
Incremental network design with shortest paths∗

Matthew Baxter Tarek Elgindy Andreas Ernst Thomas Kalinowski
Martin Savelsbergh

Abstract

We introduce a class of incremental network design problems focused on investigating the optimal
choice and timing of network expansions. We concentrate on an incremental network design problem
with shortest paths. We investigate structural properties of optimal solutions, we show that the simplest
variant is NP-hard, we analyze the worst-case performance of natural greedy heuristics, and we derive a
4-approximation algorithm.

1 Introduction

Consider a network optimization problem, e.g., a shortest path problem, a maximum flow problem, or a
traveling salesman problem. Next, assume that this optimization problem has to be solved in a number of
consecutive time periods and that in each time period the value of an optimal solution is recorded, e.g., the
cost of an s− t path, the value of an s− t flow, or the cost of a TSP tour. Let the objective be to minimize
or maximize the total cost or value over the planning horizon. At this point, that simply means solving the
network optimization problem and multiplying the value of an optimal solution with the number of time
periods in the planning horizon. It becomes more interesting when a budget is available in each time period
to expand the network, i.e., to build additional links. Expanding the network may improve the cost or value
of an optimal solution to the network optimization problem in future time periods and thus may improve
the total cost or value over the planning horizon. However, deciding which links to build and the sequence
in which to build them is nontrivial. In part, because in some situations the benefits of building a link will
only materialize when other links have been built as well, e.g., adding a single link to the network does not
lead to a shorter TSP tour, but adding two links to the network does.

We introduce a class of incremental network design problems focused on the optimal choice and timing
of network expansions given that these network expansions impact the value a solution to an optimization
problem that is solved on the network in each of the periods of the planning horizon. We concentrate on
the incremental network design problem with shortest paths. We investigate structural properties of optimal
solutions, we show that even the simplest variant is NP-hard, we establish a class of instances that can be
solved in polynomial time, we analyze the worst-case performance of natural greedy heuristics, and we derive
a 4-approximation algorithm.

Even though single-stage or single-period network design problems have been studied extensively, multi-
stage or multi-period network design problems, which occur just as often in practice, have received much less
attention. We hope that our investigation demonstrates that multi-period network design problems present
interesting challenges and can produce intriguing and surprising results.

The remainder of the paper is organized as follows. In Section 2, we introduce the class of incremental
network design problems. In Section 3, we present a brief literature review. In Section 4, we introduce the
incremental network design problem with shortest paths. In Sections 5 and 6, we analyze the complexity
of the incremental network design problem with shortest paths, and we explore the performance of natural
greedy heuristics, respectively. In Section 7, we develop a 4-approximation algorithm for the incremental
network design problem with shortest paths. Finally, in Section 8, we discuss possible extensions and future
research.

∗submitted. 2013

1

2 A Class of Incremental Network Design Problems

Incremental network design problems have two characteristic features: a design feature, since we are deciding
which arcs will be part of a network, and a multi-period feature, since the ultimate network design is built
over a number of time periods.

The general structure of an incremental network design problem is as follows. We are given a network
D = (N,A) with node set N and arc set A = Ae ∪ Ap, where Ae contains existing arcs and Ap contains
potential arcs. Each arc a ∈ A has a capacity Ca. Let T be the planning horizon. A budget Bt is available
in every time period t ∈ {1, . . . , T}. The budget can be used to build potential arcs a ∈ Ap, which will be
available for use in the following period. For each potential arc a ∈ Ap, there is an associated build-cost
ca 6 B. Let yta be a 0-1 variable indicating whether arc a ∈ Ap has been built in or before time period t,
with all potential arcs initially unbuilt (y0

