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Abstract

Shape matrix decomposition is a subproblem in radiation therapy planning. A given fluence
matrix A has to be written as a sum of shape matrices corresponding to homogeneous fields that
can be shaped by a multileaf collimator (MLC). We solve the problem of finding an approxim-
ation B of A satisfying prescribed upper and lower bounds for each entry. The approximation
B is determined such that the corresponding fluence can be realized with a prescribed delivery
time using a multileaf collimator with an interleaf collision constraint, and under this condition
the distance between A and B is minimized.
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1 Introduction

Radiation therapy is an important method in cancer treatment. Basically, the aim is to destroy
the tumor while minimizing the damage to the healthy tissue, in particular to sensitive structures
or organs at risk. In clinical practice it is common to use a linear accelerator which can release
radiation from different directions. In addition, a multileaf collimator (MLC) can be used to
cover certain parts of the irradiated area. An MLC consists of two banks of metal leaves that are
arranged pairwise such that each pair consists of a left leaf and a right leaf which can be moved into
the radiation beam from their respective sides. Figure 1 illustrates how an MLC can be used to
modulate the intensity. The subject of the present paper is one step of the treatment planning for
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Figure 1: Generating an intensity modulated radiation field by superimposing three homogeneous
fields shaped by an MLC. The shaded areas are the regions covered by MLC leaves, the numbers
indicate for how long the corresponding field is irradiated, and the greyscales in the rightmost
square show the total fluence distribution.

an MLC in the step-and-shoot mode. That term means the radiation is switched off while the leaves
are moving, so the task is to determine finitely many fields such that their superposition yields the
required fluence. The two main optimization goals considered in the literature are the minimization
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of the delivery time (DT) and minimization of the number of used shapes. This problem has been
considered by many authors (see [8] and the references therein). There are many algorithms for this
task, using different reformulations of the problem and including different technological constraints,
such as the interleaf collision constraint (ICC) and the tongue-and-groove constraint. In [5] it was
suggested to decompose an approximation of A. This might be necessary if the delivery time for
an exact decomposition of A is prohibitively large. It is further justified by the fact that A is a
result of numerical computations based on simplified models, so there should be an error interval
attached to each entry. There are two natural objectives for this approximation problem. First,
the delivery time for the approximation matrix should be small and second, a given delivery time
should be realized by changing A as little as possible. Both of these problems were solved for
single row matrices (and consequently in general for MLCs with independent rows) in [5]. In this
paper we consider MLCs that have an interleaf collision constraint, which means that an overlap
between opposite leaves in consecutive rows is not allowed. Given a fluence matrix A and upper
and lower bounds for the entries of the approximation matrix, the minimal possible delivery time
of an approximation was determined in [9], where the authors also described a heuristic method
for the reduction of the distance between A and the approximation matrix B (to be defined later).
The main result of the present paper is a minimum cost flow formulation of the exact minimization
of this distance. In Section 2 we give a precise formulation of the approximation problem and we
introduce some notation. Section 3 contains our main result: the approximation problem is dual
to a minimum cost flow problem. Finally, Section 4 contains some computational results.

2 Problem formulation

Throughout the paper we use the standard notation

[k] = {1, 2, . . . , k}, [k, l] = {k, k + 1, . . . , l}

for integers k and l with k 6 l. As in [9], we start with a fluence matrix A of size m× n, and two
matrices A and A containing the lower and upper bounds for the entries:

0 6 aij 6 aij 6 aij (i, j) ∈ [m]× [n].

Definition 1 (Feasible Approximation). Any integer matrix B with

aij 6 bij 6 aij ((i, j) ∈ [m]× [n])

is called feasible approximation of A. The total change TC(B) of a feasible approximation B is
defined by

TC(B) =

m∑
i=1

n∑
j=1

|bij − aij |.

The homogeneous fields that can be shaped by the MLC are described by binary matrices of
size m× n which we call shape matrices.

Definition 2 (Shape matrix). An m× n matrix S is a shape matrix if there are pairs of integers
(li, ri) (i ∈ [m]), such that the following conditions are satisfied:

1. sij =

{
1 if li < j < ri,

0 otherwise.
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2. li < ri+1 and ri > li+1 for all i ∈ [m− 1].

The first condition is just stating that for each row i, there are a left leaf covering bixels
(i, 1), . . . , (i, li) and a right leaf covering bixels (i, ri), . . . , (i, n), while the bixels (i, li+1), . . . , (i, ri−
1) are exposed to radiation. The second condition is called the interleaf collision constraint (ICC).
It ensures the left leaf of row i and the right leaf of row i± 1 do not overlap, which is required by
some widely used MLCs. An MLC leaf sequence for A corresponds to a representation of A as a
weighted sum of shape matrices.

