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Abstract

Let n > 3 be a natural number. We study the problem to find the smallest r such
that there is a family A of 2-subsets and 3-subsets of [n] = {1, 2, . . . , n} with the following
properties: (1) A is an antichain, i.e. no member of A is a subset of any other member of A,
(2) A is maximal, i.e. for every X ∈ 2[n] \ A there is an A ∈ A with X ⊆ A or A ⊆ X, and
(3) A is r-regular, i.e. every point x ∈ [n] is contained in exactly r members of A. We prove
lower bounds on r, and we describe constructions for regular maximal antichains with small
regularity.

1 Introduction

Let n > 3 be an integer and [n] := {1, 2, . . . , n}. By 2[n] we denote the family of all subsets of [n]
and by

(
[n]
k

)
the family of all k-subsets of [n]. A family A ⊆ 2[n] is an antichain if A 6⊆ B for all

distinct A,B ∈ A. An antichain A is called flat if it is contained in two consecutive levels of 2[n],
i.e. if A ⊆

(
[n]
k

)
∪
(

[n]
k+1

)
for some k. The remarkable Flat Antichain Theorem, which follows from

results of Lieby [13] (see also [14]) and Kisvölcsey [12], says that for every antichain A there is an
equivalent flat antichain A′, where the equivalence relation is defined by: A′ is equivalent to A if
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and only if |A′| = |A| and
∑

A∈A′|A| =
∑

A∈A|A|. Griggs et al. [9] showed that the flat antichains

minimize the BLYM-values
∑

A∈A
(

n
|A|
)−1

within their equivalence classes, and more generally, they

minimize (maximize)
∑

A∈Aw(|A|) for every convex (concave) function w. Grüttmüller et al. [10]
initiated the study of maximal flat antichains. In particular, they asked for the minimum size
of a maximal antichain consisting only of k-sets and (k + 1)-sets, and settled the first nontrivial
case k = 2. Gerbner et al. [7] derived asymptotic bounds for general k and studied some related
problems for r-Sperner families, i.e. families of subsets of [n] not containing r+ 1 sets that form a
chain with respect to inclusion. A different generalization was proposed in [11] where the flatness
condition is replaced by the requirement that the cardinalities of the members of the set family
A have to be in a fixed small set K. Böhm [2, 3] proposed the study of regular antichains, that
are antichains A such that every element of the ground set appears in the same number of sets in
A. In particular, he studied the problem for which values of r there are maximal flat antichains
such that every element of the ground set occurs exactly r times. The same problem without the
maximality and flatness conditions has been studied by Roberts and Böhm [16].

In this paper we focus on maximal flat antichains consisting of 2-sets and 3-sets: we consider
maximal (2, 3)-antichains A on [n] := {1, 2, . . . , n}, i.e. A = A2 ∪ A3 with A2 ⊆

(
[n]
2

)
and

A3 ⊆
(
[n]
3

)
. The antichain A is called r-regular if every element of [n] is contained in exactly r

members of A. Following [10, 11] we associate a graph G with A. The vertex set is [n] and the
edge set is

(
[n]
2

)
\ A2. The elements of A3 are the triangles in G, and every edge of G is contained

in at least one triangle. For a vertex x let d(x) denote its degree and t(x) the number of triangles
containing x, i.e. the number of edges in the neighbourhood of x. Similarly, for an edge xy, t(xy)
is the number of triangles containing xy, i.e. the number of common neighbours of x and y. The
antichain A is r-regular if and only if in the corresponding graph, for all vertices x,

d(x)− t(x) = r

where r is defined as r = n− 1− r. Here we are interested in antichains of small regularity. The
collection A =

(
[n]
2

)
is a regular maximal (2, 3)-antichain with regularity r = n−1. For the present

paper we assume r < n − 1, i.e. r > 0, and we ask for which values of r there is an r-regular
maximal (2, 3)-antichain. In Section 2 we prove two lower bounds for r. The first one r > (5n−9)/6
is valid for all n (Corollary 2) and the second one r > (9/10 + o(1))n holds asymptotically for
n→∞ (Corollary 5). Section contains two constructions for regular maximal (2, 3)-antichains of
small regularity, and in the final Section 4 we propose two conjectures strengthening our results.

2 Lower bounds

In this section we start with a lower bound for the regularity of a maximal (2, 3)-antichain which is
valid for all values of n. The cases in which this lower bound is achieved are completely described,
and we prove an asymptotic lower bound for large n.

