
Realization of Intensity Modulated Radiation

Fields Using Multileaf Collimators

T. Kalinowski

Abstract. In the treatment of cancer using high energetic radiation
the problem arises how to irradiate the tumor without damaging the
healthy tissue in the immediate vicinity. In order to do this as efficiently
as possible intensity modulated radiation therapy (IMRT) is used. A
modern way to modulate the homogeneous radiation field delivered by
an external accelerator is to use a multileaf collimator in the static or in
the dynamic mode. In this paper several aspects of the construction of
optimal treatment plans are discussed and some algorithms for this task
are described.

1 Introduction

In cancer treatment high energetic radiation is used to destroy the tumor. To
achieve this goal the irradiation process must be planned in such a way that the
tumor (target volume) receives a sufficiently high dose while the organs close to
it (organs at risk) are not damaged. In clinical practice the radiation is delivered
by a linear accelerator which is part of a gantry that can be rotated about the
treatment couch (see Figure 1).

Fig. 1. A linear accelerator with a treatment couch

The first step in the treatment planning after the target volume and the organs
at risk have been localized is to discretize the radiation beam head into bixels
and the irradiated volume into voxels. Then a set of gantry angles from which

R. Ahlswede et al. (Eds.): Information Transfer and Combinatorics, LNCS 4123, pp. 1010–1055, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Realization of Intensity Modulated Radiation Fields 1011

Fig. 2. The leaf pairs of a multileaf collimator

radiation is released has to be determined. In order to increase the efficiency
of the treatment it is often desirable to modulate the intensity profile of the
radiation beam. So for each gantry angle an intensity function is prescribed, i.e.
an amount of radiation released at each bixel. Finally, we have to find a way
to realize this modulation. Here we consider only the last step of this planning
process. That is as our starting point we take an intensity function for a fixed
irradiation angle. We assume that the radiation head is a rectangle and choose
a partition into equidistant cells as discretization. Then the intensity function
can be described as a nonnegative matrix whose entries are the desired doses at
the corresponding bixels. A modern approach to the modulation of homogeneous
fields is the usage of a multileaf collimator (MLC). A multileaf collimator consists
of one pair of metal leaves for each row of the intensity matrix (see Figure 2).
These leaves can be inserted between the beam head and the patient in order to
protect parts of the irradiated area. So differently shaped homogeneous fields are
generated and by superimposing a number of these the given modulated intensity
can be realized. There are two essentially different ways to generate intensity
modulated fields with multileaf collimators: in the static mode (stop–and–shoot)
the beam is switched off when the leaves are moving while in the dynamic mode
the beam is switched on during the whole treatment and the modulation is
achieved by varying the speed of the leaf motion. Two important criteria for
the quality of a treatment plan are the total irradiation time and the total
treatment time. The total irradiation time should be small since there is always
a small amount of radiation transmitted through the leaves, and if the used model
ignores this leaf transmission the error increases with the total irradiation time.
A small total treatment time is desirable for efficiency reasons. In the dynamic
mode the two criteria coincide. So here the problem is to determine a velocity
function for each leaf such that the given intensity is realized in the shortest
possible time. In the static mode the whole treatment consists of the irradiation
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and the intervals in between when the leaves are moved. Thus we have two
parameters which influence the total treatment time: the irradiation time and
the number of homogeneous fields that are needed. How these parameters have
to be weighted depends on the used technology: the longer the time intervals
between the different fields are, the more important becomes the reduction of
the number of fields. The lengths of these time intervals is influenced by the leaf
velocity and by the so called verification and record overhead, which is the time
necessary to check the correct positions of the leaves. In a more realistic model
one should also take the shapes of the fields into account, because clearly the
necessary leaf travel time between two fields depends on the shapes of these fields
(see [18,2]). The dynamic mode has the advantage of a smaller total treatment
time, but the static mode involves no leaf movement with radiation on and so
the verification of the correct realization of the treatment plan is easier which
makes the method less sensitive to malfunctions of the technology.

There are additional machine–dependent restrictions which have to be con-
sidered when determining the leaf positions:

Interleaf collision constraint (ICC): In some widely used MLC’s it is for-
bidden that opposite leaves of adjacent rows overlap, because otherwise these
leaves collide. So leaf positions as illustrated in Figure 3 are not allowed.

���������
Fig. 3. Leaf position that is excluded by the ICC. The shading indicates the area that
is covered by the leaves

Tongue and groove constraint: In order to reduce leakage radiation between
adjacent leaves the commercially available MLC’s use a tongue–and–groove
(or similar) design (see Figure 4) with the effect that there is a small overlap
of the regions that are covered by adjacent leaves.

Consider two bixels x and y that are adjacent along a column and two
homogeneous fields, where in the first field x is irradiated and y is covered and
in the second field y is irradiated and x is covered. Then in the composition
of these fields along the border of x and y there is a narrow strip (the
overlap of the regions that are covered by the leaves in the rows of x and
y, respectively) that receives no radiation at all. Figure 5 illustrates this for
the intensity map ( 2 3

3 4 ).
To avoid this effect one may require that two bixels that are adjacent

along a column are irradiated simultaneously for the time the lower of the
two doses is delivered. Then the border region receives this lower dose. If this
is the case for all the relevant pairs of adjacent bixels the treatment plan is
said to satisfy the tongue and groove constraint.

In this paper we collect some of the known algorithms for the intensity modula-
tion of radiation beams with multileaf collimators in a unified notation.
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Radiation

leaf 1 leaf 2 leaf 3 leaf 4 leaf 5

Fig. 4. The principle of the tongue–and–groove design. The picture shows a cut through
the leaf bank perpendicular to the direction of leaf motion.

2 Static Methods

This chapter is organized as follows. In the first section some notation is intro-
duced and we describe a linear programming formulation of the total irradiation
time minimization (taken from [7]). In the second section we prove that the
minimization of the number of homogeneous fields that are needed is an NP–
complete problem. The remaining sections are devoted to the discussion of some
concrete algorithms.
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Fig. 5. Two realizations of the same intensity map. (a) The overlap of bixels (1, 1) und
(2, 1) receives no radiation because of the tongue and groove effect. (b) The overlaps of
bixels that are adjacent along a column receive the smaller one of the doses delivered
to the overlapping bixels.
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2.1 Notation and LP–Formulation

Throughout we use the notation [n] := {1, 2, . . . , n} for positive integers n.
The given intensity function can be considered as a nonnegative integer matrix
A = (ai,j) 1≤i≤m

1≤j≤n
. A segment is a matrix that corresponds to a leaf position of an

MLC. This is made precise in the following definition.

Definition 1. A segment is an m × n–matrix S = (si,j), such that there exist
integers li, ri (i ∈ [m]) with the following properties:

1 ≤ li ≤ ri + 1 ≤ n + 1 (i ∈ [m]), (1)

si,j =
{

1 if li ≤ j ≤ ri

0 otherwise (i ∈ [m], j ∈ [n]). (2)

So li − 1 and ri + 1 have to be interpreted as the positions of the i–th left and
right leaf, respectively. A segmentation of A is a representation of A as a sum of
segments, i.e.

A =
k∑

i=1

uiSi

with segments Si and positive numbers ui (i = 1, 2, . . . , k). Every segmentation
corresponds in the obvious way to a treatment plan realizing the given intensity
matrix A. Our goal is to minimize the total number of monitor units (TNMU)
and the number of segments (NS), which in the segmentation correspond to∑k

i=1 ui and k, respectively. First of all, observe that in general it is not possi-
ble to minimize both of these parameters simultaneously. For the segmentation
problem with ICC this was shown by an example in [9]. Here we give an example
that is independent of the ICC, that means the simultaneous minimization is not
possible, no matter if the ICC is taken into account or not. The matrix ( 2 6 3

4 5 6 )
has a segmentation with 6 monitor units

( 2 6 3
4 5 6 ) = 3 ( 0 1 1

1 1 1 ) + 1 ( 1 1 0
1 1 1 ) + 1 ( 1 1 0

0 1 1 ) + 1 ( 0 1 0
0 0 1 ) ,

and this cannot be done with 3 segments. However, if we allow to use 7 monitor
units, 3 segments are sufficient:

( 2 6 3
4 5 6 ) = 4 ( 0 1 0

1 1 1 ) + 2 ( 1 1 1
0 0 1 ) + 1 ( 0 0 1

0 1 0 ) .

But it will be an easy consequence of Lemma 1 below, that for a single row A,
i.e. in the case m = 1, both parameters can be minimized simultaneously. By F
we denote the subsets of V := [m] × [n] that correspond to segments, that is

F = {T ⊆ V : There exists a segment S with ((i, j) ∈ T ⇐⇒ si,j = 1)}.
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Now an LP–relaxation of the TNMU–minimization problem is given by:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
T∈F

f(T ) → min subject to

f(T ) ≥ 0 ∀T ∈ F ,

∑
T∈F :(i,j)∈T

f(T ) = ai,j ∀(i, j) ∈ V.

In order to show that a certain algorithm is optimal with respect to the TNMU
one can use the dual of this program:

(D)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
(i,j)∈V

ai,jg(i, j) → max subject to

∑
(i,j)∈T

g(i, j) ≤ 1 ∀T ∈ F .

Following [7] one can define the functions gs (1 ≤ s ≤ m) by

gs(i, j) =

⎧⎨
⎩

1 if i = s, ai,j ≥ ai,j−1 and ai,j+1 < ai,j

−1 if i = s, ai,j < ai,j−1 and ai,j+1 ≥ ai,j

0 otherwise,

where we put ai,0 = ai,n+1 = 0 for all i. It is easy to see that the gs are feasible
for (D) and that

∑
(i,j)∈V

ai,jgs(i, j) =
n∑

j=1

max{0, as,j − as,j−1}.

Thus

max
1≤i≤m

n∑
j=1

max{0, ai,j − ai,j−1}

is a lower bound for the TNMU of a segmentation, and in order to show the
optimality of a given algorithm it is sufficient to show that it realizes this bound.

In order to include the ICC into our model we have to add the following
conditions to the definition of a segment:

(ICC) li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m − 1]). (3)

2.2 NS–Minimization is NP–Complete

According to [1] R.E. Burkard showed that the NS–minimization is NP–complete
for m ≥ 2. Here we describe a formulation of the (m = 1)–case which was
found independently by the author and the authors of [1], and yields the NP–
completeness in this case. The intensity map is an n–dimensional row vector
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a = (a1, a2, . . . , an) with nonnegative integer entries, and a segment is an n–
dimensional (0, 1)−vector s = s(l, r) with

si(l, r) =
{

1 if l ≤ i ≤ r
0 otherwise,

for some integers l and r. Now the decision version of the NS–minimization
problem is the following: given a row vector a = (a1, . . . , an) and an integer
N , is there a segmentation of a with at most N segments? In order to prove
the NP–completeness of this problem we give a network flow formulation of the
segmentation problem. We define the digraph Γ = (V, E), where

V = [n + 1],
E = {(i, j) : 1 ≤ i < j ≤ n + 1}

Now a flow yl,r+1 > 0 on an arc (l, r + 1) ∈ E can be associated with the vector
yl,r+1s(l, r). Then a segmentation of a corresponds to a flow on Γ , such that
the net flow at vertex i is −di, where di := ai − ai−1 for i = 1, 2, . . . , n and
dn+1 := −an, i.e.

i−1∑
j=1

yj,i −
n+1∑

j=i+1

yi,j = −di (i ∈ [n + 1]).

In order to count the segments in the considered segmentation we introduce the
(0, 1)−variables xi,j for 1 ≤ i < j ≤ n+1, where xl,r+1 = 1 iff the segment s(l, r)
has nonzero coefficient. So we can write the problem of finding a segmentation
with minimal number of segments as the following fixed charge network flow
problem:

∑
1≤i<j≤n+1

xi,j → min subject to (4)

yi,j ≤ Lxi,j (1 ≤ i < j ≤ n + 1) (5)
i−1∑
j=1

yj,i −
n+1∑

j=i+1

yi,j = −di (i ∈ [n + 1]) (6)

xi,j ∈ {0, 1}, yi,j ∈ R+ (1 ≤ i < j ≤ n + 1), (7)

where L is an upper bound for the coefficients in the segmentation, e.g. the
maximum entry of A.