a = 0). Thus, yta − yt−1
a = 1 indicates that arc a is built in time

period t and can be utilized in period t+ 1. In every time period, a network optimization problem P has to
be solved over the usable arcs in time period t, i.e., the existing arcs and the potential arcs that have been
built before time period t. Let xta represent the flow on arc a ∈ A in time period t ∈ {1, . . . , T} in an optimal
solution to the network optimization problem. Let F (P) define the “structure” of feasible solutions to the
network optimization problem, i.e., the set of constraints imposed on the flow variables (that it has to be an
s− t path, s− t flow, a TSP tour, etc.). The value of an optimal solution to the network optimization P in
time period t is function of the flows on the arcs in that period and denoted by c(xt). The objective is to
minimize the total cost over the planning period. Thus, the generic formulation of an incremental network
design problem is as follows:

min
∑

t∈{1,...,T}

c(xt)+
∑

t∈{1,...,T},a∈Ap

ca(yta − yt−1
a)

s.t. xt ∈ F (P) for all t ∈ {1, . . . , T},
xta 6 Cay

t−1
a for all a ∈ Ap, t ∈ {1, . . . , T},∑

a∈Ap

ca(yta − yt−1
a) 6 Bt for all t ∈ {1, . . . , T},

yta > yt−1
a for all a ∈ Ap, t ∈ {2, . . . , T}

An incremental network design problem has characteristics in common with network design problems
and with dynamic facility location problems. A brief review of some relevant literature is given below.

3 Literature review

Network design is a fundamental optimization problem and has a rich research tradition. The seminal paper
by Magnanti and Wong [8] discusses many of its features, applications, models, and algorithms, with an
emphasis on network design in transportation planning. Kerivin and Mahjoub [5] survey many of network
design problems studied in telecommunications. The paper by Magnanti and Wong [8] mentions “Time Scale”
as one of characteristics of a network design problem that can vary in different planning environments, e.g.,
transportation and water resource design decisions have long-term effects whereas communication system
designs frequently are more readily altered. Not withstanding, the paper focuses exclusively on single-period
or single-stage network design problems. Recently, the interest in multi-period or multi-stage network design
problems in the area of transportation planning has picked up, partly because it better meets practitioners
needs, as in many environments network design decisions span planning periods of up to 25 years and
the intermediate network configurations are of concern as well as the final network configuration (see for
example [6] and [11]). A class of network design problems where construction over time has been studied
extensively is dynamic facility location (the recent review of Arabani and Farahani [1] is completely dedicated
to dynamic facility location).

Studying approximation algorithms for network design problems has been popular as well, especially in
the computer science community. Two prime examples are the papers by Goemans et al. [3] and Gupta et
al. [4]. These approximation algorithms are for single-period network design problems. Multi-period or
incremental approximation has been introduced in the context of facility location by Mettu and Plaxton [9].

2

They consider a situation where a company is building facilities in order to supply its customers, but because
of capital considerations, the company will build the facilities over time. The question asked is whether the
company can plan its future expansion in such a way that when it has opened the first k facilities, it is close,
in value, to that of an optimal solution in which any choice of k facilities is opened. This problem is known
as the incremental k-median problem. More formally, in the incremental k-median problem, we are given
the input of the k-median problem without the parameter k and must produce a sequence of the facilities.
For each k, consider the ratio of the cost of opening the first k facilities in the ordering to the cost of an
optimal k-median solution. The goal of the problem is to find an ordering that minimizes the maximum of
this ratio over all values of k. See Lin et al. [7] for more on incremental optimization problems.

This brief literature review has covered areas of research that are relevant to the study of the class
of incremental network design problems introduced in this paper. The review identified survey papers on
single-period network design, recent papers discussing the practical importance of investigating multi-period
network design, and fundamental papers on approximation algorithms for network design.

For the remainder of the paper, we focus on one particular incremental network design problem, namely
the incremental network design problem with shortest paths (INDP-SP).

