
Multileaf collimator shape matrix decomposition

Thomas Kalinowski

March 7, 2007

1 Introduction

An important method in cancer treatment is the use of high energetic radiation. In or-
der to kill tumor cells the patient is exposed to radiation that is delivered by a linear
accelerator whose beam head can be rotated about the treatment couch. Inevitably the
healthy tissue surrounding the tumor is also exposed to some radiation. So the problem
arises to arrange the treatment in a way such that the tumor receives a sufficiently high
uniform dose while the damage to the normal tissue is as small as possible. The standard
approach to this problem is as follows. First the patient body is discretized into so called
voxels. The set of voxels is then partitioned into three sets: the clinical target volume,
the critical structures and the remaining tissue. There are certain dose constraints for
each of these parts. Basically the dose in the target volume has to be sufficient to kill the
cancerous cells and the dose in the critical structures must not destroy the functionality
of the corresponding organs. The determination of a combination of radiation fields is
usually done by inverse methods based on certain physical models of how the radiation
passes through a body. In the early 1990’s the method of intensity modulated radiation
therapy (IMRT) was developed in order to obtain additional flexibility. Using a multi-
leaf collimator (MLC) it is possible to form homogeneous fields of different shapes. By
superimposing of some homogeneous fields an intensity modulated field is delivered. An
MLC consists of two banks of metal leaves which block the radiation and can be shifted
to form irregularly shaped beams (Fig. 1).
The most common approach in treatment planning is to divide the optimization into two
phases. At first, a set of beam angles and corresponding fluence matrices are determined.
In a second step a sequence of leaf positions for the MLC for each of the angles is
determined that yields the desired fluence distribution. Very recently there have been
attempts to combine both steps into one optimization routine [22, 9].

Figure 1: The leaf pairs of a multileaf collimator (MLC)

1

In this chapter we concentrate on the second step, the shape matrix decomposition prob-
lem. Suppose we have fixed the beam angles from which the radiation is released, and for
each of the beam angles we are given a fluence distribution that we want the patient to
be exposed to. After discretizing the beam into bixels we can assume that the fluence dis-
tribution is given as a nonnegative integer matrix A. Each row of the matrix corresponds
to a pair of leaves of the MLC.
There are two methods in IMRT using MLCs which differ essentially in their technical
realization, but the mathematical methods used to determine optimal treatment plans
are quite similar. In the step–and–shoot mode the radiation is switched off whenever
the leaves are moving, so the intensity modulation is the result of superimposing a finite
number of homogeneous fields. In the dynamic mode the radiation is switched on during
the whole treatment and the modulation is achieved by moving the leaves with varying
speed. Clearly, in this setup the fluence at a particular point is proportional to the
amount of time in which the point is exposed to radiation, i.e. not blocked by one of the
leaves. Here we consider only the step–and–shoot mode. Essentially, the most common
approach to the dynamic mode can be seen as an imitation of this case (see [15] and the
references therein).

2 The mathematical model

The principle of the MLC in step–and–shoot mode is illustrated in Fig. 2. Our aim is to
determine a sequence of leaf positions and corresponding irradiation times such that the
given fluence distribution is realized. Suppose the given matrix has size m × n, i.e. we
consider m leaf pairs, and for each leaf there are n + 1 possible positions. Then the leaf
positions can be described by certain 0−1−matrices of size m×n called shape matrices,
where a 0−entry means the radiation is blocked and a 1−entry means that the radiation
goes through.

Beam 1 Beam 2

Beam 3

fluence fluence

fluence

Figure 2: Intensity modulation by superimposing 3 beams of different shapes. In each
step the left figure shows a leaf position and in the right figure the grey scale indicates
the total fluence.

2

For example the first leaf position in Fig. 2 corresponds to the shape matrix








0 1 1 0
1 1 1 0
1 1 0 0
0 1 1 1









.

Clearly, the superposition of differently shaped beams corresponds to positive linear com-
binations of shape matrices, where the coefficient of a shape matrix measures how long
the corresponding field is applied. So any representation of the given fluence matrix A
as a positive integer linear combination of shape matrices is a feasible solution to our
decomposition problem. For instance:

A =









1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0









= 2 ·









0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0









+









0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0









+









1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0









. (1)

We denote the set of shape matrices by S, and consider decompositions of the form
A =

∑

S∈S uSS with uS ∈ N for all S ∈ S. There are two quantities influencing the
quality of a decomposition: the total irradiation time (proportional to the sum of the
coefficients) and the number of necessary beams (the number of nonzero coefficients). Let
S0 denote the set of matrices with nonzero coefficient. We can now formulate two different
optimization problems, the decomposition time (DT) problem and the decomposition
cardinality (DC) problem

(DT) min

{

∑

S∈S

uS | A =
∑

S∈S

uSS, uS ∈ N

}

, (2)

(DC) min

{

|S0| | S0 ⊆ S, A =
∑

S∈S0

uSS, uS ∈ N

}

. (3)

Of course, one could also minimize some weighted sum of decomposition time and de-
composition cardinality, i.e. an objective function

∑

S∈S0

uS + α|S0|,

where α is some positive constant. This objective function can be considered as total
treatment time, where the parameter α depends on the used MLC and measures the
average setup time, i.e. the time needed to move the leaves and check the setting. In a still
more sophisticated model one can include the possibility that the setup time between two
different leaf positions depends on the amount of required leaf motion. Consequently, the
order in which the beams are delivered becomes relevant and the corresponding objective
function is

∑

S∈S0

uS +

|S0|−1
∑

i=1

µ(S(i), S(i+1)),

where S(1), S(2), . . . , S(|S0|) is an ordering of the set of used shape matrices S0, and for
two shape matrices S and S ′, µ(S, S ′) is proportional to the time necessary to change the
setup of the MLC from the beam corresponding to S to the beam corresponding to S ′.

3

The optimal value of (2) can be computed very efficiently while the problem (3) is com-
putationally very hard (see Section 4). So the most common approach is to first compute
the minimal DT, and then heuristically search for a decomposition which realizes this
DT and also has a small DC.
Our model is still quite flexible: certain properties of the used MLC can be included in
the definition of the shape matrices. From the design of the MLC it is clear that any
shape matrix must have the consecutive ones property : in every row is a (possibly empty)
interval of consecutive 1−entries and the remaining entries are 0. In addition, in some of
the commercially available MLCs leaf overtravel is forbidden. That means the left leaf of
row i and the right leaf of row i±1 must not overlap. In this case a shape matrix cannot
contain two consecutive rows as follows:

(

0 1 1 0 0 0 0
0 0 0 0 0 1 1

)

.

Also some MLCs have a minimum leaf distance. That means if a row is not completely
covered by either the right or the left leaf, a minimum distance δ between the two leaves
in this row is present. In other words, the number of ones in a row is either 0 or at least
δ. Another feature of most of the MLCs is the tongue–and–groove design. To prevent
radiation from going through the gap between two adjacent leaves a design similar to the
one indicated in Fig. 3 is used. The small overlap between the regions that are covered

Radiation

Figure 3: The tongue-and-groove design of the leaves of an MLC.

by adjacent leaves cause underdosage effects as illustrated in Fig. 4. In order to prevent
such underdosage effects one has to require that ai,j ≤ ai±1,j implies that in each of the
used beams bixel (i± 1, j) is open whenever bixel (i, j) is open, or in terms of the shape
matrices:

ai,j ≤ ai−1,j ∧ si,j = 1 =⇒ si−1,j = 1,

ai,j ≥ ai−1,j ∧ si−1,j = 1 =⇒ si,j = 1

for i = 2, . . . , m and j = 1, . . . , n.