Definition 3 (Shape matrix decomposition). A shape matrix decomposition of A is a representation
of A as a positive integer linear combination of shape matrices

A =

k∑
t=1

utS
(t).

The delivery time (DT) of this decomposition is just the sum of the coefficients,

DT =

k∑
t=1

ut.

Example 1. For the shape matrix decomposition(
1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

)
= 2 ·

(
0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

)
+

(
0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

)
+

(
1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

)
,

corresponding to Figure 1, we have DT = 4.

There are 3 natural optimization problems [9].

MinDT. Find a shape matrix decomposition A =
∑k

t=1 utS
(t) such that DT =

∑k
t=1 ut is minimal.

Approx-MinDT. Find a feasible approximation B and a shape matrix decomposition B =∑k
t=1 utS

(t) such that DT =
∑k

t=1 ut is minimal.

Approx-MinTC. For a given delivery time c̃, find a feasible approximation B and a shape matrix
decomposition

B =

k∑
t=1

utS
(t) (1)

such that
∑k

t=1 ut 6 c̃, and under this condition TC(B) is minimal.

The first problem MinDT is the exact decomposition problem which can be solved by several
efficient algorithms [3, 7, 10]. The second problem Approx-MinDT was solved in [9]. In the
present paper we consider the third problem Approx-MinTC. Throughout the paper, we will
always assume that the problem is feasible. In practice that can be realized by solving Approx-
MinDT first. This yields the minimal possible value for c̃, and for each value as least as large
Approx-MinTC is feasible.
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3 A solution of the problem Approx-MinTC

We start by formulating an LP model for Approx-MinTC. Since we are only interested in the sum
of the coefficients, we may assume that all the coefficients ut in (1) are equal to 1 (allowing the same
shape matrix S(t) for different values of t). We introduce variables Lij and Rij for (i, j) ∈ [m]× [n].

Formally, if the shape matrix S(t) in the decomposition B =
∑k

t=1 S
(t) is determined by the

parameters (l
(t)
i , r

(t)
i ) for i ∈ [m], our variables are

Lij =
∣∣∣{t : l

(t)
i < j

}∣∣∣ , and Rij =
∣∣∣{t : r

(t)
i 6 j

}∣∣∣ .
In other words, the variable Lij is the number of shapes where bixel (i, j) is not covered by the left
leaf, while Rij counts the shapes where bixel (i, j) is covered by the right leaf. Obviously, this gives
bij = Lij − Rij . In addition, we introduce the variables xij = |aij − bij | for (i, j) ∈ [m]× [n]. Now
we can formulate Approx-MinTC for a given delivery time c̃ as an LP. To clarify our notation
we also write down the dual variables for the constraints.

min
m∑
i=1

n∑
j=1

xij (2)

Li,j+1 − Lij > 0 αij > 0 ((i, j) ∈ [m]× [n− 1]), (3)

−Lin > −c̃ αin > 0 (i ∈ [m]), (4)

Ri,j+1 −Rij > 0 βij > 0 ((i, j) ∈ [m]× [n− 1]), (5)

Ri1 > 0 βi0 > 0 (i ∈ [m]) (6)

Rij − Lij > −aij yij > 0 ((i, j) ∈ [m]× [n]) , (7)

Lij −Rij > aij zij > 0 ((i, j) ∈ [m]× [n]), (8)

Lij −Ri+1,j > 0 uij > 0 ((i, j) ∈ [m− 1]× [n]), (9)

Lij −Ri−1,j > 0 vij > 0 ((i, j) ∈ [2,m]× [n]), (10)

Rij − Lij + xij > −aij pij > 0 ((i, j) ∈ [m]× [n]), (11)

Lij −Rij + xij > aij qij > 0 ((i, j) ∈ [m]× [n]). (12)

By definition, the variables Lij and Rij should be nonnegative. We do not want to require this
explicitly in the LP since we want to have equality constraints in the dual, but note that nonneg-
ativity is implied: constraints (6) together with (5) force all the variables Rij to be nonnegative,
and from (8) it follows that also Lij > 0 for all (i, j) ∈ [m]× [n]. Constraints (3), (5) and (9), (10)
are consequences of the inclusions

{t : l
(t)
i < j} ⊆ {t : l

(t)
i < j + 1}, {t : r

(t)
i 6 j} ⊆ {t : r

(t)
i 6 j + 1}

{t : r
(t)
i+1 6 j} ⊆ {t : l

(t)
i 6 j}, {t : r

(t)
i−1 6 j} ⊆ {t : l

(t)
i 6 j},

where the inclusions in the second row follow from the interleaf collision constraint. The constraints
(7) and (8) ensure that aij 6 bij 6 aij , while (4) is the constraint that the total number of shapes
is at most c̃. Finally, constraints (11) and (12) are equivalent to xij > |aij − bij |, and the objective
is to minimize the sum of all the deviations |aij − bij |.