4 The Incremental Network Design Problem with Shortest Paths

We are given a network D = (N,A) with node set N (|N | = n) and arc set A = Ae ∪ Ap (|A| = m), where
Ae is the set of existing arcs and Ap is the set of potential arcs, as well as a source s ∈ N and sink t ∈ N .
For each arc a ∈ A, we are given a length la > 0. Let T = |Ap|+ 1 be the planning horizon. In every time
period, we have the option to expand the usable network, which initially consists of only the existing arcs,
by “building” a single potential arc a ∈ Ap, which will be available for use in the following period. In every
period, the cost (or length) of a shortest s− t path is incurred (using only usable arcs, i.e., existing arcs and
potential arcs that have been built in previous periods). The objective is to minimize the total cost over the
planning horizon. Note that the length of the planning horizon ensures that every potential arc can be built.
This also implies that a shortest s− t path in D will always be built. We will refer to such a shortest s− t
path as an ultimate shortest s − t path to distinguish it from a shortest s − t path in a time period, which
depends on the potential arcs that have been built up to and including that period. Note that there may be
many ultimate shortest paths in the network, and the sequence of potential arcs built in an optimal solution
may not be unique. This problem is related to, but also quite different from, shortest path re-optimization
problems as studied by Gallo [2] and extended by Pallottino and Scutellà [10].

An example. Consider the network shown in Figure 1, where solid arcs represent existingarcs and dashed
arcs represent potential arcs. A path of length 52 can be built in three periods and the ultimate shortest
path of length 4 can be constructed in 4 periods. However, the optimal solution is to first build arcs a, b,
and c to give a path of length 54, and then to build arcs d, e, and f to complete the ultimate shortest path
for a total cost over the planning horizon of 3174.

We start by observing a useful property of an optimal solution. Let T̄ denote the time period in which
an ultimate shortest path is completed in an optimal solution.

Observation 1. Let (a1, a2, . . . , aT̄) be an optimal sequence of potential arcs to build (ai ∈ Ap). Let
(P1, P2, . . . , PT̄ , PT̄+1) be a sequence of associated shortest paths, where Pi is the path used while ai is being
constructed. Let ci be the cost of path Pi. By grouping paths with identical costs, we obtain subsequences
S1, S2, . . . , SK . Let PSi denote a path associated with subsequence Si. Let ASi denote the potential arcs
built during subsequence Si. Then we have

ASi = PSi+1 ∩Ap \ (PS1 ∪ · · · ∪ PSi) for i = 1, . . . ,K − 1.

Proof. Each arc aj for j = 1, . . . , T̄ must contribute to the construction of some path PSi
with i ∈ {1, . . . ,K},

otherwise an improved solution is obtained by simply removing aj from (a1, a2, . . . , aT̄). Furthermore,
suppose there exist j and j′ with j < j′ and i and i′ with i < i′ such that aj′ contributes to the construction
of path PSi

and aj contributes to the construction of path PSi′ , but not to the construction of paths PSk

3

s t
1 1 1 1

1 3

1

50

1000

s t
a

b c

s t
d e f

Figure 1: An example.

with k ∈ {i, i+ 1, . . . , i′ − 1}. By interchanging aj and aj′ , the paths PSk
with k ∈ {i, i+ 1, . . . , i′ − 1} are

completed earlier, while all other paths are completed at the same time, which reduces the total cost.

Thus, the problem can be viewed as seeking a sequence of potential arcs to build, but also as seeking
a sequence of paths to be constructed, and the last property establishes that in an optimal solution any
potential arc that is built before an ultimate shortest path is completed will be part of the next shortest
path.

5 Complexity

Since the shortest path problem is polynomially solvable, the complexity of the incremental network design
problem with shortest paths is not obvious. The following theorem shows that even the simplest variant of
the incremental network design problem with shortest paths as defined above is NP-hard.

Theorem 1. The incremental incremental network design problem with shortest paths is NP-hard.