3 The decomposition time problem

Starting with [6] and [10] a number of different algorithms for the shape matrix decompo-
sition problem have been proposed [8, 14, 16, 23, 24], some of them providing the optimal
DT while others use heuristic methods for both objectives DT and DC. In this section

4

3

1

1

2

1

1

tongue-and-groove underdosage tongue-and-groove underdosage
leaf sequence with leaf sequence without

Figure 4: Two different realizations of the same fluence matrix. The numbers next to
the leaf positions indicate the irradiation times for the corresponding beams. In the left
version the overlap between bixels (1, 1) and (2, 1) receives no radiation at all.

we concentrate on the DT-problem, and thus without loss of generality we put all the
nonzero coefficients us to 1, but allow that the same shape matrix S occurs several times
in the decomposition A =

∑k

t=1 S(k). First we consider the version without additional
constraints, i.e. the leaves in different rows move independently, and we neglect the
tongue–and–groove underdosage. Then we can solve the decomposition problem for each
row independently, and the optimal DT for the whole matrix is just the maximum of
the optimal DT s of the single rows. All the algorithms that yield the exact optimum are
essentially based on (disguised versions of) the following characterization of the minimal
DT . For simplicity of notation we add a 0-th and a (n + 1)−th column to the matrix A
by setting

ai,0 = ai,n+1 = 0 for i = 1, 2, . . . , m.

We define the i−th row complexity of A to be

ci(A) =
n
∑

j=1

max{0, ai,j − ai,j−1},

and the complexity of A, c(A) = max
1≤i≤m

ci(A).

Theorem 1 ([8]). The minimal DT for a matrix A equals c(A).

Proof. Let b =
(

b1 b2 . . . bn

)

denote the i−th row of the matrix A, i.e. bj = ai,j .
First, we show that any representation of b as a sum of vectors with the consecutive ones
property contains at least ci(A) terms. Suppose the vectors s(t) ∈ {0, 1}n (t = 1, 2, . . . , k)
define such a representation

b = s(1) + · · ·+ s(k),

where each vector s(t) has the consecutive ones property. For t = 1, 2, . . . , k let b(t) =
s(1) + · · · + s(t) be the sum of the first t terms and put

c(t) =
n
∑

j=1

max{0, b
(t)
j − b

(t)
j−1}.

5

Now let lt and rt denote the positions of the leaves corresponding to s(t), i.e.

s
(t)
j =

{

1 if lt < j < rt,

0 otherwise.

For t > 1 we obtain

max{0, b
(t−1)
j − b

(t−1)
j−1 } = max{0, b

(t)
j − b

(t)
j−1} for j 6∈ {lt + 1, rt} (4)

max{0, b
(t−1)
lt+1 − b

(t−1)
lt

} =

{

max{0, b
(t)
lt+1 − b

(t)
lt
} − 1 if b

(t)
lt+1 > b

(t)
lt

max{0, b
(t)
lt+1 − b

(t)
lt
} otherwise

(5)

max{0, b(t−1)
rt

− b
(t−1)
rt−1 } =

{

max{0, b
(t)
rt − b

(t)
rt−1} + 1 if b

(t)
rt ≥ b

(t)
rt−1

max{0, b
(t)
rt − b

(t)
rt−r} otherwise

(6)

Consequently, c(t−1) ≥ c(t) − 1 with equality if and only if b
(t)
lt+1 > b

(t)
lt

and b
(t)
rt < b

(t)
rt−1.

Summing up these inequalities for 2 ≤ t ≤ k and using c(1) = 1 and c(k) = ci(A), we
obtain

1 + c(2) + · · ·+ c(k−1) ≥ c(2) + c(3) + · · ·+ c(k−1) + ci(A) − (k − 1),

or k ≥ ci(A). To show that there is a decomposition of the i−th row with ci(A) terms
we use induction on k := ci(A). If k = 0, then b = 0 and we are done. If k > 0, we put
b0 = bn+1 = 0 and define

l = min{j | 0 ≤ j ≤ n − 1, bj < bj+1},

r = min{j > l | l < r ≤ n + 1, bj < bj−1},

s
(k)
j =

{

1 if l < j < r

0 otherwise.
(j = 1, . . . , n)

Then by (4)–(6), for b′ := b − s(k), we have

n
∑

j=1

max{0, b′j − b′j−1} =

n
∑

j=1

max{0, bj − bj−1} − 1 = k − 1.

By induction, there is a decomposition b′ = s(1) + · · · + s(k−1). Together with s(k) this
yields the required decomposition of b, and this concludes the proof.

From the proof we can immediately derive an algorithm for the construction of a DT–
optimal decomposition (see Algorithm 1). Of course the choice of the li and ri is not
unique. In [6] this particular one is called sweep technique, because the leaves always
move from left to right. As an example consider the following decomposition of a matrix
from [24].

(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

=

(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

)

+

(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0

)

+

(

1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 1 1 0 0 0

)

+

(

1 1 0 0 0 0
0 1 1 1 0 0
0 0 0 0 1 1
1 1 1 1 1 0

)

+

(

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 1 1 1 1 0

)

+

(

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+

(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)

+

(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)

+

(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)

+

(

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)

6

Algorithm 1 (DT-optimal leaf sequence in the unconstrained case).
k := 0
while A 6= 0 do

k := k + 1
for i = 1, 2, . . . , m do

if ai,j = 0 for all j = 1, 2, . . . , n then li := n, ri := n + 1
else

li := min{j | 0 ≤ j ≤ n, ai,j < ai,j+1}
ri := min{j | li < j ≤ n + 1, ai,j−1 > ai,j}

for j = 1, . . . , n do

if li < j < ri then s
(k)
i,j := 1 else s

(k)
i,j := 0

A := A − S(k)

return S(1), . . . , S(k)

3.1 The interleaf collision constraint

The interleaf collision constraint (ICC) is present in many of the commercially available
MLCs and forbids an overlap of the left leaf in row i and the right leaf in row i± 1. If li
and ri denote the leaf positions in row i (i = 1, . . . , m) this amounts to

(ICC) li < ri−1 and ri > li−1 (i = 2, . . . , m)

3.1.1 A Linear Programming approach

An important conclusion from the following algorithm is, that we can always construct
a DT-optimal decomposition with unidirectional leaf movement. That means the leaves
move only from left to right, or in other words, if l

(t)
i and r

(t)
i denote the leaf positions in

row i corresponding to the t−th shape matrix, then l
(t)
i ≤ l

(t+1)
i and r

(t)
i ≤ r

(t+1)
i for all i

and t. Such a decomposition A =
∑k

t=1 S(t) is completely determined once we know for
each i and j, how often the leaves in row i are at position j, i.e. we have to know the
numbers

γL
i,j =

∣

∣

∣

{

t | l
(t)
i = j − 1

}∣

∣

∣
, γR

i,j =
∣

∣

∣

{

t | r
(t)
i = j

}∣

∣

∣
. (7)

The numbers γL
i,j and γR

i,j can be translated back into the shape matrices via

s
(t)
i,j = 1 ⇐⇒

j
∑

j′=1

γR
i,j′ < t ≤

j
∑

j′=1

γL
i,j′ (t = 1, . . . , k). (8)

This definition makes sense for any nonnegative γL
i,j and γR

i,j. Now we formulate additional
requirements for these values.

Lemma 1. The matrices defined by (8) sum up to A if and only if

γL
i,j − γR

i,j = ai,j − ai,j−1 (i = 1, . . . , m; j = 1, . . . , n + 1). (9)

Proof. “⇒”: By hypothesis and (8) we have

ai,j =

j
∑

j′=1

γL
i,j −

j
∑

j′=1

γR
i,j.

7

For j = 1 we obtain
ai,1 − ai,0 = ai,1 = γL

i,1 − γR
i,1.

And for j > 1,

ai,j − ai,j−1 =

(

j
∑

j′=1

γL
i,j −

j
∑

j′=1

γR
i,j

)

−

(

j−1
∑

j′=1

γL
i,j −

j−1
∑

j′=1

γR
i,j

)

= γL
i,j − γR

i,j.

“⇐”: Assume that (9) is true and let B = (bi,j) be the sum of the matrices defined by
(8). Then

bi,j =

j
∑

j′=1

γL
i,j −

j
∑

j′=1

γR
i,j =

j
∑

j′=1

(ai,j′ − ai,j′−1) = ai,j − ai,0 = ai,j .

