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Abstract: A well-studied problem in intensity modulated radiation therapy
(IMRT) is the representation of a given intensity matrix, i.e. a matrix of non-
negative integers, as a nonnegative linear combination of special 0-1-matrices,
called segments. These segments can be practically realized by multileaf col-
limators (MLC). One important aim is the minimization of the sum of the
coefficients of the linear combination, i.e. the delivery time. This paper gives
an introduction into this subject and surveys recent results for related prob-
lems that arise in practical applications. In particular, segmentation problems
are discussed where not exactly the given matrix but a matrix with small de-
viations has to be segmented. Moreover, restrictions on the segments like the
rectangular constraint, the interleaf collision constraint and the tongue-and-
groove constraint are considered.

Keywords: IMRT planning, multileaf collimator, intensity matrix, approxi-
mated segmentation

Résumé : Un problème bien étudié dans la thérapie par intensité d’un rayon-
nement modulé (IMRT) est la représentation d’une matrice d’intensité donnée,
c.à.d. une matrice d’entiers non négatifs, comme une combinaison linéaire
non négative de (0,1)-matrices particulières, appelées segments. Ces segments
peuvent être pratiquement réalisés par des collimateurs multifeuilles (MLC).
Un objectif important est la minimisation de la somme des coefficients de la
combinaison linéaire, c.à.d. le durée de livraison. Ce document donne une in-
troduction à ce sujet et passe en revue les résultats récents pour des problèmes
similaires qui se posent dans des applications pratiques. En particulier, des
problèmes de segmentation sont discutés lorsque ce n’est pas exactement cette
matrice donnée, mais une matrice avec de petits écarts qui doit être segmentée.
De plus, les restrictions sur les segments comme la contrainte rectangulaire,
la contrainte de collision inter-feuille et la contrainte rainure et languette sont
considérées.

Mots clés : plan IMRT, collimateur multifeuille, matrice d’intensité, segmen-
tation approximée
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1 Introduction

Intensity modulated radiation therapy (IMRT) has become an important method in cancer
treatment. High energetic radiation is used to destroy the tumor (target volume), but
also affects healthy cells in the surrounding organs. Therefore, the treatment must be
planned in such a way that the cancerous cells receive a clinically prescribed dose while
the surrounding organs (organs at risk) are protected from the radiation. The design of
a treatment plan realizing this aim consists of two main steps. In the first step, a set of
beam directions has to be chosen and the amount of intensity modulated radiation for
each direction has to be determined. For each beam direction, this amount is given by the
entries of an intensity matrix with nonnegative integral entries. Commonly, a multileaf
collimator (MLC) is used for the realization of the fluence given by this intensity matrix.
An MLC consists of a number of metal leaf pairs, each corresponding to one row of the
intensity matrix, that can be shifted towards each other. The region between the left and
the right leaves receives radiation while the area that is covered by the leaves is protected.
Each choice of the leaf positions generates a homogeneous field. The second step, called
segmentation, consists of the determination of a number of fields whose superposition
realizes the given intensity matrix. We focus on this segmentation procedure and on the
minimization of the delivery time.

Figure 1: A multileaf collimator

2 The determination of the intensity matrices

Because the intensity matrices are the main objects for this paper we briefly sketch how
they are determined. We consider the (abstract) patient as a finite set V of voxels which
are geometrically small cuboids in the body. The kind of region yields a partition of the
patient V into blocks. Usually, we have one block T which is called the planning target
volume (PTV), a family R of blocks R which are the organs at risk (OAR), and one block
S which consists of the remaining voxels of V , i.e. the rest of body (ROB),

V =

(
⋃

R∈R
R

)

∪ S ∪ T.
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In practice, these regions are given by contours drawn by the physician or physicist on
each CT–slice. In Figure 2 there is given one CT–slice containing contours of the PTV
and the OARs. This slice is illustrated on the left by means of the Hounsfield–values
and on the right by means of the Electron density values for dose calculation. The voxels
(on the right) are represented here by two-dimensional squares though they are in fact
three-dimensional cuboids. The physician fixes a value bT , i.e. the prescribed dose to

