ClTlab ARGUS for historical

handwritten documents

Description of ClTlab’s System for the HTRtS 2014 Handwritten
Text Recognition Task

Tobias Straufs Tobias Griining Gundram Leifert
Roger Labahn*

May 02, 2014

We describe CITlab’s recognition system for the HTRtS competition at-
tached to the 14. International Conference on Frontiers in Handwriting Recog-
nition, ICFHR 2014. The task comprises the recognition of historical hand-
written documents. The core algorithms of our system are based on multi-
dimensional recurrent neural networks (MDRNN) and connectionist temporal
classification (CTC). The software modules behind that as well as the basic
utility technologies are essentially powered by PLANET’s ARGUS framework

for intelligent text recognition and image processing.

Keywords — MDRNN, LSTM, CTC, handwriting recognition, neural network

1 Introduction

The International Conference on Frontiers in Handwriting Recognition ICFHR 2014 hosts
a variety of competitions in that area. Among others, the Handwritten Text Recognition
on tranScriptorium Datasets (HTRtS) competition attracted our attention because we
expected CITlab’s handwriting recognition software to be able to successfully deal with
the respective task.

HTRtS comprises a task of word recognition for segmented historical documents, see
[SRTV14] for all further details. These data consist of page images taken from the Ben-

tham collection, a well-known transScriptorium project dataset.

*corresponding author; CITlab, Institute of Mathematics, University of Rostock
{tobias.gruening, gundram.leifert, tobias.strauss, roger.labahn}@uni-rostock.de

"http://www.icfhr2014.org

?http://transcriptorium.eu/~htrcontest

http://www.icfhr2014.org
http://transcriptorium.eu/~htrcontest

3.1 Input

Our neural networks have basically been used previously in the international handwrit-
ing competition OpenHaRT 2013 attached to the ICDAR 2013 conference, see [LLS13].
Moreover, with a system very similar to the one presented here, the CITlab team also took
part in ICFHR’s ANWRESH-2014 competition on historical data tables, see [LGSLI14]
for the according system description.

Affiliated with the Institute of Mathematics at the University of Rostock, CITlah| hosts
joint projects of the Mathematical Optimization Group and PLANET intelligent systems
GmbH, a small /medium enterprise focusing on computational intelligence technology and
applications. The work presented here was part of a common text recognition project
2010 — 2014 and is extensively based upon PLANET’s ARGUS software modules.

2 Preprocessing

Firstly, we extract the line polygon sub-images as given in the XML-files provided for the
HTRtS evaluation. Those images are then subject to certain image preprocessing steps:
We start with a contrast normalization based on foreground/background pixel intensity
levels. In order to work properly, for our networks, it turned out to be particularly
important to present all images in the same predefined pixel height during training and
application. Here, we accomplish separate normalizations of the bottom, central and top
image portion which finally results in a fixed height of 64 pixels for all images.

From the writings themselves, we remove disturbing substructures that might come in
from adjacent lines by applying connected component clustering strategies. Finally, the
average slant of the writing is normalized, too.

Being a special kind of preprocessing, it should be mentioned that we also presented
slightly disturbed writing images during the network training [3.4] Technically, this noise
arose from minor variations of specific parameters of the above-mentioned normalizations.

As usual, this is mainly done in order to enhance the systems’ generalization capabilities.

3 System specifications

The following part describes the general architecture of the entire workflow, and we explain
details for the core neural network and the decoding procedure. Note that our two systems,
CITlab-Re-1 and CITlab-Re-2, coincide in all structural respects. The only differences
arise from their training and will be explained in subsection

3.1 Input

The networks use entire writings as being prepared in the preprocessing described above
in Section 2| In particular, there is no further segmentation. As developed in [GS08],

every writing image is processed by reading its pixel data in four column-first “directions”

3http://www.citlab.uni-rostock.de

http://www.citlab.uni-rostock.de

3.2 Neural Network

that arise from combining top-down and bottom-up column traversals with left-to-right

and right-to-left row traversals.