The next lemma formulates the ICC in terms of the γL
i,j and γR

i,j.

Lemma 2. If γL
i,j and γR

i,j encode a decomposition (not necessarily unidirectional) A =
∑k

t=1 S(t) with ICC as in (7) then

j
∑

j′=1

γL
i−1,j′ ≥

j
∑

j′=1

γR
i,j′ (i = 2, . . . , m; j = 1, . . . , n + 1), (10)

j
∑

j′=1

γL
i,j′ ≥

j
∑

j′=1

γR
i−1,j′ (i = 2, . . . , m; j = 1, . . . , n + 1). (11)

Proof. We have

j
∑

j′=1

γL
i−1,j′ =

∣

∣

∣

{

t : l
(t)
i−1 < j

}∣

∣

∣
,

j
∑

j′=1

γR
i,j′ =

∣

∣

∣

{

t : r
(t)
i ≤ j

}∣

∣

∣
.

The ICC implies
{

t : r
(t)
i ≤ j

}

⊆
{

t : l
(t)
i−1 < j

}

, and this gives (10). The statement

in (11) is proved similarly.

Of course, the decomposition time equals the sum of all γL
i,j (or equivalently all γR

i,j) along
any row:

k =
n+1
∑

j=1

γL
i,j =

n+1
∑

j=1

γR
i,j (i = 1, . . . , m) (12)

We can formulate the DT-problem with ICC as a linear program.

Theorem 2. The DT-problem with ICC is equivalent to

min
{

k | (9), (10), (11), (12), γL
i,j, γ

R
i,j ∈ N

}

. (13)

8

Proof. The above argument shows that every decomposition with unidirectional leaf
movement gives rise to a feasible solution of (13). Conversely, from every feasible so-
lution of (13) we obtain a (unidirectional) decomposition with k shape matrices (defined
according to (8)). We show that the unidirectional leaf movement is no restriction: every
decomposition A =

∑k

t=1 S(t) with ICC yields a feasible solution of (13) with objective
value k. Define γL

i,j and γR
i,j by (7). It is clear that (12) holds. By Lemma 2 we have (10)

and (11). From

ai,j =
∣

∣

∣

{

t | l
(t)
i < j < r

(t)
i

}∣

∣

∣
and ai,j−1 =

∣

∣

∣

{

t | l
(t)
i < j − 1 < r

(t)
i

}∣

∣

∣
,

it follows that

ai,j − ai,j−1 =
∣

∣

∣

{

t | l
(t)
i = j − 1, r

(t)
i > j

}∣

∣

∣
−
∣

∣

∣

{

t | l
(t)
i < j − 1, r

(t)
i = j

}∣

∣

∣

=
∣

∣

∣

{

t | l
(t)
i = j − 1, r

(t)
i ≥ j

}∣

∣

∣
−
∣

∣

∣

{

t | l
(t)
i ≤ j − 1, r

(t)
i = j

}∣

∣

∣

= γL
i,j − γR

i,j.

So (9) holds and this concludes the proof.

Note that this also shows how an arbitrary leaf sequence can be transformed to an uni-
directional one with the same DT: define the γL

i,j and γR
i,j according to (7) and the new

shape matrices with (8). Obviously, the values

γ̃L
i,j = max{0, ai,j − ai,j−1}, γ̃R

i,j = max{0, ai,j−1 − ai,j}

satisfy the conditions (9) and these conditions imply γL
i,j ≥ γ̃L

i,j and γR
i,j ≥ γ̃R

i,j for all
pairs (i, j). The γ̃L

i,j and γ̃R
i,j correspond to the sweep solution for the unconstrained case

coming from Algorithm 1. Since

γL
i,j − γR

i,j = γ̃L
i,j − γ̃R

i,j = ai,j − ai,j−1,

we can represent γL
i,j and γR

i,j with a single nonnegative variable wi,j via

γL
i,j = γ̃L

i,j + wi,j, γR
i,j = γ̃R

i,j + wi,j.

With

Ti =

n+1
∑

j=1

γ̃L
i,j =

n+1
∑

j=1

γ̃R
i,j (i = 1, . . . , m)

the constraints (10), (11), (12) become

j
∑

j′=1

γ̃L
i−1,j′ +

j
∑

j′=1

wi−1,j′ ≥

j
∑

j′=1

γ̃R
i,j′ +

j
∑

j′=1

wi,j′ (i = 2, . . . , m; j = 1, . . . , n + 1), (14)

j
∑

j′=1

γ̃L
i,j′ +

j
∑

j′=1

wi,j′ ≥

j
∑

j′=1

γ̃R
i−1,j′ +

j
∑

j′=1

wi−1,j′ (i = 2, . . . , m; j = 1, . . . , n + 1), (15)

k = Ti +

n+1
∑

j=1

wi,j (i = 1, . . . , m), (16)

wi,j ≥ 0, wi,j ∈ Z (i = 1, . . . , m; j = 1, . . . , n + 1). (17)

9

Observe that (14) and (15) with j = n + 1 yield

Ti−1 +

n+1
∑

j=1

wi−1,j

(14)

≥ Ti +

n+1
∑

j=1

wi,j

(15)

≥ Ti−1 +

n+1
∑

j=1

wi−1,j.

Consequently, we have equality and thus (16) follows from (14) and (15). This simplifies
the problem, because now we just have to minimize

∑n+1
j=1 wi,j for any row i, and the

problem becomes e.g.

min

{

n+1
∑

j=1

w1,j | (14), (15), (17)

}

. (18)

For a feasible solution W = (wi,j) we denote the maximal index of a shape matrix having

the left (right) leaf in row i to the left of column j by I
(i)
L (j) (I

(i)
R (j)). In other words,

I
(i)
L (j) := max{t | l

(t)
i < j} =

j
∑

j′=1

γ̃L
i,j +

j
∑

j′=1

wi,j,

I
(i)
R (j) := max{t | r

(t)
i ≤ j} =

j
∑

j′=1

γ̃R
i,j +

j
∑

j′=1

wi,j

for i = 1, . . . , m, j = 1, . . . , n+1. In addition we put I
(i)
L (0) = I

(i)
R (0) = 0 for i = 1, . . . , m.

For the shape matrices S(1), . . . , S(k) in the corresponding decomposition we have

s
(t)
i,j = 1 ⇐⇒ I

(i)
R (j) < t ≤ I

(i)
L (j),

hence for a feasible solution,
I

(i)
L (j) − I

(i)
R (j) = ai,j .

Observe that the I
(i)
L (j) and I

(i)
R (j) are exactly the terms which occur in the constraints

(14) and (15). So these constraints can be rewritten as

I
(i−1)
L (j) ≥ I

(i)
R (j), I

(i)
L (j) ≥ I

(i−1)
R (j) (19)

for i = 2, . . . , m, j = 1, . . . , n + 1. For convenience we formulate the algorithm for
the solution of (18) in terms of the I

(i)
L (j) and I

(i)
R (j). Clearly, knowing these values

is equivalent to knowing the wi,j, and minimizing
∑n+1

j=1 wi,j is the same as minimizing

I
(i)
L (n + 1). The idea is to determine the values in column j depending on the values in

column j − 1. We start with the lower bounds

I
(i)
L (j) := I

(i)
L (j − 1) + γ̃L

i,j, I
(i)
R (j) := I

(i)
R (j − 1) + γ̃R

i,j,

and then we run through the rows and eliminate violations by increasing the relevant
values as little as possible. Note that by increasing the values in row i − 1 we might
create a new violation between row i−1 and row i−2. The recursive call of the function
Update takes care of this.

Theorem 3. Algorithm 2 solves the DT-problem with ICC in time O(m2n).