Figure 2: CT–slices representing Hounsfield values (left) and Electron density values of
voxels (right)

the target, and the aim is to find a treatment plan such that the accumulated dose after
the treatment is very near to bT for each v ∈ T and that it is as small as possible for
each other voxel, but in particular for the voxels in the OARs. The deviation from this
aim is modeled by a penalty function and various optimization algorithms lead to a set
of beam directions, cf. [7]. In conformal radiation therapy, the radiation is delivered for
each beam direction in a homogeneous way, i.e. one has a fixed open region O of the
collimator and the radiation is delivered through O for a certain time. The region O is
usually determined in such a way that the projection of the PTV onto the collimator
plane is encircled by O. One can obtain better results if the fluence of radiation differs
from point to point in O. This intensity modulation is realized after a discretization in
the following way: One starts with a rectangle surrounding O and partitions it into small
squares, called bixels. For each bixel b, one introduces a variable xb which is the still
unknown fluence of radiation through the bixel. Then one determines the dose values of
the voxels under the supposition that only the bixel b is open and the rest of the rectangle
is closed by the leaves. The penalty function and methods from nonlinear optimization
provide a fixed value xb and, after some rounding, a corresponding value ab for each bixel
b. If b is positioned in row i and column j we use the notation aij instead of ab. The
matrix A = (aij) is then the optimized intensity matrix.

3 Mathematical formulation of the segmentation

problem

For any k, l, r ∈ N let [k] = {1, . . . , k} and [l, r] = {i ∈ N : l ≤ i ≤ r}. We call [l, r] an
interval. Let A be a matrix of dimension m × n with nonnegative integral entries. As
above, it represents the given intensity matrix and has to be decomposed into a number
of segments that correspond to the leaf positions of the MLC. A matrix S = (sij) is called
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a segment if there are intervals I1, . . . , Im in [n] such that

sij =

{
1, if j ∈ Ii = [li, ri]

0, otherwise
i ∈ [m], j ∈ [n]. (1)

The intervals Ii represent the region between the left and right leaves in row i of the
MLC, i.e. li− 1 and ri + 1 are the positions of the i-th left and right leaf, respectively. A
segmentation of A is a decomposition

A =
k∑

i=1

uiSi

with segments Si and positive integers ui (i = 1, . . . , k). The delivery time (DT) of the
segmentation is

DT =

k∑

i=1

ui.

The coefficients ui represent the time of radiation for the fixed segment, i.e. the fixed leaf
positions. They are usually given in a certain scale where the units are called monitor
units (MU). Hence we require everywhere that they are integers. It turns out that this
additional integrality constraint often is not really a restriction. In Figure 3 there is given
a segmentation with a DT of 4 monitor units.

2 MU 1 MU 1 MU

2 ·

⎛

⎜
⎜
⎝

0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

⎞

⎟
⎟
⎠

DT = 2 + 1 + 1 = 4

Figure 3: A segmentation with 4 MUs

A standard problem is the following:

Problem 1 (MIN-DT) Given a matrix A of nonnegative integers, find a segmentation
such that its DT is minimal. Let c(A) be this minimal DT.

From the practical point of view it is not necessary that exactly the intensity matrix A
is realized by the segmentation. The reason is that the determination of A in the first
step depends on several procedures that are not completely exact, e.g. the determination
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of the regions of interest (PTV, OAR), the dose calculation, the objective function, and
the optimization algorithm. Hence corresponding approximation problems are of interest:
Let, as usual,

‖A‖1 =

m∑

i=1

n∑

j=1

|aij | and ‖A‖∞ = max{|aij | : i ∈ [m], j ∈ [n]}.

