
Approximated MLC shape matrix decomposition with interleaf

collision constraint∗

Thomas Kalinowski Antje Kiesel

Abstract

Shape matrix decomposition is a subproblem in radiation therapy planning. A given fluence
matrix A has to be decomposed into a sum of shape matrices corresponding to homogeneous
fields that can be shaped by a multileaf collimator (MLC). We solve the problem of minimizing
the delivery time for an approximation of A satisfying certain prescribed bounds, under the
additional condition that the used MLC requires the interleaf collision constraint.

Key words: Intensity modulated radiation therapy (IMRT); multileaf collimator; combinatorial
optimization; programming involving graphs

2010 MSC: 90C35, 92C50, 90C90

1 Introduction

In modern cancer therapy radiation is used to destroy the tumor tissue. At the same time one has
to minimize the damage to the healthy tissue, and in particular to sensible structures or organs
at risk. Intensity modulated radiation therapy was introduced in order to improve the quality of
radiation treatment. In clinical practice it is common to use a linear accelerator which can release
radiation from different directions (Figure 1). In addition, a multileaf collimator (MLC) (Figure 2)
can be used to protect certain parts of the irradiated area.

Figure 1: A linear accelerator. Figure 2: Leaf pairs of a multileaf collimator.

For the treatment planning, the first step is to determine a set of directions (typically 3–9), from
which radiation is released, given by positions of the isocenter, table angles and gantry angles [5,

∗Algorithmic Operations Research 4(1):49–57, 2009

1

12]. In a second step, for each direction the fluence distribution is optimized, subject to required
dose distribution in the target. The final step is to determine, for each fluence distribution, a
corresponding sequence of MLC leaf positions. Recently, there have been attempts to formulate
the optimization problem more globally [5, 13], but most of the widely used treatment planning
systems model the three steps independently. In this paper we consider the last step for the MLC
in the so called step-and-shoot mode. This means the radiation is switched off while the leaves
are moving, and so the generated intensity modulated field is just a superposition of finitely many
homogeneous fields which are shaped by the MLC. The two most important objectives in the
optimization problem are the total irradiation time, or delivery time (DT), and the number of
used fields, or decomposition cardinality (DC). Starting with [2] and [6] there have been proposed
several algorithms for this problem [3, 10, 14, 15], taking into account additional machine dependent
constraints as the interleaf collision constraint [1, 7] or the tongue-and-groove constraint [11] (see [9]
or [8] for a survey).

All of these algorithms start with the given fluence matrix A and construct a sequence of leaf
positions realizing this matrix. But from a practical point of view there seem to be some doubts if
it is reasonable to consider every entry aij as fixed once and for all. First, the matrix A is a result of
numerical computations which are based on simplified physical models of how the radiation passes
through the patients body, and second, the representation of A as a superposition of homogeneous
fields is also based on model assumptions which are not strictly correct, for instance the dose
delivered to an exposed bixel depends on the shape of the field. So it might be sufficient, to realize
(in our model) a matrix that is close to A. It is a natural question, how much the delivery time
can be reduced by giving only an approximate representation of A satisfying certain minimum
and maximum dose constraints. As an immediate consequence, the next problem arises: find an
approximation with this optimal DT which is as close as possible to A. These questions have been
answered for unconstrained MLCs in [4], and in the present paper we generalize the ideas from this
reference to MLCs with interleaf collision constraint.

In Section 2 we give an precise statement of the problem, Section 3 reviews an exact algorithm
for shape matrix decomposition with interleaf collision constraint, in Section 4 we present our graph-
theoretical characterization of the minimal DT of an approximation with a constructive proof, in
Section 5 we show how the total change can be reduced heuristically, and the final Section 6 contains
some test results.

2 Notation and problem formulation

Throughout the rest of the paper, for a natural number n, [n] denotes the set {1, 2, . . . , n} and for
integers m < n, [m,n] denotes the set {m,m + 1, . . . , n}. For integers a, we also use the notation
a+ for the nonnegative part, defined by

a+ =

{
a if a > 0,

0 otherwise.