10

Algorithm 2 (DT-optimal leaf sequence with ICC).

for i = 1, . . . , m do I
(i)
L (0) := 0; I

(i)
R (0) := 0

for j = 1, . . . , n + 1 do
for i = 1, . . . , m do

I
(i)
L (j) := I

(i)
L (j − 1) + γ̃L

i,j

I
(i)
R (j) := I

(i)
R (j − 1) + γ̃R

i,j

for i = 2, . . . , m do

if I
(i)
L (j) < I

(i−1)
R (j) then

I
(i)
L (j) := I

(i−1)
R (j); I

(i)
R (j) := I

(i)
L (j) − ai,j

if I
(i)
R (j) > I

(i−1)
L (j) then Update(i − 1)

Function Update(k)

I
(k)
L (j) := I

(k+1)
R (j); I

(k)
R (j) := I

(k)
L (j) − ai,j

if
(

k ≥ 2 and I
(k)
R (j) > I

(k−1)
L (j)

)

then Update(k-1)

Proof. It is easy to see that after termination of the algorithm I
(i)
L (j) − I

(i)
R (j) = ai,j

for i = 1, . . . , m and j = 1, . . . , n. So we indeed obtain a decomposition of matrix S.
Also (19) and hence (14) and (15) hold, and the result corresponds to a feasible solution

W = (wi,j) of (18). Let Ŵ = (ŵi,j) be an optimal solution corresponding to Î
(i)
L (j) and

Î
(i)
R (j).

Claim. At any time I
(i)
L (j) ≤ Î

(i)
L (j) and I

(i)
R (j) ≤ Î

(i)
R (j).

We prove this claim by induction on j. For j = 1, the initialization in the first inner
loop gives I

(i)
L (1) = ai,1 and I

(i)
R (1) = 0. The conditions for changing these values in the

second inner loop are never satisfied, so our claim follows from

Î
(i)
L (1) = γ̃L

i,j + ŵi,1 ≥ γ̃L
i,j, Î

(i)
R (1) = γ̃R

i,j + ŵi,1 ≥ γ̃R
i,j = 0.

For j > 1, with induction the initialization in the first inner loop yields

I
(i)
L (j) = I

(i)
L (j − 1) + γ̃L

i,j ≤ Î
(i)
L (j − 1) + γ̃L

i,j ≤ Î
(i)
L (j − 1) + γ̃L

i,j + ŵi,j = Î
(i)
L (j),

I
(i)
R (j) = I

(i)
R (j − 1) + γ̃R

i,j ≤ Î
(i)
R (j − 1) + γ̃R

i,j ≤ Î
(i)
R (j − 1) + γ̃R

i,j + ŵi,j = Î
(i)
R (j).

Now suppose our claim is false and consider the step of the algorithm where we get
I

(i)
L (j) > Î

(i)
L (j) or I

(i)
R (j) > Î

(i)
R (j) for the first time.

Case 1. The first condition for changing I
(i)
L (j) is satisfied. Then for the values after the

update we obtain

I
(i)
L (j) := I

(i−1)
R (j) ≤ Î

(i−1)
R (j)

ICC

≤ Î
(i)
L (j),

I
(i)
R (j) := I

(i)
L (j) − ai,j ≤ Î

(i)
L (j) − ai,j = Î

(i)
R (j),

contradicting the assumption.

Case 2. We are in the function Update(k). Then

I
(i)
L (j) := I

(i+1)
R (j) ≤ Î

(i+1)
R (j)

ICC

≤ Î
(i)
L (j),

I
(i)
R (j) := I

(i)
L (j) − ai,j ≤ Î

(i)
L (j) − ai,j = Î

(i)
R (j),

contradicting the assumption.

11

This proves the claim, and from I
(i)
L (n + 1) ≤ Î

(i)
L (n + 1) and the optimality of Ŵ the

optimality of W follows. Now let’s consider the complexity. There are m − 1 passes
through the second inner for-loop, and in the worst case each of these calls the function
Update which calls itself at most m times. So the complexity of the second inner loop is
O(m2), and since we have to run n+1 times through the outer loop, the total complexity
of O(m2n) follows.

Variants of this algorithm were presented in [2] and [16]. The proof given here is a
mixture of these two references. The algorithm can also be adapted very easily to ensure
minimum distances δ0 and δ1 between opposite leaves in the same row and in adjacent
rows, respectively, if this is possible at all [16].

3.1.2 A network flow approach

A first network flow algorithm for DT–problem without ICC was proposed in [1]. Here we
present a network flow formulation from [4] which also includes the ICC. The set of shape
matrices is identified with the set of paths from D to D′ in the layered directed graph
(digraph) G = (V, E), constructed as follows. The vertices in the i−th layer correspond
to the possible pairs (li, ri) (1 ≤ i ≤ m), and two additional vertices D and D′ are added:

V = {(i, l, r) : i = 1, . . . , m; l = 1, . . . , n; r = l + 1, . . . , n + 1} ∪ {D, D′}.

Between two vertices (i, l, r) and (i + 1, l′, r′) is an arc if the corresponding leaf positions
are consistent with the ICC, i.e. if l′ ≤ r − 1 and r′ ≥ l + 1. In addition E contains all
arcs from D to the first layer, all arcs from the last layer m to D′ and the arc (D′, D), so

E = E+(D) ∪ E−(D′) ∪
m−1
⋃

i=1

E(i) ∪ {(D′, D)}, where

E+(D) = {(D, (1, l, r)) : (1, l, r) ∈ V },

E−(D′) = {((m, l, r), D′) : (m, l, r) ∈ V },

E(i) = {((i, l, r), (i + 1, l′, r′)) : l′ ≤ r − 1, r′ ≥ l + 1}.

There is a bijection between the possible leaf positions and the cycles in G. This is
illustrated in Fig. 5 which shows two cycles in G for m = 4, n = 2, corresponding to the
shape matrices

(

1 0
0 1
1 1
1 0

)

(straight lines) and

(

0 1
1 1
1 0
0 1

)

(dashed lines).

With a segment S, given by (l1, r1), (l2, r2), . . . , (lm, rm), we associate a unit flow on the
cycle

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′, D.

Then any positive combination of shape matrices defines a circulation φ : E → R+ on G.
For instance,

3

(

1 0
0 1
1 1
1 0

)

+ 2

(

0 1
1 1
1 0
0 1

)

=

(

3 2
2 5
5 3
3 2

)

corresponds to 3 units of flow on (D, (1, 0, 2), (2, 1, 3), (3, 0, 3), (4, 0, 2), D′), 2 units of flow
on (D, (1, 1, 3), (2, 0, 3), (3, 0, 2), (4, 1, 3), D′) and 5 units of flow on (D′, D). The amount

12

301

401

201

101

302

402

202

102

303

403

203

103

312

412

212

112

313

413

213

113

323

423

223

123

D

D′

Figure 5: The vertices of G for m = 4, n = 2 and two cycles.

of radiation that is released at bixel (i, j) equals the sum of the flows going through
the vertices (i, l, r) with l < j < r, hence the conditions that must be satisfied by the
circulation in order to correspond to a segmentation of A are

j−1
∑

l=1

n+1
∑

r=j+1

r−1
∑

l′=1

n
∑

r′=max{l,l′}−1

φ((i, l, r), (i + 1, l′, r′)) = ai,j, (20)

for 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n, and

j−1
∑

l=1

n+1
∑

r=j+1

φ((m, l, r), D′) = am,j , (21)

for 1 ≤ j ≤ n. Since all of the flow must go through the arc (D′, D), the DT of the
segmentation corresponding to φ equals φ(D′, D). Thus the DT–problem can be solved
by finding a circulation satisfying conditions (20) and (21) and having minimal cost with
respect to the cost function α : E → R+,

α(e) =

{

1 if e = (D, D′),

0 otherwise.

The graph G can be expanded to a graph Ĝ = (V̂ , Ê) so that, instead of the constraints
(20) and (21), the structure of Ĝ together with a capacity function on Ê forces the
circulation to represent a decomposition of A.

V̂ = {(i, l, r)1, (i, l, r)2 | 1 ≤ i ≤ m, 0 ≤ l < r ≤ n + 1}

∪ {(i, j) | 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {D, D′}.