Problem 2 (MIN-DT-APP) Given a matrix A of nonnegative integers and a nonneg-
ative integer δ, find a matrix B of nonnegative integers such that ‖B−A‖∞ ≤ δ and c(B)
is minimal. Let cδ(A) be this minimal DT.

Given two matrices A,B, we call ‖B −A‖1 the total change (TC).

Problem 3 (MIN-DT-TC-APP) Given a matrix A of nonnegative integers and a
nonnegative integer δ, find a matrix B of nonnegative integers with the property that
‖B − A‖∞ ≤ δ, c(B) = cδ(A) and ‖B − A‖1 is minimal.

Further related problems are discussed in the last two sections.

4 Solution of the problem MIN-DT

Given a matrix A with nonnegative integer entries, let ai denote the i-th row of A for
i ∈ [m]. Ignoring machine-dependent constraints, we can solve the problem MIN-DT
independently for each row of A, i.e. m problems MIN DT-ROW. The problem MIN-DT-
ROW is defined exactly as the problem MIN-DT with the only exception that the matrix
A is replaced by a vector a (with a0 = an+1 = 0) and the segments S are given as vectors
s(l, r) where

s(l, r)i =

{
1 if i ∈ [l, r],

0 otherwise.

Let the complexity of a vector a be defined by

c(a) =
n∑

j=1

max{0, aj − aj−1}.

The solution of the problem MIN-DT-ROW is given by the following theorem, cf. [4] and
the surveys [9], [11] containing several other references. The first algorithm that yields an
optimal solution was presented by Bortfeld, Kahler, Waldron, and Boyer [3].

Theorem 1 The minimal DT of a segmentation of a vector a is given by its complexity
c(a).
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Proof. We present here a very elementary proof: First of all note that we may assume
that all coefficients u are equal to 1 since an item us can be written as a sum s + · · ·+ s
with u items. Let f(a) be the minimal DT for a. So we have to prove that f(a) = c(a).
We use induction on ‖a‖1. The case ‖a‖1 = 0, i.e. a = 0, is trivial. First we show that
f(a) ≥ c(a). Let s(l, r) be an item of an optimal segmentation of a and let a′ = a−s(l, r).
Note that ‖a′‖1 < ‖a‖1. Since, for j ∈ [n],

s(l, r)j − s(l, r)j−1 =

⎧
⎪⎨

⎪⎩

1 if j = l,

−1 if j = r + 1,

0 otherwise

we have

c(a)− c(a′) = max{0, al − al−1} −max{0, al − 1− al−1}
+ max{0, ar+1 − ar} −max{0, ar+1 − (ar − 1)}).

Hence,

c(a)− c(a′)

{
= 1 if al−1 < al and ar > ar+1,

< 1 otherwise.

By induction hypothesis, f(a′) = c(a′). Clearly, f(a) = f(a′) + 1. Accordingly, f(a) =
c(a′) + 1 ≥ c(a). Now we show that f(a) ≤ c(a). If a �= 0 we can find a first index l
such that al−1 < al and then a first index r ≥ l such that ar > ar+1. By the choice of l
and r, aj ≥ 1 for all j ∈ [l, r]. Hence a′ = a − s(l, r) is a vector of nonnegative integers
and c(a) − c(a′) = 1. In view of the induction hypothesis, a′ can be segmented with
c(a′) segments and together with the segment s(l, r) this gives a segmentation of a with
c(a′) + 1 = c(a) segments. Consequently, f(a) ≤ c(a). �

Corollary 1 The minimal DT c(A) of a segmentation of a matrix A is given by c(A) =
max{c(ai) : i ∈ [m]}), i.e. by the maximal complexity of its rows, and it can be determined
in time O(mn).