Proof. Reduction from 3-SAT. Consider an instance of 3-SAT with m clauses, i.e., c1 ∧ c2 ∧ · · · ∧ cm, each
of which contains three literals, i.e., ci = (li1 ∨ li2 ∨ li3), where each literal is a Boolean variable xj or its
negation. Let there be n Boolean variables. We construct the instance of the incremental network design
problem with shortest paths given in Figure 2. As before, existing arcs are shown as solid arcs and potential

4

arcs are shown as dashed arcs. Let Mm = 1, Mm−1 = 2, . . ., M1 = m, M0 = m+1 and I = d (m+1)(n+1)
2 e+1,

and all other arcs have a cost of 0. Observe that initially there is only a single path from s to t with cost I.
Next observe that a shorter path of length M0 can be constructed in n periods by building one of the two
potential arcs associated with a variable xi (i.e., xi or ¬xi) for each of the n variables. Next observe that
a path from the source to the sink associated with clause ci requires that at least one of the potential arcs
associated with the literals in ci has to be build and that the cost of such a path is Mi. It is now easy to
see that if the instance of SAT-3 can be satisfied, a solution to the incremental shortest path problem with
value nI + (n+ 1)M0 +M1 +M2 + · · ·+Mm exists (all but n of the potential arcs, all associated with the
Boolean variables, will be build and the ultimate shortest path, with length 0, will be used in the last in
periods). Furthermore, if the instance of 3-SAT cannot be satisfied, a solution with strictly greater value
will be obtained. Note that sequence of potential arcs through nodes s1, s2, . . . , sn is introduced to ensure
that it is always advantages to build n potential arcs associated with the Boolean variables before building
a path associated with a clause.

Even though the incremental network design problem with shortest paths is NP-hard, we next show that
there exist special cases which are polynomially solvable. Consider the special case of disjoint paths graphs,
in which the arcs a ∈ A form node-disjoint paths from s to t. More specifically, consider a disjoint paths
graph with r+1 paths P0, P1, . . . , Pr. Because the paths are disjoint, the order in which the potential arcs on
a path are build is immaterial. Therefore, for i ∈ {0, 1, . . . , r}, let qi denote the number of potential arcs on
Pi, and, as before, let ci denote the cost of path Pi. It is easy to see that if ci > cj and qi > qj , then the path
Pi will not be constructed in an optimal solution. Therefore, we may assume that 0 = q0 < q1 < · · · < qr
and c0 > c1 > · · · > cr. We construct an auxiliary digraph D̄ with node set {0, 1, . . . , r + 1}. An arc set of
(r, r + 1) with weight cr, and arcs (i, j) for 0 6 i < j 6 r with weights

w(i, j) = qjci + (

j−1∑
k=i+1

qk)cr.

The paths from 0 to r in D̄ are in one-to-one correspondence to solutions of the given disjoint paths instance:
a path (0 = i0, i1, . . . , is = r) corresponds to building the paths Pi1 , Pi2 , . . . , Pis in this order, and the weight
of the path in D̄ equals the objective value for the disjoint paths instance. Note that qijcij−1 for j = 1, . . . , s
captures the cost of building path Pij and (

∑
i∈{1,...,r}\{i1,i2,...,is} qi)cr captures the cost incurred after the

ultimate shortest path has been built. Thus, we have proved the following result.

Proposition 1. An instance associated with a disjoint paths graph with r + 1 paths and characterized by
vectors (q1, . . . , qr) and (c0, . . . , cr) can be solved in time O(r2).

In the following proposition, we completely characterize the instances associated with disjoint paths
graphs where all potential arcs need to be build.

Proposition 2. For an instance associated with a disjoint paths graph with r+ 1 paths and characterized by
vectors (q1, . . . , qr) and (c0, . . . , cr) all potential arcs have to be built in any optimal solution if and only if

(qi+1 − qi)ci−1 + qicr > qi+1ci (1)

for all i ∈ {1, 2, . . . , r − 1}.
Proof. Suppose the inequality (1) holds for all i ∈ {1, . . . , r} and there is an optimal solution with I ⊆
{1, . . . , r} being the set of indices i such that Pi is built in this solution. Writing I = {i1 < i2 < · · · < is = r}
and putting i0 = 0, the optimal objective value is

f(I) =

s∑
k=1

qikcik−1
+ cr

 ∑
i∈{1,...,r}\I

qi + 1

Suppose there is some i ∈ {1, . . . , r − 1} with i 6∈ I. Then we may assume that i = il − 1 > il−1 for some
l ∈ {1, . . . , s} and the objective value for the index set I ′ = I ∪ {i} is

f(I ′) = f(I)− (qi+1 − qi)cil−1
+ qi+1ci − crqi < f(I)

5

...