Lemma 1. There is an optimal solution to (4)–(7) with yi,j = xi,j = 0 for all
(i, j) with di ≤ 0 or dj ≥ 0.

Proof. Let (x,y) be an optimal solution and assume there is positive flow yi,j

on some arc (i, j) with di ≤ 0 or dj ≥ 0. Let

φ(x,y) = |{(i, j) ∈ E : yi,j > 0 and di ≤ 0 or dj ≥ 0}|.



Realization of Intensity Modulated Radiation Fields 1017

We construct another optimal solution (x′,y′) with φ(x′,y′) < φ(x,y). Repeat-
ing this step if necessary, we finally obtain a solution (x′′,y′′) with φ(x′′,y′′) = 0,
and thus (x′′,y′′) is the required solution. Let (i1, i2, . . . , it) be a path with the
following properties:

1. yik,ik+1 > 0 and (dik
≤ 0 or dik+1 ≥ 0) for 1 ≤ k ≤ t − 1.

2. For i < i1, yi,i1 > 0 implies (di > 0 and di1 < 0).
3. For i > it, yit,i > 0 implies (dit > 0 and di < 0).

Such a path with t ≥ 2 exists by assumption.

Case 1: di1 > 0 and dit < 0.
Let α = min{yik,ik+1 : 1 ≤ k ≤ t − 1}, and put

y′
ik,ik+1

= yik,ik+1 − α (1 ≤ k ≤ t − 1),

x′
ik ,ik+1

=
{

1 if y′
ik,ik+1

> 0,

0 if y′
ik,ik+1

= 0,

x′
i1,it

= 1,

y′
i1,it

= yi1,it + α

and x′
i,j = xi,j , y′

i,j = yi,j for all the remaining (i, j). Obviously, the tran-
sition from (x,y) to (x′,y′) preserves the net flows at the vertices, hence
(x′,y′) is a feasible solution. Now for at least one k ∈ [t − 1], xik,ik+1 = 1
and x′

ik,ik+1
= 0 and since the only x–component which might change from

0 to 1 is xi1,it , we obtain
∑

1≤i<j≤n+1

x′
i,j ≤

∑
1≤i<j≤n+1

xi,j ,

hence (x′,y′) is also optimal. Finally, for a k ∈ [t − 1] with yik,ik+1 = α,
y′

ik,ik+1
= 0. And since (i1, it) is the only arc with increasing flow and does

not contribute to φ,
φ(x′,y′) < φ(x,y).

Case 2: di1 > 0 and dit ≥ 0.
Since the net flow in it is nonpositive there is some it+1 > it with yit,it+1 > 0
and by condition 3, dit+1 < 0. Now we make the same construction as in Case
1 with the path (i1, . . . , it, it+1).

Case 3: di1 ≤ 0 and dit < 0.
Since the net flow on i1 is nonnegative there is some i0 < i1 with yi0,i1 > 0
and by condition 2, di0 > 0. Now we make the same construction as in Case
1 with the path (i0, i1, . . . , it).

Case 4: di1 ≤ 0 and dit ≥ 0.
As in the Cases 2 and 3, there are i0 < i1 and it+1 > it with yi0,i1 > 0,
yit,it+1 > 0, di0 > 0 and dit+1 < 0, and we can make the same construction
with the path (i0, i1, . . . , it+1).
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So we can restrict our search to the arc set

E0 = {(i, j) : 1 ≤ i < j ≤ n + 1, di > 0, dj < 0}
and thus we have reduced the problem to a fixed charge transportation problem
with sources S = {i : di > 0} and sinks T = {j : dj < 0}.
Example 1. The segmentation

( 2 4 1 3 1 4 ) = 2( 1 1 0 0 0 0 ) + ( 0 1 0 0 0 0 ) + ( 0 1 1 1 1 1 ) + 2( 0 0 0 1 0 0 )
+ 3( 0 0 0 0 0 1 ) (8)

corresponds to the flow in Fig. 6.

1 (  2)

2 (  2)

4 (  2)

6 (  3)

3 (3)

5 (2)

7 (4)

2

1

3

2
1

Fig. 6. The flow corresponding to the segmentation (8). The numbers in parentheses
are the net flows at the vertices.

Remark 1. Observe that in an optimal flow satisfying the conditions of Lemma
1 the sum of the flows over all arcs, i.e. the TNMU of the corresponding seg-
mentation, equals the sum of the net flows at the sinks. Clearly, this is a lower
bound for the TNMU, hence the corresponding segmentation is also optimal with
respect to the TNMU. So for m = 1, in contrast to the general case, the TNMU
and the NS can be minimized simultaneously.

Using this transportation formulation we can now prove the NP–completeness.

Theorem 1. The NS–minimization problem is NP–complete.

Proof. The problem is obviously in NP, and to show the NP–hardness we reduce
the 0 − 1−knapsack problem: given positive integers c1, . . . , cn−1, K, is there a
subset I ⊆ {1, . . . , n − 1} with

∑
i∈I

ci = K ? We put

ai =
i∑

j=1

cj (i = 1, 2, . . . , n − 1) and an = K,
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and claim that the answer to the 0−1−knapsack problem (c1, c2, . . . , cn−1, K) is
yes iff the answer to the NS-minimization problem (a1, a2, . . . , an, n − 1) is yes.
We distinguish 3 cases.

Case 1: K >
n−1∑
i=1

ci = an−1.

The answer to the knapsack problem (c1, c2, . . . , cn−1, K) is no, and in the
transportation problem corresponding to the segmentation we have n sources
and 1 sink, so we need n edges with nonzero flow and hence the answer to
the NS–minimization problem (a1, . . . , an, n − 1) is also no.

Case 2: K =
n−1∑
i=1

ci = an−1.

The answer to the knapsack problem (c1, c2, . . . , cn−1, K) is yes, and in the
transportation problem corresponding to the segmentation we have n − 1
sources and 1 sink, so n − 1 edges with nonzero flow are sufficient and the
answer to the NS–minimization problem (a1, . . . , an, n − 1) is also yes.

Case 3: K <
n−1∑
i=1

ci = an−1.

In the transportation problem we have n−1 sources with supplies c1, c2, . . . ,
cn−1 and 2 sinks with demands K and an−1 − K. At every source there
must be at least one outgoing arc with nonzero flow. So altogether there are
at least n − 1 edges with nonzero flow and n − 1 arcs are sufficient iff at
every source there is exactly one outgoing arc with nonzero flow. But this is
equivalent to the existence of a subset I ⊂ {1, 2, . . . , n− 1} with

∑
i∈I

ci = K.

Due to this result it is reasonable to look for a good approximative algorithm
for the NS–minimization.

2.3 The Algorithm of Galvin, Chen and Smith

In [8] the authors propose a heuristic algorithm which aims at finding a segmen-
tation with a small NS. As several of the algorithms below it works according
to the following general strategy: depending on the given matrix A a coeffi-
cient u > 0 and a number of segments S1, S2, . . . , St are determined such that
A′ = A − u(S1 + S2 + · · · + St) is still nonnegative, and then the algorithm is
iterated with A′ instead of A. It is clear that this always yields a segmentation
of A. Since in a number of algorithms the maximal entry of A is a parameter,
it is convenient to give it a name. So let L denote the maximal entry of the
considered matrix A for the rest of this thesis. The algorithm from [8] works as
follows

1. In a preliminary step eliminate the background intensity, that is put A :=
A−uJ , where u is the smallest entry of A and J is the m×n all–one matrix.

2. Let u be the smallest integer such that 1
2u(u + 1) ≥ L.

3. Mark all the entries of A which are greater or equal to u, i.e. which can be
irradiated with u MU.
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4. Determine a sequence of segments whose sum is a (0, 1)−matrix S which has
a 1 at position (i, j) iff the entry (i, j) is marked.

5. Put A := A − uS, u := u − 1 and continue with step 3.

If we do not consider interleaf collision constraints the rows can be treated
independently and step 4 can be realized as follows. In each row i, we find
the maximal intervals of entries which are greater than or equal to u. These
intervals can be described by their left and right boundaries, that is by numbers
li,1, . . . , li,t(i) and ri,1, . . . , ri,t(i), such that

1 ≤ li,1, ri,t(i) ≤ n,

li,k ≤ ri,k (1 ≤ k ≤ t(i)),
ri,k < li,k+1 − 1 (1 ≤ k ≤ t(i) − 1),

ai,j

{≥ u if li,k ≤ j ≤ ri,k for some k,
< u otherwise.

With the additional convention that t(i) = 0 for rows without entries greater
or equal to u and li,k = n + 1, ri,k = n for k > t(i), the whole procedure is
summarized in Algorithm 1.

Algorithm 1. Galvin, Chen and Smith
u := min{ai,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
A := A − uJ
u := min

{
k : 1

2
k(k + 1) ≥ L

}
while A �= 0 do

for i = 1 to m do
determine li,1, li,2, . . . , li,t(i), ri,1, ri,2, . . . , ri,t(i)

t := max
1≤i≤m

t(i)

for 1 ≤ k ≤ t let Sk be the segment determined by the li,k, ri,k

S :=
t∑

k=1

Sk

A := A − uS; u := u − 1

Example 2. We will illustrate some of the described algorithms by construction
of a segmentation for the benchmark matrix (from [4,14])

A =

⎛
⎜⎜⎝

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

⎞
⎟⎟⎠ .

For u = 3 we obtain S =
(

1 1 0 0 1 1
0 1 0 1 0 1
0 1 0 0 0 1
1 1 1 0 1 1

)
with residual matrix

(
1 2 0 1 1 2
2 1 1 0 1 1
2 0 2 1 2 1
2 0 0 2 2 0

)
.

For u = 2 we obtain S =
(

0 1 0 0 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 0 0 1 1 0

)
with residual matrix

(
1 0 0 1 1 0
0 1 1 0 1 1
0 0 0 1 0 1
0 0 0 0 0 0

)
.
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So the total segmentation is

(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3
(

1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

)
+ 3
(

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 3
(

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)

+ 2
(

0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

)
+ 2
(

0 0 0 0 0 1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0

)
+ 2
(

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

)
+ 1
(

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

)

+ 1
(

0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

)
.

2.4 The Algorithm of Bortfeld et al.

The first segmentation algorithm which is optimal with respect to the TNMU
was introduced in [3]. Again we neglect additional constraints like ICC, and so
the rows can be treated independently. Let a = (a1, a2, . . . , an) be a row of A.
In addition we put a0 = an+1 = 0 and L = max

1≤i≤n
ai. Now, for 1 ≤ k ≤ L, we

determine the index sets

Pk = {i ∈ [n] : ai−1 < k ≤ ai}, Qk = {i ∈ [n] : ai ≥ k > ai+1},

and put P =
⋃

k Pk, Q =
⋃

k Qk where the unions have to be understood in the
multiset sense. Observe that, for each k, |Pk| = |Qk|, and that

c :=
L∑

k=1

|Pk| =
n∑

i=1

max{0, ai − ai−1}.

If P = (p1, p2, . . . , pc) and Q = (q1, q2, . . . , qc) are ordered such that qi ≥ pi for
all i, then we can write a as a sum of c segments b(1), . . . ,b(c) defined by

b
(i)
j =

{
1 if pi ≤ j ≤ qi,
0 otherwise.

In [3] two variants of the segmentation algorithm are deduced from this. For the
sweep technique P and Q are ordered independently by magnitude, i.e.

p1 ≤ p2 ≤ . . . ≤ pc, q1 ≤ q2 ≤ . . . ≤ qc.

For the close–in technique the Pk and the Qk are ordered by magnitude, each
element of a Pk is paired with the corresponding element of Qk and the resulting
pairs (p, q) are ordered by the magnitude of the first component.

Combining the segmentations of the single rows one can produce segmenta-
tions for general intensity matrices.
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Example 3. For the second row of A =
(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
we obtain

P1 = {1}, P2 = {1, 4, 6}, P3 = {2, 4, 6}, P4 = {2, 6},
Q1 = {6}, Q2 = Q3 = {2, 4, 6}, Q4 = {2, 6}

and the sequence of pairs (p, q) using the sweep technique is

(1, 2), (1, 2), (2, 2), (2, 4), (4, 4), (4, 6), (6, 6), (6, 6), (6, 6),

while the close–in technique yields

(1, 6), (1, 2), (2, 2), (2, 2), (4, 4), (4, 4), (6, 6), (6, 6), (6, 6).

