
Incremental Network Design with

Minimum Spanning Trees

Konrad Engel, Thomas Kalinowski
Universität Rostock, Germany

Martin W.P. Savelsbergh
University of Newcastle, Australia

June 7, 2013

Abstract

Given an edge-weighted graph G = (V,E) and a set E0 ⊂ E, the incremental network design problem
with minimum spanning trees asks for a sequence of edges e′1, . . . , e

′
r ∈ E \ E0 minimizing

∑T
t=1 w(Xt)

where w(Xt) is the weight of a minimum spanning tree Xt for the subgraph (V,E0 ∪ {e′1, . . . , e′t}) and
T = |E \ E0|. We prove that this problem can be solved by a greedy algorithm.

1 Introduction

Network planning involves two stages. First, the structure of the network needs to be decided. Second, the
construction of the network needs to be scheduled. The first stage, the network design stage, has received
considerable attention in the operations research literature (see the survey papers [8, 9] and the references
therein). The second stage, the network construction stage, has received far less attention. However, because
the construction of a network often stretches over a long period of time, the sequence in which the network
is constructed is important as it defines when specific parts of the network become operational. It may even
be beneficial to construct temporary links, i.e., links that are not part of the ultimate network, in order for
parts of the network to become operational.

The class of incremental network design problems introduced by Baxter et al. [1] integrates the two
stages of network planning and captures the trade-offs between construction cost and operational benefit.
More specifically, an incremental network design problem can be associated with any network optimization
problem P , e.g., finding a shortest path, finding a maximum flow, etc. In the most basic version, in addition
to the network optimization problem P , an instance is given by a network G = (V,E) with vertex set V and
edge set E and an existing edge set E0. The edge set E \ E0 is referred to as the potential edge set and
its cardinality T = |E \ E0| as the planning horizon. Let ϕP (G) denote the value of an optimal solution to
network optimization problem P on network G. We are seeking a sequence E0 ⊂ E1 ⊂ · · · ⊂ ET = E with
|Ei \ Ei−1| = 1 giving rise to networks G0, G1, . . . , GT = G, such that

∑T
t=1 ϕP (Gt) is minimum (assuming

that P is a minimization problem). That is, in the basic version, a single edge can be built in each period
of the planning horizon and we are seeking to minimize the operational costs over the planning horizon.

In more elaborate versions, a construction cost may be associated with building a potential edge and
a budget may be available in each period, and the objective is to minimize the operational costs over the
planning horizon subject to the constraint that the construction cost of the set of potential edges built in a
period does not exceed the budget in that period.

Two natural heuristics for incremental network design problems, quickest-improvement and quickest-
to-ultimate, are also of interest. Quickest-improvement always seeks to improve the value of the solution
to the network optimization as quickly as possible, i.e., by adding as few potential edges to the network as
possible. A description of quickest-improvement can be found in Algorithm 1.

1

Algorithm 1 quickest-improvement

i← 0 ; E′ ← E0

while ϕP (GE′) > ϕP (GE) do
k ← min {|E′′| : E′′ ⊆ E \ E′, ϕP (GE′)− ϕP (GE′∪E′′) > 0}
i← i+ 1 ; Ei ← arg max {ϕP (GE′)− ϕP (GE′∪E′′) : E′′ ∈ E \ E′, |E′′| = k}
E′ ← E′ ∪ Ei

return (E1, . . . , Ei, E \
⋃i

j=0Ej)

Quickest-to-ultimate first finds an optimal solution to the network optimization on the complete network,
referred to as an ultimate solution, and then always seeks to improve the value of the solution to the network
optimization as quickly as possible, but choosing only potential edges that are part of the ultimate solution.
A description of quickest-to-ultimate can be found in Algorithm 2.

Algorithm 2 quickest-to-ultimate

E = {edges in an optimal solution to P on GE}
i← 0 ; E′ ← E0

while ϕP (GE′) > ϕP (GE) do
k ← min

{
|E′′| : E′′ ∈ E \ E′, ϕP (GE′)− ϕP (GE′∪E′′) > 0

}
i← i+ 1 ; Ei ← arg max

{
ϕP (GE′)− ϕP (GE′∪E′′) : E′′ ∈ E \ E′, |E′′| = k

}
E′ ← E′ ∪ Ei

return (E1, . . . , Ei, E \
⋃i

j=0Ej)

Incremental network design problems have been studied for the shortest path problem [1] and for the
maximum flow problem [7]. In both cases, it was found that even the basic version of the incremental network
design problem is NP-complete. For the natural heuristics described above it has been shown that for the
shortest path problem, neither yields a constant factor approximation algorithm, but that for the maximum
flow problem with the additional restriction that all arcs have unit capacity, quickest-to-ultimate yields a
2-approximation algorithm and quickest-improvement yields a 3/2-approximation algorithm.