We remark that the values Lij and Rij do not uniquely determine the shape matrix decom-
position, because in the transformation from the shape matrices S(t) to the cardinalities Lij and
Rij we lost some information. It is even not completely obvious that a solution of the LP always
yields a feasible decomposition. But fortunately, a natural approach to construct appropriate shape
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matrices works: we define shape matrices S(t) such that the leaves move only from left to right
as t increases. More precisely, for a given solution of the problem (2)–12) we consider the sets
Lij = [Lij ] and Rij = [Rij ] for (i, j) ∈ [m]× [n] and put

s
(t)
ij =

{
1 if t ∈ Lij \ Rij

0 otherwise
((i, j) ∈ [m]× [n], t ∈ [L]) ,

where L = max{Lin : i ∈ [m]}. These matrices have the first property required in Definition 2
with parameters

l
(t)
i = 0 for t 6 Li1 (i ∈ [m]), (13)

r
(t)
i = 1 for t 6 Ri1 (i ∈ [m]), (14)

l
(t)
i = j − 1 for Li,j−1 < t 6 Lij ((i, j) ∈ [m]× [2, n]), (15)

r
(t)
i = j for Ri,j−1 < t 6 Rij ((i, j) ∈ [m]× [2, n]). (16)

For t > Lin, there is a zero row in the i-th row of S(t), which can be realized by parameters l
(t)
i = n

and r
(t)
i = n+ 1. The interleaf collision constraint l

(t)
i < r

(t)
i+1 is satisfied for every t ∈ [L] and every

i ∈ [m− 1]. If l
(t)
i = 0 this is obvious. Otherwise we have l

(t)
i = j − 1 for some j ∈ [2, n+ 1]. Then

t > Li,j−1 > Ri+1,j−1, and consequently r
(t)
i+1 > j. The interleaf collision constraint l

(t)
i < r

(t)
i−1 is

proved similarly. Finally, using (7) and (8) we have

bij =

L∑
t=1

s
(t)
ij = |Lij \ Rij | = Lij −Rij ∈

[
aij , aij

]
.

Now we dualize the LP (2)– (12) to obtain the problem TC-Dual:

max
m∑
i=1

n∑
j=1

(
− aijpij + aijqij + aijzij − aijyij

)
− c̃

m∑
i=1

αin (17)

Lij : −αij + αi,j−1 + qij − pij + zij

−yij + uij + vij = 0 ((i, j) ∈ [m]× [2, n]), (18)

Li1 : −αi1 + qi1 − pi1 + zi1 − yi1
+ui1 + vi1 = 0 (i ∈ [m]), (19)

Rij : −βij + βi,j−1 − qij + pij − zij
+yij − ui−1,j − vi+1,j = 0 ((i, j) ∈ [m]× [n− 1]), (20)

Rin : βi,n−1 − qin + pin − zin + yin

−ui−1,n − vi+1,n = 0 ((i, j) ∈ [m]× [n− 1]), (21)

xij : pij + qij 6 1 ((i, j) ∈ [m]× [n]). (22)

Formally, we would have to write down several of the constraints for i = 1 and i = m separately,
since in these cases the variables ui−1,j and vij (resp. uij and vi+1,j) are missing. In order avoid
an unnecessary blowup of the formalism, we use the convention that

u0j = umj = v1,j = vm+1,j = 0 (j ∈ [n]).
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Clearly, the objective (17) is equivalent to minimizing

m∑
i=1

n∑
j=1

(
aijpij − aijqij − aijzij + aijyij

)
+ c̃

m∑
i=1

αin, (23)

and we will see that TC-Dual is equivalent to the problem of finding a Q − S−flow of minimum
cost in the following network N . The node set V of the underlying digraph consists of two nodes
(i, j, 0) and (i, j, 1) for each bixel (i, j) ∈ [m]× [n] and two additional nodes Q and S:

V = {Q,S} ∪ {(i, j, k) : (i, j) ∈ [m]× [n], k ∈ {0, 1}} .