The corresponding segmentations of the whole matrix are(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 1
(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

)
+ 1
(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0

)
+ 1
(

1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 1 1 0 0 0

)

+ 1
(

1 1 0 0 0 0
0 1 1 1 0 0
0 0 0 0 1 1
1 1 1 1 1 0

)
+ 1
(

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 1 1 1 1 0

)
+ 1
(

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 2
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)

+ 1
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
+ 1
(

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
and

(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 1
(

1 1 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

)
+ 1
(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 1

)
+ 1
(

1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

)

+ 1
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1
1 0 0 0 0 0

)
+ 1
(

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 1
(

0 0 0 1 1 1
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 2
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0

)

+ 1
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
+ 1
(

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
.

2.5 The Algorithm of Engel

Engel proposes an algorithm which is optimal with respect to the TNMU and
almost optimal with respect to the NS. The theoretical result underlying that
algorithm is

Theorem 2 ([7]). The minimal TNMU of a segmentation of A equals

c(A) := max
1≤i≤m

ci(A), where (9)

ci(A) :=
n∑

j=1

max{0, ai,j − ai,j−1}. (10)

(Recall that ai,0 = ai,n+1 = 0 for all i.)
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Using this terminology the reason for the optimality of the algorithm of Bortfeld
et al. can be summarized as follows: if A′ is the residual matrix after the first
step, then by construction

ci(A′) = ci(A) − 1, (11)

for all i with ci(A) > 0, in particular c(A′) = c(A)− 1, and thus after c(A) steps
A is reduced to the zero matrix. The drawback of this method is that a priori
all the segments have coefficient 1, and thus the NS is rather large. Obviously,
if the algorithm yields the same segment S in u different steps, these can be
combined to obtain one segment with coefficient u. In view of (11) this amounts
to the search for a pair (u, S) of a positive integer u and a segment S such that
A − uS is still nonnegative and

ci(A − uS) = ci(A) − u,

for all i with ci(A) > 0. But this condition is unnecessary strong: we only need

c(A − uS) = c(A) − u, (12)

i.e.
ci(A − uS) ≤ c(A) − u (13)

for all i. For the choice of the coefficient u it is a suggestive strategy to take the
maximal u for which there exists a segment S such that A − uS is nonnegative
and (12) is true. Let umax be this maximal possible value for u. According to
[7], umax can be determined as follows. We put

di,j = ai,j − ai,j−1 (1 ≤ i ≤ m, 1 ≤ j ≤ n + 1)

and consider some segment S, given by l1, . . . , lm and r1, . . . , rm. One can prove
(see [7]) that it is no restriction to assume that, for all i, either li = ri + 1 or
(di,li > 0 and di,ri+1 < 0), and that under these assumptions ci(A − uS) ≤
c(A) − u is equivalent to u ≤ vi(li, ri), where

vi(l, r) =

⎧⎨
⎩

gi(A) if l = r + 1,
gi(A) + min{di,l,−di,r+1} if l ≤ r and gi(A) ≤ |di,l + di,r+1|,
(di,l − di,r+1 + gi(A)) /2 if l ≤ r and gi(A) > |di,l + di,r+1|,

with gi(A) := c(A) − ci(A). For convenience we denote the set of pairs (l, r) to
which we restrict our search in row i by Ii, that is we put

Ii := {(l, r) : 1 ≤ l ≤ r + 1 ≤ n + 1
and either l = r + 1 or (di,l > 0 and di,r+1 < 0)}.

Clearly the nonnegativity of A−uS is equivalent to u ≤ wi(li, ri) for all i, where

wi(l, r) =

{∞ if l = r + 1,
min

l≤j≤r
ai,j if l ≤ r.
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Now we put, for 1 ≤ i ≤ m and (l, r) ∈ Ii,

ûi(l, r) = min{vi(l, r), wi(l, r)},

and for 1 ≤ i ≤ m,

ũi = max
(l,r)∈Ii

ûi(l, r). (14)

Then

umax = min
1≤i≤m

ũi. (15)

In order to construct a segment S such that, for u = umax, A−uS is nonnegative
and (12) is true, we just have to find, for every i ∈ [m], a pair (li, ri) ∈ Ii with

ûi(li, ri) ≥ umax.

A trivial way of doing this is to take a pair (li, ri) where the maximum in (14) is
attained, i.e. with ûi(li, ri) = ũi. These (li, ri) can be computed simultaneously
with the calculation of umax and this method yields mn + n − 1 as an upper
bound for the NS of the segmentation (see [7]). But there are better constructions
for S after the determination of umax. We describe a construction of S which,
on randomly generated test matrices, yields slightly better results than the one
given in [7]. We put

q(A) = |{(i, j) ∈ [m] × [n] : di,j �= 0}| , (16)

and choose a segment S so that q(A − uS) is minimized. To make this precise,
for 1 ≤ i ≤ m and (l, r) ∈ Ii, we put

pi(l, r) =

⎧⎨
⎩

2 if di,l = −di,r+1 = umax,
1 if di,l = umax �= −di,r+1 or di,l �= umax = −di,r+1,
0 if l = r + 1 or (di,l �= umax and − di,r+1 �= umax).

Now for (li, ri) we choose among the pairs (l, r) ∈ Ii with ûi(l, r) ≥ umax one
with maximal value of pi(l, r), and if there are several of these we choose one
with maximal value of r − l.

Example 4. For the benchmark matrix the algorithm yields

(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 4
(

1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 2
(

0 0 0 0 1 1
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 1 0

)
+ 1
(

0 0 0 1 1 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 0 0 0

)

+ 1
(

0 0 0 0 1 1
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1

)
+ 1
(

0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 1

)
+ 1
(

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1

)
.
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2.6 The Algorithm of Kalinowski

In [11] the approach of [7] is generalized to include the ICC. For this purpose we
reformulate Theorem 2 as follows: let

−→
G0 = (V, E0) be a digraph with

V = [m] × [n + 1] ∪ {s, t},
E0 = E1 ∪ E2 where
E1 = {(s, (i, 1)) : i ∈ [m]} ∪ {((i, n + 1), t) : i ∈ [m]},
E2 = {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [n − 1]},

and define a weight function δ on
−→
G0 (depending on A) by

δ(s, (i, 1)) = ai,1 i ∈ [m],
δ((i, n + 1), t) = 0 i ∈ [m],

δ((i, j), (i, j + 1)) = max{0, di,j+1} i ∈ [m], j ∈ [n].

An equivalent formulation of Theorem 2 is

Theorem 2′ 1. The minimal TNMU of a segmentation of A (without ICC)
equals the maximal weight of an (s, t)–path in

−→
G0 with respect to A.

The vertices (i, n+1) (i ∈ [m]) are not necessary here, since the arcs ((i, n), (i, n+
1)) have weight 0 anyway. But we have added them to avoid case distinctions
below. In order to model the ICC in the graph we have to add some additional
arcs. We define the digraph

−→
G = (V, E) with E = E0 ∪ E3 ∪ E4, where

E3 = {((i, j), (i + 1, j)) : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1},
E4 = {((i, j), (i − 1, j)) : 2 ≤ i ≤ m, 1 ≤ j ≤ n − 1},

and we extend δ to E by

δ((i, j), (i + 1, j)) = −ai,j 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1,

δ((i, j), (i − 1, j)) = −ai,j 2 ≤ i ≤ m, 1 ≤ j ≤ n − 1.

In Figure 7 the construction is illustrated for the matrix

A =
(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
.

The main result of [11] is

Theorem 3. The minimal TNMU of a segmentation of A with ICC equals the
maximal weight of an (s, t)–path in

−→
G with respect to A.

We denote this maximal weight by c(A):

c(A) = max{δ(P ) : P is an (s, t) − path in
−→
G}.
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4 5 0 1 4 5
2 4 1 3 1 4

2 4 1 3 1 4
2 3 2 1 2 4

2 3 2 1 2 4
5 3 3 2 5 3

1 0 1 3 1 0

2 0 2 0 3 0

1 0 0 1 2 0

0 0 0 3 0 0

ts

4

2

2

5

Fig. 7. The weighted digraph corresponding to the benchmark matrix

The proof of the theorem consists of two parts. First with an (s, t)–path P in
−→
G

we associate a function gP : [m] × [n] → {0, 1,−1} such that g is dually feasible
for the TNMU–minimization, and for some (s, t)–path P with δ(P ) = c(A) we
have ∑

(i,j)∈[m]×[n]

ai,jg(i, j) = δ(P ).

From this by duality we conclude that the TNMU of a segmentation is greater
or equal to c(A). The function gP that does the job is

gP (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if {(i, j), (i, j + 1), (i, j + 2)} ⊂ P, di,j ≥ 0, di,j+1 < 0,
1 if {(i, j), (i, j + 1)} ⊂ P, (i, j + 2) �∈ P, di,j ≥ 0,

−1 if {(i, j), (i, j + 1), (i, j + 2)} ⊂ P, di,j < 0, di,j+1 ≥ 0,
−1 if (i, j) ∈ P, (i, j + 1) �∈ P,
−1 if {(i − 1, j), (i, j), (i + 1, j)} ⊂ P,
−1 if (i, j) �∈ P, (i, j + 1) ∈ P, di,j+1 ≥ 0,

0 otherwise.

The second part of the proof is the construction of a segmentation of A with
TNMU c(A). For this we put A0 = A, and in the i–th step we construct a
segment S = Si such that c(Ai−1 − S) = c(Ai−1) − 1, and put Ai = Ai−1 − S.
So for k = c(A) after k steps we obtain c(Ak) = 0 and this implies Ak = 0. By
construction

A =
k∑

i=1

Si

is the required segmentation. In order to describe the construction of S for a
fixed A we put

α1(i, j) = max{δ(P ) : P is an (s, (i, j)) − path in
−→
G},

α2(i, j) = max{δ(P ) : P is an ((i, j), t) − path in
−→
G},

α(i, j) = α1(i, j) + α2(i, j),
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and define two subsets of [m] × [n],

V1 = {(i, j) ∈ [m] × [n] : di,j ≥ 0, di,j+1 < 0},
V2 = {(i, j) ∈ V1 : α(i, j) = c(A), α1(i, j) = ai,j}.

Now the segment S (described by the li, ri (i ∈ [m])) can be constructed ac-
cording to Algorithm 2. The proofs that the gP have the claimed properties, and
that the algorithm yields the required results are quite technical and we omit
them here (see [11] for the details).

In order to reduce the NS one can proceed analogous to the algorithm of Engel.
In [12] is described a backtracking algorithm, that determines a pair (u, S) of an
integer u and a segment S such that A−uS is nonnegative, c(A−uS) = c(A)−u
and u is maximal under the condition that a segment with these properties exists.

Example 5. For the benchmark matrix the algorithm from [12] yields(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)
+ 3
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

)
+ 1
(

0 0 0 0 0 1
0 0 0 1 1 1
0 0 0 0 1 0
0 1 1 1 1 0

)

+ 1
(

0 0 0 1 1 1
0 0 0 1 0 0
0 1 1 0 0 0
1 1 1 0 0 0

)
+ 1
(

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 1 1 0

)
+ 1
(

1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
0 0 0 0 0 0

)
.

