables us to improve a known upper bound for their number essentially.
We thus end up with an Oettli–Prager like theorem for the symmetric solution
set which we can prove by elementary means and completely different from
Hlad́ık’s paper.
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1 Introduction

We give a survey on equivalent descriptions, on properties and on enclosures of the
symmetric solution set

Σsym = {x ∈ Rn| Ax = b, A = AT ∈ [A] = [A]T , b ∈ [b] } , (1.1)

where [A] = [A,A] is a given n × n interval matrix satisfying [A] = [A]T , and [b] is
a corresponding interval vector. This set is apparently a subset of the more general
and more frequently considered general solution set

Σ = {x ∈ Rn| Ax = b, A ∈ [A], b ∈ [b]}, (1.2)

which also contains the solutions of linear systems with unsymmetric matrices from
[A]. In [39] Neumaier illustrates both sets for a simple 2 × 2 example and shows
that the tightest enclosure of Σsym, the so–called interval hull Σsym of this set, can
be smaller than the corresponding interval hull Σ of Σ, which in his terminology is
denoted as hull inverse. Therefore he remarks [39], p. 95 :

Thus the hull inverse is not adapted to the optimal treatment of symmetric matrices.
However, at present, no special methods have been devised for this case, and we shall
content ourselves with the unsymmetric treatment of symmetric matrices.

To show that things changed since 1990 – at least slightly – is one of the purposes
of this paper. There is another statement which fits into this subject. It was made
by Babuška when talking to Jǐŕı Rohn in 1992 and is quoted according to an email
sent by Rohn to a group of scientists working on the field of interval analysis [49].

Unless you are able to handle dependent data, you will never gain interest of the
engineers.

Note that by the symmetry of the matrices Σsym certainly contains a data depen-
dence as mentioned in the quotation. Moreover, the symmetric solution set can
equivalently be introduced as a solution set of particular parameter dependent lin-
ear systems

(Ǎ + T ◦ rad([A]))x = b̌ + τ ◦ rad([b]), (1.3)

where the entries tij of the symmetric matrix T ∈ Rn×n and τi of the vector τ ∈
Rn are the parameters which are allowed to vary in the interval [−1, 1]; cf. [50].
The symbol ◦ denotes the Hadamard product which is defined as the entrywise
multiplication of matrices and vectors, respectively; cf. [25]. The midpoints Ǎ, b̌
and the radii rad([A]), rad([b]) of [A] and [b] are introduced in Section 2. By virtue
of (1.3) it is obvious that enclosures for parameter dependent linear systems can also
be adapted for enclosures of Σsym; cf. [27], [41], [42], [43], [44], [50], [51], [59], [61].
They supplement enclosure methods which originate from interval analysis like the
interval Cholesky method [8] or a modification of the Krawczyk method [26]. We
shall recall these methods later–on together with their properties.

In [30] we mentioned three equivalent descriptions for the general solution set Σ :
The Oettli–Prager criterion [40] which is a vector inequality using the midpoints
and radii of [A] = ([a]ij) and [b] = ([b]i), Beeck’s criterion [13] based on interval
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arithmetic and intersection of sets, and Hartfiel’s characterization which consists of
a variety of inequalities depending on the orthants and on the endpoints of [a]ij
and [b]i. For each of these characterizations of Σ there are analogua for describing
Σsym; cf. [7], [24], [30], [33], and Section 3 of the present survey. It turns out
that for regular matrices [A] the general solution set Σ is the union of at most 2n

convex polyhedra which, together, form a starlike, connected but not necessarily
convex polyhedron themselves. In contrast to the piecewise plain surface of Σ the
boundary of Σsym is formed by parts of quadrics and hyperplanes in Rn, i.e., of
solutions of algebraic equations of degree at most two in n variables. This structure
complicates the study of Σsym tremendously. On the other hand enclosures for Σsym

are needed in practice. This can be seen for instance from [11] and [29] which deal
with Markov chains and truss mechanics, respectively.

Up to now essentially enclosures for the corresponding general solution set Σ are used
to bound Σsym – mainly for simplicity – although each of the methods described in
the Sections 4 – 6 could be used either.

We finally mention the symmetric tolerance solution set [58]

Σtol
sym = {x ∈ Rn| ∀A = AT ∈ [A] ∃ b ∈ [b] : Ax = b }

and the symmetric control solution set

Σcontr
sym = {x ∈ Rn| ∀ b ∈ [b] ∃A = AT ∈ [A] : Ax = b }

which we do not consider in this paper.

Many of our results can be transferred to skew–symmetric matrices A = −AT , and
to persymmetric matrices which are, by definition, symmetric with respect to the
counterdiagonal; cf. [5].

We have organized our paper as follows: In Section 2 we list our notation, in Sec-
tion 3 we describe Σsym, in the Sections 4 and 5 we study the interval Cholesky
method and the interval version of an iterative process based on an incomplete
Cholesky decomposition, and in Section 6 we recall Jansson’s variant of the well
known Krawczyk method. Section 7 is devoted to a method suggested by Rohn,
and the final Section 8 contains some historical remarks. The Sections 3 and 5
contain new material which we intend to publish elsewhere in the nearer future.

This text is a very enlarged version of an invited talk which the author presented at
the Conference INVA 2008 on Okinawa, Japan. In particular, it was supplemented
by the results in [24] on Σsym which were not available at that time. These results
are modified now and deduced and proved in a new and elementary manner. They
are represented for the first time in a matrix–vector form which resembles more that
form in the Oettli–Prager theorem for Σ. In addition, we improve the upper bound
of the number of inequalities in [24] which are necessary to describe Σsym. We need
now asymptotically at most 3n/2 inequalities as compared to 4n/2 inequalities in
[24]. The exponential increase of this number with increasing dimension n of [A]
could, however, not be changed.
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2 Preliminaries

By Rn,Rn×n, IR, IRn, IRn×n we denote the set of real vectors with n components,
the set of real n × n matrices, the set of intervals, the set of interval vectors with
n components and the set of n × n interval matrices, respectively. By ‘interval’
we always mean a real compact interval. We write interval quantities in brackets
with the exception of point quantities (i.e., degenerate interval quantities) which
we identify with their single element. Examples are the zero matrix O, the identity
matrix I, its columns e(i), i = 1, . . . , n, and the vector e = (1, 1, . . . , 1)T . We use the
notation [A] = [A,A] = ([a]ij) = ([aij, aij]) ∈ IRn×n simultaneously without further
reference, and we proceed similarly for the elements of Rn,Rn×n, IR and IRn. We
also mention the standard notation from interval analysis ([2], [36], [39])

ǎ = mid([a]) = (a + a)/2 (midpoint)

rad([a]) = (a− a)/2 (radius)

|[a]| = max{|ã| | ã ∈ [a]} = max{|a|, |a|} (absolute value)

⟨[a]⟩ = min{|ã| | ã ∈ [a]} =

{
min{|a|, |a|} if 0 ̸∈ [a]
0 otherwise

(minimal absolute value)

q([a], [b]) = max{ |a− b|, |a− b| } (Hausdorff distance)

for intervals [a], [b]. For [A], [B] ∈ IRn×n we obtain Ǎ, rad([A]), |[A]|, and q([A], [B])
∈ Rn×n by applying the operators mid(·), rad(·), | · |, and q(·, ·) entrywise, and we
proceed similarly for interval vectors. The comparison matrix ⟨[A]⟩ = (cij) ∈ Rn×n

is defined by

cij =

{
−|[a]ij| if i ̸= j
⟨[a]ii⟩ if i = j

.

Since real numbers can be viewed as degenerate intervals, rad(·), | · |, q(·, ·), and
⟨ · ⟩ can be used for real numbers, vectors and matrices, too.

By A ≥ O we denote a nonnegative n × n matrix, i.e., aij ≥ 0 for i, j = 1, . . . , n.
Analogously, we define x ≥ 0 for x ∈ Rn. We call x ∈ Rn positive writing x > 0
if xi > 0 for i = 1, . . . , n. We use Zn×n for the set of real n × n matrices with
non–positive off–diagonal entries. Trivially, Zn×n contains the n×n matrix ⟨A⟩. As
usual we call A ∈ Rn×n inverse nonnegative if it is regular with A−1 ≥ O. It is an
M–matrix if it is inverse nonnegative and in Zn×n. It is a Stieltjes matrix if it is a
symmetric M–matrix, and it is an H–matrix if ⟨A⟩ is an M–matrix. Moreover, it
is totally positive (totally nonnegative) if each minor of A is positive (nonnegative),
and it is an oscillatory matrix if it is totally nonnegative and if at least one of its
powers Ak is totally positive; cf. [14], [17], [25]. For p ∈ Rn we define the matrix
D = diag(p) as the n × n diagonal matrix with dii = pi, i = 1, . . . , n. By ρ(A) we
denote the spectral radius of a matrix A ∈ Rn×n.

An interval matrix [A] ∈ IRn×n is regular, if each element Ã ∈ [A] is regular;
otherwise it is called singular. It is defined to be an M–matrix if each element
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Ã ∈ [A] is an M–matrix. In the same way the terminology ‘Stieltjes matrix’, ‘H–
matrix’, ‘inverse nonnegative matrix’, ’totally nonnegative matrix’, etc. can be
extended to IRn×n. It is easy to verify that [A] ∈ IRn×n is an M–matrix if and only
if A is an M–matrix and aij ≤ 0 for i ̸= j, and that [A] ∈ IRn×n is an H–matrix if
and only if ⟨[A]⟩ is an M–matrix. By Kuttler’s theorem (Proposition 3.6.6 in [39])
[A] is inverse nonnegative if and only if A and A have this property. Specializing
Theorem 1 in [18] the interval matrix [A] is totally positive if and only if the same
holds for the matrices AL = (aLij), A

U = (aUij) ∈ Rn×n which are defined by

aLij =

{
aij, if i + j is odd,
aij, if i + j is even,

aUij =

{
aij, if i + j is even,
aij, if i + j is odd.

It is conjectured in [18] that this property also holds if ‘totally positive’ is replaced
by ‘regular and totally nonnegative’; see also [19]. Additional sufficient criteria for
this latter property can be found in [34], Theorem 6.1 .

We call [A] ∈ IRn×n irreducible if ⟨[A]⟩ is irreducible.1 In the same way we define [A]
to be diagonally dominant, strictly diagonally dominant, and irreducibly diagonally
dominant, respectively. If there is a positive vector x such that

⟨[A]⟩x ≥ 0 (2.1)

then we call [A] generalized diagonally dominant. Moreover, we define [A] to be
generalized strictly diagonally dominant if strict inequality holds in (2.1). Analo-
gously, a generalized irreducibly diagonally dominant matrix [A] is irreducible and
generalized diagonally dominant with (⟨[A]⟩x)i > 0 in (2.1) for at least one compo-
nent i. It is well known that generalized strictly diagonally dominant matrices are
H–matrices and vice versa. Note that the add–in ‘generalized’ can be omitted if
x = e can be chosen in (2.1).

The smallest interval which encloses a given bounded set S ⊆ R is called interval
hull of S. It is denoted by S. For S ⊆ Rn and S ⊆ Rn×n the interval hull is
defined analogously. If [A] ∈ IRn×n is regular we write [A]−1 for the interval hull of
S = { Ã−1 | Ã ∈ [A] } and call it inverse of [A].

We equip IR, IRn, IRn×n with the usual real interval arithmetic as described in [2],
[36], [39]. We assume that the reader is familiar with the basic properties of this
arithmetic. Here we only recall

[a] ◦ [b] = { ã ◦ b̃ | ã ∈ [a], b̃ ∈ [b] } (2.2)

with [a], [b] ∈ IR, ◦ ∈ {+,−, ·, / }, and 0 ̸∈ [b] in case of division. From (2.2) one sees
immediately that [a] ◦ [b] can be expressed by means of the interval bounds a, a, b, b
which is interesting for practical computation. The structures (IR,+) and (IR, ·)
are two commutative monoids, i.e., commutative semigroups with neutral element,
but neither (IR,+) nor (IR\{0}, ·) is a group. For the addition and multiplication
the so–called subdistributive law

[a]([b] + [c]) ⊆ [a][b] + [a][c]

1Note that sometimes [A] is defined to be irreducible if |[A]| has this property. Unless n = 1,
i.e., [A] ∈ IR1×1, both definitions are equivalent.
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holds with ‘ ’ being possible as the example [−1, 1](1−1) = 0 ̸= [−2, 2] = [−1, 1]·1+
[−1, 1]·1 shows. Moreover, [A][A]−1 = I does not hold in general for interval matrices
[A]. Despite of these algebraic deficiencies the topological behavior is satisfactory:
With respect to the Hausdorff distance q the arithmetic depends continuously on
the operands, and (IR, q) is a complete metric space.

For [a] ∈ IR we define √
[a] = {

√
ã | ã ∈ [a]} for 0 ≤ a (2.3)

and
[a]2 = {ã2 | ã ∈ [a]}. (2.4)

Instead of
√

[a] we also write [a]1/2.

If all symmetric matrices Ã ∈ [A] = [A]T ∈ IRn×n are positive definite we introduce
the interval matrix

[A]
1
2 =

√
[A] = {

√
Ã | Ã = ÃT ∈ [A]}, (2.5)

where
√
Ã = Ã

1
2 ∈ Rn×n denotes the unique symmetric positive definite matrix

whose square equals Ã (cf. [25], e.g.). In passing we note that [A] is regular since
the symmetric part (Ã + ÃT )/2 of any matrix Ã ∈ [A] (not only the symmetric
ones !) is symmetric and positive definite by assumption. Therefore, we have 0 <
xT 1

2
(Ã + ÃT )x = xT Ãx for any nonzero vector x ∈ Rn; hence Ã cannot be singular.

In the sequel we shall use the following basic facts on intervals.

Lemma 2.1

Let [a], [b], [c], [a]i ∈ IR, i = 1, . . . , n, and let γ ∈ R. Then the following properties
hold.

a) mid(γ[a]) = γǎ; mid([a] ± [b]) = ǎ± b̌;

b) rad(γ[a]) = |γ|rad([a]); rad([a] ± [b]) = rad([a]) + rad([b]);

c) [a] ∩ [b] ̸= ∅ ⇔ |ǎ− b̌| ≤ rad([a]) + rad([b]) ⇔ a ≤ b ∧ b ≤ a;

d) If n ≥ 2 then

n∩
i=1

[a]i ̸= ∅ ⇔ max
1≤i≤n

ai ≤ min
1≤i≤n

ai

⇔ [a]i ∩ [a]j ̸= ∅ for i < j, i, j = 1, . . . , n;

e) ([a] + [b]) ∩ [c] ̸= ∅ ⇔ [a] ∩ ([c] − [b]) ̸= ∅;

f) [a] ⊆ [b] ⇔ |ǎ− b̌| ≤ rad([b]) − rad([a]).
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Lemma 2.2 (Theorem 4.4 in [54])

Let [A] = [A]T ∈ Rn×n be an M–matrix and define [A]−
1
2 by [A]−

1
2 = ([A]

1
2 )−1. Then

each symmetric matrix Ã ∈ [A] is positive definite, and

[A]
1
2 = [A

1
2 , A

1
2 ], [A]−

1
2 = [(A

1
2 )−1, (A

1
2 )−1].

In particular, ([A]−
1
2 )2 = [A]−1 = [A −1, A−1].