These results have raised two questions: (1) Does there exist a network optimization problem for which the
incremental design problem is polynomially solvable? (2) Does there exist a network optimization problem for
which either quickest-to-ultimate or quickest-improvement solves the incremental design problem optimally?

In this paper, we answer both questions in the affirmative. We show that the basic version of the
incremental network design problem with minimum spanning trees is solved by both quickest-improvement
and quickest-to-ultimate.

The incremental network design problem with minimum spanning trees (IND-MST) is defined as fol-
lows. For a given graph G = (V,E), a weight function w : E → R, and a set of existing edges E0, such
that the subgraph G = (V,E0) is connected, find a sequence X0, X1, . . . , XT of spanning trees which
minimizes the sum of the weights w(X0) + · · · + w(XT) subject to the condition that X0 ⊆ E0 and
|Xi ∩ (E \ (E0 ∪X1 ∪ · · · ∪Xi−1))| 6 1 for 1 6 i 6 T , i.e., at most one edge from E \E0 might be added in
each step. This has some similarity with the problem of maintaining a dynamic minimum spanning tree while
the network data changes [3, 4, 5, 6, 11]. In contrast to these dynamic minimum spanning tree problems,
in our setting the network changes are not given as input, but are part of the decisions to be made. We
will show that IND-MST can be solved by a greedy algorithm. This is a consequence of the corresponding
result for the incremental matroid design problem with minimum weight matroid bases, which is stated in
Section 2 and proved in Section 3.

2

2 Incremental matroid design

Let M = (E, I) be a matroid of rank r, where E is the ground set, and I ⊆ 2E is the collection of
independent sets. We follow the notation of Schrijver [10]: the rank of a matroid M is denoted by rk(M),
minimal dependent sets are called circuits, for A ⊂ E and e ∈ E we write A+e = A∪{e} and A−e = A\{e},
and we denote the closure of a set A ⊆ E by span(A):

span(A) = {e ∈ E : rk(A+ e) = rk(A)}.

An important tool in our arguments is the following strong exchange property which was first proved by
Brualdi [2].

Strong exchange property. If X and Y are bases of a matroid M and e ∈ X, then there exists an element
e′ ∈ Y such that X − e+ e′ and Y − e′ + e are bases of M .

As additional input, we are given a weight function w : E → R and a subset E0 ⊂ E such that E0 contains
a basis of M . We define a function f : 2E\E0 → R by

f(A) = min{w(X) : X ⊆ E0 ∪A is a basis of M} for A ⊆ E \ E0.

The incremental matroid design problem with minimum weight bases (IMD-MWB) problem for the time
horizon T = |E \ E0| is the following optimization problem:

min

{
T∑

i=0

f(Ai) : A0 = ∅, |Ai \Ai−1| = 1 for i ∈ [T]

}
. (1)

For a basis X, a pair (e, e′) ∈ X × (E \ X) is called an exchange pair for X if X − e + e′ is another
basis. It is called an optimal exchange pair if w(e) − w(e′) is maximum. Algorithm 3 is a natural greedy
strategy for solving IMD-MWB, where the output defines the sets Ai in (1) via Ai = {e′1, . . . , e′i} for i 6 k
and Ai = Ai−1 + e′ for arbitrary e′ ∈ E \ (E0 ∪ Ai−1) for k + 1 6 i 6 T . This corresponds to using
quickest-improvement.

Algorithm 3 Greedy algorithm for the incremental minimum weight basis problem

k ← 0
w∗ ← minimum weight of a basis of M
X ← any minimum weight basis of the submatroid induced by E0 (which is also a basis of M)
while w(X) > w∗ do
k ← k + 1
(e, e′)← an optimal exchange pair for X
X ← X − e+ e′

e′k ← e′

return (e′1, . . . , e
′
k)

Our main result is a consequence of the following theorem.

Theorem 1. Algorithm 3 finds an optimal solution for the problem IMD-MWB.