Algorithm 2. Segment S(A, V2)
for (i, j) ∈ V2 do

li := max{j′ ≤ j : ai,j′ = 0}+1
ri := j

for i = 1 to i1 − 1 do
5: li := li1 ; ri := li − 1

for i = it + 1 to m do
li := lit ; ri := li − 1

for k = 1 to t − 1 do
if jk > jk+1 then

10: i := ik
while i < ik+1 and li > rik+1 + 1 do

i := i + 1
ri := li−1 − 1
li := max{j ≤ ri : aij = 0} + 1

15: for i′ = i + 1 to ik+1 − 1 do
ri′ := rik+1 ; li′ := ri′ + 1

else
i := ik+1

while i > ik and li > rik + 1 do
20: i := i − 1

ri := li+1 − 1
li := max{j ≤ ri : aij = 0} + 1

for i′ = ik + 1 to i − 1 do
ri′ := rik ; li′ := ri′ + 1
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2.7 The Algorithm of Xia and Verhey

In [24] another heuristic method for the construction of a segmentation with
small NS is proposed. Here again the general principle is to determine a coeffi-
cient u and a segment S and to continue with A − uS. The coefficient is chosen
to be a power of 2 which is close to half of the maximal entry of A, precisely

u = 2�log L�−1,

where the base of the logarithm is 2. The next step towards the algorithm is the
observation that in the two–column case every (0, 1)–matrix is a segment. So for
a two–column matrix A the segment corresponding to the coefficient u may be
defined by

si,j =
{

1 if ai,j ≥ u,
0 otherwise.

In the whole segmentation process every power of 2 between 1 and 2�log L�−1

appears at most once as a coefficient, and thus the NS is at most �log L�. The
straightforward generalization of this method to an n–column matrix A is to
divide A into two–column submatrices, and apply the algorithm to these sub-
matrices. (If n is odd one has to add a dummy (n+1)–th column with all entries
equal to 0.) This yields �n

2 ��log L� as an upper bound for the NS. Actually, this
bound can be replaced by

�n
2 �∑

k=1

�log Lk�,

where Lk is the maximal entry of the submatrix which consists of the columns
2k − 1 and 2k. Obviously, it is not very efficient to treat the two–column sub-
matrices independently, because it may be possible to combine some segments
for different two–column submatrices to obtain a single segment for the whole
matrix. The authors of [24] propose two ways of doing this. The sliding window
technique determines the coefficient always according to the leftmost nonzero
two–column submatrix, say columns j and j + 1. Then the leaves are set to
obtain the largest possible extension of a leaf setting for columns j and j + 1.
The reducing level technique determines the coefficient according to the maximal
entry of the whole matrix A and sets the leaves such that the irradiated area,
i.e. the number of 1’s in the segment S, is maximal.

Example 6. The segmentation of the benchmark matrix using the sliding win-
dow technique is

(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 4
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 2
(

0 0 0 0 0 0
1 0 0 0 0 0
1 1 1 0 0 0
0 1 1 1 1 1

)
+ 1
(

0 1 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
1 1 1 0 0 0

)

+ 2
(

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0

)
+ 1
(

0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 1

)
+ 1
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
+ 1
(

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)
,
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and with the reducing level technique we obtain
(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 4
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

)
+ 4
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0

)
+ 2
(

0 0 0 0 0 0
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 0 0

)

+ 2
(

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

)
+ 1
(

0 1 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
1 1 1 0 0 0

)
+ 1
(

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

)
+ 1
(

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)
.

In [17] four variations of the Xia–Verhey–algorithm are compared to the algo-
rithm of Galvin, Chen and Smith and the algorithm of Bortfeld et al. The three
alternative versions of the Xia–Verhey–algorithm differ in the choice of the coef-
ficient u. In the first one it is u =

⌈
L
2

⌉
, in the second one it is the nearest integer

to the average of the nonzero entries of A, and in the third one it is the median
of the nonzero entries of A. The essential result of the comparison is that none
of these variants is most efficient in all cases (neither for random test matrices
nor for clinical examples), but the original version of Xia and Verhey yields on
average the smallest NS. The NS can be reduced by a factor of 2 compared to
Bortfeld’s algorithm at the cost of an increase of the TNMU by about 50%.

2.8 The Algorithm of Siochi

In [18] a segmentation algorithm is described which is the basis of the Siemens
IMFAST algorithm, as implemented in the commercial IMRT planning system
CORVUS. This algorithm minimizes a more realistic measure for the total treat-
ment time which takes into account both the irradiation time and the leaf travel
time. For the segmentation A =

∑k
t=1 utSt we put

τ =
k∑

t=1

ut

D
+

k∑
t=2

max{TV R, δt}, (17)

where D is the dose rate (in MU/min), TV R is the verification and record (V&R)
overhead and

δt = max
1≤i≤m

max

{
|l(t)i − l

(t−1)
i |

v
,
|r(t)

i − r
(t−1)
i |

v

}

is the leaf travel time between segments t − 1 and t. Here v is the leaf speed,
and l

(t−1)
i , r

(t−1)
i (i ∈ [m]) and l

(t)
i , r

(t)
i (i ∈ [m]) are the parameters of the

segments t − 1 and t, respectively. The second sum starts at t = 2 since it is
assumed that the leaves are set to the first position before the treatment starts.
The motivation for taking the maximum in the second sum in (17) instead of
the sum of the two values is that we can already start the V&R–cycle in rows
where the leaves have already stopped while in others they are still moving, and
according to [18] the V&R of the last leaf pair is negligible compared to that of
all the others combined. Now the proposed algorithm is a combination of two
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parts called extraction and rod pushing. The extraction part is closely related
to the algorithm of Galvin, Chen and Smith, but formulated in a way that
allows to include ICC and tongue and groove constraints. The rod pushing part
is essentially a reformulation of the algorithm of Bortfeld et al. in a geometric
setting, but also adjustable to additional constraints. First we describe the basic
algorithm without additional constraints, and after that we show how the two
parts have to be modified to include the constraints.

The basic algorithm

Rod pushing: The matrix A is visualized as a rectangular m × n–array of
rods, where the rod at position (i, j) consists of ai,j cubes. In the beginning
all the rods stand on a plane π. Fig. 8 illustrates this for the matrix

(
1 4 2
3 2 1
1 2 2

)
.

Fig. 8. Visualization of an intensity matrix as an array of rods

Now we push some of the rods up in order to achieve a situation where, for
all h > 0, the positions of the cubes at height h (above π) can be used to
describe a segment. The position of any rod (i, j) is uniquely determined by
the height of its lowest cube (the base of the rod), which we call b(i, j). That
is, the rod (i, j) occupies the cubes

(i, j, b(i, j)), (i, j, b(i, j) + 1), . . . , (i, j, t(i, j)),

where t(i, j) := b(i, j) + ai,j − 1 is the height of the highest cube (the top)
of the rod. Now the rod pushing procedure can be described as follows:

for i = 1 to m do
b(i, 1) := 1, t(i, 1) = ai,1

for j = 2 to n do
if ai,j > ai,j−1 then

b(i, j) := b(i, j − 1); t(i, j) = b(i, j) + ai,j − 1
else

t(i, j) := t(i, j − 1); b(i, j) = t(i, j) − ai,j + 1
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Fig. 9. The rod pushing process for one row

Fig. 9 illustrates the rod pushing process corresponding to the segmentation

( 1 4 2 3 4 1 2 ) = ( 1 1 0 0 0 0 0 ) + ( 0 1 0 0 0 0 0 ) + ( 0 1 1 1 1 0 0 )
+( 0 1 1 1 1 0 0 ) + ( 0 0 0 1 1 0 0 ) + ( 0 0 0 0 1 1 1 ) + ( 0 0 0 0 0 0 1 )

By construction, for every h, the cubes at height h describe a segment, the
sum of these segments is A and the maximal height of a cube in row i
is
∑n

j=1 max{0, ai,j − ai,j−1}. So by Theorem 2 the result is optimal with
respect to the TNMU, and one can check that the same segmentation is
obtained by the algorithm of Bortfeld et al. using the sweep technique.

Extraction: This step consists of the determination of a sequence of coeffi-
cients u1, u2, . . . , uk0 and corresponding segments S1, . . . , Sk0 such that the
residual matrix

A′ = A −
k∑

i=1

uiSi

is nonnegative. The optimization algorithm does an exhaustive search on a
certain set of pairs (k0,u) where k0 is a positive integer and u is a k0–tuple
u = (u1, . . . , uk0) of positive integers (to be defined below). For each of these
pairs, a sequence of segments (S1, . . . , Sk0) is determined as follows.

A0 := A
for i = 1 to k0 do

determine a segment Si with respect to the matrix Ai−1 and the coeffi-
cient ui as in the algorithm of Galvin et al.
Ai := Ai−1 − uiSi

Then the rod pushing procedure is applied to Ak0 and the pairs (k0,u)
are evaluated according to the total treatment time τ for the segmentation
that results from the combination of the two parts. Finally, the (u1, . . . , uk0)
yielding the smallest τ is chosen for the segmentation together with the
corresponding (S1, . . . , Sk0) and the subsequent rod pushing segments. The
search space is restricted by the following conditions, which have been found
to be strong enough to make the search computationally feasible but weak
enough to give good solutions ([18]).
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1. u1 ≥ u2 ≥ . . . ≥ uk0 .
2. u1 ≤ max{�L/2�, û}, where û is the extract value yielding the best result

if we extract only one segment before applying the rod pushing, i.e. if
k0 = 1.

3.
k0∑

i=1

ui ≤ max
1≤i≤m

n∑
j=1

max{0, ai,j − ai,j−1}.

Example 7. To illustrate the algorithm we assume that the size of the cells in
our benchmark matrix is 1 cm×1 cm, the leaf speed v = 1 cm/sec, the verification
and record overhead TV R = 2 sec and the dose rate D = 60 MU/min. The best
solution if only one segment is extracted is obtained with û = 3 and so the
extraction sequences (u1, . . . , uk0) with 3 ≥ u1 ≥ u2 ≥ . . . ≥ uk0 > 0 and∑k0

i=1 ui ≤ 10 have to be checked. The result is that the segmentation with only
one extraction is already the optimal one, namely(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3
(

1 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

)
+
(

1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

)
+
(

0 1 0 0 0 0
1 1 1 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0

)

+
(

0 0 0 1 1 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 1 0

)
+
(

0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 1
0 0 0 1 1 0

)
+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 1 1

)
+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+
(

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)

where we have

τ = (10 + 2 + 3 + 4 + 3 + 2 + 2 + 2) sec = 28 sec.

Interleaf collision constraint: The ICC forbids the overlapping of opposite
leaves in adjacent rows, that is we must have

li ≤ ri+1 + 1 and ri ≥ li+1 − 1 (1 ≤ i ≤ m − 1).

Extraction: In the extraction step with coefficient u we have to find, in each
row i, an interval of entries greater or equal to u. If we fix two adjacent
columns j and j + 1 and require that every nonempty of the intervals inter-
sects at least one of these columns, then the ICC is automatically satisfied,
since then li ≤ j + 1 and ri ≥ j for all i with li ≤ ri, and for the zero–rows
of the segment it is obvious how to choose (li, ri) with li = ri +1 in order to
satisfy the ICC. Now we can do this for all possible pairs of adjacent columns
j, j + 1 and finally choose the segment with the largest irradiated area.

Rod pushing: A violation of the ICC can only occur, if for some (i, j) we
have b(i, j) > t(i + 1, j) + 1 or t(i, j) < b(i + 1, j)− 1 (see Fig. 10, where the
segment corresponding to height 3 is ( 1 0 0

0 0 1 ) and thus violates the ICC).
If this is the case we may push up the rod (i + 1, j) (resp. (i, j)) (see

Algorithm 3 for the details).
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Fig. 10. The segment corresponding to height 3 violates the ICC

Tongue and groove effect: We have to make sure that it does not occur that
in one segment the bixel (i, j) is exposed and the bixel (i±1, j) is covered, while
in some later step (i, j) is covered and (i ± 1, j) is exposed.