Theorem 2.1 (Moore’s Theorem; cf. [2] or [39])

Let f(x) be an expression for the function f : x ∈ D ⊆ Rn → R. Let f(x) be defined
by the basic operations +,−, ·, / and the ‘usual’ programmable elementary functions.
If each variable xi occurs at most once in f(x) then the interval arithmetic evaluation
f([x]) yields the range {f(x)| x ∈ [x]} for arbitrary interval vectors [x] ⊆ D.
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3 Characterizations of Σsym

First we prove the characterizations of the general solution set Σ mentioned in the
introduction.

Theorem 3.1

Let [A] ∈ IRn×n be regular and [b] ∈ IRn. Then the following statements are equiv-
alent for x ∈ Rn.

a) x ∈ Σ;

b) [b] ∩ ([A]x) ̸= ∅; (Beeck [13])

c) |b̌− Ǎx| ≤ rad([A]) · |x| + rad([b]); (Oettli and Prager [40])

d) bi ≤
n∑

j=1

a+ijxj and
n∑

j=1

a−ijxj ≤ bi for i = 1, . . . , n,

where a−ij, a+ij are defined by [a]ij = [aij, aij] =

{
[a−ij, a

+
ij] if xj ≥ 0

[a+ij, a
−
ij] if xj < 0

.

(Hartfiel [23])

Proof.

a) ⇒ b):

Follows directly from the existence of some Ã ∈ [A], b̃ ∈ [b] such that Ãx = b̃.

b) ⇒ c):

Follows directly by means of Lemma 2.1 a), b), c).

c) ⇒ d):

From c) one trivially gets

−rad([A]) |x| − rad([b]) ≤ b̌− Ǎx ≤ rad([A]) |x| + rad([b]),

whence
Ǎx− rad([A]) |x| ≤ b and b ≤ Ǎx + rad([A]) |x|.

Now d) follows immediately by rewriting |x| without absolute value bars.

d) ⇒ a) :

For t ∈ [0, 1] define aij(t) = a−ij + t(a+ij − a−ij) and bi(t) =
∑n

j=1 aij(t)xj. Then

aij(t) ∈ [a]ij, and d) implies bi(0) ≤ bi, bi ≤ bi(1). If bi(1) ≤ bi choose ti = 1; then
bi(1) ∈ [b]i. Otherwise choose ti such that bi(ti) = bi, whence bi(ti) ∈ [b]i trivially.
For A = (aij(ti)), b = (bi(ti)) we finally get Ax = b and x ∈ Σ.
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All properties in Theorem 3.1 can be retrieved for Σsym in a modified way. Unfortu-
nately it lacks shortness, and in the cases b) and d) it is based on a Fourier–Motzkin
elimination technique and hence on a finite iterative process.

We first consider an analogue of d); cf. [5]. To this end let O1 be the closed
first orthant and – for simplicity – let x ∈ O1. (The general case can be handled
analogously.)

Trivially, x ∈ Σsym ∩ O1 is equivalent to the existence of A = AT ∈ Rn×n, b ∈ Rn

such that

x ∈ O1 ∧

 bi ≤
n∑

j=1

aijxj ≤ bi

aij ≤ aij ≤ aij

 .

(Initialization step)

This in turn is equivalent to the existence of A = AT ∈ Rn×n, b ∈ Rn such that

x ∈ Σ ∩O1 ∧

 bixi ≤
n∑

j=1

aijxixj ≤ bixi

aijxixj ≤ aijxixj ≤ aijxixj

 .

(Multiplication step)

Here Σ comes into the play for the direction ‘⇐ ’ in case of xi = 0 for some index
i; cf. [4] for details. Consider now those inequalities which contain a12.

{b1 −
n∑

j=1
j ̸=2

a1jxj}x1 ≤ a12x1x2 ≤ {b1 −
n∑

j=1
j ̸=2

a1jxj}x1

{b2 −
n∑

j=2

a2jxj}x2 ≤ a12x1x2 ≤ {b2 −
n∑

j=2

a2jxj}x2

a12x1x2 ≤ a12x1x2 ≤ a12x1x2


(3.1)

(Isolation step)

The basic observation is now that these inequalities hold if and only if the maximum
of the left–hand sides is less or equal than the minimum of the right–hand sides of
(3.1). And this is true if and only if each left–hand side is less or equal than each
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right–hand side. Therefore, we finally get the six non–trivial inequalities

{b1 −
n∑

j=1
j ̸=2

a1jxj}x1 ≤ a12x1x2

{b2 −
n∑

j=2

a2jxj}x2 ≤ a12x1x2

{b1 −
n∑

j=1
j ̸=2

a1jxj}x1 ≤ {b2 −
n∑

j=2

a2jxj}x2

a12x1x2 ≤ {b1 −
n∑

j=1
j ̸=2

a1jxj}x1

a12x1x2 ≤ {b2 −
n∑

j=2

a2jxj}x2

{b2 −
n∑

j=2

a2jxj}x2 ≤ {b1 −
n∑

j=1
j ̸=2

a1jxj}x1



(3.2)

(Elimination step)

in which a12 apparently is replaced by a12 and a12.

Repeating the elimination process (= last two steps) for (3.2) and the remaining
a12–free inequalities successively eliminates the entries of A and introduces those of
A and A. The degree of the algebraic inequalities does not change. Therefore, we
finally get a set of algebraic inequalities of degree at most two as mentioned already
in Section 1. The number of inequalities grows exponentially with n.

Example 3.1 [5]

Let

[A] =

(
1 [0, 1]

[0, 1] [−4,−1]

)
, [b] =

(
[0, 2]
[0, 2]

)
.

Then [A] = [A]T with

A =

(
1 α
β −γ

)
∈ [A] ⇒ A−1 =

1

γ + αβ

(
γ α
β −1

)
for α, β ∈ [0, 1], γ ∈ [1, 4]. Since b ≥ 0 the first component of A−1b is nonnegative
for all b ∈ [b]. Therefore, the general solution set Σ is completely contained in the
union O1 ∪O4 of the first and the fourth quadrant.

Omitting all redundant inequalities Σ can be characterized as follows

Σ ∩O1 : x1 ≤ 2, x1 ≥ x2

Σ ∩O4 : x2 ≥ −2, x2 ≤ 2 − x1

}
(3.3)
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For Σsym we need the additional inequalities

Σsym ∩O1 : (x1 − 1)2 + x2
2 ≤ 1

Σsym ∩O4 : (x1 − 1)2 + (x2 + 1)2 ≤ 2

}
(3.4)

Both solution sets are illustrated in Fig. 3.1.
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Fig. 3.1 The solution sets Σ and Σsym of Example 3.1

The analogue of Theorem 3.1 b) is based on Lemma 2.1; cf. [30]. We start with
x ∈ Σsym. Then there is a matrix A = AT such that

 {
n∑

j=1

aijxj} ∩ [b]i ̸= ∅

{aij} ∩ [a]ij ̸= ∅


(Initialization step)

Note that the first set of the intersections contains only one element.

Similarly as above this is equivalent to the existence of A = AT ∈ Rn×n such that

x ∈ Σ ∧

 {
n∑

j=1

aijxixj} ∩ [b]ixi ̸= ∅

{aijxixj} ∩ [a]ijxixj ̸= ∅


(Multiplication step)

The isolation step uses Lemma 2.1 e) and results in
{a12x1x2} ∩ ([b]1x1 −

n∑
j=1
j ̸=2

a1jx1xj) ̸= ∅

{a12x1x2} ∩ ([b]2x2 −
n∑

j=2

a2jx2xj) ̸= ∅

{a12x1x2} ∩ [a]12x1x2 ̸= ∅


, (3.5)
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where we only listed the sets which contain a12.

The elimination step transforms (3.5) equivalently into

[a]12x1x2 ∩

[b]1x1 −
n∑

j=1
j ̸=2

a1jx1xj

 ∩

(
[b]2x2 −

n∑
j=2

a2jx2xj

)
̸= ∅.

Thus the entry a12 is replaced by [a]12. Transferring the triple intersection via
Lemma 2.1 d) equivalently into intersections with two operands allows repeating the
last two steps for the remaining entries aij with (i, j) ̸∈ {(1, 2), (2, 1)}. One finally
ends up with a variety of intersections which for Example 3.1 read

x ∈ Σsym ⇔ [b] ∩ [A]x ̸= ∅ ∧ ([0, 2]x1−x2
1) ∩ ([0, 2]x2+[1, 4]x2

2) ̸= ∅. (3.6)

The first set theoretical inequality in (3.6) is Beeck’s formulation of the Oettli–
Prager criterion which yields to the inequalities in (3.3). The final set theoretical
inequality in (3.6) combines the inequalities in (3.4) : For x ∈ O1 it is equivalent to

[−x2
1 , 2x1 − x2

1] ∩ [x2
2 , 2x2 + 4x2

2] ̸= ∅

which, by virtue of Lemma 2.1 c), means

−x2
1 ≤ 2x2 + 4x2

2 ∧ 2x1 − x2
1 ≥ x2

2

or
x2
1 + 4x2

2 + 2x2 ≥ 0 ∧ (x1 − 1)2 + x2
2 ≤ 1.

Since the first inequality is obviously true for x ∈ O1 the second one restricts Σsym∩
O1 as in (3.4).

For x ∈ O4 we similarly get

−x2
1 ≤ 4x2

2 ∧ 2x1 − x2
1 ≥ 2x2 + x2

2.

Here the first inequality holds trivially while the second one can be rewritten as
(x1 − 1)2 + (x2 + 1)2 ≤ 2 as in (3.4).

As an analogue of Theorem 3.1 c) we cite results of [24]. We start with a preparatory
lemma.

Lemma 3.1 [24]

Let a, b, d ∈ Rm, a′, b′, d′ ∈ Rn, and C ∈ Rm×n. The function

f(u, v) = aTu + bT |u| + (a′)Tv + (b′)T |v| +
m∑
i=1

n∑
j=1

cij|d′jui + divj| (3.7)

is nonnegative for all u ∈ Rm and v ∈ Rn if and only if it is nonnegative for all u, v
satisfying at least one of the following conditions:
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(i) ui ∈ {0, di} for all i = 1, . . . ,m, and vj ∈ {0,−d′j} for all j = 1, . . . , n;

(ii) ui ∈ {0,−di} for all i = 1, . . . ,m, and vj ∈ {0, d′j} for all j = 1, . . . , n;

(iii) (uT , vT )T = ±e(k) for some k ∈ {1, . . . ,m + n}, where e(k) denotes the k–th
column of the identity matrix I in R(m+n)×(m+n).

Lemma 3.1 shows that the global nonnegativity of the particular piecewise linear
function f in (3.7) can be proved by restricting the domain Rm×Rn to an appropriate
subset.

From linear programming we know (cf. [57], § 7.4, e.g.) that the linear programs

maximize b̃T ỹ such that ÃT ỹ ≤ c̃ (3.8)

and
minimize c̃T x̃ such that Ãx̃ = b̃, x̃ ≥ 0 (3.9)

are dual to each other, i.e., their optimal values exist and are equal provided that
both sets in (3.8) and (3.9) are nonempty. By means of this result and by virtue of
Lemma 3.1 the following auxiliary result can be proved.

Theorem 3.2 [24]

Let [A] ∈ IRn×n, [b], [d] ∈ IRn. Then the vectors x, y ∈ Rn form a solution of the
system

Ax = b, ATy = d (3.10)

for some A ∈ [A], b ∈ [b], d ∈ [d] if and only if they satisfy the following system of
inequalities

rad([A]) |x| + rad([b]) ≥ |r|,
rad([A]T ) |y| + rad([d]) ≥ |r′|,

n∑
i,j=1

rad([a]ij) |yixj(pi − qj)| +
n∑

i=1

( rad([b]i) |yipi| + rad([d]i) |xiqi| )

≥

∣∣∣∣∣
n∑

i=1

(riyipi − r′ixiqi)

∣∣∣∣∣ (3.11)

for all vectors p, q ∈ {0, 1}n, where r = b̌− Ǎx, r′ = ď− ǍTy.

With the diagonal matrices Dp = diag(p), Dq = diag(q) (p, q as in Theorem 3.2)
the inequality (3.11) can be simply rewritten as

|y|T · |Dp rad([A]) − rad([A])Dq| · |x| + |y|TDp rad([b]) + |x|TDq rad([d])

≥ |yTDpr − xTDqr
′| . (3.12)

Note that (3.12) can also be derived directly from (3.6) in the following way:
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From (3.10) we get

yTDpAx = yTDpb and xTDqA
Ty = xTDqd.

Subtracting both equalities and introducing the representations

A = Ǎ + ∆, b = b̌ + β, d = ď + δ

yields
yTDp∆x− xTDq∆

Ty − yTDpβ + xTDqδ = yTDpr − xTDqr
′ .

Using xTDq∆
Ty = yT∆Dqx and absolute values results in

|yTDpr − xTDqr
′| ≤ |y|T · |Dp∆ − ∆Dq| · |x| + |y|TDp|β| + |x|TDq|δ|.

Since

|Dp∆ − ∆Dq|ij = |(Dp)ii∆ij − ∆ij(Dq)jj| = |∆ij||(Dp)ii − (Dq)jj|
≤ rad([A])ij|(Dp)ii − (Dq)jj|
= |Dp rad([A]) − rad([A])Dq|ij

and |β| ≤ rad([b]), |δ| ≤ rad([d]) we finally end up with (3.12) .

Since (A + AT )/2 is symmetric and in [A] for any A ∈ [A] = [A]T , and since
(b(1) + b(2))/2 ∈ [b] for any b(1), b(2) ∈ [b] one sees immediately that

x ∈ Σsym if and only if Ax = b(1) and ATx = b(2)

holds for some matrix A ∈ [A] and for some vectors b(1), b(2) ∈ [b]. Therefore,
Theorem 3.2 is the basis for the following equivalent description of Σsym which can
be considered as an analogue of the Oettli–Prager criterion. Here the symbol ≺lex

means strict lexicographic ordering of vectors, i.e., u ≺lex v if for some k we have
ui = vi, i < k, and uk < vk.

Theorem 3.3 [24]

Let [A] = [A]T ∈ IRn×n, [b] ∈ IRn, x ∈ Rn, r = b̌− Ǎx. Then x ∈ Σsym if and only
if the following system of inequalities holds.

rad([A]) |x| + rad([b]) ≥ |r| (3.13)

n∑
i,j=1

rad([a]ij) |xixj(pi − qj)| +
n∑

i=1

rad([b]i) |xi(pi + qi)| ≥

∣∣∣∣∣
n∑

i=1

rixi(pi − qi)

∣∣∣∣∣
(3.14)

for all vectors p, q ∈ {0, 1}n\{0, e} such that

p ≺lex q and ( p = e− q ∨ ∃ i : pi = qi = 0 ).

The system (3.14) consists of (4n − 3n − 2n+1 + 3)/2 inequalities.
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Again inequality (3.14) can be rewritten in a dense form

|x|T · |Dp rad([A]) − rad([A])Dq| · |x| + |x|T (Dp + Dq)rad([b]) ≥ |xT (Dp −Dq)r|
(3.15)

with the notation above.