¬x1x1

¬x2x2

¬xnxn

s1 s2
...

sn c1 c2
...

cm

to l11

to l12

to l13

to l21

to l22

to l23

to lm1

to lm2

to lm3

I

M0 M1

M2

Mm

s

t

Figure 2: Instance of INDP-SP used in the reduction from 3-SAT.

6

and this contradicts the optimality of I.
Conversely, suppose I = {1, 2, . . . , r} is the index set of the paths build in the unique optimal solution

with objective value f(I) and that there is an i ∈ {1, . . . , r−1} violating (1). The objective value for building
the paths with with indices in I ′ = I \ {i} is

f(I ′) = f(I) + (qi+1 − qi)ci−1 − qi+1ci + qicr 6 f(I)

contradicting the assumption that all paths have to be build in any optimal solution.

One possible way to satisfy the condition in Proposition 2 is to put qi = i for i = 0, 1, 2, . . . , r, and to
define cr recursively by cr = 0 and ci−1 = (i+ 1)ci + 1 for i = r− 1, r− 2, . . . , 0. This is illustrated in Figure
3 for r = 5.

s t

c0 = 153

c4 = 1

c3 = 6

c2 = 25

c1 = 76

Figure 3: An instance associated with a disjoint paths graph in which all potential arcs need to be build in
an optimal solution.

6 Greedy Heuristics

Two simple natural greedy heuristics are to

1. Always build arcs that lead to a shorter s− t path as quickly as possible (H1); and

2. Build an ultimate shortest path as quickly as possible (H2).

Next, we show that the performance of both these heuristics, as well as of the heuristic where we take
the best of the two solutions (H3), can be bad. Let the sequence (ck) be given by values c0 = 1, c1 = 1,
c2 = 4, and the recursion ck = 5ck−1 − 3ck−2 for k > 2.

Lemma 1. We have ck =
k−1∑
i=1

(i+ 2)ck−i + c0 for all k.

7

Proof. Induction on k. For k 6 2 it’s easy to check, and for k > 2 we get

ck = 5ck−1 − 3ck−2 = 3ck−1 + 2

(
k−2∑
i=1

(i+ 2)ck−1−i + c0

)
− 2ck−2 −

(
k−3∑
i=1

(i+ 2)ck−2−i + c0

)

= 3ck−1 + 4ck−2 +

(
k−2∑
i=2

2(i+ 2)ck−1−i −
k−3∑
i=1

(i+ 2)ck−2−i

)
+ c0

= 3ck−1 + 4ck−2 +

(
k−1∑
i=3

2(i+ 1)ck−i −
k−1∑
i=3

ick−i

)
+ c0

=

k−1∑
i=1

(i+ 2)ck−i + c0.

Now consider the instance given in Figure 4. We have T = |Ap| + 1 = 2 + 3 + · · · + (k + 1) + T/2 + 1,

ck−1

ck−2

c0

ck − 1
ck − 2 ck − T/2 + 1

ck − T/2

ck

b b b

b b b

b

b

b

b

b

b

Figure 4: Instance on which natural greedy heuristics perform bad.

hence T = (k + 1)(k + 2). We compare the following three strategies

1. H1, i.e. build the bottom path first, and then the remaining paths from bottom to top;

2. H2, i.e., build only the top path; and

3. Build all paths except the bottom one.

For large enough k, we can bound the corresponding objective function values as follows.

1. For H1 we get

T/2∑
i=0

(ck − i) + (ck − T/2) +

k−1∑
i=1

(i+ 2)ck−i + c0 =

(
T

2
+ 3

)
ck −

T (T + 2)

8
− T

2
> kck.