If the second component e′ of an exchange pair (e, e′) for X belongs to Y \ X, where Y ⊆ E, then we
call such a pair an exchange pair for (X,Y). Before proving Theorem 1 we observe that the search for an
optimal exchange pair can be restricted to exchange pairs (e, e′) for (X,Y), where Y is a fixed minimum
weight basis of M . This corresponds to using quickest-to-ultimate and leads to Algorithm 4.

3

Algorithm 4 Simplified greedy algorithm

X ← any minimum weight basis of the submatroid induced by E0

Y ← any minimum weight basis of the matroid M
for k = 1, . . . , |Y \X| do

(e, e′)← an optimal exchange pair for (X,Y)
X ← X − e+ e′

e′k ← e′

return (e′1, . . . , e
′
k)

Corollary 1. Algorithm 4 finds an optimal solution for the problem IMD-MWB.

Proof. This follows from the claim that for any basis X of M , and any minimum weight basis Y , there is
an optimal exchange pair (e, e′) for X with e′ ∈ Y . Suppose the claim is false and let (e, e′) be an optimal
exchange pair for X. By the strong exchange property applied to the bases X ′ = X − e+ e′ and Y and the
element e′ ∈ X ′, there exists an e′′ ∈ Y such that X ′ − e′ + e′′ = X − e+ e′′ and Y − e′′ + e′ are bases. Our
assumption implies w(e′′) > w(e′), while from the minimality of Y it follows that w(e′′) 6 w(e′).

3 Proof of Theorem 1

The following lemma is stated in [4] for graphical matroids. The argument works in general, and in order to
make our presentation self-contained we include the short proof.

Lemma 1. Let M = (E, I) be a matroid, E0 ⊆ E, A ⊆ E \ E0. In addition, let M0 = (E0, I0) and
MA = (E0 ∪ A, IA) be the matroids induced by E0 and E0 ∪ A, respectively, i.e. I0 = {X ∩ E0 : X ∈ I}
and IA = {X ∩ (E0 ∪A) : X ∈ I}, and let X be a minimum weight basis for the matroid M0. Then there
is a minimum basis Y of MA such that Y ⊆ X ∪A.

Lemma 1 is proved by iterating the next lemma which states that a single element exchange is sufficient
in order to update the minimum weight basis after one potential element is added.

Lemma 2. Let A ⊆ E \E0, and let XA be a minimum weight basis for the matroid MA induced by E0 ∪A.
For every e ∈ E \ (E0 ∪A), the set XA + e− e′ is a minimum weight basis for the matroid MA+e induced by
E0 ∪A+ e, where e′ is an element of maximum weight in the circuit of X + e.

Proof. Suppose the statement is false and let Y be a basis of MA+e with w(Y) < w(X)+w(e)−w(e′). Then
e ∈ Y , and by the strong exchange property, there exists e′′ ∈ X such that Y + e′′ − e and X + e − e′′ are
bases. The choice of e′ implies w(e′′) 6 w(e′), while minimality of X and our assumption on Y imply that

w(X) 6 w(Y − e+ e′′) = w(Y)− w(e) + w(e′′)

< w(X) + w(e)− w(e′)− w(e) + w(e′′) = w(X)− w(e′) + w(e′′),

hence w(e′′) > w(e′), and this contradiction concludes the proof.

Proof of Lemma 1. Let A = {e1, . . . , ek}, set A0 = ∅ and Ai = {e1, . . . , ei} for i = 1, . . . , k, and apply
Lemma 2 with A = Ai, e = ei+1 for i = 0, . . . , k − 1.

For t = 0, 1, . . . , T , let
Ft = min {f(A) : A ⊆ E \ E0, |A| = t} .

Note that F0 > F1 > · · · > Ft = Ft+1 = · · · = FT for some t 6 min{r, T} and Algorithm 3 terminates with
k > t. Clearly, F0 + F1 + · · ·+ FT is a lower bound for (1). The correctness of Algorithm 3 follows from the
fact that it achieves this lower bound, which in turn is a consequence of the following extension property.

Lemma 3. Let k < t be arbitrary, and let A,B ⊆ E \ E0 with |A| = k, |B| = k + 1, f(A) = Fk and
f(B) = Fk+1. Then there exists e ∈ B \A such that f(A+ e) = Fk+1.

4

Proof. Let M0, MA and MB denote the submatroids induced by E0, E0 ∪ A and E0 ∪ B, respectively. We
have rk(M0) = rk(MA) = rk(MB) = r because E0 contains a basis of M . By the optimality of A and
B and since Fk+1 < Fk, the sets A and B are contained in every minimum weight basis of MA and MB ,
respectively, and by Lemma 1, there are minimum weight bases X, XA and XB for these submatroids with
XA \X = A and XB \X = B. We define a bipartite digraph (U ∪ V,A) with parts

U = XA \ span((XB ∩X) ∪A), V = XB \ span((XB ∩X) ∪A).