Analogously to (3.12) an inequality for Σsym can be derived directly from

xTDpAx = xTDpb and xTDqAx = xTADqx = xTDqb

for symmetric matrices A. At the end one obtains

|x|T · |Dp rad([A]) − rad([A])Dq| · |x| + |x|T |Dp −Dq|rad([b]) ≥ |xT (Dp −Dq)r|
(3.16)

with a slightly smaller rad([b])–summand as in (3.15) and – at the moment – without
any restrictions on p and q. Although different, both sets of inequalities determine
the same solution set when supplemented by (3.13): If x satisfies (3.13) and (3.15)
then x ∈ Σsym by Theorem 3.3, hence x satisfies (3.16) since we deduced this inequal-
ity only for such vectors. The converse is trivial since (3.15) follows immediately
from (3.16) by virtue of |Dp −Dq| ≤ Dp + Dq.

With the complementary vectors p = e− p, q = e− q we can transform the matrix

R(p, q) = |Dprad([A]) − rad([A])Dq|

in the following way:

R(p, q) = |Dprad([A]) −Dprad([A])Dq −Dprad([A])Dq|
= |Dprad([A])(I −Dq) −Dprad([A])Dq|
= |Dprad([A])Dq −Dprad([A])Dq|
= Dprad([A])Dq + Dprad([A])Dq, (3.17)

where for the last equality we proceeded entrywise and exploited p + p = e, p ∈
{0, 1}, so that either pi = 1, pi = 0 or vice versa. Therefore, at most one summand
of (R(p, q))ij in (3.17) differs from zero.

The third equality in (3.17) implies

R(p, q) = |Dprad([A])Dq −Dprad([A])Dq|
= |Dprad([A])Dq −Dprad([A])Dq| = R(p, q).

Moreover, Dp −Dq = −(Dp −Dq), and q ≺lex p is equivalent to p ≺lex q. Therefore,
the inequality (3.16) also holds for q ≺lex p if it is true for p ≺lex q.

If p = 0 then (3.16) reduces to

|x|T rad([A])Dq|x| + |x|TDqrad([b]) ≥ |xTDqr|

which follows also from (3.13) and |xTDqr| ≤ |x|TDq|r| provided that the Oettli–
Prager criterion holds, of course. The same is true for the case q = 0. Since e = p
for p = 0 we can restrict to p, q ∈ {0, 1}n\{0, e} if (3.13) is assumed.
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We show now that all inequalities (3.16) with pi = qi = 1 for some indices i can be
omitted. To this end choose p′, q′ such that

p′i =

{
pi, if piqi ̸= 1
0 otherwise

q′i =

{
qi, if piqi ̸= 1
0 otherwise

and let p′′ = p − p′. Then p′′i =

{
1, if pi = qi = 1
0 otherwise

, whence p′′ = q − q′, p =

p′ − p′′, q = q′ − p′′. Hence

R(p, q) = Dp′rad([A])Dq + Dp′′rad([A])Dq + Dprad([A])Dq′ + Dprad([A])Dp′′

= Dp′rad([A])Dq′ −Dp′rad([A])Dp′′ + Dp′′rad([A])Dq

+Dp′rad([A])Dq′ −Dp′′rad([A])Dq′ + Dprad([A])Dp′′ .

From this we get

|x|TR(p, q)|x| = |x|TR(p′, q′)|x|
+|x|TDp′′rad([A])(−Dp′ + Dq −Dq′ + Dp)|x|

= |x|TR(p′, q′)|x| + |x|TDp′′rad([A])(I −Dp′+q + I −Dp+q′)|x|
≥ |x|TR(p′, q′)|x|,

since I − Dp′+q ≥ O and I − Dp+q′ ≥ O. (Note that p′ + q ≤ e and p + q′ ≤ e
hold.) Moreover, Dp − Dq = Dp′+p′′ − Dq′+p′′ = Dp′ + Dp′′ − (Dq′ + Dp′′) = Dp′ −
Dq′ . Therefore, the inequality (3.16) for p, q follows from that for p′, q′ and can be
omitted. This shows that in (3.16) only vectors p, q ∈ {0, 1}n\{0, e} with p ≺lex q
and piqi = 0, i = 1, . . . , n, need to be considered if (3.13) is assumed.

This reduces the number of inequalities (3.16) further over that given in Theo-
rem 3.3 : There are 3n possibilities for inequalities with (pi, qi) ∈ {(0, 0), (0, 1), (1, 0)}
for all i = 1, . . . , n. Moreover, there are(n

0

)
+
(n

1

)
+ . . . +

(n
n

)
= 2n (3.18)

possibilities of inequalities with p = 0, and the same amount of inequalities occurs
for q = 0. (The lower number in the binomials counts the exact number of ones in
q, and p, respectively.) Both numbers in (3.18) have to subtracted from 3n. Since
hereby the case p = q = 0 is subtracted twice we must add again a 1. Notice that
we did not allow the case pi = qi = 1 and excluded the cases p = 0 and q = 0. This
implies that we simultaneously excluded the cases p = e and q = e. Taking into
account p ≺lex q we finally end up with

1

2
(3n − 2 · 2n + 1) (3.19)

which is less than the number (4n − 3n − 2n+1 + 3)/2 in Theorem 3.3 if n > 2. (For
n = 1 and n = 2 both bounds coincide.)

With (3.16) and (3.19) we can reformulate and improve Theorem 3.3 in the following
way.
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Theorem 3.4 [33]

Let [A] = [A]T ∈ IRn×n, [b] ∈ IRn, x ∈ Rn, r = b̌− Ǎx. Then x ∈ Σsym if and only
if the following system of inequalities holds.

rad([A]) |x| + rad([b]) ≥ |r| (3.20)

|x|T · |Dp rad([A]) − rad([A])Dq| · |x| + |x|T |Dp −Dq|rad([b]) ≥ |xT (Dp −Dq)r|

(3.21)

for all vectors p, q ∈ {0, 1}n\{0, e} such that

p ≺lex q and pT q = 0, (3.22)

where Dp = diag(p), Dq = diag(q) ∈ Rn×n.

The system (3.21) consists of (3n − 2n+1 + 1)/2 inequalities.

The system (3.20) is just the Oettli–Prager criterion, and the system (3.21) are
the additional inequalities caused by symmetry. Thus for n = 2 there is only one
additional inequality and for n = 3 already six.

The proof of one direction of Theorem 3.4 is already contained in the lines preceding
the theorem. For the converse direction we need the some preparations:

Without loss of generality we may assume that x is an element of the first orthant
O1. Otherwise replace [A], [b], x by [B] = Dx[A]Dx = [B]T , [c] = Dx [b], z = Dx x =
|x| ∈ O1 with Dx = diag(σ1, . . . , σn) ∈ Rn×n, where σi = 1 if sign(xi) = 0, and σi =
sign(xi) otherwise. Then rad([B]) = rad([A]), rad([c]) = rad([b]), |č−B̌z| = |Dx(b̌−
Ǎx)| = |Dxr| = |r|, zT (Dp −Dq)(č − B̌z) = xTDx(Dp −Dq)Dxr = xT (Dp −Dq)r.
Therefore, the inequalities (3.20), (3.21) hold for [B], [c], z if they hold for [A], [b], x,
and vice versa.

The Theorems 3.2 – 3.4 are formulated using midpoint and radius of [A] and [b]. In
the following we will show how an endpoint formulation looks like if x ∈ O1. With
piqi = 0, i = 1, . . . , n, we get |Dp −Dq| = Dp + Dq in (3.16) and (3.21). Omitting
there the absolute value in the righthand side and using (3.17) results in

xTDqr + xTDqrad([b]) + xTDqrad([A])Dpx

≥ xTDpr − xTDprad([b]) − xTDprad([A])Dqx (3.23)

or, equivalently,
xTDq(b− ADpx) ≥ xTDp(b− ADqx). (3.24)

Here, we used Ǎ = Ǎ(Dp + Dp) = Ǎ(Dq + Dq) and dropped the term xTDqǍDpx =
xTDpǍDqx which arises on both sides of (3.23). The second inequality hidden
behind (3.16) and (3.21) reads

xTDq(b− ADpx) ≤ xTDp(b− ADqx) (3.25)
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which is (3.24) if one interchanges p and q (forbidden if our assumption p ≺lex q
shall hold!).

The inequalities (3.24) and (3.25) will form the starting point for our proof of Theo-
rem 3.4 . Therefore, we will introduce some short notation and list some properties
which we will apply without further reference. Note that the meaning of q′ below is
now different from that which we used previously.

Definition 3.1

Let p, p̃, q, q′, q̃, q̃′ ∈ {0, 1}n and let ‘ ◦ ‘ denote the Hadamard product. Then we
define

p = e− p, q = e− q, , q′ = (0, 0, q3, . . . , qn)T , q̃′ = (0, 0, q̃3, . . . , q̃n)T ,

pc = p ◦ p̃, pr = p− pc, qc = q ◦ q̃, qr = q − qc,
p̃c = p̃ ◦ p, p̃r = p̃− p̃c, q̃c = q̃ ◦ q, q̃r = q̃ − q̃c,

q′c = q′ ◦ q̃′, q′r = q′ − q′c
q̃′c = q̃′ ◦ q′, q̃′r = q̃′ − q̃′c

pC = p ◦ q̃, pR = p− pC , qC = q ◦ p̃, qR = q − qC ,
p̃C = p̃ ◦ q, p̃R = p̃− p̃C , q̃C = q̃ ◦ p, q̃R = q̃ − q̃C ,

Notice the difference between the subscripts ‘c‘ and ‘C‘, ‘r‘ and ‘R‘. The subscripts
’c’ and ’C’ remind of ’common components’, i.e., components which are one for both
operands simultaneously. The subscripts ’r’ and ’R’ mean ’remaining components’.

Definition 3.2

Let [A] = [A]T ∈ IRn×n, [b] ∈ IRn, x ∈ Rn. Moreover, let p, q ∈ {0, 1}n. Then we
define

Lq
p = xTDp(b− ADqx), L̇

q

p = −xTDpADqx,

L
q

p = xTDp(b− ADqx), L̇
q

p = −xTDpADqx.

The position of the bar in Lq
p, L

q

p is the same as with b, b. Notice the missing bar

at ‘q‘ when defining L̇
q

p, L̇
q

p. If pi = qj = 1 the entry aij is missing when computing

Lq
p while it is present when computing L̇

q

p.

Lemma 3.2

With the assumptions and the notations in the Definitions 3.1 and 3.2 we get the
following properties which (mostly) hold for q and L

q

p analogously.

a) pc = p̃c, p + p̃r = p̃ + pr, pC = q̃C , p + q̃R = q̃ + pR.

b) The inequalities (3.24) and (3.25) can be written as

Lq
p ≤ L

p

q , Lp
q ≤ L

q

p . (3.26)
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c) If p = 0 then Lq
p = L̇

q

p = 0 for arbitrary q.

If q = 0 then L̇
q

p = 0 for arbitrary p.

If p = e(i), q = e then Lq
p = xibi.

d) Let p = 0, q = e(i), x ∈ O1 (closed first orthant). Multiplying the i–th Oettli–
Prager inequality in (3.20) by xi results in two particular inequalities (3.26)
which read

Le(i)

0 = 0 ≤ L
0

e(i) = xi

(
bi −

∑n
j=1 aijxj

)
,

L0
e(i) = xi

(
bi −

∑n
j=1 aijxj

)
≤ 0 = L

e(i)

0 .

 (3.27)

If xi > 0 the i–th Oettli–Prager inequality is equivalent to (3.27).

e) L̇
q

p = L̇p
q = L̇

q

pc + L̇
q

pr ( ≤ L̇
q

p if x ∈ O1) .

f) Lq
p = Lq+q̃r

p + L̇
p

q̃r = Lq
pc + Lq

pr ≤ L
q

p.

g) Lq
pc + Lp̃

q̃r
= Lq+q̃r

pc + Lp̃r
q̃r
, Lp

qC
+ Lq̃

qC
= Lp+q̃R

qC
+ Lq̃C

qC
.

The proof of Lemma 3.2 is based on simple calculations and is therefore omitted.

Proof of Theorem 3.4

In order to prove the converse direction of Theorem 3.4 we assume that x satisfies
(3.20) and (3.26) for 0 ̸= p ≺lex q with pT q = 0 (which implies q ̸= e). As various
previous remarks show the inequalities in (3.26) then hold for arbitrary p, q ∈ {0, 1}n.
Moreover, w.l.o.g. we assume x ∈ O1.

We present now the ideas of our proof which is based on a reversed Fourier–Motzkin
elimination technique as used earlier in this section: Successively for each index pair
(i, j) with i < j and xixj > 0 we will replace the entries [a]ij and [a]ji = [a]ij in
[A] simultaneously by some point intervals [aij, aij], [aji, aji] with aij = aji ∈ [a]ij
so that the inequalities (3.20), (3.21), (3.26) still hold. At the end of the complete
replacement process we will apply the Oettli–Prager Theorem to the resulting final
matrix [A]new = ([A]new)T ⊆ [A] and to [b] in order to obtain a (possibly unsymmet-
ric) matrix Ã ∈ [A]new and a vector b̃ ∈ [b] with Ãx = b̃. From Ã we can construct
at once a symmetric matrix Ãsym ∈ [A] which satisfies

Ãsymx = Ãx = b̃ (3.28)

and thus implies x ∈ Σsym.

For ease of notation we show how

a12, a21, a12, a21 (3.29)

and [a]12 = [a]21 can be replaced assuming x1x2 > 0. (If x1x2 = 0 then [a]12 = [a]21
remains unchanged for the moment, and another entry is considered.) By virtue of
x1x2 > 0 and Lemma 3.2 d) we can replace the first two Oettli–Prager inequalities
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equivalently by those in (3.27) for i = 1 and i = 2. Therefore, we will enlarge the
choice of p and q in Theorem 3.4 by the cases p = 0, q = e(1) and p = 0, q =
e(2) without mentioning it furthermore. This extension avoids the study of special
subcases. Now we consider only those inequalities (3.26) which contain at least one
entry of (3.29) explicitly. Taking into account (3.22) there are only three cases for
this :

Case 1: q = (1, 0, ∗)T , p = (0, 0, ∗)T

Case 2: q = (0, 1, ∗)T , p = (0, 0, ∗)T

Case 3: q = (1, 1, ∗)T , p = (0, 0, ∗)T

Here ‘∗’ replaces the remaining components of p and q. Notice that for q =
(1, 0, ∗)T , p = (0, 1, ∗)T the inequalities (3.26) do not contain one of the entries
in (3.29) explicitly. Moreover, the entries a12 = a21 and a12 = a21 cannot appear in
one and the same of the two inequalities (3.26) because of pT q = 0.