8

2. For H2 we get
(k + 1)ck + (T − k − 1)c0 > kck.

3. For the third strategy we get

2ck +

k−1∑
i=1

(i+ 2)ck−i + c0 +
T

2
c0 = 3ck +

T

2
c0 6 4ck.

This implies that the two simple natural greedy heuristics produce solutions with values that are at least
k
4 times the optimal value for this instance. The above shows that the two simple natural greedy heuristics
do not provide constant-factor approximation algorithms.

7 Approximation Algorithm

For k = 0, 1, . . . , T , let dk deonte the cost of the shortest path from source to sink using at most k arcs from
Ap. The value of dk can be computed using the modified Bellman-Ford algorithm shown in Algorithm 1,
where dk(u, v) is the cost of a shortest u− v path using at most k arcs from Ap. Set ∆′ = dT to be the cost
of an ultimate shortest path, and ∆ = d0 − dT be the cost of the initial shortest path, less the cost of an
ultimate shortest path.

Algorithm 1 k-costs from the source.

for k = 0, . . . , T do
if k = 0 then

dk(s, s)← 0
dk(s, v)←∞ for all v 6= s

else
dk(s, v)← dk−1(s, v) for all v ∈ N
for a = (v, w) ∈ Ap do

dk(s, w)← min {dk(s, w), dk(s, v) + ca}
for i = 1, . . . , n do

for a = (v, w) ∈ Ae
dk(s, w)← min {dk(s, w), dk(s, v) + ca}

return dk(s, t) as dk for all k

Denote the value of κi as the minimum number of arcs that need to be constructed to obtain an s − t
path with cost less than ∆′ + ∆

2i . For convenience, we also introduce parameters k0 = κ0 and ki = κi − κi−1

for i > 1, which gives κi = k0 + k1 + · · · + ki. Let K be the minimal index k with dk = dT , and r be the
smallest integer with dK−1 > ∆′ + ∆

2r . This gives κr = k0 + k1 + · · ·+ kr = K.
The approach that is taken in Algorithm 2, is to firstly determine the smallest number of arcs that can be

constructed such that cost of a shortest s−t path is less than ∆
2i +∆′ for each i = 0, 1, . . . , r. This defines the

values of κi and ki. If ki > 0, then ∆
2i + ∆′ provides a lower bound on the cost incurred while constructing

a path that has ki more potential arcs than the previously used shortest s− t path. Furthermore, ∆
2i−1 + ∆′

provides an upper bound on the cost incurred while constructing a path that has ki more potential arcs
then the previously used shortest s− t path. The number of arcs that must be constructed to complete this
path depends on the number of arcs previously constructed on the s − t path that is utilized. The lower
bound on the number of arcs that need to be constructed is ki, and the upper bound is given by κi. The
upper bound represents the case where the path is disjoint, and requires all potential arcs in the path to be
constructed. In Figure 5, these two cases refer to the top branch and the bottom r+ 1 branches respectively.
We can combine the bounds on both the number of arcs constructed and their cost to obtain upper and
lower bounds on the solution returned by Algorithm 2.

9

Algorithm 2 Approximately solving the incremental network design problem with shortest paths.

Compute the values dk using Algorithm 1
K ← min{k : dk = dT }
I = {i such that ki > 0}
for i = 0, . . . , r do

κi ← min{k : dk < dT + (d0 − dT)/2i}
j ← 0 {number of added arcs}
A← ∅ {set of added arcs}
for i ∈ I do

Determine an s-t path P of cost dκi
using at most κi arcs from Ap

for a ∈ (P ∩Ap) \A do
j ← j + 1
aj ← a
A← A ∪ {a}

Build arcs a1, a2, . . . , aj in that order.

Lower bound A cost of at least ∆′ is incurred every time period so the baseline cost is T∆′. As a lower
bound, ∆

2i is incurred for ki periods, while constructing the path that has ki more potential arcs than the

previously used shortest s− t path. The total cost of construction is bounded below by L = T∆′+
∑
i∈I

ki
∆

2i
.