Lemma 1. Let G be a graph with the property that every edge is contained in at least one triangle.
Then for every edge xy,

t(x) >
d(x) + t(xy)− 1

2
.

Proof. Fix an edge xy. There are d(x) − t(xy) − 1 neighbours of x that are not contained in a
triangle with x and y. To cover these there must be at least (d(x)−t(xy)−1)/2 triangles containing
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x, but not y. So the total number of triangles containing x is at least

t(xy) +
d(x)− t(xy)− 1

2
=
d(x) + t(xy)− 1

2
.

Theorem 1. If G corresponds to an r-regular maximal (2, 3)-antichain on n points, then r̄ 6
(n+ 3)/6.

Proof. Fix a triangle xyz and let ai denote the number of vertices outside xyz that have exactly i
neighbours in xyz (i = 0, 1, 2, 3). Then

a0 + a1 + a2 + a3 = n− 3,

a1 + 2a2 + 3a3 = d(x) + d(y) + d(z)− 6,

a2 + 3a3 = t(xy) + t(yz) + t(xz)− 3.

Subtracting the third from the second equation and using the first equation to bound a1 + a2, we
obtain

[d(x)− t(xy)] + [d(y)− t(yz)] + [d(z)− t(xz)] = a1 + a2 + 3 6 n.

At least one of the three terms in square brackets on the left hand side, say d(x) − t(xy), is at
most n/3. We use Lemma 1 to estimate r̄,

r̄ = d(x)− t(x) 6 d(x)− d(x) + t(xy)− 1

2
=
d(x)− t(xy) + 1

2
6
n+ 3

6
.

Corollary 2. If there exists an r-regular maximal (2, 3)-antichain on n points, then r > (5n−9)/6.

Next we characterize the cases when equality in Corollary 2 can occur.

Corollary 3. There exists a (5n − 9)/6-regular maximal (2, 3)-antichain if and only if n ∈
{3, 9, 15, 27}. Furthermore, the extremal antichains for these values are unique up to isomorphism.

Proof. We use the observation from [10] that the graphs on n vertices having n(n+3)/6 edges and
every edge contained in exactly one triangle are the triangle for n = 3 and graphs corresponding
to generalized quadrangles GQ(2, (n− 3)/6) which exist precisely for n ∈ {9, 15, 27} (see [15]). So
we just have to prove that in order to achieve d(x) − t(x) = (n + 3)/6 we must have n(n + 3)/6
edges and every edge has to be contained in exactly one triangle. In order to have equality in the
proof of Theorem 1 we need d(x)− t(xy) = n/3 for every edge xy. In particular, n is divisible by
3 and t(xy) = d(x)− n/3 is the same for all neighbours y of x. If d(x) > n/3 + 2 then

t(x) =
1

2

∑
u :xy∈E

t(xy) > d(x).

Hence we can conclude that d(x) = n/3 + 1 for all vertices x and t(xy) = 1 for all edges xy.

Now we prove an asymptotic upper bound on r̄. Let E and T be the sets of edges and triangles
in G, respectively. Intuitively, it seems reasonable to look for a graph with d(x) = 2r̄ and t(x) = r̄
for every vertex x. The deviation from these values is measured by δ(x) = d(x) − 2r̄ = t(x) − r̄
and we also put ∆ =

∑
x∈V δ(x). Summing over all vertices gives

2|E| =
∑
x∈V

d(x) = 2r̄n+ ∆, 3|T | =
∑
x∈V

t(x) = r̄n+ ∆.
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For the calculations it is convenient to define

γ =
r̄

n
β =

1

2n2

∑
x∈V

δ(x).

With this notation,

d(x) = 2γn+ δ(x), t(x) = γn+ δ(x),

|E| = (γ + β)n2, |T | = γ + 2β

3
n2.

Lemma 2. If G corresponds to an r-regular maximal (2, 3)-antichain then γ 6 β + o(1).

Proof. We may assume that |T | = o(n3), since otherwise r̄ is negative for large n. The triangle
removal lemma [6, 17], implies that |T | > |E|/2 + o(n2), hence (γ + 2β)/3 > (γ + β)/2 + o(1), and
rearranging terms gives the claimed inequality.

Lemma 3.
∑
xy∈E

t(xy)2 6
1

2

∑
x∈V

δ(x)2 + o(n3).