Our first step consists of isolating the entries (3.29) in (3.26). With the notation of
Definition 3.1 and a12 = a21, a12 = a21 we get

a12x1x2 ≤ L
e(2)+p

e(1) + L
p

q′ − Lq
p (Case 1) (3.30)

a12x1x2 ≤ L
e(1)+p

e(2) + L
p

q′ − Lq
p (Case 2) (3.31)

a12x1x2 ≤
(
L

e(2)+p

e(1) + L
e(1)+p

e(2) + L
p

q′ − Lq
p

)
/2 (Case 3) (3.32)

and

Le(2)+p

e(1)
+ Lp

q′ − L
q

p ≤ a12x1x2 (Case 1) (3.33)

Le(1)+p

e(2)
+ Lp

q′ − L
q

p ≤ a12x1x2 (Case 2) (3.34)(
Le(2)+p

e(1)
+ Le(1)+p

e(2)
+ Lp

q′ − L
q

p

)
/2 ≤ a12x1x2 (Case 3) (3.35)

If we can show (which we will do at the end of the proof) that each left–hand
side of (3.33) – (3.35) is less or equal than each right–hand side of (3.30) – (3.32)
(with another admissible choice of p, q) then the same holds for the maximum Mℓ of
all such left–hand sides as compared with the minimum mr of all such right–hand
sides. If mr > a12x1x2 we redefine it by a12x1x2 knowing by (3.33) – (3.35) that
Mℓ ≤ a12x1x2. Analogously, if Mℓ < a12x1x2 we redefine it by a12x1x2. Now we
choose any number from [Mℓ,mr]. Obviously, it is representable as a12x1x2 with
some number a12 ∈ [a]12. The inequalities (3.30) – (3.35) hold with a12 in place
of a12, a12, and so do the inequalities (3.26) if we define a21 = a12 and replace the
entries (3.29) correspondingly. Replacing the entries [a]12, [a]21 in [A] by a12 = a21
results in a matrix [A]′ for which the assumptions of Theorem 3.4 are also satisfied.
It forms the starting point of our next replacement. Repeating this process for
all entries [a]ij, i < j, with xixj > 0 we finally end up with the matrix [A]new

which we already mentioned at the beginning. It has degenerate symmetric entries
aij = aji ∈ [a]ij whenever xixj > 0 is true. Moreover, it satisfies the inequalities
(3.20), (3.21). Therefore, a matrix Ã = (ãij) ∈ [A]new and a vector b̃ ∈ [b] exist with
Ãx = b̃. Trivially, ãij = ãji = aij if xixj > 0. If xi = 0 the value of ãji does not
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matter in the product Ãx. Therefore, we may replace it by ãij, a step in view of
symmetry. Similarly, if xj = 0 we replace ãij by ãji ending up with a symmetric
matrix Ã ∈ [A] which satisfies (3.28) and finishes the proof.

It remains to show that each left–hand side of (3.33) – (3.35) is less or equal than
each right–hand side of (3.30) – (3.32). To this end we have to combine each right–
hand side of (3.30) – (3.32) with each left–hand side of (3.33) – (3.35) which leads
to nine combinations.

1) Case 1 vs. Case 1:

Let p̃, q̃ and p, q be chosen according to Case 1, independently of each other. We
have to show that

Le(2)+p̃

e(1)
+ Lp̃

q̃′ − L
q̃

p̃ ≤ L
e(2)+p

e(1) + L
p

q′ − Lq
p (3.36)

holds. With the notation of Definition 3.1 and with Lemma 3.2 we get

Le(2)+p̃

e(1)
+ Lp̃

q̃′ + Lq
p = Le(2)+p̃

e(1)
+ Lp̃

q̃′ + Lq
pc + Le(1)+q′

pr

= Le(2)+p̃+pr
e(1)

+ Lp̃
q̃′ + Lq

pc + Lq′

pr

= Le(2)+p̃+pr
e(1)

+ Lp̃
q̃′c

+ (Lp̃
q̃′r

+ Lq
pc) + Lq′

pr

= Le(2)+p̃+pr
e(1)

+ Lp̃
q̃′c

+ (Lp̃r
q̃′r

+ Lq+q̃′r
pc ) + Lq′

pr

= Le(2)+p̃+pr
e(1)

+ Lp̃+pr
q̃′c

+ Lp̃r
q̃′r

+ Lq+q̃′r
pc + Lq′r

pr .

Analogously we obtain

L
e(2)+p

e(1) + L
p

q′ + L
q̃

p̃ = L
e(2)+p+p̃r
e(1) + L

p+p̃r
q′c

+ L
pr
q′r

+ L
q̃+q′r
p̃c + L

q̃′r
p̃r

= L
e(2)+p̃+pr
e(1) + L

p̃+pr
q′c

+ L
q̃′r
p̃r + L

q+q̃′r
p̃c + L

pr
q′r
.

For the last formula we used the equality q′r = qr, q̃′r = q̃r which holds by virtue of
the particular form of q and q̃ in Case 1 .

Comparing both final expressions and using Lemma 3.2 b) and f) proves (3.36).

2) Case 2 vs. Case 2 is proved analogously.

3) Case 1 vs. Case 2:

Let p̃, q̃ be chosen according to Case 1, and let p, q be chosen according to Case 2.
We have to show that

Le(2)+p̃

e(1)
+ Lp̃

q̃′ − L
q̃

p̃ ≤ L
e(1)+p

e(2) + L
p

q′ − Lq
p (3.37)

holds. With qR = e(2) + q′R, q̃R = e(1) + q̃′R and pC = q̃C = q̃′C we obtain
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Le(2)+p̃

e(1)
+ Lp̃

q̃′ + Lq
p

= Le(2)+p̃

e(1)
+ Lp̃

q̃′C
+ Lp̃

q̃′R
+ Lq

pC
+ Lq

pR

= (L
e(2)+p̃+q′R
e(1)

+ L̇
q′R
e(1)) + (Lp̃

pC
+ Lq

pC
) + (L

p̃+q′R
q̃′R

+ L̇
q′R
q̃′R

) + (Lq+p̃R
pR

+ L̇
p̃R
pR

)

= L
e(2)+p̃+q′R
e(1)

+ (Lp̃C
pC

+ Lq+p̃R
pC

) + (L
e(2)+p̃+q′R
q̃′R

+ L̇
q̃′R
e(2) + Lq+p̃R

pR
) + L̇

q′R
e(1) + L̇

q′R
q̃′R

+ L̇
p̃R
pR

= Lq+p̃R
q̃+pR

+ Lp̃C
pC

+ L̇
q′R
e(1) + L̇

q̃′R
e(2) + L̇

q′R
q̃′R

+ L̇
p̃R
pR
.

Analogously we obtain

L
e(1)+p

e(2) + L
p

q′ + L
q̃

p̃ = L
q̃+pR
q+p̃R

+ L
pC
p̃C

+ L̇
q̃′R

e(2) + L̇
q′R

e(1) + L̇
q̃′R

q′R
+ L̇

pR

p̃R

= L
q̃+pR
q+p̃R

+ L
pC
p̃C

+ L̇
q′R

e(1) + L̇
q̃′R

e(2) + L̇
q′R

q̃′R
+ L̇

p̃R

pR

which proves (3.37) as above.

4) Case 3 vs. Case 3:

Let p̃, q̃ and p, q be chosen according to Case 3. We have to show that

Le(2)+p̃

e(1)
+ Le(1)+p̃

e(2)
+ Lp̃

q̃′ − L
q̃

p̃ ≤ L
e(2)+p

e(1) + L
e(1)+p

e(2) + L
p

q′ − Lq
p (3.38)

holds. With q̃C = q̃′C = pC we obtain

Le(2)+p̃

e(1)
+ Le(1)+p̃

e(2)
+ Lp̃

q̃′ + Lq
p

= (Lq+p̃R
e(1)

+ L̇
e(1)+q′R
e(1) ) + (Lq+p̃R

e(2)
+ L̇

e(2)+q′R
e(2) ) + (Lp̃

q̃′C
+ Lp̃

q̃′R
) + (Lq

pC
+ Lq

pR
)

= Lq+p̃R
e(1)+e(2)

+ (Lq+p̃R
pC

+ Lp̃C
pC

) + (Lp̃+qR
q̃′R

+ L̇
qR
q̃′R

) + (Lq+p̃R
pR

+ L̇
p̃R
pR

)

+L̇
e(1)+q′R
e(1) + L̇

e(2)+q′R
e(2)

= Lq+p̃R
q̃+pR

+ Lp̃C
pC

+ L̇
e(1)+q′R
e(1) + L̇

e(2)+q′R
e(2) + L̇

qR
q̃′R

+ L̇
p̃R
pR

= Lq+p̃R
q̃+pR

+ Lp̃C
pC

+ (L̇
e(1)

e(1) + L̇
e(2)

e(2) + L̇
e(1)+e(2)

q′R
) + (L̇

e(1)+e(2)

q̃′R
+ L̇

q′R
q̃′R

) + L̇
p̃R
pR
.

Analogously we obtain

L
e(2)+p

e(1) + L
e(1)+p

e(2) + L
p

q′ + L
q̃

p̃

= L
q̃+pR
q+p̃R

+ L
pC
p̃C

+ (L̇
e(1)

e(1) + L̇
e(2)

e(2) + L̇
e(1)+e(2)

q̃′R
) + (L̇

e(1)+e(2)

q′R
+ L̇

q̃′R

q′R
) + L̇

pR

p̃R

which proves (3.38) as above.

5) Case 1 vs. Case 3:

Let p̃, q̃ be chosen according to Case 1, and let p, q be chosen according to Case 3.
We have to show that

2Le(2)+p̃

e(1)
+ 2Lp̃

q̃′ − 2L
q̃

p̃ ≤ L
e(2)+p

e(1) + L
e(1)+p

e(2) + L
p

q′ − Lq
p (3.39)
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holds. With q̃r = q̃′r, q = e(1) + (e(2) + q′) we obtain

2Le(2)+p̃

e(1)
+ 2Lp̃

q̃′ + Lq
p

= (Le(2)+p̃

e(1)
+ Lp̃

q̃′ + Lq
p) + (Le(2)+p̃

e(1)
+ Lp̃

q̃′)

= (Le(2)+p̃+pr
e(1)

+ Lp̃
q̃′c

+ Lp̃
q̃′r

+ Lq
pc + Le(2)+q′

pr ) + (Le(2)+p̃

e(1)
+ Lp̃

q̃′)

= (Le(2)+p̃+pr
e(1)

+ Lp̃
q̃′c

+ Lp̃r
q̃′r

+ Lq+q̃′r
pc + Le(2)+q′

pr ) + (Le(2)+p̃

e(1)
+ Lp̃

q̃′)

= (Le(2)+p̃+pr
e(1)

+ Lp̃+pr
q̃′c

+ Lq+q̃r
pc + Lp̃r

q̃′r
) + (Le(2)+p̃

e(1)
+ Lp̃

q̃′ + Le(2)+q′r
pr ).

Similarly, with qr = e(2) + q′r, we get

L
e(2)+p

e(1) + L
e(1)+p

e(2) + L
p

q′ + 2L
q̃

p̃

= (L
e(2)+p

e(1) + L
p

q′ + L
q̃

p̃) + (L
e(1)+p

e(2) + L
q̃

p̃)

= (L
e(2)+p+p̃r
e(1) + L

p

q′c
+ L

p

q′r
+ L

q̃

p̃c + L
q̃′

p̃r) + (L
e(1)+p

e(2) + L
q̃

p̃)

= (L
e(2)+p+p̃r
e(1) + L

p

q′c
+ L

pr
q′r

+ L
q̃+q′r
pc + L

q̃′

p̃r) + (L
e(1)+p

e(2) + L
q̃

p̃)

= (L
e(2)+p+p̃r
e(1) + L

p

q′c
+ L

q+q̃r
pc + L̇

e(2)

pc + L
q̃′

p̃r) + (L
e(1)+p

e(2) + L
pr
q′r

+ L
q̃

p̃)

= (L
e(2)+p+p̃r
e(1) + L

p+p̃r
q′c

+ L
q+q̃r
pc + L

q̃′r
p̃r) + (L

e(1)+pr
e(2) + L

pr
q′r

+ L
q̃

p̃)

= (L
e(2)+p̃+pr
e(1) + L

p̃+pr
q̃′c

+ L
q+q̃r
pc + L

q̃′r
p̃r) + (L

e(1)+pr
e(2) + L

pr
q′r

+ L
q̃

p̃)

Comparing the final expressions one sees that (3.39) certainly holds if

Le(2)+p̃

e(1)
+ Lp̃

q̃′ + Le(2)+q′r
pr ≤ L

e(1)+pr
e(2) + L

pr
q′r

+ L
q̃

p̃ (3.40)

is true. But this is just Case 1 vs. Case 2 with p̃, q̃ as above and with p, q there
being replaced by the present pr, e

(2) + q′r = qr. Therefore, (3.40) holds, and (3.39)
is proved.

Case 2 vs. Case 1, Case 3 vs. Case 1, Case 2 vs. Case 3, and Case 3 vs. Case 2 are
proved using the same ideas.

As an illustration of the Theorems 3.3 and 3.4 we reconsider Example 3.1. Here we
get the equivalence

x ∈ Σsym

⇔


rad([A])|x| + rad([b]) ≥ |b̌− Ǎx|
rad([a]11)x

2
1 + rad([a]22)x

2
2 + rad([b]1)|x1| + rad([b]2)|x2|

≥ | − xT
1 (b̌− Ǎx)1 + xT

2 (b̌− Ǎx)2|
(3.41)

since p =

(
0
1

)
, q =

(
1
0

)
are the only admissible vectors for these theorems.

As just noticed the first inequality in (3.41) is the Oettli–Prager criterion which –
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after some calculations – yields to the linear inequalities (3.3) in Example 3.1. The
second inequality in (3.41) reads

3

2
x2
2 + |x1| + |x2| ≥ |x2

1 − x1 +
5

2
x2
2 + x2|. (3.42)

Here,

T = x2
1 − x1 +

5

2
x2
2 + x2 = 0 ⇔ (x1 −

1

2
)2 +

5

2
(x2 +

1

5
)2 =

7

20

⇔

x1 − 1
2√

7
20

2

+

x2 + 1
5√

7
50

2

= 1

describes an ellipse with midpoint (
1

2
,−1

5
). It contains the points (0, 0), (1, 0),

(0,−2/5), and therefore points in the interior of the three quadrants O1, O3, O4.

For x ∈ O1 and T ≥ 0 (i.e., x in O1 but on or outside the ellipse) the inequality
(3.42) is equivalent to 0 ≥ x2

1 − 2x1 + x2
2, or

(x1 − 1)2 + x2
2 ≤ 1 (3.43)

which is the first inequality in (3.4). For x ∈ O1 and T < 0 (i.e., x in O1 and inside
the ellipse) we get

x2
1 + 4x2

2 + 2x2 ≥ 0

which is always true for x ∈ O1. Moreover, T < 0 means

x2
1 − 2x1 + x1 + x2

2 +
3

2
x2
2 + x2 < 0,

i.e., {
(x1 − 1)2 + x2

2

}
+

{
3

2
x2
2 + x2 + x1

}
< 1.

Since for x ∈ O1 the expression within the second pair of braces is nonnegative
the expression within the first pair of braces must be less than one, i.e., (3.43)
holds again. Thus the second inequality in (3.41) and the inequality in (3.43) are
equivalent for x ∈ O1.

For x ∈ O4 and T ≥ 0 one similarly obtains 0 ≥ x2
1 − 2x1 + x2

2 + 2x2 and finally

(x1 − 1)2 + (x2 + 1)2 ≤ 2 (3.44)

while for x ∈ O4 and T < 0 the inequality implies

x2
1 + 4x2

2 ≥ 0

which is always true. Moreover, T < 0 can be rewritten as

{
(x1 − 1)2 + (x2 + 1)2

}
+

{
x1 − x2 +

3

2
x2
2

}
< 2.
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Since x2 ≤ 0 for x ∈ O4 this again implies (3.44) which coincides with the second
inequality in (3.4).