The arc set E is constructed corresponding to the variables in TC-Dual. From node Q, there is an
outgoing arc to every node (i, 1, 0) with corresponding flow variable βi0. For the nodes (i, j, 1) with
(i, j) ∈ [m] × [n − 1], we have an outgoing arc to (i, j + 1, 1) with corresponding flow variable αij

and two outgoing arcs to (i, j, 0) corresponding to flow variables pij and yij . Similarly, the nodes
(i, n, 1) have two outgoing arcs to (i, n, 0) with flow variables pin and yin, but their outgoing arc
with flow variable αin goes to S. From a node (i, j, 0) with (i, j) ∈ [m]× [n− 1], we have an arc to
(i, j + 1, 0) with flow variable βij and two arcs to (i, j, 1) with flow variables qij and zij . For nodes
(i, n, 0) with i ∈ [m] the arc to the sink which would correspond to βin is missing, but we still have
the two arcs to (i, n, 1) with flow variables qin and zin. In addition, for (i, j, 0), if i < m, there is
an arc to (i+ 1, j, 1) with flow variable vi+1,j , and for i > 1 there is an arc to (i− 1, j, 1) with flow
variable ui−1,j .

Q

S

(1, 1, 0) (1, 2, 0) (1, 3, 0) (1, 4, 0)

(1, 1, 1) (1, 2, 1) (1, 3, 1) (1, 4, 1)

(2, 1, 0) (2, 2, 0) (2, 3, 0) (2, 4, 0)

(2, 1, 1) (2, 2, 1) (2, 3, 1) (2, 4, 1)

Figure 2: The digraph for the network model of the problem TC-Dual for a 2× 4−matrix.

This digraph is illustrated in Figures 2 and 3. The capacity function is very simple: The arcs
with flow variables pij and qij have capacity 1, and all the other arcs have infinite capacities.
The cost function is defined such that the cost of a flow is precisely the objective function (23).
Identifying the arcs with their corresponding flow variables, this can be described as follows. For
(i, j) ∈ [m]× [n], the costs of the arcs pij , qij , zij and yij are aij , −aij , −aij and aij , respectively.
For i ∈ [m], the cost of arc αin is c̃. All the other arcs have zero cost.

Since the arcs pij and qij form a cycle of zero cost, we may assume that pijqij = 0 for every
(i, j) ∈ [m] × [n]. Under this assumption constraints (22) correspond to the capacity constraints
for the arcs pij and qij , while the constraints (18)–(21) are the flow conservation constraints at the
nodes x ∈ V \ {Q,S}. So we have proved the following theorem.

Theorem 1. The problem TC-Dual is equivalent to the minimum cost Q − S−flow problem in
the network N .
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Q

(i, 1, 0)

(i, 1, 1)

(i, j, 0)

(i, j, 1)

(i, j + 1, 0)

(i, j + 1, 1)

(i, n, 0)

(i, n, 1)

S

βi0

αij

βij

qijzij

pij yij

qinzin

pin
yin

αin

(1, j, 0)

(1, j, 1)

(i− 1, j, 0)

(i− 1, j, 1)

(i, j, 0)

(i, j, 1)

(i+ 1, j, 0)

(i+ 1, j, 1)

(m, j, 0)

(m, j, 1)

vij uij

ui−1,j vi+1,j

Figure 3: The structure of the digraph for the network model of the problem TC-Dual.

By standard results from network flow theory [1], we obtain a solution of Approx-MinTC
from a flow φ : E → N of minimum cost as follows. The residual network on the node set V with
arc set E′ and cost function cost′ : E′ → Z is defined by

φ(xy) < capacity(xy) =⇒ xy ∈ E′, cost′(xy) = cost(xy),

φ(xy) > 0 =⇒ yx ∈ E′, cost′(yx) = −cost(xy).

Recall that Lij and Rij are the dual variables of the flow conservation constraints in (i, j, 1) and
(i, j, 0), respectively, so we can determine them as the negative distances (with respect to cost′) from
Q to (i, j, 1) and (i, j, 0), respectively. We obtain the approximation matrix B by bij = Lij − Rij ,

and a shape matrix decomposition B =
∑k

t=1 S
(t) with

s
(t)
ij =

{
1 if l

(t)
i < j < r

(t)
i ,

0 otherwise,
((i, j) ∈ [m]× [n])

where the parameters l
(t)
i and r

(t)
i are determined according to (13)–(16).

Example 2. We illustrate the method for m = 1, n = 6. Suppose we are given the following
matrices A, A and A:(

5 3 3 1 5 5
)
,
(
4 2 2 0 4 4

)
,
(
6 4 4 2 6 6

)
.