The arc set of Ĝ is Ê = Êold ∪ Ê1 ∪ Ê2, where

Êold = {((i, l, r)2, (i + 1, l′, r′)1) : ((i, l, r), (i + 1, l′, r′)) ∈ E}

∪ {(D, (1, l, r)1) : (1, l, r)1 ∈ V̂ } ∪ {((m, l, r)2, D
′) : (m, l, r)2 ∈ V̂ } ∪ {(D′, D)},

Ê1 = {((i, l, r)1, (i, l)) : (i, l, r)1 ∈ V̂ } ∪ {((i, r − 1), (i, l, r)2) : (i, l, r)2 ∈ V̂ },

Ê2 = {((i, j − 1), (i, j)) : i = 1, . . . , m; , j = 1, . . . n}.

13

Now a shape matrix with parameters li, ri (i = 1, . . . , m) corresponds to the cycle

D,(1, l1, r1)1, (1, l1), (1, l1 + 1), . . . , (1, r1 − 1), (1, l1, r1)2,

(2, l2, r2)1, (2, l2), (2, l2 + 1), . . . , (2, r2 − 1), (2, l2, r2)2,

. . .

(m, lm, rm), (m, lm), (m, lm + 1), . . . , (m, rm − 1), (m, lm, rm)2, D
′, D

Figure 6 shows the cycles in Ĝ corresponding to the cycles in Figure 5. Now the flow

1011 1021 1031 1121 1131 1231

1012 1022 1032 1122 1132 1232

10 11 12

2011 2021 2031 2121 2131 2231

2012 2022 2032 2122 2132 2232

20 21 22

3011 3021 3031 3121 3131 3231

3012 3022 3032 3122 3132 3232

30 31 32

4011 4021 4031 4121 4131 4231

4012 4022 4032 4122 4132 4232

40 41 42

D

D′

Figure 6: The vertices of Ĝ for m = 4, n = 2 and two cycles.

on the arc ((i, j − 1), (i, j)) equals the amount of radiation released at bixel (i, j) in the
corresponding decomposition. Introducing lower and upper capacities u and u on the
arcs of Ĝ by

u(e) =

{

0 if e ∈ Êold ∪ Ê1

ai,j if e = ((i, j − 1), (i, j)) ∈ Ê2
(22)

u(e) =

{

∞ if e ∈ Êold ∪ Ê1

ai,j if e = ((i, j − 1), (i, j)) ∈ Ê2
(23)

we make sure that the fluence matrix A is realized. Now in order to obtain another
reformulation of the DT–problem we just have to require that the flow on the arc
((i, l, r)1, (i, l)) equals the flow on the edge ((i, r − 1), (i, l, r)2), since both of these corre-
spond to the total amount of radiation that is released while li = l and ri = r.

14

Theorem 4 ([4]). The DT–minimization problem is equivalent to the network flow prob-
lem

minimize φ(D′, D)

subject to φ a circulation in Ĝ = (V̂ , Ê) with lower and upper capacities u and u, defined
by (22) and (23), and satisfying, for all (i, l, r)1,2 ∈ V̂ ,

φ((i, l, r)1, (i, l)) = φ((i, r − 1), (i, l, r)2). (24)

This formulation is quite close to a pure Min–Cost–Network–Flow problem. But the
standard algorithms for this type of problem have to be adjusted in order to include
the side constraint (24). Doing this one obtains a polynomial time algorithm for the
DT-problem with ICC (see [4] and [19]).

3.1.3 A duality approach

Here we present another approach from [14] to the ICC-constraint, because it yields a
nice characterization of the minimal DT, which can be modified to deal with the tongue-
and–groove effect and also allows to derive a heuristic for the DC-problem in the next
section. We only consider the problem without a minimum separation constraint, i.e. with
δ0 = δ1 = 0 (introduced in the end of Section 3.1.1). Let the DT-ICC-graph G = (V, E)
be a digraph with vertex set V and arc set E defined as follows.

V = {D, D′} ∪ {(i, j) | 1 ≤ i ≤ m, 0 ≤ j ≤ n + 1}

E = {(D, (i, 0)) | 1 ≤ i ≤ m} ∪ {((i, n + 1), D′) | 1 ≤ i ≤ m}

∪ {((i, j), (i, j + 1)) | 1 ≤ i ≤ m, 0 ≤ j ≤ n}

∪ {((i, j), (i + 1, j)) | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1}

∪ {((i, j), (i − 1, j)) | 2 ≤ i ≤ m, 1 ≤ j ≤ n − 1}.

We define a weight function w : E → Z by (recall that ai,0 = ai,n+1 = 0 for all i)

w(D, (i, 0)) = w((i, n + 1), D′) = 0 (i = 1, . . . , m)

w((i, j − 1), (i, j)) = max{0, ai,j − ai,j−1} (i = 1, . . . , m; j = 1, . . . , n + 1)

w((i, j), (i + 1, j)) = −ai,j (i = 1, . . . , m − 1; j = 1, . . . , n − 1)

w((i, j), (i− 1, j)) = −ai,j (i = 2, . . . , m; j = 1, . . . , n − 1).

Fig. 7 shows the digraph G for the matrix

A =









4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3









.

As usual, the weight w(P) of a path P is just the sum of the weights of the arcs contained
in P . Now we can formulate the theoretical result underlying the next decomposition
algorithm.

Theorem 5. The minimal DT of a decomposition of A satisfying the ICC equals the
maximal weight of a path from D to D′ in G.

In analogy with the unconstrained case we denote this maximal weight by c(A).

15

D D′

0
0

0

0

−2

−2

4

2

5

2

−4
−2

−5
2

1

−5

−2

1
−4

0
−3

0

−4 0
0

−3

0
−1

−3

0
−2

1

−1
−1
2

−2
−3
0

−1
0

−3

3

0

−3
−4

−1
−1

1

−2
−2

3

1

3

2

0

−1

−2

−5

0

0

0

0

0

0

0

0

Figure 7: The DT-ICC-Graph with arc weights corresponding to matrix A.

Sketch of Proof. For the proof of this theorem we need to dualize the DT-problem (2).
The LP–dual is

max

{

m
∑

i=1

n
∑

j=1

ai,jyi,j |
m
∑

i=1

n
∑

j=1

si,jyi,j ≤ 1 for all S ∈ S

}

. (25)

The basic idea of the proof is to associate with every (D, D′)−path P a dual feasible
solution y(P) with objective value equal to the weight of P . By duality this gives the
lower bound for DT. In a second step we will determine a shape matrix S that the
maximal weight of a path with respect to A′ := A − S is strictly less than the maximal
weight with respect to A, i.e. c(A′) < c(A). The value of y

(P)
i,j depends on how the path

P passes through the vertex (i, j).

y
(P)
i,j =







































1 if (i, j − 1), (i, j), (i, j + 1) ∈ P and ai,j−1 ≤ ai,j > ai,j+1,

−1 if (i, j − 1), (i, j), (i, j + 1) ∈ P and ai,j−1 > ai,j ≤ ai,j+1,

−1 if (i, j − 1), (i, j), (i± 1, j) ∈ P and ai,j < ai,j−1,

−1 if (i ± 1, j), (i, j), (i, j + 1) ∈ P and ai,j+1 ≥ ai,j,

−1 if (i ∓ 1, j), (i, j), (i± 1, j) ∈ P,

0 otherwise.

Fig. 8 illustrates this definition by showing the nonzero values of y
(P)
i,j depending on the

two neighbours of (i, j) in P . The following two lemmas establish the lower bound part

1

−1

−1

−1

−1

−1

−1 −1

Figure 8: Illustration of the dual solution y(P). The labels of the arcs indicate the relation
of ai,j to its neighbours on P .

of the theorem.

Lemma 3. For every (D, D′)−path P , y(P) is a feasible solution for the problem (25).

16

Lemma 4. For every (D, D′)−path P , we have

m
∑

i=1

n
∑

j=1

y
(P)
i,j ai,j = w(P).