3.2 Neural Network

The neural networks used for CITlab systems are essentially based on preceeding work
presented in [GS08|. The basics are the same for all network types applied for HTRtS.
While preparing this contest, we investigated a variety of different modifications, param-
eter settings and certain random initializations, but mainly due to time limitations, this
has not been a systematic search. Nevertheless, according to their specific performance
on the HTRtS validation data set, we have chosen the two networks for the submissions

mentioned above.

3.2.1 Architecture

The architecture of the neural nets particularly follows [GSO0§|, but we introduced essential
modifications: Instead of traditional MDLSTM cells, we use two layers with MDLeaky
cells (JLLS13]) which were shown to be more stable and thus yield better performance.
They embrace one layer of classical tanh cells in between.

Furthermore, this network core is preceeded by a first layer accomplishing GABOR-
like feature extraction of frequency information with pre-defined, fixed parameters: 2
frequencies in 4 directions. In order to ensure realistic training durations, for HTRtS we
did not use trainable weights in this bottom network part.

Finally, right before the output layer, there is a purely technical layer without trainable
weights: It ensures that for every pixel column, just one activation value will be presented
to the output neurons. Thus, the overall procedure results in a size reduction (subsam-
pling) from the standard image height (see Section [2)) downto 1, but in fact, this is done
step-wisely over the layers by consecutive shrinkings of factors 4 in y-direction and 3 or 2
in x-direction, respectively.

Altogether, the networks finally used in the HTRtS competition incorporate a total of
1.195 cells and 376.426 trainable weights.

3.2.2 Qutput & Training Algorithm

According to the task of reading free texts, the networks have to deal with the complete
alphabet of latin letters and digits along with usual special characters as punctuation
marks, braces, quotes, ...In our setup, network output neurons are bijectively related to
characters (or character classes in few exceptional cases), i.e. for the HTRtS task, we
altogether work with 85 output neurons including an artificial garbage neuron that may
e.g. indicate inter-character states.

The network output activation then should estimate the probability or confidence of

the respective character at a certain image position. Collecting those activations over

3.3 Decoding

time, i.e. over the entire writing image, finally yields the so-called confidence matrix as
the final network output.

In order to let output activations really be useful confidence estimates, networks are
trained by Backpropagation-Through-Time (BPTT) using the Connectionist Temporal
Classification (CTC) algorithm described in [GEGS06] for calculating the gradient. The
initial internal weight values for those gradient descent training procedures are chosen

randomly.

3.3 Decoding

After applying the standard softmax normalization, at each time step, the neural net
provides a vector of probability estimates, each component counting for one entry of the
alphabet. As it was mentioned before, collecting those vectors over time finally yields
the network output, the so-called confidence matrix, N(x), for a given input writing,
x. Decoding algorithms then typically search for a most likely word w* for the network

output under consideration:
w* = argmax p(w|N(z)).
w

Since the garbage class typically has a high probability compared to other classes, the
garbage "letter” is often cheap to insert which might bias the decoding result from shorter
to longer word guesses. In order to correct for this, we prefer short words by considering

an additional penalty term proportional to the word length |w].
w* = argmin — In p(w|N(z)) — ajw|. (1)

Here « is a constant which has been chosen according to experimental experience.

For decoding structured text lines, the CITlab group developed rather advanced and
fairly elaborated strategies, algorithms and tools. While these will be presented in detail
in upcoming publications, we only give an explanatory survey here. Note that, all of that
is carried out by a Dynamic Programming based optimal path search in the confidence

matrix subject to dictionary restrictions.

(1) We start by guessing rather conservatively which parts of the line might be single

words or special characters.

(2) The respective submatrices are then decoded against the dictionary where the result

gets a first rating.

(3) Since the first line partitioning may be faulty, we get a second rating by decoding under
the assumption that the line segment under consideration were in fact containing two

words.