Extraction: A sufficient condition to avoid the tongue and groove effect be-
tween different extract matrices is that, for every extract matrix S(t) =(
s
(t)
i,j

)
with coefficient ut, we have

ai,j − ut ≥ ai+1,j if s
(t)
i,j = 1 and s

(t)
i+1,j = 0 (18)

ai,j − ut ≥ ai−1,j if s
(t)
i,j = 1 and s

(t)
i−1,j = 0. (19)

This implies that if in some later step t′ the bixel (i ± 1, j) is exposed (i.e.
s
(t′)
i±1,j = 1) then it is also possible to expose bixel (i, j) and so the tongue

and groove underdosage is avoided. In order to achieve the validity of (18)
and (19) one proceeds as follows

construct a segment S = (si,j) as above
repeat

for (i, j) with si,j = 1 and (18) or (19) is violated do
si,j := 0

change entries from 1 to 0 so that a segment satisfying the ICC results
until no entry has to be changed

Rod pushing: In the rod pushing process the tongue and groove effect can
be avoided using a modification of the basic method similar to Algorithm 3.
Instead of the corrections in lines 14 to 19 and 22 to 27 of this algorithm one
has to use

t(i + 1, j) := t(i, j)
b(i + 1, j) := t(i + 1, j) − ai+1,j + 1

}
if ai,j < ai+1,j

and t(i, j) > t(i + 1, j),

b(i, j) := b(i + 1, j)
t(i, j) := b(i, j) + ai,j − 1

}
if ai,j < ai+1,j

and b(i, j) < b(i + 1, j),

t(i, j) := t(i + 1, j)
b(i, j) := t(i, j) − ai,j + 1

}
if ai,j ≥ ai+1,j

and t(i, j) < t(i + 1, j),
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Algorithm 3. Rod pushing with ICC
for i = 1 to m do

b(i, 1) = 1; t(i, 1) = ai,1

for j = 2 to n do
for i = 1 to m do

5: if ai,j > ai,j−1 then
b(i, j) := b(i, j − 1); t(i, j) = b(i, j) + ai,j − 1

else
t(i, j) := t(i, j − 1); b(i, j) = t(i, j) − ai,j + 1

Choose i0 ∈ [m] with t(i0, j) ≥ t(i, j) for all i
10: for i = i0 − 1 downto 1 do

if t(i, j) < b(i + 1, j) − 1 then
t(i, j) := b(i + 1, j) − 1; b(i, j) := t(i, j) − ai,j + 1

if b(i, j) > t(i + 1, j) + 1 then
t(i + 1, j) := b(i, j) − 1; b(i + 1, j) := t(i + 1, j) − ai+1,j + 1

15: for i = i0 + 1 to m do
if t(i, j) < b(i − 1, j) − 1 then

t(i, j) := b(i − 1, j) − 1; b(i, j) := t(i, j) − ai,j + 1
if b(i, j) > t(i − 1, j) + 1 then

t(i − 1, j) := b(i, j) − 1; b(i − 1, j) := t(i − 1, j) − ai+1,j + 1

b(i + 1, j) := b(i, j)
t(i + 1, j) := b(i + 1, j) + ai+1,j − 1

}
if ai,j ≥ ai+1,j

and b(i, j) > b(i + 1, j).

These corrections make sure that, for two rods that are adjacent along a
column, the shorter one has its base above or at the same level as the longer
one and has its top below or at the same level as the longer one. Thus the
resulting segments also satisfy the ICC.

2.9 The Algorithm of Kamath et al.

Another segmentation algorithm is described in [13]. Here the authors consider
more general constraints which are motivated by the design of some MLCs:

Minimum separation constraint (MSC): The distance between the left and
the right leaf in every row can not be smaller than a minimum distance δ0 ≥ 0.
In our terminology this means

ri − li ≥ δ0 − 1 (i ∈ [m]).

Leaf interdigitation constraint (LIC): The distance between opposite
leaves in adjacent rows is at least δ1 for some δ1 ≥ 0, i.e.

ri+1 − li ≥ δ1 − 1, ri − li+1 ≥ δ1 − 1 (i ∈ [m − 1]).

For δ1 = 0 this is just the ICC.
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The proposed algorithm constructs segmentations in which the leaves always
move from left to right. So the segmentation can be described by

I
(i)
L (1) ≤ I

(i)
L (2) ≤ . . . ≤ I

(i)
L (n), I

(i)
R (1) ≤ I

(i)
R (2) ≤ . . . ≤ I

(i)
R (n) (i ∈ [m]),

where I
(i)
L (j) and I

(i)
R (j) denote the numbers of monitor units that have been

delivered when the left and the right leaf, respectively, in row i passes column
j. These numbers can be translated into segments as follows. Let

S(t) =
(
s
(t)
i,j

)

denote the segment corresponding to the leaf position when the t−th monitor
unit is delivered. Then

s
(t)
i,j =

{
1 if I

(i)
R < t ≤ I

(i)
L (j)

0 otherwise.

The condition that must be satisfied in order to generate the matrix A is

I
(i)
L (j) − I

(i)
R (j) = ai,j (i ∈ [m], j ∈ [n]).

First neglecting the leaf interdigitation constraint a segmentation is build up
from segmentations of the single rows as described in Algorithm 4. Observe that

Algorithm 4. Basic segmentation
for i = 1 to m do

I
(i)
L (1) = ai,1; I

(i)
R = 0

for j = 2 to n do
I
(i)
L (j) = I

(i)
L (j − 1) + max{0, ai,j − ai,j−1}

I
(i)
R (j) = I

(i)
R (j − 1) + max{0, ai,j−1 − ai,j}

this is another formulation of the rod pushing part of Siochi’s algorithm: I
(i)
L (j)

and I
(i)
R (j) + 1 correspond to t(i, j) and b(i, j), respectively. The essential result

on Algorithm 4 is

Theorem 4.

1. Algorithm 4 is optimal with respect to the TNMU even when bidirectional
leaf movement is permitted. (Theorem 3 in [13])

2. If there exists a segmentation of A satisfying the MSC then the segmentation
constructed using Algorithm 4 satisfies the MSC. (Theorem 5 in [13])

In order to construct a segmentation satisfying the LIC it is proposed to modify
the I

(i)
L (j), I

(i)
R (j) obtained by Algorithm 4 until the LIC is satisfied. If, as a result

of Algorithm 4, I
(i)
R (j) > 0 for some i ∈ [m], j ≤ δ1 there is no segmentation
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satisfying the LIC. So w.l.o.g. we may assume I
(i)
R (j) = 0 for all i ∈ [m], 1 ≤ j ≤

δm. An LIC–violation occurs iff I
(k)
L (j − δ1) < I

(i)
R (j) for some i ∈ [m], j ∈ [n],

k ∈ {i + 1, i − 1}. Among all violations we determine one with minimal j and
eliminate it by putting

I
(k)
L (j − δ1) := I

(i)
R (j),

and modifying the I
(k)
L (j′) (j′ > j − δ1) appropriately (see Algorithm 5 for the

details). The main result on Algorithm 5 is

Theorem 5 (Theorem 6 in [13]).

1. Algorithm 5 terminates.
2. If Algorithm 5 terminates with a violation of the MSC, then there is no

segmentation satisfying MSC and LIC.
3. Otherwise the algorithm yields a segmentation satisfying MSC and LIC and

having minimal TNMU under these conditions.

Algorithm 5. : Elimination of LIC violations
while The MSC is satisfied and the LIC is violated do

j0 := min{j ∈ [n] : ∃i ∈ [m] with I
(k)
L (j−δ1) < I

(i)
R (j) for some k ∈ {i+1, i−1}}

choose i and k ∈ {i + 1, i − 1} with I
(k)
L (j0 − δ1) < I

(i)
R (j0)

I
(k)
L (j0 − δ1) := I

(i)
R (j0)

5: I
(k)
R (j0 − δ1) := I

(k)
L (j0 − δ1) − ak,j0−δ1

for j = j0 − δ1 + 1 to n do

I
(k)
L (j) := max

{
I
(k)
L (j), I

(k)
L (j − 1) + max{0, ai,j − ai,j−1}

}
I
(k)
R (j) := I

(k)
L (j) − ak,j

If δ1 = 0 lines 4–9 of Algorithm 5 can be replaced by

Δ := I
(i)
R (j0) − I

(k)
L (j0)

for j = j0 to n do
I
(k)
L (j) := I

(k)
L (j) + Δ

I
(k)
R (j) := I

(k)
R (j) + Δ

In this case the algorithm coincides with the ICC–version of Siochi’s rod push-
ing method, no MSC–violation can occur and thus always a TNMU–optimal
segmentation is obtained.

2.10 The Algorithm of Boland, Hamacher and Lenzen

In [2] is given a network flow formulation of the TNMU–minimization which also
includes the ICC. The set of segments is identified with the set of paths from
D to D′ in the layered digraph G = (V, E), constructed as follows. The vertices
in the i−th layer correspond to the possible pairs (li, ri) (1 ≤ i ≤ m), and two
additional vertices D and D′ are added:

V = {(i, l, r) : i = 1, . . . , m; l = 1, . . . , n + 1; r = l − 1, . . . , n + 1} ∪ {D, D′}.
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Between two vertices (i, l, r) and (i+1, l′, r′) there is an arc if the corresponding
leaf positions are consistent with the ICC, i.e. if l′ ≤ r + 1 and r′ ≥ l − 1. In
addition E contains all arcs from D to the first layer, all arcs from the last layer
m to D′ and the arc (D′, D), so

E = E+(D) ∪ E−(D′) ∪
m−1⋃
i=1

E(i) ∪ {(D′, D)}, where

E+(D) = {(D, (1, l, r)) : (1, l, r) ∈ V },
E−(D′) = {((m, l, r), D′) : (m, l, r) ∈ V },

E(i) = {((i, l, r), (i + 1, l′, r′)) : l′ ≤ r + 1, r′ ≥ l − 1}.
There is a bijection between the possible leaf positions and the cycles in G.
This is illustrated in Fig. 11 which shows two cycles in G for m = 4, n = 2,
corresponding to the segments(

1 0
0 1
1 1
1 0

)
(straight lines) and

(
0 1
1 1
1 0
0 1

)
(dotted lines).

110 111 112 121 122 132

210 211 212 221 222 232

310 311 312 321 322 332

410 411 412 421 422 432

D'

D

Fig. 11. The vertices of G for m = 4, n = 2 and two cycles

With a segment S, given by (l1, r1), (l2, r2), . . . , (lm, rm), we associate a unit
flow on the cycle

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′, D.

Then any positive combination of segments defines a circulation φ : E → R+ on
G. For instance,

3
(

1 0
0 1
1 1
1 0

)
+ 2
(

0 1
1 1
1 0
0 1

)
=
(

3 2
2 5
5 3
3 2

)
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corresponds to 3 units of flow on (D, (1, 1, 1), (2, 2, 2), (3, 1, 2), (4, 1, 1), D′), 2
units of flow on (D, (1, 2, 2), (2, 1, 2), (3, 1, 1), (4, 2, 2), D′) and 5 units of flow on
(D′, D). The amount of radiation that is released at bixel (i, j) equals the sum of
the flows going through the vertices (i, l, r) with l ≤ j ≤ r, hence the conditions
that must be satisfied by the circulation in order to correspond to a segmentation
of A are

j∑
l=1

n∑
r=j

r+1∑
l′=1

n∑
r′=max{l,l′}−1

φ((i, l, r), (i + 1, l′, r′)) = ai,j , (20)

for 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n, and
j∑

l=1

n∑
r=j

φ((m, l, r), D′) = am,j, (21)

for 1 ≤ j ≤ n. Since all the flow must go through the arc (D′, D), the TN-
MU of the segmentation corresponding to φ equals φ(D′, D). Thus the TNMU–
minimization problem can be solved by finding a circulation satisfying condi-
tions (20) and (21) and having minimal cost with respect to the cost function
α : E → R+,

α(e) =
{

1 if e = (D, D′),
0 otherwise.

The graph G can be expanded to a graph Ĝ = (V̂ , Ê) so that, instead of the
constraints (20) and (21), the structure of Ĝ together with a capacity function
on Ê forces the circulation to represent a segmentation of A.

V̂ = {(i, l, r)1, (i, l, r)2 : 1 ≤ i ≤ m, 1 ≤ l ≤ r + 1 ≤ n + 1}
∪ {(i, j) : 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {D, D′}.

The arcs set of Ĝ is Ê = Êold ∪ Ê1 ∪ Ê2, where

Êold = {((i, l, r)2, (i + 1, l′, r′)1) : ((i, l, r), (i + 1, l′, r′)) ∈ E}
∪ {(D, (1, l, r)1) : (1, l, r)1 ∈ V̂ }
∪ {((m, l, r)2, D′) : (m, l, r)2 ∈ V̂ }
∪ {(D′, D)},

Ê1 = {((i, l, r)1, (i, l − 1)) : (i, l, r)1 ∈ V̂ }
∪ {((i, r), (i, l, r)2) : (i, l, r)2 ∈ V̂ },

Ê2 = {((i, j − 1), (i, j)) : i ∈ [m], j ∈ [n]}.
Now a segment with parameters li, ri (i ∈ [m]) corresponds to the cycle

D,(1, l1, r1)1, (1, l1 − 1), (1, l1), . . . , (1, r1), (1, l1, r1)2,

(2, l2, r2)1, (2, l2 − 1), (2, l2), . . . , (2, r2), (2, l2, r2)2,
. . .