Our starting point is an m×n−matrix A with nonnegative integer entries. The entry aij represents
the desired fluence at bixel (i, j). In addition, for each entry (i, j) we have lower and upper bounds
aij and aij , such that

0 6 aij 6 aij 6 aij .

Definition 1 (Feasible Approximation). Any integer matrix B with

aij 6 bij 6 aij

2

is called feasible approximation of A. The total change TC(B) of a feasible approximation B is
defined by

TC(B) =

m∑
i=1

n∑
j=1

|bij − aij |.

The homogeneous fields that can be shaped by the MLC are described by binary matrices of
size m× n which we call shape matrices.

Definition 2 (Shape matrix). An m× n matrix S is a shape matrix if there are pairs of integers
(li, ri) (i = 1, . . . ,m), such that the following conditions are satisfied:

1. sij =

{
1 if li < j < ri,

0 otherwise.

2. li < ri+1 and ri > li+1 for all i ∈ [m− 1].

The second condition in Definition 2 is called interleaf collision constraint (ICC). It ensures the
left leaf of row i and the right leaf of row i±1 do not overlap, which is required by some widely used
MLCs, for instance the Elekta MLC. An MLC leaf sequence for A corresponds to a representation
of A as a weighted sum of shape matrices.

Definition 3 (Shape matrix decomposition). A shape matrix decomposition of A is a representation
of A as a positive integer combination of shape matrices

A =
k∑

t=1

utS
(t).

The delivery time (DT) of this decomposition is just the sum of the coefficients,

DT =
k∑

t=1

ut.

Example 1. For the shape matrix decomposition
1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

 = 2 ·

0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

+

0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

 +

1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

we have DT = 4.

Now we formulate three optimization problems.

MinDT. Find a shape matrix decomposition A =
∑k

t=1 utS
(t) such that DT =

∑k
t=1 ut is minimal.

Approx-MinDT. Find a feasible approximation B and a shape matrix decomposition B =∑k
t=1 utS

(t) such that DT =
∑k

t=1 ut is minimal.

Approx-MinDT-TC. Find a feasible approximation B and a shape matrix decomposition B =∑k
t=1 utS

(t) such that DT =
∑k

t=1 ut is minimal, and under this condition TC(B) is minimal.

The first problem MinDT is the exact decomposition problem which can be solved by several
efficient algorithms [1, 7, 10]. The idea underlying one of these algorithms is reviewed in the next
section because it is the basis for our approach to the second problem Approx-MinDT. Finally, we
observe that the second part of each of the problems Approx-MinDt and Approx-MinDT-TC,
the search for the shape matrix decomposition, can be ignored safely, because, once the matrix B
is fixed, we can apply any exact decomposition algorithm to complete the task.

3

3 Review of the exact decomposition

The basis of our approach is a characterization of the minimal DT of a decomposition with ICC as
the maximal weight of a q − s−path in the following digraph G = (V,E) [7, 8].

V = {q, s} ∪ [m]× [0, n+ 1],

E = {(q, (i, 0)) : i ∈ [m]} ∪ {((i, n+ 1), s) : i ∈ [m]}
∪ {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [0, n]}
∪ {((i, j), (i+ 1, j)) : i ∈ [m− 1], j ∈ [n]}
∪ {((i, j), (i− 1, j)) : i ∈ [2,m], j ∈ [n]} .

In order to avoid case distinctions, we add two columns to our matrix and put

ai0 = ai,n+1 = 0 (i ∈ [m]).

Now we can define arc weights by

w(q, (i, 0)) = w((i, n+ 1), s) = 0 (i ∈ [m])

w((i, j − 1), (i, j)) = max{0, ai,j − ai,j−1} (i ∈ [m], j ∈ [n+ 1])

w((i, j), (i+ 1, j)) = −aij (i ∈ [m− 1], j ∈ [n])

w((i, j), (i− 1, j)) = −aij (i ∈ [2,m], j ∈ [n]).