We close this section with some general remarks on Σsym. For regular matrices [A]
this set is connected and compact, but not necessarily convex – even if one intersects
Σsym with an orthant, as Fig. 3.3 shows. For singular matrices [A] this result may
be false as Jansson’s example [A] = [−1, 1] ∈ IR1×1, [b] = 1 ∈ IR shows. Here
Σ = Σsym = (−∞, 1] ∪ [1,∞) which is neither compact nor connected. Missing
compactness and missing convexity can also be seen from the following example
whose modification shows (cf. Fig. 3.3) that the interval hull Σ can overestimate
the corresponding hull Σsym of Σsym arbitrarily large.

Example 3.2 [3]

Let

[A] =

(
1 [−1, 1]

[−1, 1] −1

)
, [b] =

(
2
2

)
.

Then [A] contains the two singular matrices

A1 =

(
1 1

−1 −1

)
and A2 =

(
1 −1
1 −1

)
.

The linear system A1x = b ≡ [b] has no solution while the solutions of A2x = b
are given by x1 − x2 = 2 . No singular symmetric matrix is contained in [A], since

det

(
1 s
s −1

)
= −1 − s2 ≤ −1 . The solution sets Σ and Σsym can be represented

by

Σ =

{
2

1 + st

(
1 + s

−1 + t

) ∣∣∣∣ − 1 ≤ s, t ≤ 1, st ̸= −1

}
∪
{(

x1

x2

)∣∣∣∣ x1 − x2 = 2

}
,

and

Σsym =

{
2

1 + s2

(
1 + s

−1 + s

) ∣∣∣∣ − 1 ≤ s ≤ 1

}
⊆ O4 ,

where O4 denotes again the fourth quadrant of R2. The inequalities characterizing
Σ ∩O4 read

2 − x1 + x2 ≤ 0, −2 + x1 + x2 ≤ 0, −2 − x1 − x2 ≤ 0,

supplemented by the equation

(x1 − 1)2 + (x2 + 1)2 = 2 (3.45)

when describing Σsym ∩O4. Thus, Σsym is the half–circle which results as the inter-
section of the circle (3.45) with O4 , while Σ is the union of the half–strip in Fig. 3.2
and the straight line x1 − x2 = 2.
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x1 − x2 = 2

Fig. 3.2 The solution sets Σ and Σsym of Example 3.2

Replacing the entries [−1, 1] in [A] by [−1 + ε, 1 − ε] with a small number ε > 0
results in a regular interval matrix. In the corresponding solution set the two parallel
bordering half lines in Fig. 3.2 are now slightly shifted and inclined towards each
other so that they intersect at (2/ε,−2/ε). Hence Σ ends at their intersection. The
straight line x1 − x2 = 2 is replaced by two finite ones in O4 which together with
the previous ones form a kite in the interior of O4; cf. Fig. 3.3, where ε = 1/2.

- x1
−1 1 2 3 4

6
x2

−1

−2

−3

−4

�
�
��
����

HHHHHHHHHH

A
A
A
A
A
A
A
A
AA

Σsym
�

Σ

(2/ε,−2/ε)

Fig. 3.3 The solution sets Σ and Σsym of Example 3.2 with [−1, 1]
being replaced by [−1 + ε, 1 − ε], ε = 1/2.

If ε > 0 tends to zero the trailing end of the kite moves arbitrarily far away from
the origin while Σsym always remains a part of the half circle in Fig. 3.2 . Therefore,
depending on the value of ε the interval hull Σ can overestimate Σsym arbitrarily
large (in the sense of Hausdorff distance, e.g.).

The same phenomenon as in Example 3.2 can be seen by a detailed example in [24].
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4 Interval Cholesky method and modifications

In Section 3 we saw that the symmetric solution set Σsym cannot easily be described.
Therefore, it is reasonable to enclose Σsym by simpler sets. Interval vectors undoubtly
belong to this class. Such vectors can be constructed using the interval Cholesky
method which defines a lower triangular matrix

[L] = ICh([A]) (4.1)

via

[l]jj =

(
[a]jj −

j−1∑
k=1

[l]2jk

)1/2

,

[l]ij =

(
[a]ij −

j−1∑
k=1

[l]ik[l]jk

)
/ [l]jj , i = j + 1, . . . , n ,


j = 1, . . . , n.

By virtue of a an analogue of a forward/backward substitution we get

[y]i =

(
[b]i −

i−1∑
j=1

[l]ij[y]j

)
/ [l]ii , i = 1, . . . , n ; (4.2)

and

[x]Ci =

(
[y]i −

n∑
j=i+1

[l]ji[x]Cj

)
/ [l]ii , i = n, n− 1, . . . , 1 . (4.3)

Here, sums with an upper index smaller than the lower one are defined to be zero;
the squares in the first formula are evaluated by applying the interval square function
(2.4). For later reasons we use equivalently the notations

[y] = IFS([L], [b]) (= interval forward substitution) (4.4)

for the vector [y] resulting from (4.2), and similarly

[x]C = IBS([L]T , [y]) (= interval backward substitution) (4.5)

for the vector [x]C from (4.3).

The enclosure property of interval arithmetic implies

Σsym ⊆ [x]C and [A] ⊆ [L][L]T . (4.6)

Our next example shows that [x]C can be a tighter enclosure for Σsym than the
interval hull Σ for Σ.
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Example 4.1

Let [A] =

(
4 [−1, 1]

[−1, 1] 4

)
, [b] =

(
6
6

)
. Setting A =

(
4 α
β 4

)
for A ∈ [A],

we get A−1b =
6

16 − αβ

(
4 − α
4 − β

)
with α, β ∈ [−1, 1]. If A = AT ∈ [A] then

β = α yields A−1b =
6

4 + α

(
1
1

)
. Thus

Σsym = ([18
15
, 2] , [18

15
, 2])T , Σ = ([18

17
, 2] , [18

17
, 2])T ,

[x]C = ([1, 2] , [18
16
, 2])T , [x]G = ([1, 2] , [18

17
, 2])T ,

where [x]G denotes the vector resulting from the interval Gaussian algorithm [2],
[39]. The sets

Σsym =

{
6

4 + α

(
1
1

)
| − 1 ≤ α ≤ 1

}
=

{
γ ·
(

1
1

)
| 6

5
≤ γ ≤ 2

}
and (see [23])

Σ = convex hull

(
{ (

6

5
,
6

5
)T , (2, 2)T , (

18

17
,
30

17
)T , (

30

17
,
18

17
)T }

)
can be seen in Fig. 4.1 .

-

6

x1

x2

1 2

1

2

Fig. 4.1 The sets Σ and Σsym
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Example 4.1 illustrates the following properties:

Σsym ̸= Σ (cf. also [39]), Σsym ̸= [x]C , Σ ̸= [x]G, Σ ̸⊆ [x]C (but Σsym ⊆
[x]C ; cf. (4.6)), [x]C ⊆ [x]G with [x]C ̸= [x]G.

29



The enclosure [y] and [x]C in (4.2), (4.3) can alternatively be expressed by the
products

[y] = [Dn]([Ln−1]([Dn−1](. . . ([L2]([D]2([L1]([D1][b])))) . . .))),

[x]C = [D1]([L1]T ([D2](. . . ([Ln−2]T ([Dn−1]([Ln−1]T ([Dn][y])))) . . .))).

(4.7)

Here, [Ds], s = 1, . . . , n, are diagonal matrices and [Ls], s = 1, . . . , n− 1, are lower
triangular matrices which are defined by

[dsij] =


1 if i = j ̸= s

1/[lss] if i = j = s
0 otherwise

,

[lsij] =


1 if i = j

−[lis] if i > j = s
0 otherwise

.

(4.8)

There is a third equivalent way to define [x]C ∈ IRn which for n > 1 uses the

partition [A] =

(
[a]11 [c]T

[c] [A]′

)
and the Schur complement ΣC

[A] = [A]′ − [c][c]T/[a]11

if n > 1, 0 ̸∈ [a]11, where [c]i[c]i is evaluated as [c]2i .

Definition 4.1

The pair ([L], [L]T ) is called the Cholesky decomposition of [A] = [A]T ∈ IRn×n if
0 < a11 and if either n = 1, [L] = (

√
[a]11) or if n > 1 and

[L] =

( √
[a]11 0

[c]/
√

[a]11 [L]′

)
, (4.9)

where ([L]′, ([L]′)T ) is the Cholesky decomposition of ΣC
[A]. If 0 ∈ [a]11 the Cholesky

decomposition does not exist.

The matrix [L] in Definition 4.1 is the same as that defined by the interval Cholesky
method above; cf. [8]. Therefore, it can be used to define the vector [x]C as in
(4.3). In particular, the existence of the Cholesky decomposition is equivalent to
the existence of [x]C in (4.3). Apparently it depends only on [A] but not on the
right–hand side [b] (which influences the value of [x]C , of course). For shortness we
will say that [x]C exists if the Cholesky decomposition of [A] = [A]T ∈ IRn×n exists
skipping the right–hand side [b].

It is a basic fact of matrix analysis that the existence of the Cholesky decomposition
of a symmetric point matrix A ∈ Rn×n is equivalent to A being positive definite, to
A having only positive eigenvalues, and to A having only positive leading principal
minors; cf. for instance [25]. This does not hold for interval matrices as the following
example shows which is essentially due to Reichmann [45] and is represented here
in a form slightly modified by Neumaier [37].
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Example 4.2

Let [A] =

 1 [a] [a]
[a] 1 [a]
[a] [a] 1

 with [a] = [0, 2
3
]. Then for the leading principal sub-

matrices Ãk of Ã =

 1 a b
a 1 c
b c 1

 with a, b, c ∈ [0, 2
3
] we get det Ã1 = 1 > 0,

det Ã2 = 1 − a2 > 0, det Ã3 = 1 − a2 − b2 − c2 + 2abc > 0; see [8] for a proof of
the last inequality. Hence Ã is symmetric and positive definite, but the interval
Cholesky method breaks down since 0 ∈ [a33] − [l31]

2 − [l32]
2 = [−11

45
, 1], i.e., [l]33

does not exist.

By virtue of Example 4.2 it is necessary to find classes of interval matrices for which
[x]C exists. Perhaps the most prominent one is the class of H–matrices with positive
diagonal entries.

Theorem 4.1 [8]

Let [A] = [A]T ∈ IRn×n be an H–matrix with 0 < aii, i = 1, . . . , n. Then the
following statements hold.

a) The vector [x]C exists, and [L] is again an H–matrix.

b) Each symmetric matrix Ã ∈ [A] is positive definite.

Theorem 4.1 implies several corollaries.

Corollary 4.1 [10]

Let [A] = [A]T ∈ IRn×n be an H–matrix. Then the following statements are equiva-
lent.

(i) The vector [x]C exists.

(ii) The sign condition aii > 0, i = 1, . . . , n, holds.

(iii) The matrix [A] contains at least one symmetric and positive definite element
Ã ∈ [A].

Corollary 4.2 [8]

Let [A] = [A]T ∈ IRn×n with 0 < aii, i = 1, . . . , n. Then in each of the following
cases, [A] is an H–matrix and [x]C exists.
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(i) ⟨[A]⟩ is generalized strictly diagonally dominant.

(ii) ⟨[A]⟩ is generalized irreducibly diagonally dominant.

(iii) ⟨[A]⟩ is strictly diagonally dominant.

(iv) ⟨[A]⟩ is irreducibly diagonally dominant.

(v) ⟨[A]⟩ is regular and diagonally dominant.

(vi) ⟨[A]⟩ is positive definite.

Corollary 4.3 [8]

Let [A] = [A]T ∈ IRn×n be a tridiagonal matrix and let Ã ∈ [A] be any symmetric
matrix which satisfies ⟨Ã⟩ = ⟨[A]⟩ and which is positive definite. Then [A] is an
H–matrix; in particular, all symmetric matrices A ∈ [A] are positive definite, and
[x]C exists.

Corollary 4.4 [8]

Let [A] = [A]T ∈ IRn×n be a tridiagonal matrix and let Ã ∈ [A] be any symmetric
matrix which satisfies ⟨Ã⟩ = ⟨[A]⟩. If Ã can be chosen such that it fulfills one of the
following three properties

(i) Ã is totally positive,

(ii) Ã is regular and totally nonnegative,

(iii) Ã is oscillatory,

then [A] is an H–matrix; in particular, all symmetric matrices A ∈ [A] are positive
definite, and [x]C exists.

In some results on the interval Cholesky method the feasibility of the interval Gaus-
sian algorithm comes into the play which ends up with an interval vector [x]G. It
is well known that [x]G encloses the general solution set Σ and therefore, Σsym,
too. Some sort of connection between the existence of [x]C and [x]G is not very
surprising since for real symmetric positive definite matrices A both vectors exist
simultaneously. For interval matrices, however, only the following weaker result can
be shown.

Theorem 4.2 [10]

Let [A] = [A]T ∈ IRn×n contain a symmetric and positive definite matrix Ã. If [x]G

exists then [x]C exists, too.

A first result towards the converse of Theorem 4.2 is the following one.
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Theorem 4.3 [10]

Let [A] = [A]T ∈ IRn×n contain a symmetric and positive definite matrix Ã and let
n ≤ 3. If [x]C exists then [x]G exists, too.

Unfortunately the restriction n ≤ 3 cannot be dropped in Theorem 4.3 as can be
seen by our next example.

Example 4.3 [10]

Let

[A] =


1 [−1, 1] 0 0

[−1, 1] 2 1 2
0 1 2 2
0 2 2 16/3


Then

[L] =


1 0 0 0

[−1 , 1 ] [ 1 ,
√

2 ] 0 0

0 [ 1/
√

2 , 1 ] [ 1 ,
√

3/2 ] 0

0 [ 2/
√

2 , 2 ] [ 0 , 1 ] [
√

1/3 ,
√

10/3 ]

 ,

i.e., [x]C exists while the forward substitution of the interval Gaussian algorithm
ends up with the entry [−4/9 , 4 ] at position (4, 4) which contains zero. Thus [x]G

cannot exist.

Example 4.3 was unexpected since in [10] it was shown that the existence of [x]C

implies the existence of [x]G for all point matrices A ∈ [A] (and not only for the
symmetric ones).

Despite of the Example 4.3 there are some classes of matrices for which both [x]C and
[x]G exist. Our first result in this respect is a slight generalization of Theorem 4.1.

Theorem 4.4 [2], [8]

Let [A] = [A]T ∈ IRn×n be an H–matrix with 0 < aii, i = 1, . . . , n. Then both [x]C

and [x]G exist.

Based on this theorem the Corollaries 4.1 – 4.4 can be generalized in the same way.
Similarly, we get the following result. (Cf. also the Theorems 3.6.7 and 4.5.8 in [39].)

Theorem 4.5 [8], [12]

Let [A] = [A]T ∈ IRn×n be an M–matrix and let [b] ∈ IRn. Then both [x]C and [x]G

exist. If, in addition, b ≥ 0 or b ≤ 0 ≤ b or b ≤ 0 then

[x]C = Σsym = [x]G = Σ =


[A

−1
b, A−1b], if b ≥ 0,

[A−1b, A−1b], if b ≤ 0 ≤ b,

[A−1b, A
−1
b], if b ≤ 0.
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Theorem 4.5 does not generalize to inverse nonnegative matrices as the following
example shows which was presented by Neumaier in [39], p. 160, in connection with
the (non–) feasibility of the interval Gaussian algorithm.