Note that rk((XB∩X)∪A) 6 |(XB∩X)∪A| = r−1, hence U ,V 6= ∅. Also, U ⊆ X ⊆ E0 and V ⊆ B ⊆ E\E0,
hence U ∩ V = ∅. The element set is defined by

A = {(e, e′) ∈ U × V : (e, e′) is an exchange pair for XA}
∪ {(e, e′) ∈ V × U : (e, e′) is an exchange pair for XB} .

Let e′ ∈ V. Then e′ ∈ E \ (E0 ∪ A), hence e′ 6∈ XA and XA + e′ contains a circuit C. We claim that
C − e′ 6⊆ span((XB ∩X)∪A), and this implies that there exist e ∈ C ∩U , and consequently (e, e′) ∈ A. For
the sake of contradiction, suppose the claim is false and C − e′ ⊆ span((XB ∩X) ∪ A). From the fact that
C is a circuit, it follows that

e′ ∈ span(C − e′) ⊆ span((XB ∩X) ∪A)

which is a contradiction to e′ ∈ V. Similarly, if e′ ∈ U , then e′ ∈ XA \ A ⊆ E0 and e′ 6∈ XB ∩ X, which
implies e′ 6∈ XB , hence there exists a circuit C in XB +e′. As before, the assumption that C−e′ is contained
in span((XB ∩ X) ∪ A) leads to the contradiction e′ ∈ span((XB ∩ X) ∪ A). By this argument, for every
e′ ∈ U there exists an e ∈ V with (e, e′) ∈ A. We conclude that every node in the digraph (U ∪ V,A) has
positive indegree, thus the digraph contains a directed cycle, and this implies that there are e′, e′′ ∈ U and
e ∈ V such that (e′, e) ∈ A, (e, e′′) ∈ A, and w(e′) > w(e′′). From this we derive

f(A+ e) 6 w(XA + e− e′) = f(A) + w(e)− w(e′) 6 Fk + w(e)− w(e′′)

6 f(B − e) + w(e)− w(e′′) 6 w(XB − e+ e′′) + w(e)− w(e′′) = w(XB) = Fk+1.

The converse inequality f(A+ e) > Fk+1 is obvious and this concludes the proof.

4 Run-time analysis

In order to bound the time complexities of the problems IMD-MWB and IND-MST, we argue that the
initial basis X, the ultimate basis Y and the list of exchange pairs E can be determined simultaneously. The
idea is to consider the elements of E in order of nondecreasing weights and to construct and maintain three
independent sets X, Y and Z using the following update rules:

1. An element e ∈ E is added to X if and only if e ∈ E0 and the addition of e does not create a circuit
in X. Hence X is an initial minimum weight basis when the algorithm terminates.

2. An element e ∈ E is added to Y if and only if the addition of e does not create a circuit in Y . Hence
Y is an ultimate minimum weight basis when the algorithm terminates.

3. An element e ∈ E is added to Z if and only if it is added to X or Y . We will show that because an
edge added to Y does not create a cycle in Y , it does not create a cycle in Z. Therefore, if an edge e
added to Z creates a cycle C, then e ∈ E0 and C must contain an element of E \ E0 and a maximum
weight element e′ of C \E0 is removed from Z. The pair (e, e′) is added to the set E of exchange pairs.

To finish up, the set E of exchange pairs (e, e′) is ordered such that w(e)−w(e′) is nonincreasing, and ties are
broken in favor of the pair that was added to E last. More precisely, we index E = {(e1, e′1), . . . , (ek, e

′
k)}, such

that for every i ∈ {1, . . . , k − 1}, we have either w(ei)− w(e′i) > w(ei+1)− w(e′i+1), or w(ei+1)− w(e′i+1) =
w(ei) − w(e′i) and the pair (ei, e

′
i) is added to E after (ei+1, e

′
i+1). A formal description can be found in

Algorithm 5. For the remainder of the section, let k be the size of the set E returned by the algorithm.