We call this graph the DT-ICC-graph for A. Figure 3 shows the DT-ICC-graph for the matrix

A =

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

 .

q s

0

0

0

0

0

0

0

0

4 1 0 1 3 1 0

2 2 0 2 0 3 0

2 1 0 0 1 2 0

5 0 0 0 3 0 0

−2 −4
−4 −5

−1
0
−3 −1

−1 −4
−4 −5

−2 −2
−3 −4

−2 −1
−1 −3

−2 −1
−4 −4

−5 −2
−3 −3

−3 −2
−2 −1

−5 −2
−3 −4

Figure 3: The DT-ICC-Graph for matrix A.

Definition 4. Let A be an intensity matrix, and let G be the DT-ICC-graph for A. The maximal
weight of a q − s−path in G is called ICC-complexity of A and denoted by c(A). More formally,

c(A) = max{w(P) : P is a q − s− path in G.}.
Using this definition the main result of [7] can be formulated as follows.

Theorem 1. The minimal DT of a decomposition of A with ICC equals c(A).

4

4 Approximation

To simplify our notation, for each (i, j) ∈ [m]× [n] we introduce the interval of acceptable fluence
values

Iij =
[
aij , aij

]
, aij 6 aij 6 aij .

We want to find a matrix B such that

bij ∈ Iij for (i, j) ∈ [m]× [n] and c(B)→ min .

We follow an approach from [4] and replace every vertex (i, j) ∈ [m] × [n] by |Iij | copies, i.e. by
the set

Vij = {(i, j)} × Iij .
In order to avoid case distinctions in the discussion below we also replace the vertices in columns
0 and n+ 1 by

Vi0 = {(i, 0, 0)} and Vi,n+1 = {(i, n+ 1, 0)}.
An arc ((i, j), (i, j + 1)) in the DT-ICC-graph G is replaced by the complete bipartite graph Vij ×
Vi,j+1, and similarly for the arcs ((i, j), (i ± 1, j)). The weights of the arcs ((i, j, k), (i, j + 1, l))
should model the approximation matrix B if we choose bij = k and bi,j+1 = l, and similarly for the
other arc types. Hence we define the arc weights by

w(q, (i, 0, 0)) = 0 (i ∈ [m]),

w((i, n+ 1, 0), s) = 0 (i ∈ [m]),

w((i, 0, 0), (i, 1, k)) = k (i ∈ [m], k ∈ Ii1),
w((i, n, k), (i, n+ 1, 0)) = 0 (i ∈ [m], k ∈ Iin),

w((i, j − 1, k), (i, j, l)) = (l − k)+ (i ∈ [m], j ∈ [n], k ∈ Ii,j−1, l ∈ Iij),
w((i, j, k), (i+ 1, j, l)) = −k (i ∈ [m− 1], j ∈ [n], k ∈ Iij , l ∈ Ii+1,j),

w((i, j, k), (i− 1, j, l)) = −k (i ∈ [2,m], j ∈ [n], k ∈ Iij , l ∈ Ii−1,j).

In order to determine the minimal complexity of an approximation matrix we compute numbers
W (i, j, k) such that

W (i, j, k) = max
{

min
l
W (i, j − 1, l) + (k − l)+,

min
l
W (i− 1, j, l)− l, min

l
W (i+ 1, j, l)− l

}
.

The intuitive idea is that for every feasible approximation B with bij = k, the maximal weight of
a q − (i, j)−path in the DT-ICC-graph for B is at least W (i, j, k). The numbers W (i, j, k) can
be computed efficiently (complexity O(m2n∆2), where ∆ denotes any upper bound for |Iij |) as
described in Algorithm 1. Again, in order to avoid case distinctions at the boundaries, we add the
values

W (0, j, 0) = W (m+ 1, j, 0) = a0j = am+1,j = 0 (j ∈ [n]).

