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Abstract

The use of multileaf collimators (MLCs) is a modern way to re-
alize intensity modulated fields in radiotherapy. An important step
in the treatment planning is the shape matrix decomposition: The
desired fluence distribution, given by an integer matrix, has to be de-
composed into a small number shape matrices, i.e. (0, 1)−matrices
corresponding to the field shapes that can be delivered by the used
MLC. The two main objectives are to minimize the total irradiation
time and the number of shape matrices. Assuming that the entries of
the fluence matrix are bounded by a constant, we prove that a shape
matrix decomposition with minimal number of shape matrices under
the condition that the total irradiation time is minimal, can be deter-
mined in time polynomial in the matrix dimensions. The results of our
algorithm are compared with Engel’s [8] heuristic for the reduction of
the number of shape matrices.
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1 Introduction

In recent years intensity modulated radiation therapy (IMRT) has become
an important method in cancer therapy. The objective in the treatment
planning is to irradiate the tumor as efficiently as possible without damaging
the organs near to it. A modern way to realize intensity modulated radia-
tion fields is the use of a multileaf collimator (MLC). An MLC consists of
two opposite banks of metal leaves which can be shifted towards each other
and so open or close certain parts of the irradiated area. In this paper we
assume that the desired fluence distribution is already determined. After
discretization the fluence can be considered as an m× n matrix A with non-
negative integer entries. We consider the problem to realize this fluence with
an MLC in the static mode (step and shoot). This means that the radiation
is switched off when the leaves of the collimator are moving. In other words
we have to determine a (finite) set of leaf positions with corresponding irradi-
ation times such that the superposition of the homogeneous fields yields the
given fluence matrix. This principle is illustrated in Figure 1. The leaf posi-

Beam 1 Beam 2

Beam 3

Fluence Fluence

Fluence

Figure 1: Intensity modulation by superimposing 3 beams of different shapes.
In each step the left figure shows a leaf position and in the right figure the
grey scale indicates the total fluence.

tions can be described by certain 0 − 1−matrices of size m × n called shape
matrices, where a 0−entry means the radiation is blocked and a 1−entry
means that the radiation goes through. For example the first leaf position in
Fig. 1 corresponds to the shape matrix

(

0 1 1 0
1 1 1 0
1 1 0 0
0 1 1 1

)

.
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Clearly, the superposition of differently shaped beams corresponds to positive
linear combinations of shape matrices, where the coefficient of a shape matrix
measures for how long the corresponding field is applied. So any represen-
tation of the given fluence matrix A as a positive integer linear combination
of shape matrices is a feasible solution to our decomposition problem. For
instance:

A =

(

1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

)

= 2 ·

(

0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

)

+

(

0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

)

+

(

1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

)

. (1)

There are two quantities influencing the quality of a decomposition

A =

k
∑

i=1

uiSi, (2)

the total irradiation time (proportional to the sum of the coefficients) and
the number of necessary beams (the number of nonzero coefficients). Thus
the quality of (2) is measured by the decomposition time (DT) and the
decomposition cardinality (DC):

DT =
k

∑

i=1

ui, DC = k.

In general, it is not possible to minimize both parameters simultaneously
(see [12] for a counterexample). Instead we first determine the minimal DT
and among all decompositions with this DT we search for one with minimal
DC. In the literature there are several decomposition algorithms ([2, 5, 6, 7,
8, 9, 13, 16, 17, 18]). The most common approach is to find the minimal
DT and use heuristic methods to reduce the DC. The algorithms differ in
the extent to which they include additional machine–dependent constraints
like the interleaf collision constraint. In principle both, DT and DC, can
be optimized by integer programming [14], but the known IP-formulations
do not lead to algorithms that can solve instances of practically relevant
sizes. See [12] for a survey and a comparison of the different decomposition
algorithms. In this paper we neglect machine–dependent constraints and
focus on the complexity of the DC–minimization.

Throughout the paper we use the notation [n] := {1, 2, . . . , n} for positive
integers n. Let A = (ai,j) denote the given m×n–fluence matrix. For brevity
of notation we put ai,0 = ai,n+1 = 0 for i ∈ [m]. We start with a formal
definition of a shape matrix, that is a 0− 1–matrix describing a leaf position
of the MLC.