(m, lm, rm), (m, lm − 1), (m, lm), . . . , (m, rm), (m, lm, rm)2, D′, D
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Figure 12 shows the cycles in Ĝ corresponding to the cycles in Figure 11.
Now the flow on the arc ((i, j − 1), (i, j)) equals the amount of radiation

released at bixel (i, j) in the corresponding segmentation, and introducing lower
and upper capacities u and u on the arcs of Ĝ by

u(e) =
{

0 if e ∈ Êold ∪ Ê1

ai,j if e = ((i, j − 1), (i, j)) ∈ Ê2 (22)

u(e) =
{∞ if e ∈ Êold ∪ Ê1

ai,j if e = ((i, j − 1), (i, j)) ∈ Ê2 (23)

Now in order to obtain another reformulation of the TNMU–minimization prob-
lem one just has to make sure that the flow on the edge ((i, l, r)1, (i, l − 1))
equals the flow on the edge ((i, r), (i, l, r)2), since both of these correspond to
the amount of radiation that is released while li = l and ri = r.

Theorem 6 ([2]). The TNMU–minimization problem is equivalent to the net-
work flow problem

φ(D′, D) → min

subject to φ a circulation in Ĝ = (V̂ , Ê) with lower and upper capacities u and
u, defined by (22) and (23), and satisfying, for all (i, l, r)1,2 ∈ V̂ ,

φ((i, l, r)1, (i, l − 1)) = φ((i, r), (i, l, r)2). (24)

This formulation is quite close to a pure Min–Cost–Network–Flow problem. But
the standard algorithms for this problem type have to be adjusted in order
to include the side constraint (24). Doing this one obtains a polynomial time
algorithm for the TNMU–minimization with ICC (see [2] and [15]).

Example 8. A segmentation of the benchmark matrix with ICC that is opti-
mal with respect to the TNMU, and thus corresponds to an optimal flow on the
appropriate Ĝ is the one given in Example 5.

2.11 The Algorithm of Baatar and Hamacher

Another TNMU–optimal segmentation algorithm was proposed in [1]. For this
a digraph G = (V, E) is constructed as follows: The vertex set consists of 2m
layers L1, R1, L2, R2, . . . , Lm, Rm and two additional vertices D and D′. Here,
for i = 1, 2, . . .m,

Li = {(i, 1, 1), (i, 1, 2), . . . , (i, 1, n + 1)}, Ri = {(i, 2, 0), (i, 2, 1), . . . , (i, 2, n)}
Now arcs between Li and Ri correspond to possible leaf positions in row i, that
is

E1 = {((i, 1, l), (i, 2, r)) : 1 ≤ i ≤ m, 1 ≤ l ≤ r + 1 ≤ n + 1},
and arcs between Ri and Li+1 correspond to leaf positions satisfying the ICC,
that is

E2 = {((i, 2, r), (i + 1, 1, l)) : 1 ≤ i ≤ m − 1, 1 ≤ l ≤ r + 1 ≤ n + 1},
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110 1 111 1 112 1 121 1 122 1 132 1

110 111 2 112 2 121 2 122 2 132 2

D

1,0 1,1 1,2

210 1 211 1 212 1 221 1 222 1 232 1

210 2 211 2 212 2 221 2 222 2 232 2

2,0 2,1 2,2

310 1 311 1 312 1 321 1 322 1 332 1

310 2 311 2 312 2 321 2 322 2 332 2

3,0 3,1 3,2

410 1 411 1 412 1 421 1 422 1 432 1

410 2 411 2 412 2 421 2 422 2 432 2

4,0 4,1 4,2

D'

Fig. 12. The vertices of Ĝ for m = 4, n = 2 and two cycles

and finally all the arcs between D and L1 and between Rm and D′ are added,
that is

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ {((m, 2, r), D′) : 0 ≤ r ≤ n} ∪ {(D′, D)},
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where

E3 = {(D, (1, 1, l)), : 1 ≤ l ≤ n + 1} and E4 = {((m, 2, r), D′) : 0 ≤ r ≤ n}.

Figure 13 shows G for m = 3 and n = 4.

D

D'

L 1

R 1

L 2

R 2

L 3

R 3

Fig. 13. The digraph G for m = 3 and n = 4

As in the description of Hamacher’s algorithm we associate to a segment with
parameters l1, r1, l2, r2, . . . , lm, rm a unit flow on the cycle

D, (1, 1, l1), (1, 2, r1), (2, 1, l2), (2, 2, r2), . . . , (m, 1, lm, 1), (m, 2, rm), D′, D.

So every segmentation corresponds to a circulation on G (but not conversely,
since the ICC between the left leaf of row i and the right leaf of row i + 1 is not
reflected in the structure of the digraph). In the circulation corresponding to a
segmentation the total flow going through vertex (i, 1, l) equals the number of
monitor units for which the left leaf is positioned at j − 1, i.e. for which li = j,
and similarly, the total flow going through (i, 2, r) equals the number of monitor
units for which ri = j. Let φ be a circulation on G, and denote by φ(v) the total
flow going through v ∈ V . In [1] it is shown that in order to find a circulation
corresponding to a segmentation with minimal TNMU, we may assume that, for
all i ∈ [m],

φ(i, 1, 1) = ai,1, φ(i, 2, n) = ai,n and φ(i, 2, 0) = φ(i, 1, n + 1) = 0.
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Fixing these values, necessary and sufficient conditions for the φ(v) to correspond
to a segmentation of A are (see [1])

φ(i, 1, j) − l∗i,j = φ(i, 2, j) − r∗i,j ≥ 0 (i ∈ [m], j ∈ [n]), (25)
k∑

j=1

φ(i, 1, j) ≥
k−1∑
j=1

φ(i + 1, 2, j) (1 ≤ i ≤ m − 1, 1 ≤ k ≤ n), (26)

k∑
j=1

φ(i, 1, j) ≤
k−1∑
j=1

φ(i − 1, 2, j) (2 ≤ i ≤ m, 1 ≤ k ≤ n), (27)

φ(i, 1, l) ∈ Z (1 ≤ i ≤ m, 2 ≤ l ≤ n), (28)
φ(i, 2, r) ∈ Z (1 ≤ i ≤ m, 1 ≤ r ≤ n − 1). (29)

where

l∗i,j = max{0, ai,j − ai,j−1} and r∗i,j = max{0, ai,j − ai,j+1}.
So the task to determine φ(v) corresponding to a segmentation with minimal
TNMU leads to the mixed integer program

T → min subject to

T = ai,1 +
n∑

j=2

φ(i, 1, j) and (25) − (29).

⎫⎪⎬
⎪⎭ (30)

The constraint matrix of this problem is totally unimodular, as is shown in [1]
using the theorem of Ghouila–Houri, and so in order to determine the φ(v) it is
sufficient to solve the LP–relaxation of (30). When the φ(v) are determined a
segmentation with minimal TNMU can be constructed by iteratively extracting
unit flows along cycles in G taking in each layer the leftmost vertex with positive
throughput. In [1] it is also proposed to reduce the NS by a greedy strategy: an
integer program is solved to determine the maximal u such that there is a cycle
in G along which flow u can be extracted and the residual network still satisfies
(25)–(29).

2.12 The Algorithm of Langer, Thai and Papiez

In [14] the authors give a mixed integer linear program formulation of the seg-
mentation problem which can be used to find a segmentation with minimal NS
among those with minimal TNMU. The model also allows to include additional
constraints. In order to describe segmentations binary variables l

(t)
i,j and r

(t)
i,j are

introduced for i ∈ [m], j ∈ [n] and t ∈ [T ], where T is an upper bound for the
TNMU, for instance

T =
∑

(i,j)∈[m]×[n]

ai,j .

l
(t)
i,j takes value 1 if bixel (i, j) is covered by the left leaf while the t–th MU is

delivered, but takes value 0 otherwise. Similarly, r
(t)
i,j takes value 1 if bixel (i, j)

is covered by the right leaf. Then the segment delivering the t–th MU is given by
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s
(t)
i,j = 1 − l

(t)
i,j − r

(t)
i,j . (31)

Observe that this equation, together with s
(t)
i,j , l

(t)
i,j , r

(t)
i,j ∈ {0, 1}, also implies that

the opposite leaves in row i do not overlap, i.e. that for no (i, j, t) both l
(t)
i,j and

r
(t)
i,j equal 1. The geometric properties of the leaves are modelled by the following

constraints:

l
(t)
i,j+1 ≤ l

(t)
i,j (i ∈ [m], j ∈ [n − 1], t ∈ [T ]), (32)

r
(t)
i,j ≤ r

(t)
i,j+1 (i ∈ [m], j ∈ [n − 1], t ∈ [T ]). (33)

Furthermore, for a segmentation of A we obtain the constraints

T∑
t=1

s
(t)
i,j = ai,j (i ∈ [m], j ∈ [n]). (34)

The MUs can be counted by introducing new binary variables z(t) (t ∈ [T ]),
where z(t) takes value 1 iff s

(t)
i,j = 1 for at least one pair (i, j), formally

∑
(i,j)∈[m]×[n]

s
(t)
i,j ≤ mnz(t) (t ∈ [T ]). (35)

Now the TNMU–minimization problem can be formulated as

T∑
t=1

z(t) → min subject to (31)–(35). (36)

Let T0 denote the optimal value of the objective function, i.e. the minimal TN-
MU. Observe that the determination of T0 as the solution of (36) can be replaced
by the calculation of the minimal TNMU according to Theorem 2. The next step
is to find, among all the segmentations with T0 MU, one with minimal NS. For
this new binary variables g(t) (t ∈ [T0−1]) are introduced, where g(t) takes value
1 if s

(t)
i,j �= s

(t+1)
i,j for some (i, j) ∈ [m] × [n]. The global variable g(t) is described

by local binary variables
σ

(t)
i,j = α

(t)
i,j + β

(t)
i,j , (37)

where α
(t)
i,j and β

(t)
i,j are binary variables satisfying

−α
(t)
i,j ≤ s

(t+1)
i,j − s

(t)
i,j ≤ β

(t)
i,j . (38)

g(t) can take the value 0 only if all the σ
(t)
i,j are zero, and this yields

∑
(i,j)∈[m]×[n]

σ
(t)
i,j ≤ mng(t) (t ∈ [T0]). (39)
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So the NS–minimization (with minimal TNMU) is

T0∑
t=1

g(t) → min subject to (31)–(35),(37)–(39). (40)

The authors of [14] suggest to solve this program by standard branch and bound
techniques as implemented in commercial packages as CPLEX. Special restric-
tions can be included by adding constraints to the program. So the ICC corre-
sponds to

l
(t)
i,j + r

(t)
i+1,j ≤ 1 (i ∈ [m − 1], j ∈ [n], t ∈ [T ]), (41)

r
(t)
i,j + l

(t)
i+1,j ≤ 1 (i ∈ [m − 1], j ∈ [n], t ∈ [T ]). (42)

The method for the segmentation problem with ICC described in [14] is to
increase the number T ′ of monitor units step by step, starting with T ′ = T0, and
in each step try to find a feasible solution with T ′ monitor units. This procedure
can be shortened by determining the minimal TNMU for a segmentation with
ICC according to Theorem 3 and fixing T ′ at this value.

The tongue and groove condition is described by

− 1 ≤ s
(t)
i+1,j − s

(t)
i,j + s

(t′)
i,j − s

(t′)
i+1,j ≤ 1

(i ∈ [m − 1], i ∈ [n], 1 ≤ t < t′ ≤ T ). (43)

The drawback of this method is that it requires to solve integer programs with
a huge number of variables, and so it seems to be applicable only to very small
problems.

Example 9. For the benchmark matrix the algorithm yields the same result as
Engel’s algorithm.