5

Algorithm 5 Efficient solution of the problem IMD-MWB

X ← ∅; Y ← ∅; Z ← ∅ // initialize three independent sets
E ← ∅ // initialize set of exchange pairs
for e ∈ E do // in nondecreasing order of weight

if e ∈ E0 then
if X + e ∈ I then
X ← X + e; Z ← Z + e
if Z contains a circuit C then
e′ = arg max{w(e′′) : e′′ ∈ C \ E0}
Z ← Z − e′; E ← E ∪ {(e, e′)}

if Y + e ∈ I then
Y ← Y + e; Z ← Z + e

sort E
return X and E = {(e1, e′1), . . . , (ek, e

′
k)}

In order to show the correctness of Algorithm 5, we introduce some additional notation. Let X0 = X and
Xi = Xi−1 − ei + e′i for (ei, e

′
i) ∈ E for i = 1, 2, . . . , k. Let m = |E|. We say that e has position p, denoted

by pos(e) = p, if e is the element that is handled in the p-th iteration of the for-loop, 1 6 p 6 m. Note that
pos(e) < pos(e′) implies w(e) 6 w(e′).

Let Xp, Y p, Zp denote the sets X, Y and Z after the p-th iteration of the for-loop has been completed,
0 6 p 6 m. It is obvious, that if p 6 l, then

Xp ⊆ X l and Y p ⊆ Y l.

For i = 1, . . . , k, we denote the circuit that leads to the deletion of e′i from Z by Ci. In other words, if
pos(ei) = p then Ci is the unique circuit in Zp−1 + ei and we have Zp = Zp−1 + ei − e′i. If e is any element
of Ci, then pos(e) 6 pos(ei) and hence w(e) 6 w(ei). By the choice of e′i we have

w(e) 6 w(e′i) for all e ∈ Ci \ E0. (2)

Let
Hp = {ei : i ∈ [k] and pos(ei) 6 p}, and H ′p = {e′i : i ∈ [k] and pos(ei) 6 p}.

That is, the sets Hp and H ′p contain the edges involved in exchanges occurring either before or when the
edge in position p is examined. More precisely, we have

(Xp × Y p) ∩ E = {(ei, e′i) : ei ∈ Hp and e′i ∈ H ′p}.

Lemma 4. We have for 0 6 p 6 m

1. Xp ⊆ Zp ⊆ Xp ∪ Y p,

2. span(Y p) = span(Zp),

3. Y p \Xp ⊆ E \ E0,

4. Xp, Y p, Zp ∈ I,

5. Xp \ Y p = Hp,

6. Y p \ Zp = H ′p.

Proof. We proceed by induction on p. The case p = 0 is trivial. Now consider the step p − 1 → p. From
Xp−1 ⊆ Zp−1 ⊆ Xp−1 ∪ Y p−1 we obtain directly Xp ⊆ Zp ⊆ Xp ∪ Y p since an element is added to Z iff it
is added to X or to Y and an element is deleted from Z only if this element does not belong to E0, i.e. not
to X. Now we prove the other assertions. Let e be the element with pos(e) = p.

If Xp = Xp−1 and Y p = Y p−1 then also Zp = Zp−1, Hp = Hp−1 and H ′p = H ′p−1 and the assertion
follows from the induction hypothesis. So there are three main cases:

6

Case 1. Xp = Xp−1 + e and Y p = Y p−1. Then e ∈ span(Y p−1). By the induction hypothesis, e ∈
span(Zp−1) and consequently Zp = (Zp−1 + e) − e′ for some e′ in the unique circuit of Zp−1 + e
where e′ ⊆ E \ E0 and e′ 6= e. Obviously, Zp ∈ I and span(Zp) = span(Zp−1 + e) = span(Zp−1) =
span(Y p−1) = span(Y p). Obviously, Xp, Y p ∈ I and Y p \ Xp ⊆ Y p−1 \ Xp−1 ⊆ E \ E0. Finally,
Xp \ Y p = (Xp−1 + e) \ Y p−1 = (Xp−1 \ Y p−1) + e = Hp−1 + e = Hp and Y p \Zp = Y p−1 \ ((Zp−1 +
e)− e′) = (Y p−1 \ Zp−1) + e′ = H ′p−1 + e′ = H ′p.

Case 2. Xp = Xp−1 and Y p = Y p−1 +e. Then Zp = Zp−1 +e and hence span(Y p) = span(Zp). Obviously,
Xp, Y p ∈ I and e /∈ span(Y p−1), i.e. e /∈ span(Zp−1). Thus Zp ∈ I.