Definition 5. The ICC-approximation complexity of A (with respect to the given intervals Iij) is
defined by

c̃(A) = max
i

min
k
W (i, n, k).

5

Clearly, c̃(A) is a lower bound for the ICC-complexity of a feasible approximation of A. We will
show that this bound is sharp by an explicit construction of an approximation matrix B. For the
last column we put

bin =

{
ain if W (i, n, ain) 6 c̃(A),

max{k : W (i, n, k) 6 c̃(A)} otherwise.

For j < n, we assume that the entries bi,j+1 are already determined, and put

bij = max
{
k : W (i, j, k) + (bi,j+1 − k)+ 6W (i, j + 1, bi,j+1)

}
.

Example 2. We consider the following fluence matrix A with c(A) = 8.

A =

(
4 0 0
0 0 4

)
We choose the upper and lower bound such that |bij − aij | 6 1 for every (i, j). The intervals and
an optimal approximation are(

[3, 5] [0, 1] [0, 1]
[0, 1] [0, 1] [3, 5]

)
, B =

(
3 1 0
1 1 3

)
with c(B) = 4. Our algorithm obtains matrix B as follows. First we compute the numbers
W (i, j, k), and obtain, for each (i, j), a vector(

Wi,j,aij ,Wi,j,aij+1, . . . ,Wi,j,aij

)
.

These vectors are collected in the following array.

(3, 4, 5) (3, 3) (3, 3)
(0, 1) (2, 2) (4, 5, 6).

Thus the optimal DT is
max{min{3, 3},min{4, 5, 6}} = 4.

For the third column we choose b13 = 0 and b23 = 3. For the entry (1, 2) we have

W (1, 2, 0) + w((1, 2, 0), (1, 3, 0)) = W (1, 2, 1) + w((1, 2, 1), (1, 3, 0)) = W (1, 3, 0).

We choose the maximal possible value b12 = 1. Observe that b12 = 0 is indeed not possible, since
it leads to an increased DT. For entry (2, 2) we have

W (2, 2, 0) + w((2, 2, 0), (2, 3, 3)) = 2 + 3 > W (2, 3, 3),

so here b22 = 1 is the only possible choice. Similarly, we get b11 = 3 and b21 = 1. Clearly, the latter
one can be replaced by 0.

In order to prove that our method is correct, we need some simple properties of the numbers
W (i, j, k).

6

Lemma 1. For every (i, j) ∈ [m]× [n] and every k such that (i, j, k), (i, j, k + 1) ∈ Vij we have

W (i, j, k) 6W (i, j, k + 1) 6W (i, j, k) + 1. (1)

Furthermore, W (i, j, k + 1) = W (i, j, k) + 1 iff

W (i, j, k) = W (i, j − 1, l) + (k − l)+

for some l ∈ Ii,j−1 with l 6 k.

Proof. Since
W (i, j − 1, l) + (k − l)+ 6W (i, j − 1, l)− (k + 1− l)+

and using the definition of the W (i, j, k), we conclude W (i, j, k) 6 W (i, j, k + 1). On the other
hand, we have

W (i, j, k) = max
{

min
l
W (i, j − 1, l) + (k − l)+,

min
l
W (i− 1, j, l)− l, min

l
W (i+ 1, j, l)− l

}
> max

{
min
l
W (i, j − 1, l) + (k + 1− l)+,

min
l
W (i− 1, j, l)− l, min

l
W (i+ 1, j, l)− l

}
− 1

= W (i, j, k + 1)− 1,

where equality occurs iff W (i, j, k) = W (i, j − 1, l) + (k − l)+ and k > l.

The next lemma is the key step of our argument. It asserts that the chosen bij do not lead to
conflicts inside the columns.

Lemma 2. For all j and all i ∈ [m− 1], we have

W (i, j, bij)− bij 6W (i+ 1, j, bi+1,j),

and for all j and all i ∈ [2,m], we have

W (i, j, bij)− bij 6W (i− 1, j, bi−1,j).