5 Solution of the approximation problems for one

row

Here we only present the results, complete proofs can be found in [6]. Using the results
from the previous section we come to the following problems:

Problem 4 (MIN-DT-APP-ROW) Given a vector a = (a1, . . . , an) with nonnegative
integral entries, find a vector b with nonnegative integral entries such that ‖b− a‖∞ ≤ δ
and c(b) is minimal. Let cδ(a) denote this minimum.

Problem 5 (MIN-DT-TC-APP-ROW) Given a vector a = (a1, . . . , an) with non-
negative integral entries, find a vector b with nonnegative integral entries such that
‖b− a‖∞ ≤ δ, c(b) = cδ(a) and ‖b− a‖1 is minimum.
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In the following all intervals are subsets of [0, n+ 1]. Let ε > 0. For any j ∈ [0, n+ 1] we
define its lower ε-level interval Iε(j) and its upper ε-level interval Iε(j) to be the maximal
interval containing j such that

ai ≤ aj + ε ∀i ∈ Iε(j),
ai ≥ aj − ε ∀i ∈ Iε(j),

respectively. Now let a = (a1, . . . , an) be a vector of nonnegative integral entries and let
always a0 = an+1 = 0. An element j ∈ [0, n+ 1] is called an ε-local minimum for a if

aj ≤ ai ∀i ∈ Iε(j),
see Figure 4, and it is called an ε-local maximum for a if

aj ≥ ai ∀i ∈ Iε(j).
We say that j is an ε-local extremum if it is an ε-local minimum or an ε-local maximum.

�

�

ε

�� Iε(j)

j

Figure 4: An ε-local minimum

Two ε-local extrema i and j where 0 ≤ i < j ≤ n+ 1 are called consecutive if there is no
k ∈ [i+ 1, j − 1] that is an ε-local extremum.

In the following we set ε = 2δ. For each maximal sequence of consecutive 2δ-local minima
and for each maximal sequence of consecutive 2δ-local maxima we pick the first and the
last one. In such a way we obtain an alternating sequence

s = (0 = m1, m
1,M1,M

1, m2, m
2,M2,M

2, . . . ,Mt,M
t, mt+1, m

t+1 = n+ 1)

of pairs of 2δ-local maxima and minima. We call s the 2δ-min-max sequence. We note
that ml = ml and Ml = M l is allowed - this is the case if the corresponding sequence of
consecutive 2δ-local extrema contains only a single element. Moreover, as an exception,
we set m1 = m1 = 0 and mt+1 = mt+1 = 0.

We say that a vector b is conform to the 2δ-min-max sequence if

bj = aml
+ δ for all j ∈ [ml, m

l], l = 2, . . . , t,

bj = aMl
− δ for all j ∈ [Ml,M

l], l = 1, . . . , t,

bj ≥ bj−1 for all j ∈ [ml + 1,Ml], l = 1, . . . , t,

bj ≥ bj+1 for all j ∈ [M l, ml+1 − 1], l = 1, . . . , t.

Hence, if b is conform to the 2δ-min-max sequence, then b is constant in the inter-
vals [ml, m

l], [Ml,M
l], increasing in the intervals [ml,Ml], and decreasing in the intervals

[M l, ml+1], see Figure 5.
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m1 = m1

M1 = M1

m2 = m2

M2 M2

m3m3

M3

m4 = m4

�

�

2δ

�

�

2δ
�

�

2δ �

�

2δ

�

�

2δ

M3

Figure 5: A vector that is conform to the 2δ-min-max sequence

We construct two vectors b and b which turn out to be conform to the 2δ-min-max
sequence as follows: We set

b0 = b0 = 0,

bn+1 = bn+1= 0,

bj = bj = aml
+ δ, j ∈ [ml, m

l], l = 2, . . . , t,

bj = bj = aMl
− δ, j ∈ [Ml,M

l], l = 1, . . . , t.