3.4 Training

(4) The third rating of the very same line segment simply is the bestpath, i.e. the sequence

of characters that receive the highest confidence per network output time step.

(5) Take the result with the best rating out of (2} [3 [4)).
Note that the out-of-vocabulary case is handled by : We simply take the raw

network output if no dictionary word(s) receive a better rating.

(6) Append the special characters (i.e. punctuation marks, quotes, braces, ...) according
to the partitioning found in .

It seems worth noticing that CITlab’s work focuses on the pure recognition part of
the entire process. Hence in fact, no further models at character, word or language level
were incorporated. Consequently, in HTRtS we used the exact transcriptions contained
in the XML-files for training and validation. On the other hand, our core system does not
consider the particular handling of special characters which was required in the HTRtS
rules, i.e. separating some punctutation marks, certain quotes and braces from the words
they were attached to in the original handwriting. Therefore, in order to get comparable
evaluation results, we added a standard regular expression substitution: This should

ensure a translation of our original recognition result into a HTRtS compatible form.

3.4 Training

CITlab’s contribution to HTR#tS fits to the restricted contest scheme, i.e. we exclusively
exploited data provided by the HTRtS organizers for this contest. We used (resp. ex-
tracted) three datasets, possibly except few items that, for some reason or the other, were

unusable:

data set fitems contents

HTRtS-full 10.613 HTRtS Training & Validation decks
HTRtS-train 9.198 full HTRtS Training deck
HTRtS-short 1.895 all lines of HTRtS-train with at most 30 characters

Table 1: CITlab’s training data sets (cf. [SRTV14], Table 1)

Networks were trained with a fixed momentum of 0.9 throughout the entire procedure.
As mentioned before, the two systems submitted use networks which only differ in their
training setup, see the following Table [2] for details. Here one epoch refers to one time
presenting the complete list used in any shuffled order.

The entire training procedure of these networks usually lasts several weeks. Due to
the technical setup of the distributed computing system CITlab uses, we cannot present
more precise estimates of the computing time because they would all lack the necessary
reliability.

By observing the training process continuously, we are able to adapt its parameters

depending on intermediate performance results on the HTRtS validation partition. This

4.1 Official Evaluation

f epochs data set learning rate
CITlab-Re-1
40 HTRtS-short 2e-3
92 HTRtS-train 2e-3
21 HTRtS-train le-3
22 HTRtS-train He-4
30 HTRtS-full le-3
30 HTRtS-full He-4
CITlab-Re-2
40 HTRtS-short 2e-3
32 HTRtS-full 5e-3
16 HTRtS-full 2e-3
16 HTRtS-full le-3

Table 2: Different training setup for the two submitted systems

explains some strangely looking figures in Table 2] However, it seems worth noting that

throughout all these procedures, no overfitting has been observed.

4 Application

After describing the developed systems and the training procedure we conclude by sum-
marizing the official evaluation and presenting extended results we obtained in further,
subsequent own examinations.

For testing various systems, we again exclusively used data provided by the HTRtS

organizers:

data set fitems contents

HTRtS-test 860 HTRtS Test deck
HTRtS-val 9.415 HTR¢tS Validation deck

Table 3: CITlab’s test data sets (cf. [SRTV14], Table 1)

4.1 Official Evaluation

On the previously unknown evaluation dataset HTRtS-test, the official HTRtS calcula-
tions [[SRTV14]| yielded a word error rate WER of 14.6 % and a character/label error
rate CER of 5.0 % for the best CITlab-Re system.

Using the HTRtS organizers’ evaluation tools, we (re)calculated these and other rates.
Note that the tiny differences seem to be due to a slightly different approach in handling
spaces. In order to see the systems’ generalization abilities, we also calculated the re-

spective rates for HTRtS-val. But note that, while these data were also used to train

4.2 Perspective

our systems, the decoder for the additional experiment only based on the dictionary ex-
tracted from HTRtS-train, i.e. it had to deal equally with out-of-vocabulary problems.
The following Table 4] presents all results.