Proof. We only show the first statement, since the second one can be proved similarly. Suppose
the statement is false, i.e.

W (i, j, bij)− bij > W (i+ 1, j, bi+1,j).

By construction, there is some k ∈ Iij such that W (i, j, k)− k 6W (i+ 1, j, bi+1,j).

Case 1. k < bij . Let δ = bij − k > 0. By Lemma 1 we have

W (i, j, k) >W (i, j, bij)− δ.

But now we obtain

W (i, j, k)− k > (W (i, j, bij)− δ)− (bij − δ) > W (i+ 1, j, bi+1,j),

and this is the required contradiction.

7

Case 2. k > bij . Let δ = k − bij > 0. By construction of the numbers bij ,

W (i, j, bij) + (bi,j+1 − bij)+ 6W (i, j + 1, bi,j+1) ,

W (i, j, bij + 1) + (bi,j+1 − (bij + 1))+ > W (i, j + 1, bi,j+1) .

Using Lemma 1, this is possible only if

W (i, j, bij + 1) = W (i, j, bij) + 1.

Using Lemma 1 repeatedly, we obtain

W (i, j, k) = W (i, j, bij) + δ.

But together this implies W (i, j, k)− k = W (i, j, bij)− bij , which is a contradiction.

Now let G be the DT-ICC-graph for B. Denote by α1(i, j) the maximal weight of a q −
(i, j)−path in G. Note that the numbers α1(i, j) can be computed similarly to the numbers
W (i, j, k). Clearly, α1(i, 1) = bi1, and the procedure for column j > 1 is described in Algorithm 2.

Lemma 3. For all (i, j) we have α1(i, j) 6W (i, j, bij).

Proof. We use induction on j. For j = 1 the claim is obvious:

α1(i, 1) = W (i, 1, bi1) = bi1.

Now let j > 1. After the initialization of the numbers α1(i, j) in the first loop of Algorithm 2 we
obtain for every i,

α1(i, j) = α1(i, j − 1) + (bij − bi,j−1)+
6W (i, j − 1, bi,j−1) + (bij − bi,j−1)+ 6W (i, j, bij).

We just have to check that this inequalities remain valid in every updating step. Suppose the first
violation occurs when we replace α1(i, j) by α1(i± 1, j)− bi±1,j . In this case,

α1(i, j) = α1(i± 1, j)− bi±1,j 6W (i± 1, j, bi±1,j)− bi±1,j 6W (i, j, bij),

where the last inequality is Lemma 2. So the statement of the lemma remains valid.

By Lemma 3 (and Theorem 1), matrix B allows a decomposition with DT 6 c̃(A) and this
implies the following theorem.

Theorem 2. The minimal DT of a decomposition of a feasible approximation of A equals c̃(A)
and an approximation matrix B realizing this DT can be constructed as described above in time
O(m2n∆2).

Proof. The only thing that is left to prove is the complexity statement. For this it is sufficient to
note that the computation of the numbers W (i, j, k) dominates the computation time, since this
has complexity O(m2n∆2) as can be seen immediately from Algorithm 1. But after the numbers
W (i, j, k) have been computed we look at every entry (i, j) only once and in order to fix bij we
have to do at most |Iij | comparisons. So the matrix B is determined in time O(mn∆) and this
concludes the proof.