Further, we set

bj = max{bj−1, aj − δ}, j = ml + 1, . . . ,Ml − 1, l = 1, . . . , t,

bj = max{bj+1, aj − δ}, j = ml+1 − 1, . . . ,M l + 1, l = 1, . . . , t.

and

bj = min{bj+1, aj + δ}, j = Ml − 1, . . . , ml + 1, l = 1, . . . , t,

bj = min{bj−1, aj + δ}, j = M l + 1, . . . , ml+1 − 1, l = 1, . . . , t.

Theorem 2 Let ‖a‖∞ > 2δ. The vectors b and b are optimal solutions for the problem
MIN-DT-APP-ROW. A vector b is an optimal solution for the problem MIN-DT-APP-
ROW iff b is conform to the 2δ-min-max sequence and b ≤ b ≤ b. We have

cδ(a) = (aM1 − δ) +

t∑

l=2

(aMl
− aml

− 2δ).

Corollary 2 The problem MIN-DT-APP-ROW can be solved in time O(n).

Corollary 3 The problem MIN-DT-TC-APP-ROW can be solved in time O(δn).
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6 Solution of the approximation problems for matri-

ces

As the problem MIN-DT in Section 4, the problem MIN-DT-APP can be solved indepen-
dently for each row. This immediately yields:

Theorem 3 The problem MIN-DT-APP can be solved in time O(mn).

For the solution of MIN-DT-TC-APP it is not necessary to realize the individual minimal
DT for each row. We only have to realize the bound cδ(A) for each row. This leads us
immediately to the following Constrained DT and Min TC problem for single rows:

Problem 6 (CON-DT-TC-ROW-APP) Given a vector a = (a1, . . . , an) with non-
negative integral entries and a bound C, find a vector b with nonnegative integral entries
such that ‖b− a‖∞ ≤ δ, c(b) ≤ C and ‖b− a‖1 is minimum.

The use of dynamic programming methods [6] leads to the following result:

Theorem 4 The problem CON-DT-TC-ROW-APP can be solved in time O(δ3n2).

Another approach to the problem CON-DT-TC-ROW-APP [10] is based on the observa-
tion that an LP-dual of this problem is essentially a min-cost-circulation problem for the
following network N . The node set is

V = {q, s} ∪ {(j, 0), (j, 1) : j ∈ [0, n+ 1]},
and the arc set is E = E0 ∪E1 ∪ E2, where

E0 = {(q, (0, 0)), (q, (0, 1)), ((n+ 1, 0), s), ((n+ 1, 1), s), (s, q)}
∪ {((j, k), (j + 1, k)) : j ∈ [0, n], k ∈ {0, 1}},

E1 = {((j, 0), (j + 1, 1))(λ) : j ∈ [n], λ ∈ {0, 1}},
E2 = {((j, 1), (j + 1, 0))(λ) : j ∈ [n], λ ∈ {0, 1}}.

The arc capacities and costs are collected in Table 1, where we put

aj = max{0, aj − δ}, aj = aj + δ (j ∈ [n]).

All arcs that do not appear in the table have infinite capacity and zero cost. The definition
of the network is illustrated in Figure 6.

A standard primal-dual algorithm can be used to obtain a circulation ϕ of minimum
cost together with a corresponding potential π. We obtain an optimal solution b for the
problem CON-DT-TC-ROW-APP by setting, for all j ∈ [n],

bj =

⎧
⎪⎨

⎪⎩

π(j + 1, 0)− π(j, 1) if ϕ((j, 1), (j + 1, 0))(0) > 0,

π(j, 0)− π(j + 1, 1) if ϕ((j, 0), (j + 1, 1))(0) > 0,

aj otherwise.
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Arc Capacity Cost

((j, 0), (j + 1, 1))(0) 1 −aj
((j, 0), (j + 1, 1))(1) ∞ −aj
((j, 1), (j + 1, 0))(0) 1 aj
((j, 1), (j + 1, 0))(1) ∞ aj
(s, q) ∞ C

Table 1: The arc capacities and costs in our network

q

(0, 0)

(0, 1)

(j, 0)

(j, 1)

(j + 1, 0)

(j + 1, 1)

(n+ 1, 0)

(n+ 1, 1)

s
∞/0

∞/0

∞/0

∞/0

1/− aj

∞/− aj

1/aj

∞/aj

∞/0

∞/0

∞/C

Figure 6: The network N for the problem CON-DT-TC-ROW-APP. The arc labels have
the format “capacity/cost”.