Proof. Fix a vertex x and let N(x) denote its neighbourhood. Then |N(x)| = d(x) = 2γm+ δ(x)
and ∑

y∈N(x)

t(xy) = 2t(x) = 2(γn+ δ(x)) = (2γn+ δ(x)− 1) · 1 + 1 · (δ(x) + 1),

and, using t(xy) > 1 for all edges xy, this implies∑
y∈N(x)

t(xy)2 6 (δ(x) + 1)2 + (2γn+ δ(x)− 1) = δ(x)2 + o(n2),

and the claim follows by summation over all x ∈ V .

Theorem 4. If G corresponds to an r-regular maximal (2, 3)-antichain, then r̄ 6 (1/10 + o(1))n.

Proof. From the proof of Theorem 1 we take the inequality

d(x) + d(y) + d(z)− t(xy)− t(yz)− t(xz) 6 n

which is valid for every triangle xyz ∈ T . Summation over all triangles gives∑
x∈V

t(x)d(x)−
∑
xy∈E

t(xy)2 6 n|T | = γ + 2β

3
n3.

Substituting
t(x)d(x) = (γn+ δ(x)) (2γn+ δ(x)) = 2γ2n2 + 3γnδ(x) + δ(x)2

we obtain ∑
x∈V

δ(x)2 −
∑
xy∈E

t(xy)2 6

[
γ + 2β

3
− 2γ2 − 6βγ + o(1)

]
n3,

and using Lemma 3 and the Cauchy-Schwarz inequality,

4β2n4

2n
6

1

2

∑
x∈V

δ(x)2 6

[
γ + 2β

3
− 2γ2 − 6βγ + o(1)

]
n3,

hence
γ + 2β

3
− 2γ2 − 6βγ − 2β2 > o(1).

Together with Lemma 2, this implies γ 6 1/10 + o(1), and thus concludes the proof.
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Corollary 5. If there exists a k-regular maximal (2, 3)-antichain on n points, then k > (9/10 +
o(1))n.

3 Constructions

Here we present two different constructions for regular maximal (2, 3)-antichains with small regu-
larity. Section 3.1 contains an algebraic construction for n ≡ 0 (mod 3). The regularity of these
antichains is still (1− o(1))n, while in Section 3.2 we describe how certain two-coloured digraphs
can be used to achieve regularity cn with c strictly less than n.

3.1 An algebraic construction

Let n = 3n′, and let Γ be an abelian group of order |Γ| = n′. Suppose that there are two sequences

A = (a1, a2, . . . , ap) ⊆ Γ and B = (b1, . . . , bp) ⊆ Γ

satisfying the following conditions.

• The entries in both sequences are pairwise distinct, i.e. ai 6= aj and bi 6= bj for i 6= j.

• The sequence C = (b1 − a1, b2 − a2, . . . , bp − ap) has pairwise distinct elements, i.e. bi − ai 6=
bj − aj for i 6= j.

• bj − ai 6∈ C for all i 6= j.

Let G be the graph with vertex set V = Γ× [3] and edge set

E =
{
{(g, 1), (h, 2)} : h− g ∈ A

}
∪
{
{(g, 2), (h, 3)} : h− g ∈ C

}
∪
{
{(g, 1), (h, 3)} : h− g ∈ B

}
.

The triangles in this graph are the sets of the form

{(g, 1), (g + as, 2), (g + bs, 3)}

for g ∈ Γ and s ∈ [p]. Every vertex has degree d(x) = 2p and is contained in t(x) = p triangles, so
the corresponding maximal (2, 3)-antichain is (n− 1− p)-regular.

Let pmax(n
′) denote the maximal p such that a group Γ and sequences A and B satisfying the

above conditions exist. Then our construction implies the following existence result.

Theorem 6. If n = 3n′, there exists a maximal, r-regular (2, 3)-antichain for every r ∈ {n− 1−
pmax(n

′), . . . , n− 1}.

For r ∈ {n − 1 − pmax(m
′), . . . , n − 1} the constructed antichain has

(
n
2

)
− n(n − 1 − r) pairs

and n(n− 1− r)/3 triples. So the size is
(
n
2

)
− 2

3
n(n− 1− r) and this is the smallest possible size

for a r-regular maximal (2, 3)-antichain which follows from the following lemma.