2.13 The Algorithm of Dai and Zhu

The algorithm proposed in [6] searches for a segmentation with a small NS. Again
this is done by choosing a segment S and a coefficient u such that A′ = A − uS
is nonnegative and continuing with A′. The criterion for the choice of u and S
is the complexity of the residual matrix A′, where the complexity of a matrix A
is the number of segments necessary for a segmentation of A using some other
algorithm. Obviously, the result of this method depends on the algorithm that
is used to measure the complexity.

Recall that L denotes the maximum entry of A. For u ∈ [L] we determine
in each row i maximal intervals of entries greater than or equal to u. As in the
section on the algorithm of Galvin et al. these can be described by numbers
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li,1,u, . . . , li,t(i,u),u and ri,1,u, . . . , ri,t(i,u),u, such that

1 ≤ li,1,u, ri,t(i,u),u ≤ n

li,k,u ≤ ri,k,u (1 ≤ k ≤ t(i, u))
ri,k,u < li,k+1,u − 1 (1 ≤ k ≤ t(i, u) − 1)

ai,j

{≥ u if li,k,u ≤ j ≤ ri,k,u for some k,
< u otherwise.

Now for all u ∈ [L] the complexities of A−uS are computed for all the
∏m

i=1 t(i, u)
possible segments, and among all the tested pairs (u, S) one with minimal com-
plexity of A − uS is chosen. If there are several pairs with minimal complexity
of the residual matrix, we choose one with maximal irradiated area, i.e. with
maximal number of 1’s in S. The ICC can easily be included into the algorithm
by excluding segments that violate the ICC from the complexity checking. The
obvious drawback of this algorithm is the time complexity. The number of seg-
ments that have to be checked grows exponentially with the size of the matrix,
and so the method becomes infeasible for moderate problem sizes.

Example 10. We consider segmentation without ICC and use the algorithm of
Bortfeld et al. with the sweep technique for the calculation of the complexity.
Then our benchmark matrix has complexity 9, and the first extracted matrix is

3
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 1 1 0 0 0

)
,

where the residual matrix
(

1 2 0 1 4 5
2 1 1 3 1 4
2 3 2 1 2 1
2 0 0 2 5 3

)
has complexity 6. Continuing we obtain

the segmentation
(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
= 3
(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 1 1 0 0 0

)
+ 3
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)
+ 1
(

0 0 0 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 1 1 0

)

+ 1
(

1 1 0 0 0 0
1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0

)
+ 1
(

0 1 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

)
+ 1
(

0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0

)
.

As indicated by the example, the algorithm yields quite good results compared
to other algorithms, in particular it is essentially more NS–efficient than the
algorithm used for the calculation of the complexity. This is confirmed in [6] by
a number of numerical experiments.

2.14 Reduction of Leaf Motion

After the segments and their coefficients have been determined by some algo-
rithm we still have the freedom to choose the order in which the corresponding
homogeneous fields are delivered. In order to reduce the total treatment time it
is suggestive to choose an order which minimizes the leaf travel time between
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consecutive segments. The minimization of the overall leaf travel time is equiv-
alent to the search for a Hamiltonian path of minimal weight on the complete
graph which has the segments as vertices and a weight function μ on the edges,
defined as follows: for two segments S and S′, given by li, ri (i ∈ [m]) and l′i, r

′
i

(i ∈ [m]), respectively, we put

μ(S, S′) = max
1≤i≤m

max{|li − l′i|, |ri − r′i|}.

Clearly, μ(S, S′) = μ(S′, S), μ(S, S′) ≥ 0 with equality iff li = l′i and ri = r′i for
all i ∈ [m] and

μ(S, S′′) = max
1≤i≤m

max{|li − l′′i |, |ri − r′′i |}
≤ max

1≤i≤m
max{|li − l′i| + |l′i − l′′i |, |ri − r′i| + |r′i − r′′i |}

≤ μ(S, S′) + μ(S′, S′′).

Thus μ is a metric and there are good approximations for a minimal Hamiltonian
path ([10]). When the number NS is not relatively small, as is the case for
practical problems, it is even possible to solve the Hamiltonian path problem
exactly.

Example 11. Using the version of Kalinowski’s algorithm that heuristically re-
duces the NS we obtain the segmentation
⎛
⎝

16 10 0 5 4 12
1 13 16 6 2 14
6 6 3 3 15 2
8 15 3 0 13 11
3 16 13 6 9 3
7 16 10 11 14 6

⎞
⎠ = 8

⎛
⎝

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 1 0
0 1 1 1 1 0

⎞
⎠+ 8

⎛
⎝

1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0

⎞
⎠+ 4

⎛
⎝

1 0 0 0 0 0
0 1 1 1 0 0
1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0

⎞
⎠

+3

⎛
⎝

0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 1 1

⎞
⎠+ 2

⎛
⎝

1 1 0 0 0 0
0 0 1 0 0 0
1 1 1 1 1 0
0 1 1 0 0 0
1 1 0 0 0 0
0 0 1 1 1 1

⎞
⎠+

⎛
⎝

0 0 0 1 0 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1

⎞
⎠+

⎛
⎝

0 0 0 1 1 1
0 0 0 0 0 1
0 0 1 1 1 1
0 0 0 0 1 0
0 1 1 1 1 0
1 0 0 0 0 0

⎞
⎠

+

⎛
⎝

1 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

⎞
⎠+

⎛
⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎞
⎠ .

If we deliver the segments in this order the length of the corresponding Hamil-
tonian path is 5 + 1 + 4 + 5 + 4 + 3 + 5 + 1 = 28. Using a minimum span-
ning tree approximation for the Hamiltonian path we obtain the delivery order
1, 4, 6, 7, 5, 2, 3, 8, 9 with a length of 3 + 3 + 3 + 3 + 1 + 1 + 1 + 1 = 16.

First numerical results for the reduction of leaf motion when the algorithms of
Engel and Kalinowski are used are shown in 1.

For algorithms using a sweep technique, such that the leaves move always
in one direction there is nothing to do, since the leaf motion is automatically
minimized.

Lemma 2. Let A =
∑k

t=1 utS
(t) be a segmentation obtained by some algorithm

using a sweep–technique, that is if l
(t)
i and r

(t)
i are the parameters of S(t) (t ∈ [k])
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Table 1. Reduction of leaf motion by a minimum spanning tree approximation of
the minimal Hamiltonian path for the algorithms of Kalinowski ([12]) and Engel ([7]).
Pold is the Hamiltonian path corresponding to the order in which the segments are
constructed by the algorithm and Pnew is the approximation of a minimal Hamiltonian
path. The results are averaged over 1000 15 × 15−matrices with random entries from
{0, 1, . . . , 16}.

Engel Kalinowski

L μ(Pold) μ(Pnew) μ(Pold) μ(Pnew)

3 112.5 106.5 64.7 49.3
4 126.1 119.1 81.5 59.9
5 136.7 128.2 128.3 85.7
6 145.9 136.4 141.5 93.3
7 152.0 141.9 152.1 99.4
8 157.4 146.7 163.4 105.4
9 163.2 151.2 172.7 111.7
10 166.6 154.3 179.7 116.5
11 170.5 158.3 187.5 121.2
12 174.2 161.0 193.4 124.4
13 178.1 165.1 199.8 128.4
14 180.6 167.0 206.5 131.6
15 183.1 169.5 211.0 134.8
16 185.4 171.9 217.4 138.5

then we have, for all i ∈ [m],

l
(1)
i ≤ l

(2)
i ≤ . . . ≤ l

(k)
i and r

(1)
i ≤ r

(2)
i ≤ . . . ≤ r

(k)
i .

Then (S(1), S(2), . . . , S(k)) is a Hamiltonian path of minimal weight in the com-
plete graph with vertex set {S(1), S(2), . . . , S(k)} and weight function μ.

Proof. Let π be an arbitrary permutation of [k]. We have to show that

k−1∑
t=1

μ
(
S(π(t)), S(π(t+1))

)
≥

k−1∑
t=1

μ
(
S(t), S(t+1)

)
.

The crucial observation is that, for 1 ≤ t ≤ t′′ ≤ t′ ≤ k, we have

μ
(
S(t), S(t′)

)
≥ μ

(
S(t), S(t′′)

)
,

which follows directly from the definition of μ. If π(t) < π(t+1) for all t ∈ [k−1]
there is nothing to do. Otherwise put

t0 = min{t : π(t) > π(t + 1)},

t1 =
{

k if π(t0) = k,
min{t : π(t + 1) > π(t0)} otherwise,

t2 = min{t : π(t) > π(t1)}.
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Table 2. Test results without ICC. The columns labeled Gal, Bor, X–V and Eng
correspond to the algorithm of Galvin et al. [8], the algorithm of Bortfeld et al. [3], the
algorithm of Xia and Verhey [24] and the algorithm of Engel [7], respectively.

TNMU NS

L Gal Bor X–V Eng Gal Bor X–V Eng

3 17.0 14.0 16.6 14.0 11.3 14.0 11.1 9.7
4 31.3 17.9 22.4 17.9 15.4 17.9 14.1 10.9
5 32.7 21.8 25.0 21.8 16.2 21.8 15.1 11.7
6 39.5 25.6 37.7 25.6 17.7 25.6 17.9 12.5
7 50.9 29.5 38.8 29.5 20.1 29.5 16.2 13.1
8 60.5 33.3 46.3 33.3 21.3 33.3 20.2 13.7
9 60.3 37.1 51.0 37.1 22.1 37.1 20.2 14.2
10 71.0 40.9 53.9 40.9 23.1 40.9 20.5 14.7
11 83.5 44.8 55.7 44.8 25.1 44.8 21.6 15.1
12 84.5 48.6 81.1 48.6 25.7 48.6 21.8 15.5
13 98.2 52.4 83.3 52.4 26.5 52.4 22.4 15.8
14 108.7 56.2 83.5 56.2 27.2 56.2 22.8 16.2
15 128.2 60.1 83.5 60.1 27.9 60.1 23.5 16.5
16 93.6 63.8 93.6 63.8 29.4 63.8 23.9 16.8

Now we may replace π by the permutation π′ given by

π(1), . . . , π(t2 − 1), π(t1), π(t1 − 1), . . . , π(t2), π(t1 + 1), . . . , π(k).

To see this, assume first t2 > 1 and t1 < k. Then π(t2 − 1) < π(t1) < π(t2)
and π(t1) < π(t2) < π(t1 + 1), hence

k−1∑
t=1

μ
(
S(π′(t)), S(π′(t+1))

)
=

k−1∑
t=1

μ
(
S(π(t)), S(π(t+1))

)
− μ
(
S(π(t2−1)), S(π(t2))

)

−μ
(
S(π(t1)), S(π(t1+1))

)
+μ
(
S(π(t2−1)), S(π(t1))

)
+μ
(
S(π(t2)), S(π(t1+1))

)

≤
k−1∑
t=1

μ
(
S(π(t)), S(π(t+1))

)
.

Similarly,

k−1∑
t=1

μ
(
S(π′(t)), S(π′(t+1))

)
≤

k−1∑
t=1

μ
(
S(π(t)), S(π(t+1))

)

if t2 = 1 or t1 = k. Repeating this replacement if necessary, we obtain the
permutation 1, 2, . . . , k, and the lemma is proved.

2.15 Numerical Results

In this subsection the performance of some of the algorithms is compared based
on the segmentation of 15 × 15–matrices. As in [24] for every algorithm we
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construct segmentations of 1000 matrices with random entries from {0, 1, . . . , L}
(L = 3, 4, . . . , 16) and determine the average TNMU and the average NS. We
used the results from [24] for the algorithm of Galvin et al., the algorithm of
Bortfeld et al. and the algorithm of Xia and Verhey, and we implemented the
algorithm of Engel, the algorithm of Kamath and the algorithm of Kalinowski
in C++. The results are shown in Tables 2 and 3.

Table 3. Test results with ICC. The columns labeled Gal, Bor, X–V, Kam and Kal
correspond to the algorithm Galvin et al. [8], the algorithm of Bortfeld et al. [3], the
algorithm of Xia and Verhey [24], the algorithm of Kamath [13] and the algorithm of
Kalinowski [12], respectively.