Example 4.4

Let

[A] =

 [4, 5] [−3,−2] 1
[−3,−2] 4 [−3,−2]

1 [−3,−2] [4, 5]

 = [A]T .

Then

A−1 =
1

6

 7 9 5
9 15 9
5 9 7

 ≥ A
−1

=
1

8

 2 1 0
1 3 1
0 1 2

 ≥ O.

Hence by Kuttler’s theorem mentioned in Section 2 the interval matrix [A] is inverse
nonnegative; in particular, it is regular. Therefore, by reasons of continuity, det Ã
does not change its sign when Ã varies in [A]. It is positive by virtue of detA = 6 > 0.
One can easily see that the leading principal 1× 1 and 2× 2 submatrices of Ã ∈ [A]
have positive determinants, too. Therefore, each symmetric matrix Ã ∈ [A] is
positive definite. It is mentioned in [39] that [x]G does not exist, whence [x]C cannot
exist by virtue of Theorem 4.3 .

Despite of this negative result parts of Theorem 4.5 remain true for inverse non-
negative interval matrices. Based on the continuity of eigenvalues (which all are
positive for a symmetric positive definite point matrix Ã ∈ [A], remain real and
cannot assume the value zero as long as one perturbs Ã symmetrically within a
regular interval matrix [A]) or based on Theorem 4.15 at the end of this section one
can easily prove the following theorem.

Theorem 4.6 [8], [12]

Let [A] = [A]T ∈ IRn×n be inverse nonnegative and contain at least one symmetric
and positive definite matrix Ã ∈ [A]. Then all symmetric matrices in [A] are positive
definite. If [b] ∈ IRn satisfies b ≥ 0 or b ≤ 0 ≤ b or b ≤ 0. Then

Σsym = Σ =


[A

−1
b, A−1b], if b ≥ 0,

[A−1b, A−1b], if b ≤ 0 ≤ b,

[A−1b, A
−1
b], if b ≤ 0.

Theorem 4.7 [10]

Let [A] = [A]T ∈ IRn×n be tridiagonal. Then the following statements are equivalent.

(i) The vector [x]G exists and [A] contains at least one symmetric and positive
definite matrix.
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(ii) The vector [x]C exists.

(iii) Each symmetric matrix Ã ∈ [A] is positive definite.

Theorem 4.7 can be illustrated by the tridiagonal matrix [A] = trid([−1, 1], 2, [−1, 1])
∈ IRn×n with diagonal entries 2.

Theorem 4.8 [10]

Let [A] = I + [−R,R] with O ≤ R = RT ∈ Rn×n and 0 < aii, i = 1, . . . , n. Then
the following statements are equivalent.

(i) The vector [x]G exists.

(ii) The vector [x]C exists.

(iii) The spectral radius of R is less than one.

(iv) The matrix [A] is an H–matrix.

Note that the assumption [A] = I+[−R,R] in Theorem 4.8 is fulfilled if one precon-
ditions [A] and [b] by the midpoint inverse Ǎ−1 provided that the diagonal entries
of Ǎ−1[A] do not contain zero.

Our next two results need some preparation.

The undirected graph of a real matrix A ∈ Rn×n consists of the nodes 1, . . . , n
and the edges {i, j}, i ̸= j, whenever |aij| + |aji| ̸= 0 ; cf. for instance [16] and
[22]. We call j a neighbor of the node i (̸= j) if {i, j} is an edge. The number
of neighbors of i are the degree of i in the underlying graph. Denote by [A](k) =

([a]
(k)
ij ) ∈ IRn×n the matrix just before the k–th elimination step of the interval

Gaussian algorithm is executed. (Thus [A](1) = [A] while [A](n) is the final matrix
of the forward substitution having upper triangular form.) Let Gk denote the k–
th elimination graph of [A], i.e., the undirected graph of |[A](k)| in which the nodes
1, . . . , k−1 and the corresponding edges have been removed and for which we assume
that [a]

(k−1)
ij ̸= 0 implies [a]

(k)
ij ̸= 0, i, j ≥ k (no accidental zeros!); cf. [16], [22]. If in

Gk the node k has the smallest degree and if this holds for all k = 1, . . . , n then we
say that [A] is ordered by minimum degree. If the graph of such a matrix has tree
structure (i.e., it is connected and there are no cycles of length ≥ 3; cf. [16] or [22])
the following result holds.

Theorem 4.9 [10]

Let [A] = [A]T ∈ IRn×n contain a symmetric and positive definite matrix Ã. If the
undirected graph of ⟨[A]⟩ is a tree and if it is ordered by minimum degree then the
following statements are equivalent.

(i) The vector [x]G exists.
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(ii) The vector [x]C exists.

(iii) Each symmetric matrix in [A] is positive definite.

Theorem 4.9 can be illustrated by symmetric tridiagonal interval matrices and sym-
metric arrowhead interval matrices [53] (provided that they contain a symmetric
and positive definite matrix Ã). A simple example is

[A] =


2 [−1, 1]

. . . O
...

O 2 [−1, 1]
[−1, 1] . . . [−1, 1] n

 .

Definition 4.2

Let [A] ∈ IRn×n.

a) The matrix S ∈ Rn×n with sij = sign ǎij is called the sign matrix of [A].

b) With S from a) the extended sign matrix S ′ of [A] is defined as follows.

S ′ = S
for k = 1 : (n− 1)

for i = (k + 1) : n
for j = (k + 1) : n

if s′ij == 0 then s′ij = −s′iks
′
kks

′
kj .

Note that the values of s′ij only depend on S. Any other matrix [Â] with the same
sign matrix S as [A] yields the same extended sign matrix S ′.

Theorem 4.10 [10]

Let [A] = [A]T ∈ IRn×n be irreducible and generalized diagonally dominant with
0 < aii, i = 1, . . . , n. Moreover, let S ′ be the extended sign matrix of [A] defined in
Definition 4.2 . Then the following statements are equivalent.

(i) The vector [x]C exists.

(ii) The vector [x]G exists.

(iii) The matrix [A] is generalized irreducibly diagonally dominant or the sign con-
dition

s′ij s
′
ik s

′
kj = 1 (4.10)

holds for some triple (i, j, k) with k < j < i.
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Corollary 4.5 [10]

Let [A] = [A]T ∈ IRn×n, n ≥ 3, be irreducible and generalized diagonally domi-
nant with 0 < aii, i = 1, . . . , n. Moreover, let S be the sign matrix of [A] from
Definition 4.2 . If

sij sik skj = 1

holds for some triple (i, j, k) with k < j < i then [x]C exists.

The example

[A]α =

 4 [α, 2] [α, 2]
[α, 2] 4 2
[α, 2] 2 4

 , α ∈ [−2, 2],

illustrates Theorem 4.10. Here ⟨[A]α⟩ e = 0. For −2 < α ≤ 2 we have S = eeT = S ′,
and (4.10) is fulfilled with (i, j, k) = (3, 2, 1), hence [x]C exists. For α = −2 property
(4.10) does not hold and [x]C does not exist.

The example

[A] =


4 0 [0, 2] [−2, 0]
0 4 [0, 2] [0, 2]

[0, 2] [0, 2] [6, 9] [−2, 2]
[−2, 0] [0, 2] [−2, 2] [6, 9]


shows that S ̸= S ′ can occur. Here (4.10) holds for (i, j, k) = (4, 3, 2) and [x]C exists.

We continue with some perturbation results. To this end let [x]C exist for [A] ∈
IRn×n, [b] ∈ IRn, and define the nonnegative real matrix |[A]C | by

| [A]C | = ⟨[L]T ⟩−1⟨[L]⟩−1. (4.11)

It can be shown that |[A]C | is the absolute value of the interval matrix whose j–th
column is the result of the interval Cholesky method applied to [A] and the vector
[b] = [−e(j), e(j)]; cf. [9].

This definition is applied together with the following lemma in order to formulate
and prove the subsequent crucial Theorem 4.11 .

Lemma 4.1 [9]

Let [x]C exist for [A] = [A]T ∈ IRn×n with the Cholesky decomposition ([L], [L]T ).
Let [B] = [B]T ⊇ [A] be such that for a suitable positive vector u we have

q([A], [B])u < ⟨[L]⟩⟨[L]T ⟩u . (4.12)

Then the Cholesky decomposition exists for [B], too.

Theorem 4.11 [9]

Let [A], [B] ∈ IRn×n, [A] = [A]T , [B] = [B]T . Suppose that [x]C exists for [A]. If

ρ( |[A]C | q([A], [B]) ) < 1 (4.13)

then [x]C exists for [B], too.

37



Specializing Theorem 4.11 one immediately gets a simple corollary.

Corollary 4.6 [9]

Let the midpoint matrix Ǎ of [A] = [A]T ∈ IRn×n be positive definite, and assume
that

ρ

(
1

2
|ǍC | d([A])

)
< 1 .

Then [x]C exists for [A].

As an illustration consider [A] =

 4 2 2
2 4 [0, 2]
2 [0, 2] 4

 with

Ǎ = LLT , L =

 2 0 0

1
√

3 0

1 0
√

3

 , |ǍC | =
1

12

 5 2 2
2 4 0
2 0 4

 ,

and ρ

(
1

2
|ǍC | d([A])

)
= 1/3 < 1.

Like the interval Gaussian algorithm the interval Cholesky method often suffers from
overestimation caused by interval dependency (cf. [36]). Example 4.2 illustrates
that interval pivots [l]2ii can contain zero in its interior so that the square root
necessary to compute [l]ii does not exist. In [20], [21] ways are indicated how to avoid
this breakdown of the method. They are based on lower bounds for the smallest
eigenvalue λ1(Ã) of point matrices Ã = ÃT ∈ [A] = [A]T ∈ IRn×n since λ1(Ã) ≤
l2nn(Ã). Here lnn(Ã) denotes the final entry of L in the Cholesky decomposition
Ã = LLT which is assumed to exist. One possibility to tighten [l]2nn is to use the
inequality

λ1(Ǎ)−ρ(rad([A])) ≤ min {λ1(Ã) | Ã = ÃT ∈ [A] } ≤ min { l2nn(Ã) | Ã = ÃT ∈ [A] }.

There are other lower bounds for the rightmost minimum which can be computed
recursively without computing any eigenvalues. Cf. [20], [21] for details.

A modification of the interval Cholesky method was given by Frommer in [16] and
denoted by symmetrized Gaussian elimination. It is the well–known interval Gaus-
sian elimination [2], which starts – as usually – with [A](1) = [A] and computes the

intermediate matrices [A](k) = ([a]
(k)
ij ) ∈ IRn×n, k = 2, . . . , n, by means of three

loops and
[a]

(k+1)
ij = [a]

(k)
ij − [a]

(k)
ik [a]

(k)
kj /[a]

(k)
kk , i, j > k. (4.14)

For symmetric interval matrices [A] = [A]T one can prove by induction that [a]
(k)
ij =

[a]
(k)
ji holds for i, j ≥ k. Therefore, for the symmetrized version of the interval
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Gaussian elimination one can replace the computation of the diagonal entries in the
two innermost loops by

[a]
(k+1)
ii = [a]

(k)
ii − ([a]

(k)
ik )2/[a]

(k)
kk , i > k,

using the square function, while the other entries of [A](k+1) are computed according
to (4.14). After the usual forward/backward substitution the final vector [x]Gsym
encloses Σsym. In [16] the following result was proved for [x]Gsym with an assumption
as in Theorem 4.9.

Theorem 4.12 [16]

Let [A] = [A]T ∈ IRn×n and assume that the undirected graph of ⟨[A]⟩ is a tree which
is ordered by minimum degree. If the point vector xG exists for all symmetric point
matrices Ã ∈ [A] then the interval vector [x]Gsym exists for [A].

Two other variants of the interval Cholesky method were given by Schäfer in [54]
introducing blocks. He starts with block partitions

[A] =

 [A]11 . . . [A]1p
...

...
[A]p1 . . . [A]pp

 =

 [A]11 . . . [A]1p
...

[A]p1
[A]′

 and [b] =

 [b](1)

...
[b](p)


(4.15)

of [A] = [A]T ∈ IRn×n and [b] ∈ IRn, respectively, with [A]ij ∈ IRni×nj , [b](i) ∈ IRni ,∑p
i=1 ni = n. With the notation in (4.1) – (4.5) the block interval Cholesky method

computes a lower triangular matrix [L] = ([L]ij) in block form as follows:

[L]jj = ICh

(
[A]jj −

j−1∑
k=1

[L]jk[L]Tjk

)
,

[L]ij =

(
IFS
(

[L]jj, [A]ji −
j−1∑
k=1

[L]jk[L]Tik

))T

, i = j + 1, . . . , p ,

 j = 1, . . . , p,

where IFS (cf. (4.4)) is applied to [L]jj and the individual columns of the matrix in
the second argument. Then a forward/backward substitution leads to

[y](i) = IFS

(
[L]ii, [b]

(i) −
i−1∑
j=1

[L]ij[y](j)

)
, i = 1, . . . , p , (4.16)

and

[xC ](i) = IBS

(
[L]Tii, [y](i) −

p∑
j=i+1

[L]Tji[x
C ](j)

)
, i = p, p− 1, . . . , 1 , (4.17)

with Σsym ⊆ [xC ]. (Do not mix up the notation [xC ] in (4.17) with [x]C in (4.3) !)

There is also a recursive definition of [L] analogously to Definition 4.1.
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Definition 4.3

The pair ([L], [L]T ) is called block interval Cholesky decomposition of [A] = [A]T ∈
IRn×n in (4.15) if [A]11 has an interval Cholesky decomposition in the sense of Def-
inition 4.1 and if either p = 1, [L] = ICh([A]) = ICh([A]11), or if p > 1 and

[L] =


ICh([A]11) O

(IFS([L]11, [A]12))
T

...
(IFS([L]11, [A]1p))

T

[L]′

 ,

where ([L]′, ([L]′)T ) is the block interval Cholesky decomposition of

[A]′ −

 (IFS([L]11, [A]12))
T

...
(IFS([L]11, [A]1p))

T

 (IFS([L]11, [A]12), . . . , IFS([L]11, [A]1p))

with [A]′, p as in (4.15). If ICh([A]11) does not have an interval Cholesky decompo-
sition in the sense of Definition 4.1 then the block interval Cholesky decomposition
does not exist.

Theorem 4.13 [54]

Let [A] = [A]T ∈ IRn×n be an H–matrix with 0 < aii, i = 1, . . . , n. Then the interval
block decomposition exists, and therefore, the same holds for [xC ] from (4.17) for any
partition (4.15) of [A].

There is a modification of the block interval Cholesky method which replaces IFS,
IBS by a square root (cf. (2.5) ) and by multiplications with [L]−1

ii :

[L]jj =

√√√√([A]jj −
j−1∑
k=1

[L]jk[L]Tjk

)
,

[L]ij =

(
[A]ij −

j−1∑
k=1

[L]ik[L]Tjk

)
[L]−1

jj , i = j + 1, . . . , p ,


j = 1, . . . , p,

[ymod](i) = [L]−1
ii

(
[b](i) −

i−1∑
j=1

[L]ij[ymod](j)

)
, i = 1, . . . , p ,

[xC
mod](i) = ([L]−1

ii )T

(
[y](i) −

p∑
j=i+1

[L]Tji[x
C
mod](j)

)
, i = p, p− 1, . . . , 1 ,

with Σsym ⊆ [xC
mod], as one can easily see. Note that here [L] = ([L]ij) is a lower

block triangular matrix but not necessarily triangular as a whole.