For matrix A the minimal delivery time is 9, and we want to have an approximation matrix B with
a delivery time of 6. The network is shown in Figure 4. The labels on the arcs are the nonzero
costs, so a unit flow along the dashed path has cost −3, while a unit flow along the dotted path
costs −1. The sum of these two unit flows has a cost of −4 and is optimal. A shortest path tree
in the residual network is shown in Figure 5, and the corresponding approximation is

B =
(
4 3 3 2 4 4

)
=
(
1 0 0 0 0 0

)
+
(
1 1 1 0 0 0

)
+ 2

(
1 1 1 1 1 1

)
+ 2

(
0 0 0 0 1 1

)
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Figure 4: The network for the example.
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−1

−4
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−4
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−6
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−6

0

6

3 2−4 −4

Figure 5: A shortest path tree in the residual network.

We conclude this section with a quick complexity analysis. We have reduced the total change
optimal approximation of a matrix of size m × n to a minimum cost flow problem in a network
with 2mn + 2 nodes and 8mn − 2n arcs. Thus, according to [12, 13] the running time of the
resulting algorithm is bounded by O

(
(mn)2 log2(mn)

)
. For comparison, without the interleaf

collision constraint the approximation problem can be solved in time O(mn2) if the differences
aij − aij are bounded [5].

4 Test results

We did some computational experiments with a C++-implementation of our algorithm. We did
not implement the minimum cost flow algorithm with the theoretically optimal complexity bound.
Instead we used the implementation of a primal network simplex method from [11].

We generated matrices of sizes 15 × 15 and 30 × 30 with random entries from {0, 1, . . . , L}
(independent, uniformly distributed) for L ∈ {8, 12, 16}. The lower and upper bounds were chosen
such that a maximal change of ±2 is possible for each entry, in other words, we put

aij = max{0, aij − 2}, aij = aij + 2

for all (i, j) ∈ [m]× [n]. The results are shown in Table 1, where we averaged over 1000 matrices for

m = n = 15 m = n = 30

L DT1 DT2 TC1 TC2 time DT1 DT2 TC1 TC2 time

8 35.7 14.5 188.7 165.3 2 67.7 24.5 837.2 713.9 11

12 51.9 29.3 140.8 125.8 2 97.9 51.4 651.3 559.5 15

16 67.6 44.3 112.8 102.0 3 127.8 79.9 505.4 430.7 17

Table 1: Test results for random matrices.

each triple (m,n,L). Columns ‘DT1’ and ‘DT2’ contain the average decomposition times for the
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exact and the approximated decomposition, respectively. For the minimal possible delivery time c̃,
we computed the total change using the heuristic approach from [9] (column ‘TC1’) and with our
exact method (column ‘TC2’). The final column ‘time’ contains the computation time (in seconds)
for the approximated decomposition of 1000 matrices on a 3GHz workstation with 16GB RAM. We
also tested our algorithm for two sets of practical matrices that were used in [2] and [4] and can be
found online [6]. The first set contained 20 matrices of size 20× 20 with entries from {0, 1, . . . , 15},
and the second one consisted of 20 matrices of size 40 × 40 with entries from {0, 1, . . . , 10}. The

set DT1 DT2 TC1 TC2

1 83.6 51.0 227.0 204.4

2 108.9 47.9 1387.4 1180.7

Table 2: Test results for real-world matrices.

averaged results are shown in Table 2, where the computation time for the whole table was less
than a second. Figure 6 illustrates the tradeoff between delivery time and total change for one of

0 200 400 600 800 1000 1200 1400
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DT
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bb
bb
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bb
bb
bb
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Figure 6: The tradeoff between delivery time and total change.

the 40× 40−matrices from [6].

5 Summary and discussion

We formulated the approximated MLC shape matrix decomposition with minimal total change as a
minimum cost flow problem. This formulation allows us to include the interleaf collision constraint
into the model. We demonstrated that this problem can be solved very efficiently using a standard
implementation of the network simplex algorithm.

We want to conclude the paper with a short discussion of the relevance of our approximation
approach. In some sense, the shape matrix decomposition problem could be considered as solved,
since there are many efficient algorithms, even including additional technological constraints. But
of course, there is room for improvement. We suggest the following two problems that might arise
from a practical point of view.

1. What happens if the delivery time for a leaf sequence obtained by some exact algorithm is
considered to be too large for clinical practice?
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2. There are certain dosimetric effects of small or narrow fields which are not captured in the
mathematical model underlying the standard algorithms. This could lead to significant dif-
ferences between the planned and the delivered fluence.

We think that the “smoothing” of the fluence that is achieved by our approximation has a positive
effect in both of these contexts. It has already been shown that the delivery time can be reduced
considerably. Intuitively, the approximation also reduces the number of necessary small shapes
with bad dosimetric properties. This deserves further investigations.
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