By this transformation we obtain an alternative estimate for the time-complexity.

Theorem 5 The problem CON-DT-TC-ROW-APP can be solved in time O(n2 log2 n).

The independent solution for each row finally provides the following theorem:

Theorem 6 The problem MIN-DT-TC-APP can be solved in time min(O(mδ3n2), O(mn2

log2 n)).

7 Restricted shapes: Rectangles

Hitherto all segments from the definition (1) have been allowed for a segmentation. In
practice, several other restrictions are necessary or desirable, e.g. one can require for
dosimetric reasons that the open region should be connected and as regular as possible.
The easiest variant is the case if the open region has to be a rectangle. We call this
constraint the rectangle constraint (RC). The problem MIN-DT for this case is solved in
[5]. Up to now we only have some specialized integer programming method that provides a
solution for arbitrary matrices A. But the case of two rows can be treated in a satisfactory
way:
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With the two-row matrix A we associate the following segmentation network N = (V,E, q,
s, c), where

V = {q, s, 0, 1, . . . , n}, E = E1 ∪E2 ∪ E3,

q is the source, s is the sink, and

E1 = {(j − 1, j) : j ∈ [n]},
E2 = {(q, j − 1) : a1,j−1 < a1,j and a2,j−1 < a2,j , j ∈ [n]},
E3 = {(j, s) : a1,j > a1,j+1 and a2,j > a2,j+1, j ∈ [n]}.

The capacities are given by

c(j − 1, j) = min{a1,j, a2,j} for (j − 1, j) ∈ E1,

c(q, j − 1) = min{a1,j − a1,j−1, a2,j − a2,j−1} for (q, j − 1) ∈ E2,

c(j, s) = min{a1,j − a1,j+1, a2,j − a2,j+1} for (j, s) ∈ E3.

Figure 7 contains the segmentation network for the matrix

(
0 4 3 1 4 5 2 3
1 3 6 5 7 6 7 4

)

.

0 1 2 3 4 5 6 7 8

0 3 3 1 4 5 2 3

q

s

2 2

1 3

Figure 7: The segmentation network

Let w(A) be the maximal value of a flow through N . We still use the notation a1,a2 for
the two rows of A.

Theorem 7 The minimal DT of a rectangular segmentation of a matrix A with two rows
is given by c(a1) + c(a2)− w(A) and it can be computed in time O(n2).
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8 Restricted shapes: The interleaf and the tongue-

and-groove constraints

Other restrictions are given by machine dependent constraints. The interleaf collision
constraint (ICC) forbids an overlap of the left leaf in row i and the right leaf in row i± 1,
see Figure 8. Formally, we have as condition

(ICC) li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m− 1]).

⇒
⎛

⎝
0 0 0 1
1 0 0 0
1 1 0 0

⎞

⎠ is not admitted.

Figure 8: A forbidden segment by (ICC)

The tongue-and-groove constraint (TGC) should be considered in order to prevent under-
dosage effects due to the tongue-and-groove design of the MLC, see Figure 9. A significant

Radiation

Figure 9: The tongue-and groove design

area between two neighboring leaves is still covered if one of the leaves is open and the
other one is closed. Hence such situations have to be avoided as far as possible. So we
require that the bixel corresponding to the matrix entry ai±1,j is not covered by a leaf if
the bixel corresponding to the matrix entry aij is not covered by a leaf and if aij ≤ ai±1,j.
Formally, we have the condition

(TGC)

{
aij ≤ ai−1,j and sij = 1⇒ si−1,j = 1 (i ∈ [2, m], j ∈ [n]),

aij ≤ ai+1,j and sij = 1⇒ si+1,j = 1 (i ∈ [m− 1], j ∈ [n]).