8

Algorithm 1 Computation of the numbers W (i, j, k)

for i ∈ [m] do W (i, 0, 0) = 0
for j = 1 to n do

for i ∈ [m] do
for all k do
W (i, j, k) = minlW (i, j − 1, l) + (k − l)+

for i = 2 to m do
for all k do
W (i, j, k) = max

{
W (i, j, k),minlW (i− 1, j, l)− l

}
for i′ = i− 1 downto 1 do

for all k do
W (i′, j, k) = max

{
W (i′, j, k),minlW (i′ + 1, j, l)− l

}

Algorithm 2 Computation of the numbers α1(i, j) for fixed j

for i ∈ [m] do
α1(i, j) = α1(i, j − 1) + (bij − bi,j−1)+

for i = 2 to m do
α1(i, j) = max {α1(i, j), α1(i− 1, j)− bi−1,j}

for i′ = i− 1 downto 1 do
α1(i

′, j) = max
{
α1(i

′, j), α1(i
′ + 1, j)− bi′+1,j

}

9

5 Reducing the total change

The construction described in Section 4 leads to an approximation B with minimal delivery time,
but a large total change TC(B). The reason is, that we put

bij = max {k : W (i, j, k) + (bi,j+1 − k) 6W (i, j + 1, bi,j+1)} ,

even if none of the vertices (i, j, k) is critical, i.e. part of a q-s-path of maximal weight in the
DT-ICC-graph of a feasible approximation of A. Thus, the aim is to find an approximation with
the same delivery time, but smaller total change. Clearly, we can replace bij by a value b′ij with
bij < b′ij 6 aij in the case bij < aij , respectively with aij > b′ij > bij in the case aij > bij , if this
decision does not increase the maximal weight of a q-s-path in the DT-ICC-graph.

Let therefore G be the DT-ICC-graph of B and let α1(i, j) denote the maximal weight of a
q-(i, j)-path in G. Similarly, let α2(i, j) denote the maximal weight of an (i, j)-s-path in G. The
values α2(i, j) can be computed similarly as the numbers α1(i, j).

Definition 6. Let B be a feasible approximation of A. For (i, j) ∈ [m]× [n], an integer b is called
(i, j)−feasible (with respect to B) if the following conditions are satisfied.

1. b ∈ Iij .

2. α1(i, j − 1) + (b− bi,j−1)+ + (bi,j+1 − b)+ + α2(i, j + 1) 6 c̃(A).

3. i = 1 or α1(i, j − 1) + (b− bi,j−1)+ − b+ α2(i− 1, j) 6 c̃(A).

4. i = m or α1(i, j − 1) + (b− bi,j−1)+ − b+ α2(i+ 1, j) 6 c̃(A).

5. i = 1 or α1(i− 1, j)− bi−1,j + (bi,j+1 − b)+ + α2(i, j + 1) 6 c̃(A).

6. i = m or α1(i+ 1, j)− bi+1,j + (bi,j+1 − b)+ + α2(i, j + 1) 6 c̃(A).

7. i ∈ {1,m} or α1(i− 1, j)− bi−1,j − b+ α2(i+ 1, j) 6 c̃(A).

8. i ∈ {1,m} or α1(i+ 1, j)− bi+1,j − b+ α2(i− 1, j) 6 c̃(A).

In other words, b is (i, j)−feasible iff we can replace bij by b without destroying theDT−optimality
of B. Fig 4 illustrates the different possibilities for a path to pass through vertex (i, j). Each of
these possibilities corresponds to one of the conditions 2 through 8 in Definition 6.

We propose a heuristic, formally described in Algorithm 3, to reduce the total change. Clearly,
the application of this algorithm can be iterated until no more changes occur.

Algorithm 3 Heuristic for total change minimization

for j = 1 to n do
for i = 1 to m do

if bij < aij and bij + 1 is (i, j)−feasible then bij + +
if bij > aij and bij − 1 is (i, j)−feasible then bij −−
Update the numbers α1(k, l) and α2(k, l)

10

(i, j − 1) (i, j) (i, j + 1)

(i, j − 1) (i, j)

(i+ 1, j)(i, j − 1) (i, j)

(i− 1, j)

(i+ 1, j)

(i, j) (i, j + 1)(i− 1, j)

(i, j) (i, j + 1)

(i− 1, j)

(i, j)

(i+ 1, j) (i+ 1, j)

(i, j)

(i− 1, j)

Figure 4: The seven different types of paths that are affected by the choice of bij .