If e ∈ E0 then e ∈ span(Xp−1) ⊆ span(Zp−1) = span(Y p−1), which contradicts Y p−1 + e ∈ I. Hence
e /∈ E0. Then Y p \ Xp = (Y p−1 + e) \ Xp−1 ⊆ E \ E0. Finally, Xp \ Y p = Xp−1 \ (Y p−1 + e) =
Xp−1 \ Y p−1 = Hp−1 = Hp and Y p \ Zp = Y p−1 \ Zp−1 = H ′p−1 = H ′p.

Case 3. Xp = Xp−1 + e and Y p = Y p−1 + e. Then Xp, Y p ∈ I and e /∈ span(Y p−1), i.e. e /∈ span(Zp−1).
Thus Zp−1 + e ∈ I. This implies Zp = Zp−1 + e and consequently span(Y p) = span(Zp) as well as
Y p \ Xp = Y p−1 \ Xp−1 ⊆ E \ E0. Finally, Xp \ Y p = Xp−1 \ Y p−1 = Hp−1 = Hp and Y p \ Zp =
Y p−1 \ Zp−1 = H ′p−1 = H ′p.

In the following, we denote the three independent sets that the algorithm terminates with by X,Y , and
z, i.e., X = Xm, Y = Y m and Z = Zm.

Corollary 2. We have

1. X = Z,

2. X \ Y = {e1, . . . , ek},

3. Y \X = {e′1, . . . , e′k}.

Proof. By our general supposition that E0 contains a basis, the set X is a basis for M . Since, by Lemma 4,
Z is independent and X ⊆ Z, we have X = Z. Again, by Lemma 4, X \Y = Xm \Y m = Hm = {e1, . . . , ek}
and Y \X = Y \ Z = Y m \ Zm = H ′m = {e′1, . . . , e′k}.

Corollary 3. If pos(ei) = p, i ∈ [k], then Ci ∩H ′p = {e′i}.

Proof. We have Ci ⊆ Zp−1 + ei = Zp + e′i and thus Ci∩H ′p = Ci∩ (Y p \Zp) ⊆ (Zp + e′i)∩ (Y p \Zp) = {e′i}.
Clearly, e′i ∈ Ci ∩H ′p.

Lemma 5. Let C be a circuit in X ∪ Y . Let

e∗ = arg max{pos(e) : e ∈ C}.

Then e∗ = el for some l ∈ [k].

Proof. Let pos(e∗) = q. Then C − e∗ ⊆ Xq−1 ∪ Y q−1. This implies e∗ ∈ span(Xq−1 ∪ Y q−1) and from
Lemma 4 we obtain e∗ ∈ span(Xq−1 ∪ Zq−1) = span(Zq−1). Since e∗ ∈ Xq ∪ Y q, but e∗ /∈ Xq−1 ∪ Y q−1 we
must have Xq = Xq−1 +e∗ and Zq = Zq−1 +e∗−e′ for some e′ ∈ E \E0. Hence e∗ = el for some l ∈ [k].

Lemma 6. We have Ci ⊆ X ∪ {e′1, . . . , e′i} for every i ∈ [k].

Proof. Using Corollary 2, we obtain Ci ⊆ X ∪ Y = X ∪ (Y \X) = X ∪ {e′1, . . . , e′k}. Assume that there is
some j > i such that e′j ∈ Ci. Then pos(ej) > pos(ei) and thus w(ej) > w(ei). From (2) and e′j in Ci \ E0,
we obtain w(e′i) > w(e′j). Consequently, w(ej) − w(e′j) > w(ei) − w(e′i), a contradiction to the ordering of
E .

Lemma 7. For i ∈ [k] the pair (ei, e
′
i) is an exchange pair for (Xi−1, Y).

7

Proof. Clearly, e′i ∈ Y \ (X ∪ {e′1, . . . , e′i−1}) ⊆ Y \Xi−1. We have to show that ei lies in the unique circuit
of Xi−1 + e′i = (X \ {e1, . . . , ei−1}) ∪ {e′1, . . . , e′i}. An equivalent statement is that there is a circuit in
(X \ {e1, . . . , ei−1}) ∪ {e′1, . . . , e′i} containing ei. From Lemma 6, we know that there is at least a circuit in
X ∪ {e′1, . . . , e′i} containing ei, namely Ci. For a circuit C, let