In order to construct a shape matrix reducing the maximal path weight we consider the
following quantities.

α1(i, j) := max{w(P) | P is a path from D to (i, j).},

α2(i, j) := max{w(P) | P is a path from (i, j) to D.},

α(i, j) := α1(i, j) + α2(i, j).

In Fig. 9 we show the necessary information to determine the shape matrix. Observe

D D′

4
(10)

5
(10)

5
(10)

6
(10)

9
(10)

10
(10)

2
(9)

4
(9)

5
(10)

7
(10)

7
(10)

10
(10)

2
(6)

3
(6)

4
(7)

4
(7)

5
(7)

7
(7)

5
(8)

5
(8)

5
(8)

5
(8)

8
(8)

8
(8)

Figure 9: The values for α1 and α (in parentheses) corresponding to the weights in Fig.
7.

that c(A) = max(i,j) α(i, j). We define a 0 − 1−matrix by

si,j = 1 ⇐⇒ α(i, j) = c(A), α1(i, j) = ai,j and ai,j > 0. (26)

Lemma 5. The matrix defined by (26) is a shape matrix satisfying the ICC.

Lemma 6. For the shape matrix defined by (26), the matrix A′ = A−S is still nonnegative
and we have c(A′) = c(A) − 1.

Iterating this construction we obtain a decomposition of A into c(A) shape matrices and
this concludes the proof.

As a consequence of the proof we obtain Algorithm 3. Note that this algorithm yields

Algorithm 3 (DT-optimal decomposition based on the DT-ICC-graph).
Determine the values of α1 and α
while A 6= 0 do

Determine S according to (26)
A := A − S
Update α1 and α

unidirectional decompositions, i.e. the leaves move only from left to right.

17

3.2 The tongue-and-groove constraint

Recall that in order to prevent underdosage effects due to the tongue–and–groove design
of the leaves we have to require

ai,j ≤ ai−1,j ∧ si,j = 1 =⇒ si−1,j = 1, (27)

ai,j ≥ ai−1,j ∧ si−1,j = 1 =⇒ si,j = 1 (28)

for i = 2, . . . , m and j = 1, . . . , n. We call these the tongue-and-groove constraints
(TGC). Here we construct a decomposition with unidirectional leaf movement satisfying
the TGC. Recall from section 3.1.1 that such a decomposition is uniquely determined
by the numbers I

(i)
L (j), I

(i)
R (j) (i = 1, . . . , m, j = 1, . . . , n + 1). The following lemmas

characterize decompositions satisfying TGC (respectively ICC and TGC) in terms of the

I
(i)
R (j) and I

(i)
L (j).

Lemma 7. The TGC are satisfied if and only if for i = 2, . . . , m, j = 1, . . . , n,

(a) ai,j = 0 or ai−1,j = 0, or

(b) I
(i−1)
R (j) ≤ I

(i)
R (j) ≤ I

(i)
L (j) ≤ I

(i−1)
L (j), or

(c) I
(i)
R (j) ≤ I

(i−1)
R (j) ≤ I

(i−1)
L (j) ≤ I

(i)
L (j).

Proof. Assume the TGC are satisfied and min{ai,j , ai−1,j} > 0. For the t−th shape

matrix S(t) = (s
(t)
i,j) we have

s
(t)
i,j = 1 ⇐⇒ I

(i)
R (j) < t ≤ I

(i)
L (j) (i = 1, . . . , m; j = 1, . . . , n).

From this we derive that ai,j ≤ ai−1,j and (27) imply (b), while ai,j ≥ ai−1,j and (28)

imply (c). Conversely, assume ai,j ≤ ai−1,j and s
(t)
i,j = 1. It follows, that (b) is true,

and consequently s
(t)
i−1,j = 1. Similarly, from ai,j ≥ ai−1,j and s

(t)
i−1,j = 1 it follows that

s
(t)
i,j = 1.

Lemma 8. The ICC and TGC are satisfied if and only if for i = 2, . . . , m, j = 1, . . . , n,

(a) I
(i−1)
R (j) ≤ I

(i)
R (j) ≤ I

(i)
L (j) ≤ I

(i−1)
L (j), or

(b) I
(i)
R (j) ≤ I

(i−1)
R (j) ≤ I

(i−1)
L (j) ≤ I

(i)
L (j).

Proof. If min{ai,j, ai−1,j} > 0 the proof is the same as for Lemma 7. If ai,j = 0 we have

I
(i)
L (j) = I

(i)
R (j) and the ICC is equivalent to I

(i)
R (j) ≤ I

(i−1)
L (j) and I

(i)
L (j) ≥ I

(i−1)
R (j), so

(a) follows. Similarly, (b) follows from ai−1,j = 0.

Algorithm 4 can be used to obtain leaf sequences satisfying TGC and ICC. The basic
idea is similar to the one in Algorithm 2. We construct the I

(i)
L (j) and I

(i)
R (j) columnwise.

In column j we start with the lower bounds

I
(i)
L (j) := I

(i)
L (j − 1) + max{0, ai,j − ai,j−1}, I

(i)
R (j) := I

(i)
R (j − 1) + max{0, ai,j−1 − ai,j},

and eliminate the violations of Lemma 8. If ai,j ≤ ai−1,j, condition (a) in Lemma 8 must

be satisfied. This can be violated if I
(i)
R (j) < I

(i−1)
R (j − 1) or I

(i)
L (j) > I

(i−1)
L (j). In the

first case we increase I
(i)
L (j) and I

(i)
R (j) by the minimum amount such that the condition

18

Algorithm 4 (DT-optimal leaf sequence with TGC and ICC).

for i = 1, . . . , m do I
(i)
L (0) := 0; I

(i)
R (0) := 0

for j = 1, . . . , n + 1 do
for i = 1, . . . , m do

I
(i)
L (j) := I

(i)
L (j − 1) + max{0, ai,j − ai,j−1}

I
(i)
R (j) := I

(i)
R (j − 1) + max{0, ai,j−1 − ai,j}

for i = 2, . . . , m do
if ai,j ≤ ai−1,j then

if I
(i)
R (j) < I

(i−1)
R (j − 1) then

∆ := I
(i−1)
R (j) − I

(i)
R (j)

I
(i)
R (j) := I

(i)
R (j) + ∆; I

(i)
L (j) := I

(i)
L (j) + ∆

if I
(i)
L (j) > I

(i−1)
L (j) then Update(i − 1)

else //the case ai,j > ai−1,j

if I
(i)
L (j) < I

(i−1)
L (j) do

∆ := I
(i−1)
L (j) − I

(i)
L (j)

I
(i)
R (j) := I

(i)
R (j) + ∆; I

(i)
L (j) := I

(i)
L (j) + ∆

if I
(i)
R (j) > I

(i−1)
R (j) then Update(i − 1)

Function Update(k)
if ak,j ≤ ak+1,j then

∆ := I
(k+1)
R (j) − I

(k)
R (j)

I
(k)
R (j) := I

(k)
R (j) + ∆; I

(k)
L (j) := I

(k)
L (j) + ∆

else //the case ak,j > ak+1,j

∆ := I
(k+1)
L (j) − I

(k)
L (j)

I
(k)
R (j) := I

(k)
R (j) + ∆; I

(k)
L (j) := I

(k)
L (j) + ∆

if k ≥ 2, ak,j ≤ ak−1,j and I
(k)
L (j) > I

(k−1)
L (j) then Update(k − 1)

if k ≥ 2, ak,j > ak−1,j and I
(k)
R (j) > I

(k−1)
R (j) then Update(k − 1)

holds, and in the second case we increase I
(i−1)
L (j) and I

(i−1)
R (j). In this second case

there might be a new violation between row i − 1 and row i − 2. The recursive call of
the function Update(k) takes care of this. If there is no ICC, we just have to add the

condition min{ai,j , ai−1,j} > 0 to the conditions for changing the values I
(i)
L (j) and I

(i)
R (j).

Let Algorithm 4’ denote the result of this modification.