As an analogue of Definition 4.3 one obtains the following one.
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Definition 4.4

The pair ([L], [L]T ) is called modified block interval Cholesky decomposition of [A] =
[A]T ∈ IRn×n in (4.15) if

√
[A]11 exists and is regular and if either p = 1, [L] =√

[A]11, or if p > 1 and

[L] =


√

[A]11 O

[A]21(
√

[A]11)
−1

...

[A]p1(
√

[A]11)
−1

[L]′

 ,

where ([L]′, ([L]′)T ) is the modified block interval Cholesky decomposition of

[A]′ −

 [A]21(
√

[A]11)
−1

...

[A]p1(
√

[A]11)
−1

((
√

[A]11)
−1[A]12 , . . . , (

√
[A]11)

−1[A]1p)
)

with [A]′, p as in (4.15). If
√

[A]11 does not exist then the modified block interval
Cholesky decomposition does not exist.

Theorem 4.14 ([54]; cf. also Lemma 2.2)

Let [A] = [A]T ∈ IRn×n be an M–matrix. Then the modified interval block decom-
position exists for any partition (4.15) of [A].

As was mentioned in [54] one cannot predict whether the interval Cholesky method
or one of its block variants yields to better enclosures of Σsym. This is demonstrated
by the following example.

Example 4.5 [54]

For the symmetric M–matrix

[A] =


[4, 9] 0 −3 0

0 [4, 9] 0 [−3,−1.5]
−3 0 [7.25, 10] [−1, 0]

0 [−3,−1.5] [−1, 0] [7.25, 9.25]


and the vector [b] = (1, [2, 3], 0, [−1, 1])T we consider the 2×2 partition n1 = n2 = 2.
Then we obtain

[x]C = [xC ] =


[ 40−

√
5

324
, 15

32
]

[ 11
72
, 41

32
]

[ 4−
√
5

108
, 7

24
]

[− 5
36
, 17

24
]

 ≈


[ 0.116555 , 0.468750 ]

[ 0.152777 , 1.281250 ]

[ 0.016332 , 0.291666 ]

[−0.138888 , 0.708333 ]


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which is not comparable with

[xC
mod] =


[ 65
648

+ 1
27

√
6
, 15

32
]

[ 3
16

− 1
12

√
6
, 41

32
]

[ 1
9
√
6
− 7

216
, 7

24
]

[− 5
72

− 1
6
√
6
, 17

24
]

 ≈


[ 0.115428 , 0.468750 ]

[ 0.153479 , 1.281250 ]

[ 0.012953 , 0.291666 ]

[−0.137486 , 0.708333 ]

 .

For block variants we also refer to [55] and [56]. A survey on the interval Cholesky
method was given in [28]; see also [32].

Recall that if [x]C exists then all symmetric matrices Ã ∈ [A] must be positive
definite. Our next theorems provide criteria for this property.

Theorem 4.15 [47]

Let [A] = [A]T ∈ IRn×n. Then each symmetric matrix Ã ∈ [A] is positive definite if
and only if one of the subsequent equivalent properties holds.

(i) [A] is regular and contains at least one symmetric positive definite matrix.

(ii) The matrices Ǎ + D rad([A])D are positive definite for all signature matrices
D (i.e., for all real diagonal matrices D with |D| = I; see also [15] and [21]).

(iii) ρ( |Ǎ−1|rad([A]) ) < 1.

While the properties in Theorem 4.15 are necessary and sufficient for the positive
definiteness of each symmetric matrix Ã ∈ [A] our next theorem lists criteria which
are only sufficient for this property. (Cf. also Corollary 4.4 .)

Theorem 4.16 (See also Theorem 5.1 in [34])

Let [A] = [A]T ∈ IRn×n. Then each symmetric matrix Ã ∈ [A] is positive definite if
one of the following properties holds.

(i) [A] is totally positive.

(ii) [A] is regular and totally nonnegative.

(iii) [A] is oscillatory.

Proof.

Each of the criteria in (i), (ii), (iii) guarantees that Ã = ÃT ∈ [A] is regular and
satisfies det(Ã) ≥ 0. Therefore, det(Ã) > 0. Now Lemma 5 in [17], p. 443, and the
totally nonnegativity of Ã guarantee that all principal minors are positive whence
Ã is positive definite.
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5 Incomplete Cholesky decomposition

In case of sparse symmetric positive definite matrices A the Cholesky method for A
may suffer from an enormous fill–in which sometimes can be avoided by an appro-
priate renumbering. The arrowhead matrix

A =


n 1 1 . . . 1
1 1 0 . . . 0

1 0
. . . . . .

...
...

...
. . . . . . 0

1 0 . . . 0 1

 ∈ Rn×n

is a simple example for this fact. It is irreducibly diagonally dominant and cannot
have zero as eigenvalue as Gershgorin’s theorem for irreducible matrices shows. By
the same theorem all eigenvalues are positive, hence A is symmetric and positive
definite. It is easily seen that the matrix L from its Cholesky decomposition is dense
in its lower triangle. Renumbering i → n + 1 − i, i = 1, . . . , n, results again in an
arrowhead matrix. This time the arrow is reflected at the counter–diagonal, and no
fill–in occurs. In many cases fill–in cannot be controlled so easily as in the example
above. For this situation an iteration based on a so–called incomplete Cholesky
decomposition can be created. Such a decomposition is a splitting

A = LLT −R,

where the sparsity of L (with lii > 0, i = 1, . . . , n) is controlled by a given set J of
index pairs (i, j) with i > j. In fact, one requires lij = 0 for (i, j) ∈ J . From Ax = b
one equivalently gets

LLTx = LLTx + (b− Ax)

which implies the iteration

LLT (xk+1 − xk) = b− Axk. (5.1)

No R is present here. Collecting in J all index pairs (i, j), i > j, for which aij = 0
guarantees that L and A have the same zero pattern at the expense of an iterative
process. In [35] it is shown that (5.1) is convergent if A is a Stieltjes matrix. The it-
eration (5.1) cannot be transferred directly to interval analysis: The direct analogue
would read

[x]k+1 = [x]k + fJ([L], [b] − [A][x]k),

where fJ([L], [c]) is defined as result of the backward substitution of [L]T and the
vector obtained by the forward substitution with [L] and [c] ∈ IRn. If the sequence
([x]k) is convergent to some vector [x]∗ then

[x]∗ = [x]∗ + fJ([L], [b] − [A][x]∗)

must hold which, in general, is impossible as one can see by considering the radius
of both sides. An alternative starts with the representation

LLTx = b + Rx
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and ends up with the iteration

[x]k+1 = fJ([L], [b] + [R][x]k) (5.2)

provided that [A] ⊆ [L][L]T − [R]. The disadvantage of (5.2) is the presence of the
matrix [R] which usually destroys the sparsity of [A] = [A]T and [L]. Nevertheless it
seems useful to study (5.2) in order to get a feeling what is going on when iterating
more practically by

[x]k+1 − x̃ = fJ

(
L̃, ([b] − [A]x̃) + (Ã− [A])([x]k − x̃)

)
= fJ

(
L̃, [b] − [A]x̃

)
+ fJ

(
L̃, (Ã− [A])([x]k − x̃)

)
, (5.3)

following an idea of Tanabe [60]. Here, Ã is an arbitrarily chosen symmetric matrix
from [A], preferably its midpoint Ǎ. The matrix L̃ results from the incomplete
Cholesky decomposition of Ã and x̃ is any vector from Rn, preferably an approximate
solution of some linear system Ax = b with A = AT ∈ [A] and b ∈ [b]. The last
equality in (5.3) follows analogously to Theorem 4.5.1 (iv) in [39] since L̃ is a point
matrix; cf. also Theorem 4.4.4 (iv) there. The iteration (5.3) is induced by the
equivalence

Ax = b ⇔ x− x̃ = C(b− Ax̃) + C(C−1 − A)(x− x̃) (5.4)

with C = (L̃L̃T )−1. It exploits the sparsity of [A] if L̃ is chosen appropriately.

We consider here only the iteration (5.2) for which we need the matrices [L] and
[R]. Given the index set J , the matrix [A] = [A]T ∈ IRn×n, and the vector [b] ∈ IRn

they are defined by

[L] = [R] = O

for j = 1 : n

[l]jj = ([a]jj −
j−1∑
k=1

[l]2jk)1/2

for i = (j + 1) : n

[h] = ([a]ij −
j−1∑
k=1

[l]ik[l]jk)

if (i, j) ∈ J then [r]ij = [r]ji = −[h]

else [l]ij = [h] / [l]jj

Now one can iterate according to (5.2). For J = ∅ one gets the interval Cholesky
method, for J = Jmax = { (i, j) | n ≥ i > j) } one obtains a modification of the
Jacobi–method. As in Section 4 there are three ways of representing the expression
fJ([x]) which is defined by

fJ([x]) = fJ([L], [R][x] + [b]) (5.5)
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and which will be used in the rest of this section. The first one uses the formulae
just described, the second one represents fJ([x]) as the product

fJ([x]) = [D1]([L1]T (. . . ([Ln−1]T ([Dn](

[Dn]([Ln−1]([Dn−1](. . . ([L1]([D1]([R][x] + [b]))) . . .)))

with the matrices [Ds], [Ls] as in (4.8) (with [L] from (5.5) ). The third one starts
with the following recursive definition of incomplete Cholesky decomposition.

Definition 5.1

The triple ([L], [R], J) is called incomplete Cholesky decomposition of [A] = [A]T

=

(
[a]11 [c]T

[c] [A]′

)
∈ IRn×n with [c] = ([c]2, . . . , [c]n)T ∈ IRn−1 if 0 < a11 and if

either n = 1, [L] = (
√

[a]11), [R] = O, or n > 1 and

[L] =

( √
[a]11 0

[ĉ]/
√

[a]11 [L]′

)
, [R] =

(
0 [r]T

[r] [R]′

)
,

where

[r]i = −[c]i if (i, 1) ∈ J and [r]i = 0 otherwise,

[ĉ] = ([ĉ]2, . . . , [ĉ]n)T ∈ IRn−1 with [ĉ]i = 0 if (i, 1) ∈ J and [ĉ]i = [c]i otherwise,

J ′ = J\{ (i, 1) | (i, 1) ∈ J },
([L]′, [R]′, J ′) is the incomplete Cholesky decomposition of [A]′ − [ĉ][ĉ]T/[a]11.
(Here the numbering of the rows and columns starts with 2.)

If 0 ∈ [a]11 then the incomplete Cholesky decomposition does not exist.

In the third case fJ([x]) from (5.5) is computed by means of the incomplete Cholesky
decomposition and by a forward/backward substitution as in in the first case.

Unfortunately, the incomplete Cholesky decomposition of a point matrix A does not
necessarily exist if A is symmetric and positive definite. This can be seen from the
following example.

Example 5.1

The matrix A =

 1 1 1
1 2 3
1 3 8

 is symmetric and positive definite.

For J = { (3, 1) } the incomplete Cholesky decomposition does not exist since by
the recursive definition of this decomposition yields to

L =

 1 0 0
1
0

L′

 , R =

 0 0 −1
0
−1

R′

 , J ′ = ∅
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with (L′, R′, J ′) being the incomplete Cholesky decomposition of

A′ − ĉĉT/a11 =

(
2 3
3 8

)
−
(

1
0

)
(1, 0) =

(
1 3
3 8

)
.

But the latter matrix is no longer positive definite. Hence it cannot have a Cholesky
decomposition which, by virtue of J ′ = ∅, coincides with the incomplete Cholesky
decomposition with respect to J ′.

For symmetric M–matrices, and even for particular symmetric H–matrices the ex-
istence of the incomplete Cholesky decomposition can be shown together with a lot
of additional theoretical results.

Theorem 5.1

If [A] = [A]T ∈ IRn×n is an H–matrix with 0 < aii for i = 1, . . . , n then for any
index set J ⊆ Jmax = { (i, j) | n ≥ i > j } the following properties hold:

a) The incomplete Cholesky decomposition ([L], [R], J) of [A] exists.

b) The incomplete Cholesky decomposition (L̂, R̂, J) of ⟨[A]⟩ exists and satisfies
⟨[A]⟩ = L̂L̂T −R̂. This splitting is a regular one (i.e., R̂ ≥ O, (L̂L̂T )−1R̂ ≥ O;
cf. [14]) with the spectral radius ρJ = ρ(L̂−T L̂−1R̂) < 1.

c) The function fJ from (5.5) is a P–contraction which satisfies

q( fJ([x]) , fJ([y]) ) ≤ L̂−T L̂−1R̂ q( [x] , [y] )

for all [x], [y] ∈ IRn. In particular, the iteration

[x]k+1 = fJ([x]k), k = 0, 1, 2, . . . (5.6)

is convergent to some vector [x]∗J ⊇ Σsym independently of the starting vector
[x]0 ∈ IRn.

Theorem 5.2

Let [A] = [A]T ∈ IRn×n be an H–matrix with 0 < aii for i = 1, . . . , n, and let
J ⊆ J ′ ⊆ Jmax (where the meaning of J ′ differs from that in Definition 5.1). With
the notation of Theorem 5.1 and an analogous one for J ′ the following properties
hold:

a) The number ρJ is an upper bound of the asymptotic convergence factor (=
R1–factor)

αJ = sup
[x]0∈IRn

(
lim sup
k→∞

∥q([x]k, [x]∗J)∥1/k
)
, ∥ · ∥ any vector norm,

whose value does not depend on the particular norm being chosen.
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b) ρJ ≤ ρJ ′ < 1 .

c) If [A] is an M–matrix then ρJ , ρJ ′ coincide with the asymptotic convergence
factors.

d) If [A] is an M–matrix then [x]∗J ⊇ [x]∗J ′ . (Conjecture! Unproven up to now.)

Example 5.2

Given the M–matrix

[A] =

 [2, 3] [−1, 0] [−1, 0]
[−1, 0] [4, 6] [−2, 0]
[−1, 0] [−2, 0] [6, 8]


and the vector [b] = ([1, 2], [1, 2], [−1, 1])T . Consider the iteration (5.6) for various
index sets J and start it with [x]0 = 0. Stop it whenever

|xk+1
i − xk

i | ≤ ε · |xk
i | and |xk+1

i − xk
i | ≤ ε · |xk

i |

was fulfilled for i = 1, . . . , n and ε = 10−6 and denote by #it the number of iterates
up to this point. The results are computed with INTLAB [52] and listed in the
following table.

J #it 10 · [x]k1 10 · [x]k2 10 · [x]k3

∅ 1 [2.234, 23.847] [0.197, 16.539] [−2.693, 11.154]
{(2, 1)} 19 [2.426, 23.847] [0.759, 16.539] [−2.223, 11.154]
{(3, 2)} 25 [2.591, 23.847] [0.909, 16.539] [−1.819, 11.154]

{(2, 1), (3, 2)} 31 [2.591, 23.847] [1.060, 16.539] [−1.819, 11.154]
{(2, 1), (3, 1), (3, 2)} 38 [2.777, 23.847] [1.111, 16.539] [−1.667, 11.154]

Example 5.2 illustrates the conjecture d) in Theorem 5.2 and indicates part b) of
this theorem.