µi
C = max{pos(ej) : j ∈ [i− 1] and ej ∈ Ci},

where the maximum extended over an empty set is defined to be −∞.
Assume that there is no circuit in (X \ {e1, . . . , ei−1}) ∪ {e′1, . . . , e′i} containing ei. Then we choose a

circuit C in X ∪ {e′1, . . . , e′i} containing ei such that µi
C is minimal. By our assumption, µi

C is finite and
there exists an integer l ∈ [i− 1] such that el ∈ Ci and pos(el) = µi

C . The circuit Cl also contains el and is
contained in X ∪ {e′1, . . . , e′i} in view of Lemma 6 and l < i. Note that pos(e) < pos(el) for all e ∈ Cl − el.
But there is also a circuit C̃ ⊆ C ∪ Cl − el. Obviously, C̃ ⊆ X ∪ {e′1, . . . , e′i} and µi

C̃
< µi

C , a contradiction
to the choice of C.

Lemma 8. For i ∈ [k] the pair (ei, e
′
i) is an optimal exchange pair for (Xi−1, Y).

Proof. Assume that (ei, e
′
i) is not optimal. Then there is a better exchange pair (ê, ê′) for (Xi−1, Y). We

have ê′ ∈ Y \ Xi−1 = (Y \ (X ∪ {e′1, . . . , e′i−1})) ∪ (Y ∩ {e1, . . . , ei−1}). From Corollary 2 it follows that
ê′ = e′j for some j ∈ [k]. Since e′1, . . . , e

′
i−1 /∈ Y \Xi−1,

j > i. (3)

Let Ĉ be the unique circuit in Xi−1 + e′j (containing ê) and let e∗ = arg max{pos(e) : e ∈ Ĉ}. Then
w(e∗) > w(ê). By Lemma 5, e∗ = el for some l ∈ [k]. In particular, e∗ 6= e′j and thus (e∗, e′j) is also an
exchange pair for (Xi−1, Y). Since e1, . . . , ei−1 /∈ Xi−1,

l > i. (4)

We have (with e∗ = el) w(el)− w(e′j) > w(ê)− w(e′j) and hence

w(el)− w(e′j) > w(ei)− w(e′i). (5)

By the ordering of E and by (4),
w(ei)− w(e′i) > w(el)− w(e′l). (6)

The inequalities (5) and (6) imply
w(e′j) < w(e′l). (7)

Let p = pos(el). Then pos(ej) < p, because otherwise w(ej) > w(el) and hence, in view of (3) and the
ordering of E ,

w(el)− w(e′j) 6 w(ej)− w(e′j) 6 w(ei)− w(e′i),

a contradiction to (5). Moreover, Ĉ ⊆ Xp ∪ Y p since el has maximal position in Ĉ. For a circuit C let

αp
C = max{w(e′h) : h ∈ [k], e′h ∈ C and pos(eh) 6 p},
νC = min{pos(eh) : h ∈ [k] and e′h ∈ C},

where the maximum (resp. minimum) extended over an empty set is defined to be −∞ (resp. ∞). For

Ĉ these values are finite since e′j ∈ Ĉ and pos(ej) < p. Hence there is an integer g ∈ [k] such that

e′g ∈ Ĉ,pos(eg) 6 p and w(e′g) = αp

Ĉ
. Note that

g 6 i− 1 or g = j (8)

since Ĉ ⊆ X ∪ {e′1, . . . , e′i−1, e′j}. We say that a circuit C is p-majorized by a number α if

w(e′h) 6 α for all h ∈ [k] with e′h ∈ C and pos(eh) 6 p.

8

Note that Ĉ is p-majorized by αp

Ĉ
. Now choose a circuit C∗ in Xp ∪ Y p that contains el, is p-majorized by

αp

Ĉ
and has maximal ν-value.

Note that, in view of Lemma 4, C∗ ⊆ Xp∪Y p ⊆ Zp∪Y p = Zp∪ (Y p \Zp) = Zp∪H ′p. We have νC∗ 6 p
because otherwise C∗ ∩H ′p = ∅ and C∗ would be a circuit in Zp.