Theorem 6 ([17]). Algorithm 4 yields DT-optimal decompositions with ICC and TGC un-
der the additional condition of unidirectional leaf movement in time O(m2n). Algorithm
4’, yields DT-optimal decompositions with TGC and without ICC under the additional
condition of unidirectional leaf movement in time O(m2n).

The proof of this theorem is essentially the same as the proof of Theorem 3. For the
problem with ICC and TGC the condition on the unidirectional leaf movement can be
dropped: using the duality based Algorithm 3 with a modified weight function yields a de-
composition with unidirectional leaf movement that is optimal among all decompositions
with ICC and TGC [13].

19

4 The decomposition cardinality problem

In this section we consider the DC-problem (3). In the first subsection we show that this
problem is very hard, and in the second section we give heuristic approaches.

4.1 The computational complexity of the DC–problem

The fact that the DC-problem is NP-hard already for a single row matrix was proved
first by Burkart [7] who gave a reduction from 2-partition. A similar idea was used
in [2] to reduce 3-partition showing the strong NP-hardness, i.e. the nonexistence of a
pseudopolynomial algorithm unless P = NP .

Theorem 7 ([2]). The problem (3) is strongly NP-hard, even for matrices with a single
row.

Proof. The decision version of the single–row DC-problem is as follows:

Instance: A vector a = (a1, . . . , an) with ai ∈ N, K ∈ N

Question: Does a decomposition of a into at most K shape matrices exist?

Note that a shape matrix in this case is nothing else than a row vector with the consecutive
ones property. We use reduction from the problem 3-partition, which is well-known to
be strongly NP-hard [11].

Instance: B, Q ∈ N, b1, b2, . . . , b3Q ∈ N with
∑3Q

j=1 bj = QB and B
4

< bj < B
2

for all j

Question: Does a partitioning of {b1, . . . , b3Q} into triples T1, . . . , TQ such that
∑

b∈Tq
b =

B for all q = 1, . . . , Q exist?

We define an instance of the DC-problem as follows.

n = 4Q,

aj =

{

∑j

k=1 bk for j = 1, . . . , 3Q

(4Q − j + 1)B for j = 3Q + 1, . . . , 4Q,

K = 3Q.

Now it is not difficult to see, that the instance of 3-partition has answer YES if and only
if the instance of the DC-problem has answer YES.

We want to mention that this reduction proves even more, namely that it is already hard
to find an approximate solution of the DC-problem. To be precise, the DC-problem is
APX-hard even for single-row matrices with entries polynomially bounded in n. That
means there is some ε > 0 such that, unless P = NP , there is no polynomial algorithm
which decides whether the necessary number of shape matrices is K or at least (1+ ε)K.
This was shown in [3] using a result on the APX-hardness of 3-partition from [21].
The strong NP-hardness of 3-partition means that the problem remains NP-hard even
if the input numbers are bounded by some constant. But in the reduction to the DC-
problem we produce a vector with very large entries, because we have to sum up all the
numbers from the 3-partition instance. So we can still hope for an efficient algorithm if
we bound the entries of the matrix by some constant L, i.e. we require ai,j ≤ L for all

20

(i, j). Observe that for the case L = 1 any optimal solution to the DT-problem is also
optimal for the DC-problem. And indeed, there is a result in this direction: for constant
L, the DC-problem without ICC and TGC can be solved in time O(mn2L+2) [12]. In
[20] the algorithm was extended in order to find the exact minimum of the DC without
the restriction that the DT has to be minimal. But these pseudopolynomial algorithms
are of very limited practical value, not only because of the L in the exponent but also
because the constant in the O−notation grows very fast with L. So it is natural to require
heuristic approaches to the DC-problem.

4.2 Heuristics for the DC–problem

Most of the algorithms in the literature look for a decomposition with minimum DC
among all decompositions with minimum DT. So the problem (which we also call DC-
problem in the following) is

(DC’) min

{

|S0| | S0 ⊆ S, A =
∑

S∈S0

uSS, uS ∈ N,
∑

S∈S0

uS is minimal.

}

.

Note that in general it is not possible to minimize both quantities simultaneously, as can
be seen by the following example (from [15]):

(

2 6 3
4 5 6

)

= 3

(

0 1 1
1 1 1

)

+

(

1 1 0
1 1 1

)

+

(

1 1 0
0 1 1

)

+

(

0 1 0
0 1 0

)

.

This is a decomposition with DT = 6 which cannot be achieved with 3 shape matrices.
But allowing DT = 7, 3 shape matrices are sufficient:

(

2 6 3
4 5 6

)

= 4

(

0 1 0
1 1 1

)

+ 2

(

1 1 1
0 0 1

)

+

(

0 0 1
0 1 0

)

.

So the problem (DC ′) is really different from (3). As before, let c(A) denote the minimal
DT, for matrix A. A very natural greedy strategy is to look for a shape matrix S that
can be extracted with a large coefficient u, such that c(A − uS) = c(A) − u, i.e. uS can
be extended to a DT-optimal decomposition.

4.2.1 The unconstrained case

The following greedy heuristic for the unconstrained case was proposed in [8]. We are
looking for a pair (u, S) of a positive integer u and a shape matrix S, such that A − uS
is still nonnegative, c(A − uS) = c(A) − u and u is maximal under these conditions. Let
umax be this maximal possible value. Using the notation introduced before Theorem 1,
c(A − uS) = c(A) − u is equivalent to

ci(A − uS) ≤ c(A) − u (i = 1, . . . , m).

Define the complexity gap of row i to be gi(A) := c(A) − ci(A). As before we describe
the shape matrix by the parameters li and ri (i = 1, . . . , m).

Lemma 9. There is a pair (u, S) with u = umax and, for all i, either li = ri − 1 or
(ai,li < ai,li+1 and ai,ri−1 > ai,ri

).

21

We put di,j = ai,j − ai,j−1 for i = 1, . . . , m, j = 1, . . . , n, and define

vi(l, r) =











gi(A) if l = r − 1,

gi(A) + min{di,l+1,−di,r} if l < r − 1 and gi(A) ≤ |di,l+1 + di,r|,

(di,l+1 − di,r + gi(A)) /2 if l ≤ r and gi(A) > |di,l+1 + di,r|.

Lemma 10. ci(A − uS) ≤ c(A) − u if and only if u ≤ vi(li, ri).

For convenience we denote the set of pairs (l, r) to which we restrict our search in row i
by Ii, that is we put

Ii := {(l, r) : 0 ≤ l ≤ r − 1 ≤ n and either l = r − 1 or (di,l+1 > 0 and di,r < 0)}.

Clearly the nonnegativity of A − uS is equivalent to u ≤ wi(li, ri) for all i, where

wi(l, r) =

{

∞ if l = r − 1,

min
l<j<r

ai,j if l < r − 1.

Now we put, for 1 ≤ i ≤ m and (l, r) ∈ Ii, ûi(l, r) = min{vi(l, r), wi(l, r)}, and for
i = 1, . . . , m,

ũi = max
(l,r)∈Ii

ûi(l, r).

Then
umax = min

1≤i≤m
ũi.

In order to construct a shape matrix S such that, for u = umax, A − uS is nonnegative
and c(A− uS) = c(A)− u, we just have to find, for every i ∈ [m], a pair (li, ri) ∈ Ii with
ûi(li, ri) ≥ umax. A trivial way of doing this is to take a pair (li, ri) where the maximum
in the definition of ũi is attained, i.e. with ûi(li, ri) = ũi. These (li, ri) can be computed
simultaneously with the calculation of umax and this method yields mn + n − 1 as an
upper bound for the DC of the decomposition. But there are better constructions for S
after the determination of umax. We put

q(A) = |{(i, j) ∈ [m] × [n] : di,j 6= 0}| ,

and choose a shape matrix S so that q(A − uS) is minimized. To make this precise, for
1 ≤ i ≤ m and (l, r) ∈ Ii, we put

pi(l, r) =











2 if di,l+1 = −di,r = umax,

1 if di,l+1 = umax 6= −di,r or di,l+1 6= umax = −di,r,

0 if l = r + 1 or (di,l+1 6= umax and − di,r 6= umax).