6 Test Results

In this section we demonstrate the DT-reduction obtained by the methods from Section 4 and the
total change reduction using the heuristic approach from Section 5. We use matrices of size 15×15
and 30× 30 with random entries aij ∈ {0, 1, . . . , L} for L ∈ {8, 12, 16}. In our tests we choose the
upper and lower bounds for the entries such that each entry is changed by at most 2, i.e. we put

aij = (aij − 2)+, aij = aij + 2.

For each L, we construct decompositions of 1000 matrices, and compute the average minimal
delivery time c̃(A) and the total change according to our algorithm from Section 4. Finally, we
analyse the total change reduction, that can be achieved using Algorithm 3. The results are shown
in Table 1 and 2. For comparison we include the minimal DT for exact decomposition with ICC [7].
Columns ‘DT1’ and ‘DT2’ contain the average delivery times for the exact and for the approximated
decomposition, respectively. Columns ‘TC1’ and ‘TC2’ contain the total change values before and
after the application of Algorithm 3. Our algorithms are completely practicable. On a 3GHz

L DT1 DT2 TC1 TC2

8 35.7 14.6 329.1 188.7

12 51.8 29.2 358.3 140.8

16 67.7 44.6 373.9 112.8

Table 1: Test results for m = n = 15.

L DT1 DT2 TC1 TC2

8 67.7 24.5 1360.0 837.2

12 97.9 51.4 1484.3 651.3

16 127.7 79.9 1546.2 505.4

Table 2: Test results for m = n = 30.

workstation, the computations for the last row, i.e. for the decomposition of 1000 matrices of size
15× 15 with entries from {0, 1, . . . , 16} took only 5 seconds for m = n = 15 and less than a minute
for m = n = 30. Basically, we can draw two conclusions from our results.

1. The approximation approach leads to an significant DT-reduction: for L = 16, allowing a
change of at most 2 for each entry reduces the DT by more than 30%.

2. Our heuristic leads to a large total change reduction: for L = 16 the total change can be
reduced by almost 60%.

11

7 Summary and discussion

We presented an efficient method to minimize exactly the decomposition time in approximated
MLC shape matrix decomposition with interleaf collision constraint. We also described a heuristic
for reducing the total approximation error, and demonstrated the proposed algorithms on randomly
generated matrices. The obvious next problem, which is the subject of ongoing research, is to find
an exact algorithm for the minimization of the total change.

References

[1] D. Baatar, H.W. Hamacher, M. Ehrgott and G.J. Woeginger. “Decomposition of integer
matrices and multileaf collimator sequencing”. In: Discr. Appl. Math. 152.1-3 (2005), pp. 6–
34. doi: 10.1016/j.dam.2005.04.008.

[2] T.R. Bortfeld, D.L. Kahler, T.J. Waldron and A.L. Boyer. “X–ray field compensation with
multileaf collimators”. In: Int. J. Radiat. Oncol. Biol. Phys. 28 (1994), pp. 723–730. doi:
10.1016/0360-3016(94)90200-3.

[3] K. Engel. “A new algorithm for optimal multileaf collimator field segmentation”. In: Discr.
Appl. Math. 152.1-3 (2005), pp. 35–51. doi: 10.1016/j.dam.2004.10.007.

[4] K. Engel and A. Kiesel. “Approximated matrix decomposition for IMRT planning with mul-
tileaf collimators”. In: OR Spectrum 33.1 (2011), pp. 149–172. doi: 10.1007/s00291-009-0
168-5.

[5] K. Engel and E. Tabbert. “Fast Simultaneous Angle, Wedge, and Beam Intensity Optim-
ization in Inverse Radiotherapy Planning”. In: Optimization and Engineering 6.4 (2005),
pp. 393–419. doi: 10.1007/s11081-005-2065-3.

[6] J.M. Galvin, X.G. Chen and R.M. Smith. “Combining multileaf fields to modulate fluence
distributions”. In: Int. J. Radiat. Oncol. Biol. Phys. 27 (1993), pp. 697–705. doi: 10.1016/
0360-3016(93)90399-G.