WER CER
System HTRtS-test HTRtS-val HTRtS-test HTRtS-val
CITlab-Re-1 15.05 12.75 5.44 4.34
CITlab-Re-2 14.48 10.78 5.06 3.57

Table 4: Extended evaluation results

It seems worth noting that these results were obtained without any final word or lan-
guage model application. This might explain the slightly different behaviour of the CITlab
system compared to the others submitted to HTRtS: According to the diagrams plotted
in Figures 4 or 5 of [SRTV14], such language or word models should be able to further

reduce the error rates at central positions within lines or words, respectively.

4.2 Perspective

As already mentioned in Section 3.3, CITlab’s core focus and abilities are mainly related to
the recognition part of the entire handwritten document recognition process. Obviously,
it is particularly interesting to combine that with more advanced modeling techniques on
word and language level. However, due to time and resource limitations, we were not
able to accomplish this truly compelling task within HTRtS. But we remain very excited
about future possibilities of combining CITlab’s techniques, e.g. into the complete working
pipeline provided by the HTRtS organizers [SRTV14| from PRHLT at UPV.

Acknowledgement

We are really indebted to the HTRtS organizers from the PRHLT group at UPV for
setting up this evaluation and contest as well as for providing all the data along with
their working chain and the evaluation tools. In particular, we would like to thank Joan
Andreu Sanchez for his ongoing help in all details and his patience in handling CITlab’s
questions and problems while preparing this HTRtS submission.

The work presented in this paper was funded by research grant no. V220-630-08-TFMV-
S/F-059 (Verbundvorhaben, Technologieférderung Land Mecklenburg-Vorpommern) in

European Social / Regional Development Funds.

References

|[GFGS06] Alex Graves, Santiago Fernandez, Faustino Gomez, and Jirgen Schmidhu-

ber. Connectionist temporal classification: labelling unsegmented sequence

[GS08]

[LGSL14]

[LLS13]

[SRTV14]

References

data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369-376. ACM, 2006.

Alex Graves and Jiirgen Schmidhuber. Offline handwriting recognition with

multidimensional recurrent neural networks. In NIPS, pages 545-552, 2008.

Gundram Leifert, Tobias Griining, Tobias Strauf, and Roger Labahn. CIT-
lab ARGUS for historical data tables: Description of CITlab’s system for the
ANWRESH-2014 Word Recognition task. Technical Report 2014/1, Univer-
sitét Rostock, April 2014. Available: http://ftp.math.uni-rostock.de/
pub/preprint/2014/prel4_01.pdf.

Gundram Leifert, Roger Labahn, and Tobias Strauf. CITlab ARGUS for
arabic handwriting: Description of CITlab’s system for the OpenHaRT 2013
Document Image Recognition task. In Proceedings of the NIST 2013 Open-
HaRT Workshop [Online/, August 2013. Available: http://www.nist.gov/
itl/iad/mig/hart2013_wrkshp.cfm.

Joan Andreu Sanchez, Verénica Romero, Alejandro H. Toselli, and Enrique
Vidal. ICFHR 2014 HTR#tS: Handwritten Text Recognition on tranScripto-
rium Datasets. In Proceedings of the International Conference on Frontiers in
Handwriting Recognition — ICFHR 2014, August 2014.

http://ftp.math.uni-rostock.de/pub/preprint/2014/pre14_01.pdf
http://ftp.math.uni-rostock.de/pub/preprint/2014/pre14_01.pdf
http://www.nist.gov/itl/iad/mig/hart2013_wrkshp.cfm
http://www.nist.gov/itl/iad/mig/hart2013_wrkshp.cfm

	1 Introduction
	2 Preprocessing
	3 System specifications
	3.1 Input
	3.2 Neural Network
	3.2.1 Architecture
	3.2.2 Output & Training Algorithm

	3.3 Decoding
	3.4 Training

	4 Application
	4.1 Official Evaluation
	4.2 Perspective