Now for (li, ri) we choose among the pairs (l, r) ∈ Ii with ûi(l, r) ≥ umax one with
maximal value of pi(l, r), and if there are several of these we choose one with maximal
value of r − l. As an example we obtain the following decomposition.

(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

=4

(

1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0

)

+ 2

(

0 0 0 0 1 1
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 1 0

)

+

(

0 0 0 1 1 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 0 0 0

)

+

(

0 0 0 0 1 1
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1

)

+

(

0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 1

)

+

(

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1

)

.

22

4.2.2 The interleaf collision constraint

Using the Min-Max-characterization of the minimal DT from Theorem 5, we can use the
same strategy as for the unconstrained case: denoting by c(A) the maximal weight with
respect to A of a (D, D′)−path in the DT-ICC-graph, we are looking for a pair (u, S)
with maximal u such that A − uS is nonnegative and c(A − uS) = c(A) − u. If this is
the case we call the pair (u, S) admissible. An additional difficulty comes from the fact
that the influence of the extraction of uS on the weight of a path through a vertex (i, j)
does not only depend on the i−th row of S, so the determination of the values

ûi(l, r) := max{u | ∃ shape matrix S with li = l, ri = r such that

A − uS is nonnegative and c(A − uS) = c(A) − u}

becomes much harder. But suppose these values, or at least some upper bounds u0(i, l, r)
for them, are given. Then for given u, every shape matrix S, such that (u, S) is admissible,
corresponds to a path

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′

in the digraph defined in the beginning of Section 3.1.2 and illustrated in Fig. 5, such
that u0(i, li, ri) ≥ u for i = 1, . . . , m. We put

û = max{u : There is a path D, (1, l1, r1), . . . , (m, lm, rm), D′

with u0(i, li, ri) ≥ u for i = 1, . . . , m}.

Clearly, û is an upper bound for the coefficient u in an admissible pair (u, S). The
backtracking described in Algorithm 5 constructs an admissible pair (u, S) with maximal
u. Starting with u = û, the algorithm searches for a shape matrix S such that (u, S) is
admissible, and if this is not possible, the value is decreased by one. The shape matrix is
build up row by row, and the stopping criterion in row i is that after extracting the current
candidates for the first i rows with coefficient u leads to a path P with all its vertices in
the first i rows and w(P) > c(A) − u. The maximal weight of such a path is denoted by
MaxWeight(i). Iterating Algorithm 5 with A′ = A− uS we obtain a decomposition of A.

Algorithm 5 (Greedy step in the heuristic for the DC-problem with ICC).
Function Construct Shape Matrix

u := û
finished:=false
l0 := 0; r0 := n + 1
while not finished do
Complete Shape Matrix(1)
if not finished then u := u − 1

Function Complete Shape Matrix(i)
for (li, ri) with 0 ≤ li ≤ ri−1 − 1, max{li, li−1} + 1 ≤ ri ≤ n + 1 and u0(i, li, ri) ≥ u do

if MaxWeight(i) ≤ c(A) − u then
if i < m then Complete Shape Matrix(i + 1) else finished:=true

23

The performance of this backtracking depends very much on the quality of the bounds
u0(i, l, r). In [13] some bounds that work quite well in practice are described. A drawback
of this method is that we have almost no control of the running time. Experiments with
randomly generated matrices show that the algorithm is fast for the vast majority of
matrices but there are some examples where it is extremely slow.

References

[1] R.K. Ahuja and H.W. Hamacher. A network flow algorithm to minimize beam-on
time for unconstrained multileaf collimator problems in cancer radiation therapy.
Networks, 45(1):36–41, 2005.

[2] D. Baatar, H.W. Hamacher, M. Ehrgott, and G.J. Woeginger. Decomposition of
integer matrices and multileaf collimator sequencing. Discrete Appl. Math., 152(1-
3):6–34, 2005.

[3] N. Bansal, D. Coppersmith, and B. Schieber. Minimizing setup and beam-on times in
radiation therapy. In J. Diaz et al., editor, Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, volume 4110 of LNCS, pages
27–38. Springer-Verlag, 2006.

[4] N. Boland, H. W. Hamacher, and F. Lenzen. Minimizing beam-on time in cancer
radiation treatment using multileaf collimators. Networks, 43(4):226–240, 2004.

[5] T. Bortfeld. IMRT: a review and preview. Phys. Med. Biol., 51:R363–R379, 2006.

[6] T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer. X–ray field compensation
with multileaf collimators. Int. J. Radiat. Oncol. Biol. Phys., 28:723–730, 1994.

[7] R. Burkart. Open Problem Session, Oberwolfach Conference on Combinatorial Op-
timization, November 24-29, 2002.

[8] K. Engel. A new algorithm for optimal multileaf collimator field segmentation.
Discrete Appl. Math., 152(1-3):35–51, 2005.

[9] K. Engel and E. Tabbert. Fast simultaneous angle, wedge, and beam intensity opti-
mization in inverse radiotherapy planning. Optimization and Engineering, 6(4):393–
419, 2005.

[10] J.M. Galvin, X.G. Chen, and R.M. Smith. Combining multileaf fields to modulate
fluence distributions. Int. J. Radiat. Oncol. Biol. Phys., 27:697–705, 1993.

[11] M.R. Garey and D.S. Johnson. Computers and intractability, a guide to the theory
of NP–completeness. W.H. Freeman, 1979.

[12] T. Kalinowski. The algorithmic complexity of the minimization of the number of
segments in multileaf collimator field segmentation. Preprint 04/1, Institut für Math-
ematik, Uni Rostock, 2004.

[13] T. Kalinowski. Reducing the tongue-and-groove underdosage in MLC segmentation.
Preprint 04/3, Institut für Mathematik, Uni Rostock, 2004.

24

[14] T. Kalinowski. A duality based algorithm for multileaf collimator field segmentation
with interleaf collision constraint. Discrete Appl. Math., 152(1-3):52–88, 2005.

[15] T. Kalinowski. Realization of intensity modulated radiation fields using multileaf
collimators. In R. Ahlswede et al., editor, Information Transfer and Combinatorics,
volume 4123 of LNCS, pages 1010–1055. Springer-Verlag, 2006.

[16] S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka. Leaf sequencing algorithms for
segmented multileaf collimation. Phys. Med. Biol., 48(3):307–324, 2003.

[17] S. Kamath, S. Sartaj, J. Palta, S. Ranka, and J. Li. Optimal leaf sequencing with
elimination of tongue–and–groove underdosage. Phys. Med. Biol., 49:N7–N19, 2004.

[18] S. Kamath, S. Sartaj, S. Ranka, J. Li, and J. Palta. A comparison of step–and–
shoot leaf sequencing algorithms that eliminate tongue–and–groove effects. Phys.
Med. Biol., 49:3137–3143, 2004.

[19] F. Lenzen. An integer programming approach to the multileaf collimator problem.
Master’s thesis, University of Kaiserslautern, Dept. of Mathematics, 2000.

[20] M. Nußbaum. Min cardinality C1 decomposition of integer matrices. Master’s thesis,
Faculty for Mathematics, TU Kaiserslautern, 2006.

[21] E. Petrank. The hardness of approximation: gap location. Computational complexity,
4:133–157, 1994.

[22] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey, and A. Kumar. A column generation
approach to radiation therapy treatment planning using aperture modulation. SIAM
J. on Optimization, 15(3):838–862, 2005.

[23] R.A.C. Siochi. Minimizing static intensity modulation delivery time using an inten-
sity solid paradigm. Int. J. Radiat. Oncol. Biol. Phys., 43:671–680, 1999.

[24] P. Xia and L. Verhey. Multileaf collimator leaf–sequencing algorithm for intensity
modulated beams with multiple static segments. Med. Phys., 25:1424–1434, 1998.

25