Assume that νC∗ < p. Then choose q ∈ [k] such that e′q ∈ C∗ and pos(eq) = νC∗ and consider the circuit
Cq. We have Cq ⊆ Xp ∪ Y p because of pos(eq) < p. Moreover, w(e′h) 6 w(e′q) and pos(eh) > pos(eq) for all
h ∈ [k] with e′h ∈ Cq by the choice of e′q in Cq and Corollary 3. Since C∗ is p-majorized by αp

Ĉ
, in particular

w(e′q) 6 αp

Ĉ
and thus also Cq is p-majorized by αp

Ĉ
. From e′q ∈ C∗∩Cq and el ∈ C∗ \Cq it follows that there

is a circuit C̃ ⊆ C∗ ∪ Cq − e′q containing el. Clearly, C̃ ⊆ Xp ∪ Y p and C̃ is p-majorized by αp

Ĉ
. Obviously,

min{pos(eh) : h ∈ [k] and e′h ∈ Cq ∪ C∗} = pos(eq). Thus νC̃ > νC∗ , a contradiction to the choice of C∗.
Consequently, νC∗ = p. Since el is the (unique) element of position p, necessarily e′l ∈ C∗. Because C∗

is p-majorized by αp

Ĉ
, in particular w(e′l) 6 αp

Ĉ
= w(e′g). From (7) we obtain g 6= j, hence by (8) and (4),

g 6 i− 1 < l. (9)

On the other hand, the relation pos(eg) 6 pos(el) implies w(eg) 6 w(el). Consequently,

w(el)− w(e′l) > w(eg)− w(e′g),

and then the ordering of E implies l 6 g, which contradicts (9). Thus our first assumption was false, and
the proof is complete.

Let us assume that Algorithm 5 gets as input the elements of E in nondecreasing order of weights. Then
in each iteration of the for-loop there are three independence tests, and at most one search for the element
e′ ∈ Z to be removed. This latter step is necessary at most r times and can be done in time O(|Z|) = O(r),
where r = rk(M) is the rank of the matroid. Assuming the availability of an independence oracle for the
matroid, the for-loop terminates in time O(|E| + r2). The final sorting of E takes time O(r log r). To
summarize, we have proved the following bound for the time complexity of the problem IMD-MWB.

Theorem 2. Relative to an independence oracle, the problem IMD-MWB for a matroid M = (E, I) of rank
r can be solved in time

O(max{|E|+ r2, |E| log|E|}).

Finally, we consider the special case where M is a graphical matroid to solve our original problem IND-
MST.

Theorem 3. The problem IND-MST for a graph with n vertices and m edges can be solved in time

O(max{n2, m logm}).

Proof. Constructing minimum spanning trees X and Y takes m logm time. Maintaining the set Z takes
m logm time, except for the time taken to search for exchange pairs. It can happen at most n−1 times that
an edge e added to Z creates a cycle, and when that happens, the cycle itself and the edge e′ ∈ E \ E0 on
the cycle with the largest weight can be found in O(n) time by DFS. This gives a run-time bound of

O(max{m log n+ n2, m logm}) = O(max{n2, m logm}).

References

[1] M. Baxter, T. Elgindy, A. T. Ernst, T. Kalinowski, and M. W. P. Savelsbergh. Incremental network de-
sign with shortest paths. preprint http://www.optimization-online.org/DB_FILE/2013/01/3752.

pdf, 2013.

[2] R. A. Brualdi. Comments on bases in dependence structures. Bulletin of the Australian Mathematical
Society, 1(2):161–167, 1969.

9

http://www.optimization-online.org/DB_FILE/2013/01/3752.pdf
http://www.optimization-online.org/DB_FILE/2013/01/3752.pdf

[3] F. Chin and D. Houck. Algorithms for updating minimal spanning trees. Journal of Computer and
System Sciences, 16(3):333–344, 1978.

[4] D. Eppstein. Offline algorithms for dynamic minimum spanning tree problems. Journal of Algorithms,
17(2):237–250, 1994.

[5] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification – a technique for speeding up
dynamic graph algorithms. Journal of the ACM (JACM), 44(5):669–696, 1997.

[6] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications.
SIAM Journal on Computing, 14(4):781–798, 1985.

[7] T. Kalinowski, D. Matsypura, and M. W. P. Savelsbergh. Incremental network design with maximum
flows. In preparation, 2013.

[8] H. Kerivin and A. R. Mahjoub. Design of survivable networks: A survey. Networks, 46(1):1–21, 2005.

[9] T. L. Magnanti and R. T. Wong. Network design and transportation planning: Models and algorithms.
Transportation Science, 18(1):1–55, 1984.

[10] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24 of Algorithms and Com-
binatorics. Springer, 2003.

[11] P. M. Spira and A. Pan. On finding and updating spanning trees and shortest paths. SIAM Journal on
Computing, 4(3):375–380, 1975.

10

	Introduction
	Incremental matroid design
	Proof of Theorem 1
	Run-time analysis