Again the problems MIN-DT, MIN-DT-APP, MIN-DT-TC-APP can be considered under
the additional restrictions (ICC) or/and (TGC). The case (ICC) is relatively well stud-
ied. For the problem MIN-DT there are several algorithms. Combinatorial algorithms
have been designed by Baatar, Hamacher, Ehrgott, and Woeginger [1] and by Kamath,
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Sahni, Palta, and Ranka [15], see also [11]. Moreover, Boland, Hamacher, and Lenzen [2]
solved this problem by a reduction to a min-cost-circulation problem with side constraints.
Because of these additional constraints, this approach finally needs an ILP-solver, a min-
cost-circulation algorithm is not sufficient. The algorithm in [8] is based on a duality
approach and on a min-max theorem for the following weighted digraph G = (V,E)
which is called the ICC-digraph:

V = {q, s} ∪ [m]× [0, n+ 1],

E = {(q, (i, 0)) : i ∈ [m]} ∪ {((i, n+ 1), s) : i ∈ [m]}
∪ {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [0, n]}
∪ {((i, j), (i+ 1, j)) : i ∈ [m− 1], j ∈ [n]}
∪ {((i, j), (i− 1, j)) : i ∈ [2, m], j ∈ [n]} ,

where the arc weights are given by

w(q, (i, 0)) = w((i, n+ 1), s) = 0 (i ∈ [m])

w((i, j − 1), (i, j)) = max{0, aij − ai,j−1} (i ∈ [m], j ∈ [n + 1])

w((i, j), (i+ 1, j)) = −aij (i ∈ [m− 1], j ∈ [n])

w((i, j), (i− 1, j)) = −aij (i ∈ [2, m], j ∈ [n]).

Figure 10 shows the ICC-digraph for the matrix

A =

⎛

⎜
⎜
⎝

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

⎞

⎟
⎟
⎠ .

q s

0

0

0

0

0

0

0

0

4 1 0 1 3 1 0

2 2 0 2 0 3 0

2 1 0 0 1 2 0

5 0 0 0 3 0 0

−2 −4
−4 −5

−1
0
−3 −1

−1 −4
−4 −5

−2 −2
−3 −4

−2 −1
−1 −3

−2 −1
−4 −4

−5 −2
−3 −3

−3 −2
−2 −1

−5 −2
−3 −4

Figure 10: The digraph for the matrix A

Theorem 8 The minimal DT of a segmentation of a matrix A under (ICC) equals the
maximal weight of a q-s-path in the ICC-digraph.

The problem MIN-DT-APP is solved in [13]. Using an extension of the ICC-digraph one
obtains:
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Theorem 9 The problem MIN-DT-APP under (ICC) can be solved in time O(δ2m2n).

In [10] this result is further extended to the problem MIN-DT-TC-APP. Combining the
ICC-digraph method with the min-cost-circulation approach from Section 6 the following
result is proved:

Theorem 10 The problem MIN-DT-TC-APP under (ICC) can be solved in time
O((mn)2 log(mn)2).

The ICC-digraph method can also be applied to a combination of (ICC) and (TGC),
see [12] for the problem MIN-DT. The situation is more difficult if only the tongue-and-
groove condition (TGC) has to be satisfied. Using the method of Boland, Hamacher,
and Lenzen [2], the problem MIN-DT under (TGC) is solved in [14]. Because there an
ILP-solver has to be used, the problem size cannot be too large. Hence there is still the
need of a purely combinatorial algorithm (perhaps including network-flow algorithms).
Moreover, it is still unknown whether the corresponding LP-relaxation of the problem
(omit the condition that all coefficients ui have to be integral) always has integral optimal
solutions.
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