Upper bound Again, the baseline cost is T∆′. As an upper bound, ∆
2i−1 is incurred for κi periods, while

constructing the path that has ki more potential arcs than the previously used shortest s− t path. The total

cost of construction is bounded above by U = T∆′ +
∑
i∈I

κi
∆

2i−1
.

Combining these two bounds, we can bound the approximation ratio of Algorithm 2.

Proposition 3. Algorithm 2 is a 4-approximation for the incremental network design problem with shortest
paths.

Proof. We can now demonstrate that Algorithm 2 is a 4-approximation, by showing that U 6 4L:

U = T∆′ +
∑
i∈I

κi
∆

2i−1
= T∆′ +

∑
i∈I

 i∑
j=0

kj

 ∆

2i−1

= T∆′ +

r∑
j=0

 ∑
i∈I, i≥j

∆

2i−1

 kj

 6 T∆′ +

r∑
j=0

∆

2j−2
kj 6 4T∆′ + 4

r∑
j=0

∆

2j
kj = 4L.

The worst case behaviour for this algorithm can be observed in Figure 5. The optimal solution is to build
the upper path which gives an objective value of

2 · 2r + k
(
2r−1 + 2r−2 + · · ·+ 21 + 20

)
= (k + 2)2r − k.

But Algorithm 2 builds the other paths from top to bottom and this yields

2r +

r+1∑
i=1

(ik + 1)(2r−i+1 − 1) = (4k + 3)2r − k (r + 2)(r + 3)

2
− k − r − 2.

Now the claim follows since for sufficiently large k = r,

(4k + 3)2r − k (r + 2)(r + 3)

2
− k − r − 2 > (4− ε) [(k + 2)2r − k] .

10

2r
2r−1 2r−2 2r−3 21 20

2 k k k k
b b b

b b b

1

k + 1

2k + 1

(r − 2)k + 1

(r − 1)k + 1

rk + 1

2r − 1

2r−1 − 1

2r−2 − 1

22 − 1

21 − 1

20 − 1

b

b

b

b

b

b

b

b

b

Figure 5: Instance on which Algorithm 2 performs badly. A dashed arc with label i indicates a path of i
potential arcs, and a solid arc with label i indicates an existing arc with cost i. All potential arcs and the
unlabeled solid arcs have zero cost.

8 Conclusions and Extensions

In this paper, we have introduced a class of incremental network design problems and studied one member of
the class, the incremental network design problem with shortest paths, in more detail. We have established
that the problem is NP-hard, but have also identified a polynomially solvable special case. Natural greedy
heuristics have been analyzed and a 4-approximation algorithm has been developed.

A natural extension to the variant of the incremental network design problem with shortest paths con-
sidered in this paper is obtained by introducing arc construction costs and construction budgets. In that
case, we are also given for each arc a ∈ Ap a construction cost c̄a and for each period t a budget Bt and
the option to expand the network in each period by building potential arcs a ∈ Ap subject to the constraint
that the construction costs do not exceed the budget. As before, the objective is to minimize the total cost
over the planning period, which now includes construction costs and shortest s− t path costs.

Another natural extension is to consider multiple commodities, where each commodity i requires one unit
of flow to be send from source si to sink ti. This incremental network design problem with multi-commodity
flows can be uncapacitated, i.e., there is no limit on the flow on an arc, or capacitated, where the flow on
arc has to be less than or equal to a given capacity. When the capacity is equal to one for all arcs, the
subproblem in each period reduces to finding arc-disjoint paths.

Rather than considering network expansion, we can consider network maintenance. A class of multi-
period network maintenance problems can be defined in a similar way to the class of incremental network
design problems. In this setting, arcs are required to undergo maintenance, either once or with a certain
frequency, and when an arc undergoes maintenance it is unavailable and cannot be used in the network
optimization problem that has to be solved each period. This class of multi-period network maintenance

11

problems also offers a rich environment for further research.
Finally, it is not difficult to formulate incremental network design problems and multi-period network

maintenance problems as integer programs. We are currently exploring whether integer programming formu-
lations of the incremental network design problem with shortest paths and the incremental network design
problem with multi-commodity flows are computationally tractable and whether valid or facet inducing
inequalities can be derived from the multi-period structure.