Lemma 4. Let G be a graph on n vertices in which every edge is contained in at least one triangle
and d(x)− t(x) = n− 1− r for all vertices x. Then |E| − |T | 6 2

3
n(n− 1− r).
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Proof. We have

2|E| − 3|T | =
∑
x∈V

d(x)− t(x) = n(n− 1− r)

and, using t(xy) > 1 for every edge xy,

3

2
|T | = 1

2

∑
xy∈E

t(xy) >
|E|
2

Adding these two inequalities we get 3
2

(|E| − |T |) > n(n− 1− r) which is the claim.

As observed in [17], sets without 3-term arithmetic progressions can be used to construct graphs
with every edge contained in exactly one triangle. This is a special case of the above construction
with A = C and B = 2A. Let A be a subset of Γ without nontrivial 3-term arithmetic progressions,
i.e. the only solutions to x + y = 2z in A are of the form x = y = z = a for some a ∈ A. Then
B = 2A = {a + a : a ∈ A} and C = A satisfy our conditions, and the triangles in the graph are
precisely the sets {(g, 1), (g + a, 2), (g + 2a, 3)} for g ∈ Γ. So if r3(Γ) denotes the maximal size of
a subset of Γ without 3-APs we get pmax(n

′) > r3(Γ).

Example 1. For an integer N , let r3(N) denote the maximal size of a subset of [N ] without
3-term APs (in Z). The best known lower bound for r3(N), based on a modification of a very old
construction [1], can be found in [5] and [8]:

r3(N) >
cN log1/4(N)

22
√

2 log2 N

for some positive constant c. Clearly, r3(Zn′) > r3(bn′/2c), and so we get that for integers n ≡ 0
(mod 3) there exists an r-regular maximal (2, 3)-antichain A on n points of size |A| =

(
n
2

)
− 2

3
n(n−

1− r) whenever n > r > n− 1− r3(bn/6c). In particular, there is a positive constant c such that

r > n

(
1− c log1/4(n)

22
√

2 log2 n

)

is sufficient for the existence of an r-regular maximal (2, 3)-antichain on n points.

Example 2. Let A be the set of all integers t, 0 6 t < n′/2 such that the ternary representation
of t contains only the digits 0 and 1, and interpret A as a subset of Zn′ . Then A does not contain
3-term APs and this yields a regular maximal (2, 3)-antichain with regularity

r ≈ n− 1− bn/6clog3 2 6 n− cn0.63.

Example 3. Let Γ be the additive group of the vector space Fm
3 , i.e. n = 3m+1. The 3-AP free

sets in this group are called cap sets and there are constructions of size greater than 2.217m for
arbitrary large m (see [4]). This gives r-regular maximal antichains for

r ≈ n− 1− n
m log 2.217
(m+1) log 3 < n− 1− n

0.724m
m+1 .
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3.2 A blowup construction

Note that all of our constructions did not get a regularity below (1 − o(1))n. We now describe a
way to achieve regularity less than cn for some positive c. We start with a special class of digraphs
with a 2-colouring of the arcs. Let D = (N,A0∪A1) be a 2-coloured digraph with node set N and
arc set A = A0 ∪ A1 where the sets A0 and A1 are the colour classes. All our digraphs contain no
loops and no parallel arcs. For such a digraph D and any positive integer t we can define a graph
G = G(D, t) on 2t|N | vertices as follows. To every node v ∈ N correspond 2t vertices labeled by
(v, i, j) for i ∈ {1, 2, . . . , t} and j ∈ {0, 1}, and these 2t vertices induce a matching containing the
edges {(v, i, 0), (v, i, 1)} for i ∈ {1, 2, . . . , t}. Let E2 denote the set of the t|N | matching edges.
Furthermore, let

E0 = {{(u, i, j), (v, i′, 0)} : (u, v) ∈ A0, i, i
′ ∈ {1, . . . , t}, j ∈ {0, 1}} , and

E1 = {{(u, i, j), (v, i′, 1)} : (u, v) ∈ A1, i, i
′ ∈ {1, . . . , t}, j ∈ {0, 1}} .

The edge set of the graph G is then E0 ∪ E1 ∪ E2. By construction, every edge of G is contained
in at least one triangle. Also every triangle contains at most one edge from the matching E2. The
next lemma provides a condition on the (undirected) triangles in the coloured digraph D which
ensures that every edge in E0 ∪ E1 is contained in precisely one triangle.