[7] T. Kalinowski. “A duality based algorithm for multileaf collimator field segmentation with
interleaf collision constraint”. In: Discr. Appl. Math. 152.1-3 (2005), pp. 52–88. doi: 10.101
6/j.dam.2004.10.008.

[8] T. Kalinowski. “Multileaf collimator shape matrix decomposition”. In: Optimization in Medi-
cine and Biology. Ed. by G.J. Lim and E.K. Lee. Auerbach Publishers Inc., 2008, pp. 249–
282.

[9] T. Kalinowski. “Realization of intensity modulated radiation fields using multileaf collim-
ators”. In: Information Transfer and Combinatorics. Ed. by R. Ahlswede et al. Vol. 4123.
LNCS. Springer-Verlag, 2006, pp. 1010–1055. doi: 10.1007/11889342_65.

[10] S. Kamath, S. Sahni, J. Li, J. Palta and S. Ranka. “Leaf sequencing algorithms for segmented
multileaf collimation”. In: Phys. Med. Biol. 48.3 (2003), pp. 307–324. doi: 10.1088/0031-9
155/48/3/303.

[11] S. Kamath, S. Sartaj, J. Palta, S. Ranka and J. Li. “Optimal leaf sequencing with elimination
of tongue–and–groove underdosage”. In: Phys. Med. Biol. 49 (2004), N7–N19. doi: 10.108
8/0031-9155/49/3/N01.

[12] G.J. Lim, M.C. Ferris, S.J. Wright, D.M. Shepard and M.A. Earl. “An optimization frame-
work for conformal radiation treatment planning”. In: INFORMS Journal on Computing 19.3
(2007), pp. 366–380. doi: 10.1287/ijoc.1060.0179.

12

http://dx.doi.org/10.1016/j.dam.2005.04.008
http://dx.doi.org/10.1016/0360-3016(94)90200-3
http://dx.doi.org/10.1016/j.dam.2004.10.007
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s11081-005-2065-3
http://dx.doi.org/10.1016/0360-3016(93)90399-G
http://dx.doi.org/10.1016/0360-3016(93)90399-G
http://dx.doi.org/10.1016/j.dam.2004.10.008
http://dx.doi.org/10.1016/j.dam.2004.10.008
http://dx.doi.org/10.1007/11889342_65
http://dx.doi.org/10.1088/0031-9155/48/3/303
http://dx.doi.org/10.1088/0031-9155/48/3/303
http://dx.doi.org/10.1088/0031-9155/49/3/N01
http://dx.doi.org/10.1088/0031-9155/49/3/N01
http://dx.doi.org/10.1287/ijoc.1060.0179

[13] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey and A. Kumar. “A Column Generation Approach
to Radiation Therapy Treatment Planning Using Aperture Modulation”. In: SIAM J. on
Optimization 15.3 (2005), pp. 838–862. issn: 1052-6234. doi: 10.1137/040606612.

[14] R.A.C. Siochi. “Minimizing static intensity modulation delivery time using an intensity solid
paradigm”. In: Int. J. Radiat. Oncol. Biol. Phys. 43 (1999), pp. 671–680. doi: 10.1016/S03
60-3016(98)00430-1.

[15] P. Xia and L. Verhey. “Multileaf collimator leaf–sequencing algorithm for intensity modulated
beams with multiple static segments”. In: Med. Phys. 25 (1998), pp. 1424–1434. doi: 10.11
18/1.598315.

13

http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1016/S0360-3016(98)00430-1
http://dx.doi.org/10.1016/S0360-3016(98)00430-1
http://dx.doi.org/10.1118/1.598315
http://dx.doi.org/10.1118/1.598315

	Introduction
	Notation and problem formulation
	Review of the exact decomposition
	Approximation
	Reducing the total change
	Test Results
	Summary and discussion