References

[1] A.B. Arabani and R.Z. Farahani. “Facility location dynamics: An overview of classifications and ap-
plications”. In: Computers & Industrial Engineering (2011), pp. 408–420. doi: 10.1016/j.cie.2011.
09.018.

[2] G. Gallo. “Reoptimization procedures in shortest path problem”. In: Decisions in Economics and
Finance 3.1 (1980), pp. 3–13.

[3] M.X. Goemans, A.V. Goldberg, S. Plotkin, D.B. Shmoys, E. Tardos and D.P. Williamson. “Improved
approximation algorithms for network design problems”. In: Proc. 5th ACM-SIAM symposium on
Discrete algorithms SODA 1994. Society for Industrial and Applied Mathematics. 1994, pp. 223–232.

[4] A. Gupta, A. Kumar and T. Roughgarden. “Simpler and better approximation algorithms for network
design”. In: Proc. 35th ACM symposium on Theory of computing STOC 2003. ACM. 2003, pp. 365–
372. doi: 10.1145/780542.780597.

[5] H. Kerivin and A.R. Mahjoub. “Design of survivable networks: A survey”. In: Networks 46.1 (2005),
pp. 1–21. doi: 10.1002/net.20072.

[6] B.J. Kim, W. Kim and B.H. Song. “Sequencing and scheduling highway network expansion using a
discrete network design model”. In: The Annals of Regional Science 42.3 (2008), pp. 621–642. doi:
10.1007/s00168-007-0170-2.

[7] G. Lin, C. Nagarajan, R. Rajaraman and D.P. Williamson. “A general approach for incremental ap-
proximation and hierarchical clustering”. In: SIAM Journal on Computing 39.8 (2010), pp. 3633–3669.
doi: 10.1137/070698257.

[8] T.L. Magnanti and R.T. Wong. “Network design and transportation planning: Models and algorithms”.
In: Transportation Science 18.1 (1984), pp. 1–55. doi: 10.1287/trsc.18.1.1.

[9] R.R. Mettu and C.G. Plaxton. “The online median problem”. In: SIAM Journal on Computing 32.3
(2003), pp. 816–832. doi: 10.1137/S0097539701383443.

[10] S. Pallottino and M.G. Scutellà. “A new algorithm for reoptimizing shortest paths when the arc costs
change”. In: Operations Research Letters 31.2 (2003), pp. 149–160. doi: 10.1016/S0167-6377(02)00
192-X.

[11] S.V. Ukkusuri and G. Patil. “Multi-period transportation network design under demand uncertainty”.
In: Transportation Research Part B: Methodological 43.6 (2009), pp. 625–642. doi: 10.1016/j.trb.2
009.01.004.

12

http://dx.doi.org/10.1016/j.cie.2011.09.018
http://dx.doi.org/10.1016/j.cie.2011.09.018
http://dx.doi.org/10.1145/780542.780597
http://dx.doi.org/10.1002/net.20072
http://dx.doi.org/10.1007/s00168-007-0170-2
http://dx.doi.org/10.1137/070698257
http://dx.doi.org/10.1287/trsc.18.1.1
http://dx.doi.org/10.1137/S0097539701383443
http://dx.doi.org/10.1016/S0167-6377(02)00192-X
http://dx.doi.org/10.1016/S0167-6377(02)00192-X
http://dx.doi.org/10.1016/j.trb.2009.01.004
http://dx.doi.org/10.1016/j.trb.2009.01.004

	Introduction
	A Class of Incremental Network Design Problems
	Literature review
	The Incremental Network Design Problem with Shortest Paths
	Complexity
	Greedy Heuristics
	Approximation Algorithm
	Conclusions and Extensions