Lemma 5. If all triangles in D = (N,A0∪A1) have the form {u, v, w} with (u, v), (v, w) ∈ A0 and
(u,w) ∈ A1 or (u, v), (v, w) ∈ A1 and (u,w) ∈ A0, then in G = G(D, t) every edge {x, y} ∈ E0∪E1

is contained in a unique triangle.

Proof. An edge e = {(u, i, j), (v, i′, j′)} with u 6= v is contained in precisely one triangle corre-
sponding to the arc (u, v) ∈ Aj′ or to the arc (v, u) ∈ Aj. Any other triangle containing the edge e
comes from a triangle {u, v, w} in the digraph D. But if all triangles in D have the form required
in the hypothesis of the lemma then the structure of the corresponding subgraphs in G is shown
in Figure 1 and it does not contain any unwanted triangles.

(u, i, 0)

(u, i, 1)

(v, i′, 0)

(v, i′, 1)

(w, i′′, 0)

(w, i′′, 1)

Figure 1: Subgraph from a triangle {u, v, w} with (u, v), (v, w) ∈ A0 and (u,w) ∈ A1.

Under the conditions of Lemma 5 it is easy to determine d(x) and t(x) for the vertices of the
graph G. Let d−i (v) and d+i (v) denote the number of arcs in Ai entering and leaving node v,
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respectively. Then we have

d(x) =

{
1 + t

(
d+0 (u) + d+1 (u) + 2d−0 (u)

)
if x = (u, i, 0) for some i,

1 + t
(
d+0 (u) + d+1 (u) + 2d−1 (u)

)
if x = (u, i, 1) for some i,

t(x) =

{
t
(
d+0 (u) + d+1 (u) + d−0 (u)

)
if x = (u, i, 0) for some i,

t
(
d+0 (u) + d+1 (u) + d−1 (u)

)
if x = (u, i, 1) for some i.

In order to make d(x) − t(x) constant we have to require that the in-degrees in both colours are
the same constant over the node set N , i.e. d−0 (u) = d−1 (u) = d for some d and all u ∈ N . In the
graph G = G(D, t) with n = 2t|N | vertices we have d(x)− t(x) = 1 + td = 1 + dn/2|N |, and the
regularity of the corresponding maximal (2, 3)-antichain is

r =
2|N | − d

2|N |
− 2.

Figure 2 shows two digraphs on 7 and 8 nodes, respectively, satisfying the condition in Lemma 5,
and having constant in-degree 1 in both colours. For the corresponding graphs G = G(D, t) we

Figure 2: Two arc-coloured digraphs (colours indicated by solid and dashed lines).

obtain d(x) = 1 + 4t and t(x) = 3t for all vertices x, and this implies the following theorem.

Theorem 7. For every n ≡ 0 (mod 14) there is a (13n/14− 2)-regular maximal (2, 3)-antichain
on n points, and for every n ≡ 0 (mod 16) there is a (15n/16−2)-regular maximal (2, 3)-antichain.

4 Open problems

We conjecture that the first part of Theorem 7 gives asymptotically the smallest possible regularity.

Conjecture 1. The smallest possible regularity of a maximal (2, 3)-antichain on n points is
(13/14 + o(1))n2.

In the proof of the 9/10-bound in Corollary 5 we assumed the worst case that for every triangle
xyz every vertex outside this triangle is adjacent to either one or two of the triangle vertices.
Hence this bound can be improved using any cubic lower bound on the numbers of 4-cliques and
the number of copies of the graph H on four vertices consisting of a triangle and an isolated vertex.
Here are some observations that might be used to force 4-cliques and/or copies of H.
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• The condition that d(x) − t(x) is large, say cm for some c > 1/14, implies that the neigh-
bourhood of every vertex has many connected components: at least cm (and exactly cm if
the neighbourhood induces a forest).

• So every neighbourhood contains an induced matching of size cm.

• The union of m induced matchings is small, only o(m2) edges [17].

As a first step towards Conjecture 1 one might try to prove that 13n/14 is best possible for the
type of construction described in Section 3.2.

Conjecture 2. Let D = (N,A0 ∪ A1) be an arc-coloured digraph with the following properties.

1. All triangles have the form {u, v, w} with (u, v), (v, w) ∈ A0 and (u,w) ∈ A1 or (u, v), (v, w) ∈
A1 and (u,w) ∈ A0.

2. Every node has exactly d incoming arcs in each of the sets A0 and A1.

Then d 6 |N |/7.
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