TNMU NS

L Gal Bor X–V Kam Kal Gal Bor X–V Kam Kal

3 19.7 17.7 19.5 15.4 15.4 13.4 17.7 13.3 15.4 12.6
4 40.5 22.8 29.6 19.5 19.5 20.4 22.8 18.6 19.5 14.5
5 40.1 27.9 30.9 23.6 23.6 20.4 27.9 19.0 23.6 16.0
6 44.2 32.8 46.8 27.6 27.6 21.5 32.8 20.3 27.6 17.2
7 67.1 37.9 45.6 31.7 31.7 27.1 37.9 20.0 31.7 18.2
8 72.3 42.8 63.4 35.7 35.7 28.2 42.8 24.3 35.7 19.1
9 72.3 47.8 67.1 39.8 39.8 28.3 47.8 24.3 39.8 19.9
10 76.5 52.6 68.6 43.8 43.8 28.9 52.6 25.7 43.8 20.7
11 81.4 57.6 68.6 47.7 47.7 30.9 57.6 25.7 47.7 21.3
12 106.8 62.4 101.1 51.8 51.8 34.8 62.4 27.0 51.8 21.9
13 101.1 67.3 100.6 55.7 55.7 35.5 67.3 26.9 55.7 22.5
14 112.7 72.2 100.0 59.8 59.8 35.6 72.2 26.9 59.8 23.0
15 116.0 77.1 98.0 63.8 63.8 35.9 77.1 26.7 63.8 23.5
16 154.5 82.0 124.9 67.7 67.7 41.7 82.0 30.0 67.7 24.0

With respect to the computation time all of the considered algorithms are
acceptable: On an 1.3GHz PC the computation of the whole column for the
algorithm of Kalinowski took 40 minutes, and for all the other algorithms the
whole column can be computed in a few minutes.

3 Dynamic Methods

Another approach to the generation of intensity modulated irradiation fields is
to use an MLC in the dynamic mode. That means the beam is always switched
on and the modulation is realized by varying the speed of the leaves. In the
literature two different variants can be found according to the starting positions
of the leaves. For the sweep technique both leaves start at the left end of the
field and move always to the right, while for the close–in technique the leaves
start at opposite ends of the field and move towards each other. Obviously, with
a single run of the close–in technique only profiles with a single maximum can be
generated, and profiles where the gradient is too small are also excluded due to
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the finiteness of the maximal leaf velocity. In contrast, the sweep technique can
be used to generate arbitrary profiles, and several authors have derived equations
for the leaf velocities realizing a given profile and minimizing the total irradiation
time ([5,16,20,21,4,19]). In the first section we sketch the basic principle that is
common to all of these approaches and in the second section we describe how
the tongue and groove effect can be avoided using a method introduced in [22].

3.1 The Basic Principle

The leaf trajectories are determined independently for each row, and thus we
only describe the realization of a single row profile. Let a0, a1, . . . , an be the
required doses at the equidistant points x0, x1, . . . , xn, where x0 and xn are the
coordinates of the left and the right end of the field, respectively. Denote by tL(x)
(tR(x)) the time when the left (right) leaf passes the point with coordinate x.
Then the dose delivered at x is proportional to tL(x)− tR(x) and by scaling the
time appropriately we may assume

aj = tL(xj) − tR(xj).

Denote the maximal leaf velocity by v̂ and the velocities of the left and the right
leaf by vL(x) and vR(x), respectively. Suppose tL(xj) and tR(xj) are already
known. Then in order to minimize the time that is needed to generate the profile
over the interval [xj , xj+1] we put, for xj ≤ x < xj+1,

vR(x) = v̂ if aj+1 ≥ aj and vL(x) = v̂ if aj+1 < aj . (44)

First assume aj+1 ≥ aj . Then

aj+1 = tL(xj+1) − tR(xj+1) = tL(xj+1) −
(

tR(xj) +
Δx

v̂

)
,

where Δx = xj+1 − xj . We interpolate the profile between xj and xj+1 linearly,
so vL(x) is constant for xj ≤ x < xj+1, and we obtain

vL(x) =
Δx

tL(xj+1) − tL(xj)
=

v̂

1 + (aj+1 − aj) v̂
Δx

, (45)

and analogously, if aj+1 < aj ,

vR(x) =
Δx

tR(xj+1) − tR(xj)
=

v̂

1 − (aj+1 − ai) v̂
Δx

. (46)

The generation of the whole profile is complete when the left leaf reaches xn.
The time it takes for the left leaf to cross the interval [xj , xj+1] is

Δx

v̂
if aj+1 ≤ aj and

Δx

v̂
+ (aj+1 − aj) if aj+1 ≥ ai.
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Thus the total irradiation time is

tL(xn) =
xn − x0

v̂
+

n−1∑
j=0

max{aj+1 − aj , 0}.

To see that this is optimal under the condition that both leaves start at x0,
observe that, for 0 ≤ j ≤ n − 1,

aj+1 = tL(xj+1) − tR(xj+1) and aj = tL(xj) − tR(xj),

thus, if aj+1 > aj ,

tL(xj+1) − tL(xj) = tR(xj+1) − tR(xj) + aj+1 − aj ≥ Δx

v̂
+ aj+1 − aj .

Clearly the total irradiation time for a multiple row intensity map is just the
maximum of the irradiation time over the rows.

This method can be refined in several ways. So [19] and [20] include a com-
pensation for the transmission through the leaves, and [21] takes into account
the finite acceleration of the leaves.

3.2 The Tongue and Groove Effect

As in the static mode the tongue and groove design of the MLCs causes under-
dosage in the border region between adjacent rows, as illustrated in Figure 14.

��������
Fig. 14. Suppose the method from the previous section yields the same constant ve-
locity for all the depicted leaves. Then the strip between the dotted lines receives only
half of the dose that is required in both rows.

In [22] there is proposed a method to avoid this effect in the sense that after
the correction the border region always receives the lower of the two relevant
doses. The procedure is very similar to the tongue and groove correction of
Siochi’s rod pushing algorithm.

Synchronization of two rows: Consider two adjacent rows (ai,0, . . . , ai,n) and
(ai+1,0, . . . , ai+1,n) and denote by t

(k)
L (x), t

(k)
R (x) (k ∈ {i, i + 1}) the times

when the left (resp. right) leaf of row k passes x. We determine inductively leaf
velocities v

(k)
L and v

(k)
R on the intervals [xj , xj+1] such that the given profile is

generated without tongue and groove underdosage. Suppose the leaf motion
up to the point xj is already determined. First we compute the velocities and
the corresponding t

(k)
L (xj+1), t

(k)
R (xj+1) according to (44)–(45). Tongue and

groove underdosage occurs iff

t
(i)
R (xj+1) > t

(i+1)
R (xj+1) and t

(i)
L (xj+1) > t

(i+1)
L (xj+1), (47)
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or the same with the roles of i and i + 1 interchanged. We call the pair of
rows synchronized if

t
(i)
R (xj+1) = t

(i+1)
R (xj+1) or t

(i)
L (xj+1) = t

(i+1)
L (xj+1).

Then in order to avoid the tongue and groove effect it is sufficient to change
the velocities in such a way that the rows are synchronized. By symmetry
we may assume that (47) holds. Then we just have to slow down both leaves
in row i + 1. Precisely, if ai,j+1 ≤ ai+1,j+1, we put

t
(i+1)
L (xj+1) := t

(i)
L (xj+1),

t
(i+1)
R (xj+1) := t

(i+1)
L (xj+1) − ai+1,j+1,

and if ai,j+1 > ai+1,j+1 we put

t
(i+1)
R (xj+1) := t

(i)
R (xj+1),

t
(i+1)
L (xj+1) := t

(i+1)
R (xj+1) + ai+1,j+1.

This is illustrated in Figure 15.

i i+1 i i+1

i i+1

time

time

i i+1

before synchronization after synchronization

time

time

Fig. 15. The synchronization for two rows. The straight lines stand for t
(i)
L (xj+1) and

t
(i)
R (xj+1), the dotted lines stand for t

(i+1)
L (xj+1) and t

(i+1)
R (xj+1).
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Finally the new velocities for xj ≤ x < xj+1 are computed:

v
(i+1)
L (x) =

Δx

t
(i+1)
L (xj+1) − t

(i+1)
L (xj)

,

v
(i+1)
R (x) =

Δx

t
(i+1)
R (xj+1) − t

(i+1)
R (xj)

.

Synchronization of more than two rows: For general treatment plans the
synchronization of leaf trajectories is based on the iterated synchronization of
two rows. To correct the leaf trajectories between the points xj and xj+1 first
a row i0 with slowest left leaf is determined, i.e. with t

(i0)
L (xj+1) ≥ t

(i)
L (xj+1)

for all i ∈ [m]. Now the whole synchronization is described in Algorithm 6.
The algorithm terminates since in every step some leaves are slowed down,
but never a left leaf arrives later at xj+1 than the one in row i0, and so in
the worst case finally t

(i)
L (xj+1) = t

(i0)
L (xj+1) for all i.

Algorithm 6. : Synchronization of leaf motion
repeat

finished:=true
for i = i0 − 1 downto 1 do

if rows i and i + 1 are not synchronized then
finished:=false
synchronize rows i and i + 1

for i = i0 to m − 1 do
if rows i and i + 1 are not synchronized then

finished:=false
synchronize rows i and i + 1

until finished

In [23] the authors argue that it might not be necessary to fully synchronize
the leaf motion. This is because in the overlap region that is covered by both
leaves the depth of each leaf is only half of the full leaf–depth and taking account
of the difference between the transmission through the full depth and the half
depth they derive a criterion for ’partial synchronization’ which assures that the
overlap region receives at least the lower of the two relevant doses.

4 Summary and Discussion

To realize intensity modulated radiation fields using a multileaf collimator in
the static mode it is necessary to determine a sequence of leaf positions and
corresponding irradiation times such that the superposition of the homogeneous
fields yields the required modulated intensity. This amounts to the problem of
representing a nonnegative integer matrix as a positive integer combination of
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certain (0, 1)–matrices, so called segments. In order to optimize the treatment
this segmentation has to be chosen in such a way that the total number of mon-
itor units and the number of segments are small. Ignoring machine–dependent
constraints the construction of a segmentation with minimal number of monitor
units can be done in polynomial time, for instance by the algorithm of Bortfeld et
al. [3] or the algorithm of Engel [7]. In contrast, the minimization of the number
of segments is NP–complete already for a single row, and thus probably one has
to be satisfied with an approximative algorithm for this problem. Our variant of
Engel’s algorithm seems to be very good in this respect, but there remains the
problem to find a theoretical bound for the quality of the approximation. Other
algorithms use heuristic principles to reduce the number of segments, but are no
longer optimal with respect to the monitor units.

For the segmentation problem with interleaf collision constraint the algorithm
of Kamath et al. [13], the algorithm of Baatar and Hamacher [1] and the algo-
rithm of Kalinowski [12] minimize the number of monitor units in polynomial
time. In addition, [1] and [12] propose greedy heuristics for the reduction of the
number of segments, but these algorithms have the drawback that the compu-
tation time grows rapidly with the problem size.

The algorithm of Langer et al. formulates the segmentation problem as a
mixed integer program and finds solutions that are optimal in first instance
with respect to the monitor units and in second instance with respect to the
segments. Also machine–dependent constraints are easily included. However, as
for the algorithm of Dai and Zhu, due to computational complexity the method
is not applicable for problem sizes that arise in practice.

One difficulty that comes up when the tongue and groove constraint is taken
into account is that the local strategy of most of the published algorithms is no
longer applicable since the different segments are not independent of each other.
The first question which has to be addressed in this context is if it is necessary
to avoid the tongue and groove effect totally, or if it is sufficient to reduce it to
some extend. In the second case some quantitative measure for this acceptable
underdosage has to be developed, and a corresponding objective function for the
minimization has to be constructed.

When the multileaf collimator is used in the dynamic mode the leaf velocities
have to be chosen so that the required intensity is generated. It is possible to
determine optimal leaf velocities for an unidirectional sweep of the leaves across
the field. Also the tongue and groove underdosage can be totally avoided by
synchronization of the leaf motion.
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