3



Definition 1. A shape matrix is an m×n-matrix S = (si,j), such that there
exist integers li, ri (i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (3)

si,j =

{

1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (4)

The interpretation is that li − 1 and ri + 1 are the positions of the i–th
left and right leaf, respectively. A 1–entry in the shape matrix indicates that
the corresponding region receives radiation while a 0–entry indicates a region
that is covered by a leaf. For a nonnegative integer matrix A, a shape matrix
decomposition of A is a representation of A as a positive integer combination
of shape matrices like (2) with shape matrices Si and positive integers ui

(i ∈ [k]). In this paper we consider the following problem, which we call
shape matrix decomposition problem.

Shape matrix decomposition problem: Given the nonnegative integer
matrix A, find a shape matrix decomposition A =

∑k
i=1 uiSi with in

first instance minimal DT and in second instance minimal DC.

There are several efficient algorithms for determining DT–optimal decompo-
sitions [5, 8, 13]. In [8] it is proved that the minimal DT equals

c(A) := max
i∈[m]

n
∑

j=1

max{0, ai,j − ai,j−1}. (5)

The problem of minimizing DC is NP–complete in the strong sense even for
single row matrices, as was shown in [2] by a reduction of 3–Partition [10].
As it was observed in [3] this reduction yields even the APX–hardness of
the problem for matrices with entries polynomially bounded in n. But the
reduction essentially depends on the fact that the entries can become arbi-
trary large. In this paper we show that the DC–minimization problem can be
solved in time polynomial in the matrix dimensions m and n, provided the
matrix entries are bounded by some constant L. This seems to be a reason-
able assumption in practice: for instance the authors of [18] report, that they
obtained matrices with 7 nonzero fluence levels when they applied a prelim-
inary version of the CORVUS inverse treatment planning system (NOMOS
corporation) to a very complex head and neck tumor case. The algorithm
proposed here is an application of the dynamic programming principle (see
[4]). The paper is organized as follows. The cases of single row and multiple
row fluence matrices are treated separately in Sections 2 and 3, respectively.
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For both cases we describe polynomial algorithms for the construction of de-
compositions with minimal DT and minimal DC. In Section 4 we test our
algorithm with randomly generated matrices and with matrices from clinical
practice, and we compare the results with the heuristic method from [8].

2 Single row intensity maps

First we give an exact formulation of the problem L–One Row–Min DT–

Min DC:

Instance: A vector a = ( a1 a2 ... an ) of integers with 0 ≤ ai ≤ L (i =
1, . . . , n).

Problem: Find a shape matrix decomposition with in first instance minimal
DT and in second instance minimal DC.

We put a0 = an+1 = 0. Let

P = {i ∈ [n] : ai ≥ ai−1 and ai > ai+1},

Q = {i ∈ [n] : ai < ai−1 and ai ≤ ai+1}.

Clearly, |P | = |Q|+ 1 if an 6= 0 and |P | = |Q| if an = 0. If an 6= 0 denote the
elements of P and Q by p1, . . . , pt and q1, . . . , qt−1 such that

p1 < q1 < p2 < q2 < · · · < qt−1 < pt,

and put q0 = 0 and qt = n + 1. If an = 0 denote the elements of P and Q by
p1, . . . , pt and q1, . . . , qt such that

p1 < q1 < p2 < q2 < · · · < qt−1 < pt < qt.

From the proof of Theorem 1 in [8] it follows that in a DT–optimal decom-
position a =

∑k

j=1 cjs
(j) every shape matrix is of the form

s
(j)
i =

{

1 for lj ≤ i ≤ rj,

0 otherwise,

with qτ−1 < lj ≤ pτ and pτ ′ ≤ rj < qτ ′ for some τ, τ ′ ∈ [t]. Since the order
of the shape matrices is not relevant, we may order them in such a way that
r1 ≤ · · · ≤ rk. For τ ∈ [t − 1], let k0(τ) be the unique index with rj < qτ for
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j ≤ k0(τ) and rj ≥ qτ for j > k0(τ), and let a(τ) denote the remainder after
extracting the first k0(τ) shape matrices, i.e.

a(τ) = a −

k0(τ)
∑

j=1

cjs
(j).

In addition, put k0(0) = 0, k0(t) = k, a(0) = a and a(t) = 0. The interpreta-
tion is that the shapes with indices between k0(τ − 1) and k0(τ) are used to
eliminate the τ−th local maximum of the fluence profile. This is illustrated
in the following example.