Example 5.3

Given the H–matrix

[A] =

 [2, 3] [−1, 1] [−1, 1]
[−1, 1] [4, 6] [−2, 2]
[−1, 1] [−2, 2] [6, 8]


and the vector [b] = ([1, 2], [1, 2], [−1, 1])T ). Proceed as in Example 5.2 in order to
obtain the following results.
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J #it 10 · [x]k1 10 · [x]k2 10 · [x]k3

∅ 1 [−9.764, 23.847] [−7.968, 16.539] [−11.154, 11.154]
{(2, 1)} 19 [−8.847, 23.847] [−9.039, 16.539] [−11.154, 11.154]
{(3, 2)} 25 [−9.764, 23.847] [−7.968, 16.539] [−11.154, 11.154]

{(2, 1), (3, 2)} 31 [−8.847, 23.847] [−9.039, 16.539] [−11.154, 11.154]
{(2, 1), (3, 1), (3, 2)} 38 [−8.847, 23.847] [−9.039, 16.539] [−11.154, 11.154]

Example 5.3 shows that Theorem 5.2 d) becomes false if the assumption ‘M–matrix’
is dropped. Part b) of this theorem is confirmed by the second column of the table.
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6 Jansson’s method

Jansson’s method [26] is a quite general method to enclose the bounds min(Σsym)i,
max(Σsym)i, i = 1, . . . , n, where (Σsym)i denotes the projection of Σsym onto the
xi–coordinate axis. The method does only require the symmetry [A] = [A]T but not
any further restriction as positive definiteness of A ∈ [A]. In order to derive the
algorithm let A = AT ∈ [A] = [A]T ∈ IRn×n, b ∈ [b] ∈ IRn, C ∈ Rn×n regular,
x̃ ∈ Rn. We start with the equivalence

Ax = b ⇔ x− x̃ = C(b− Ax̃) + (I − CA)(x− x̃),

apparently a modification of (5.4). Using Theorem 2.1 for the subsequent first
equality we get

(C(b− Ax̃))i ∈ { (C(b̂− Âx̃))i | Â = ÂT ∈ [A], b̂ ∈ [b] }

=
n∑

j=1

cij([b]j − [a]jjx̃j) −
n∑

j=1

j−1∑
l=1

(cijx̃l + cilx̃j)[a]jl = [z]symi ,

where the last equality is to be understood as definition.

Given [x]0∆ ∈ IRn we now iterate according to

[x]k+1
∆ = [z]sym + (I − C[A])[x]k∆ = [z]sym + [∆]k, k = 0, 1, . . . , (6.1)

with [∆]k = (I − C[A])[x]k∆. Then the following theorem holds.

Theorem 6.1 [26]

If
([x]k0+1

∆ )i ( ([x]k0∆ )i (6.2)

holds for i = 1, . . . , n and for some iterate of (6.1) then

a) C, [A] are regular,

b) Σsym ⊆ x̃ + [x]k0∆ ,

c) x̃i + zsymi + ∆k0
i ≤ min(Σsym)i ≤ x̃i + zsymi + ∆

k0
i ,

x̃i + zsymi + ∆k0
i ≤ max(Σsym)i ≤ x̃i + zsymi + ∆

k0
i .

Note that (6.2) guarantees regularity of C a posteriori. For practical computations
C is usually chosen as an approximation of the midpoint inverse Ǎ−1 in order to
obtain (at least approximately) O ∈ I − C[A]. If x̃ ∈ Σsym then 0 ∈ [x]k0∆ by
Theorem 6.1 b) so that for matrices [A] with small diameters, one expects (roughly
speaking) [x]k0∆ to have a quadratically small radius while [z]sym only has a linearly
small one. In view of Theorem 6.1 c) this means that min(Σsym)i and max(Σsym)i
are tightly enclosed by the bounds given there.
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7 Rohn’s method

Rohn’s method [50] represents another way to construct an interval vector which
encloses Σsym. Given [A] = [A]T ∈ IRn×n, [b] ∈ IRn, it starts with the representation
(1.3) which leads to

x ∈ Σsym ⇔ (Ǎ + T ◦ rad([A]))x = b̌ + τ ◦ rad([b]) (7.1)

for some T = T T = (tij) ∈ Rn×n, τ = (τi) ∈ Rn, tij, τi ∈ [−1, 1]. In a first step one
computes [B] ∈ IRn×n, [z] ∈ IRn such that

[B] ⊇ {A−1 | A ∈ [A] } and [z] ⊇ Σ = Σ([A], [b]) ,

where the last notation is introduced for clarity. Such enclosures can be obtained,
e.g., by virtue of the interval Gaussian algorithm, applied to [A], to [b] and the n
righthand sides e(i), i = 1, . . . , n. Note that no symmetry is exploited for [B] and [z].
Consider now the solution x of the linear system (Ǎ+T ◦rad([A]))x = b̌+τ ◦rad([b])
as a function of the parameters T = (tij) and τ = (τi), i.e., x = x(T, τ). Then the
following properties can be shown:

∂xi

∂tkk
∈ −rad([a]kk)[B]ik[z]k

∂xi

∂tkj
∈ −rad([a]kj) ([B]ik[z]j + [B]ij[z]k) for k ̸= j

∂xi

∂τℓ
∈ rad([b]ℓ)[B]iℓ


(7.2)

We want to compute xi0 = max (Σsym)i0 for fixed i = i0 :

If, for instance, min (rad([b]ℓ)[B]i0ℓ) ≥ 0 then xi0(T, τ) increases monotonically with
respect to τℓ, hence xi0 is achieved for τℓ = 1 if the other parameters are chosen
appropriately. Thus τℓ can be fixed for further procedure if one wants to compute
xi0 .

Generally, if zero is not contained in the interior of some righthand side of (7.2)
then xi0 behaves monotonically with respect to the corresponding parameter and
assumes its two extreme values (with respect to this parameter) for the parameter
values −1 and 1, respectively. Since – with the exception of tij = tji – all parameters
are independent from each other their values can be fixed as soon as they are known
for xi0 .

Consider now the equation

(Ǎ + T ◦ rad([A]))x = b̌ + τ ◦ rad([b]), (7.3)

for some element x ∈ Σsym such that xi0 = xi0 . Then we can divide the parameters
into two groups: Those which can be fixed and those which cannot, i.e., those which,
at the moment, are still unknown. Therefore, T and τ in (7.3) can be split in two
direct sums

T = Tf + Tnf and τ = τf + τnf ,
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where Tf and τf contain the fixed parameter values and Tnf , τnf contain the non–
fixed ones. Obviously, all entries of Tf and τf are ±1 or zero while those of Tnf , τnf
are zero at positions, where Tf , τf are ±1, or remain undetermined. Equation (7.3)
reads now(

Ǎ + Tf ◦ rad([A]) + Tnf ◦ rad([A])
)
x = b̌ + τf ◦ rad([b]) + τnf ◦ rad([b]).

Define [A]′ = Ǎ + Tf ◦ rad([A]) + [−1, 1]Snf ◦ rad([A]) and [b]′ = b̌ + τf ◦ rad([b]) +
[−1, 1]snf ◦ rad([b]), where Snf ∈ Rn×n is the matrix with ones at places of T which
are not fixed and zero otherwise; similarly snf ∈ Rn is the vector with ones at
places of τ which are not fixed and zero otherwise. Compute [B]′, [z]′ for [A]′, [b]′

analogously to [B], [z]. Then

[B]′ ⊇ {A−1 | A ∈ [A]′ } and [z]′ ⊇ Σ([A]′, [b]′).

Since [A]′ ⊆ [A], [b]′ ⊆ [b], it can be expected that additional parameters can be
fixed by virtue of (7.2) applied to [B]′ and [z]′. If so, the steps can be repeated
ending with a vector [z]∗ analogously to [z], [z]′ whose i0–th component contains
xi0 . The whole procedure can be applied for xi0

and the remaining components of
x, x in a similar way.

Example 7.1

We apply Rohn’s method to the H–matrix [A] =

(
4 [−1, 1]

[−1, 1] 4

)
and to the

vector [b] =

(
6
6

)
as in Example 4.1. From A =

(
4 α
β 4

)
, α, β ∈ [−1, 1], we

get A−1 =
1

16 − αβ

(
4 −α

−β 4

)
, whence for the interval inverse [A]−1 we obtain

[A]−1 =

 [
4

17
,

4

15
] [− 1

15
,

1

15
]

[− 1

15
,

1

15
] [− 4

17
,

4

15
]

 .

From the interval Gaussian algorithm applied to [A] and e(i), i = 1, 2, we obtain
the columns of the matrix

[B] =

 [
7

30
,

4

15
] [− 1

15
,

1

15
]

[− 1

15
,

1

15
] [− 4

17
,

4

15
]


which slightly overestimates [A]−1. Using the same method for [A] and [b] leads to

[z] = [x]G =

(
[1, 2], [

18

17
, 2]

)T
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as in Example 4.1. With (7.2) we get

∂xi

∂tkk
= 0 for i, k ∈ {1, 2}

∂xi

∂τℓ
= 0 for i, ℓ ∈ {1, 2}

 (7.4)

∂x1

∂t21
∈ − ([B]12[z]1 + [B]11[z]2) = [−2

3
,− 29

255
],

∂x2

∂t21
∈ − ([B]22[z]1 + [B]21[z]2) = [−2

3
,− 26

255
].

Therefore, xi(T, τ) behaves monotonically with respect to all parameters, i.e., Tnf =
O, τnf = 0, and the algorithm stops already after one step. In (7.3) one can choose

T =

(
1 1
1 1

)
for x and T =

(
1 −1

−1 1

)
for x with τ = (1, 1)T in both cases.

(Note that, by virtue of (7.4), the parameters t11, t22, τ1, τ2 can also be replaced
by −1.) Now (7.3) reads(

4 1
1 4

)
x =

(
6
6

)
and

(
4 −1

−1 4

)
x =

(
6
6

)
,

whence x =

(
18

15
,

18

15

)T

, x = (2 , 2)T . From Example 4.1 we see that [x, x] =

Σsym  Σ holds.

Several important questions remain open up to now:

1. How many steps are needed until the algorithm stops because Tnf can no
longer be improved?

2. Does the algorithm always end with the optimum Tnf = O?

3. Are there classes of matrices such that the algorithm ends with Tnf = O?

4. What can be said on the diameter of the final component [z]∗i0 , i.e., on the
quality of enclosure for xi0?

A first, not very surprising result in this direction is the following one.

Theorem 7.1

Let [A] = [A]T ∈ IRn×n be an M–matrix and let [b] ∈ IRn satisfy b ≥ 0 or b ≤ 0.
Then for each bound xi, xi, i ∈ {1, . . . , n}, Rohn’s method terminates after one step
with T = Tf if [B], [z] are computed by the interval Gaussian algorithm.

52



Proof.

According to a result of Barth and Nuding (cf. [2] or [39]) applied to [A] and

e(i) ≥ 0 the interval Gaussian algorithm yields [B] = [A]−1 = [A
−1
, A−1] whence

B ≥ O. Similarly, this algorithm yields z ≥ 0 and z ≤ 0, respectively, according to
the two cases of [b] in the theorem.

In the first case b ≥ 0 we get from (7.2) the inequalities

∂xi

∂tkk
≤ 0,

∂xi

∂tkj
≥ 0 (k ̸= j),

∂xi

∂τℓ
≥ 0.

Hence xi(T, τ) behaves monotonically with respect to each parameter tij and τℓ.
Therefore, the correct parameter values are known for xi and xi after one step of
Rohn’s algorithm.

The second case b ≤ 0 can be handled analogously.

Note that for b < 0 < b things change: xi(T, τ) increases monotonically with respect
to τℓ, but nothing can be said about the behavior with respect to tij since zero is
contained in the interior of [z] and therefore in the corresponding right hand sides
of (7.2).

By virtue of Theorem 4.5 the present Theorem 7.1 is of purely academic character,
of course, since [z] = [x]G = Σsym has to be computed first in order to compute its
bounds anew by applying Rohn’s algorithm. In view of Theorem 4.6 the same remark
also applies to our next theorem which can be proved analogously to Theorem 7.1 .

Theorem 7.2

Let [A] = [A]T ∈ IRn×n be invers nonnegative and let [b] ∈ IRn satisfy b ≥ 0 or
b ≤ 0. Then for each bound xi, xi, i ∈ {1, . . . , n}, Rohn’s method terminates after

one step with T = Tf if [B] = [A
−1
, A−1] and [z] = [A

−1
b, A−1b] in the first case and

[z] = [A−1b, A
−1
b] in the second one.
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8 Some historical remarks

To the author’s knowledge the necessity to consider Σsym was first mentioned in a
letter addressed by Neumaier to Rohn in December 23, 1985; cf. [38], [50]. Inspired
by this letter Rohn invented his method (cf. Section 7) in June 1986 and presented it
at an Oberwolfach conference in February 1990 [46], but did not publish it until 2004;
cf. [48], [50]. In 1990 Jansson talked on his own method at the SCAN conference in
Albena, Bulgaria; cf. [26], [51] and Section 6. Experimentally he showed on a slide
that for a particular example the boundary of Σsym was slightly curvilinear, but he
could not prove this phenomenon theoretically. In 1995 – cf. [9] – Alefeld and the
author found a proof for 2×2 matrices. Together with Kreinovich they finally could
prove in 1996 the particular curvilinear form of the boundary of Σsym in the general
case using Fourier–Motzkin elimination techniques; cf. [3], [5], and Section 3. They
applied this technique also in [6] to general parameter dependent linear systems,
and generalized it in [7]. Based on this technique the author published in [30] a
description of Σsym which was similar to Beeck’s description of Σ; see again Section 3.
Recently [24] Hlad́ık used ideas from linear programming to describe Σsym in a way
which can be thought as an analogue of the Oettli–Prager criterion for Σ and which
were also presented in Section 3. We modified his result slightly in the present paper
using a matrix–vector form, which we derived in a new, short way and for which we
reduced the number of inequalities essentially. Moreover, we reproved the criterion
elementarily.

The Cholesky method was first applied to interval data by Alefeld and the author in
1993; cf. [8] and Section 4. In [8] also some results on the feasibility of the method
were given. Neumaier’s perturbation result on the feasibility of the interval Gaussian
algorithm (Theorem 4.5.15 in [39] and his subsequent remark) were transferred to
the interval Cholesky method in 1995; cf. [9] and again Section 4. Further criteria
of feasibility and a connection to the interval Gaussian algorithm were presented at
the conference INVA 2007 in Tokio. These results were extended for the succeeding
conference INVA 2008 at Okinawa, Japan. They are published now in [10]. Methods
to reduce the overestimation caused by interval dependency when computing the
interval pivots of the Cholesky method were first derived 2010 by Garloff in [20];
see also [21]. These methods help to avoid an early breakdown. A variant of the
interval Cholesky method was given by Frommer in [16]; cf. also the interval–affine
Gaussian algorithm for constraint systems in [1]. Block variants were considered by
Schäfer in [54], [55], [56]. The incomplete Cholesky method was first presented at
the conference INVA 2008 mentioned above, and written down without proofs in
Section 5. It is intended to publish this method together with the proofs separately
and in greater detail.
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