Example 1. Consider the vector a = ( 2 2 3 7 7 9 8 5 5 12 ) where t = 2, p1 = 6,
q1 = 8, p2 = 10, q2 = 11. For the decomposition

a = ( 1 1 1 1 1 1 0 0 0 0 ) + 3 ( 0 0 0 1 1 1 1 0 0 0 ) + ( 1 1 1 1 1 1 1 1 1 1 )

+ ( 0 0 1 1 1 1 1 1 1 1 ) + ( 0 0 0 1 1 1 1 1 1 1 ) + 2 ( 0 0 0 0 1 1 1 1 1 1 )

+ 7 ( 0 0 0 0 0 0 0 0 0 1 )

we have k = 7 = k0(2) and k0(1) = 2 and a(1) = ( 1 1 2 3 3 5 5 5 5 12 ).

After extracting the first k0(τ) shapes we obtain a vector a(τ) which is
increasing up to entry pτ+1. This is made precise in the following lemma.

Lemma 1. For τ ∈ [t − 1] we have

a
(τ)
1 ≤ a

(τ)
2 ≤ · · · ≤ a(τ)

qτ
, (6)

and the multisets

Uτ = {a
(τ)
i − a

(τ)
i−1 : 1 ≤ i ≤ qτ , a

(τ)
i 6= a

(τ)
i−1}, (7)

Vτ = {a
(τ)
i − a

(τ)
i−1 : qτ < i ≤ pτ+1, a

(τ)
i 6= a

(τ)
i−1}, (8)

Wτ = {a
(τ)
i − a

(τ)
i+1 : pτ+1 ≤ i < qτ+1, a

(τ)
i 6= a

(τ)
i+1} (9)

are partitions of aqτ
, apτ+1 − aqτ

and apτ+1 − aqτ+1, respectively.

Proof. For j > k0(τ), from rj ≥ qτ it follows that for i ≤ qτ ,

s
(j)
i = 1 ⇐⇒ lj ≤ i.

In particular, for i = 1, . . . , qτ − 1 and j = k0(τ) + 1, . . . , k,

s
(j)
i = 1 =⇒ s

(j)
i+1 = 1. (10)
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For 0 ≤ τ ≤ t − 1, we have

a(τ) =

k
∑

j=k0(τ)+1

cjs
(j),

hence (10) implies (6). The second statement follows easily, since a
(τ)
i is

increasing for 1 ≤ i ≤ pτ+1 and decreasing for pτ+1 < i ≤ qτ+1.

Observe that a
(τ)
i = ai for i ≥ qτ , hence Vτ and Wτ depend only on a,

while Uτ depends also on the pairs

(s(1), c1), . . . , (s
(k0(τ)), ck0(τ)).

Considering the sequence (Uτ , Vτ , Wτ ) (τ = 0, . . . , t), where we add Ut = Vt =
Wt = ∅, we will present a method to construct the desired decomposition.

Definition 2. For integers u, v and w with 0 ≤ u ≤ v ≤ L and 0 ≤ w < v,
a (u, v, w)−peak is a triple (U, V, W ) of unordered partitions of u, v − u and
v − w, i.e. a triple of multisets of positive integers with

∑

x∈U

x = u,
∑

x∈V

x = v − u,
∑

x∈W

x = v − w.

In addition, the triple (∅, ∅, ∅) is called (0, 0, 0)−peak.

Such peaks carry the essential information on a(τ) that can be used to
determine the next shapes and their coefficients. According to Lemma 1, for
τ = 0, . . . , t, (Uτ , Vτ , Wτ) is an (aqτ

, apτ+1, aqτ+1)−peak (where apt+1 = aqt+1 =
0), and for τ ≤ t − 1, the choice of the pairs

(s(k0(τ)+1), ck0(τ)+1), . . . , (s
(k0(τ+1)), ck0(τ+1))

can be considered as the choice of a way to go from the peak (Uτ , Vτ , Wτ ) to
the peak (Uτ+1, Vτ+1, Wτ+1). We claim that the number of shape matrices
needed for this step does not depend on the particular a(τ), but only on
the multisets Uτ ∪ Vτ , Wτ and Uτ+1. To prove this we associate with a
(u, v, w)–peak (U, V, W ) a vector b = ( b1 ... bβ ) as follows. Put α = |U |+ |V |,
β = α + |W |, denote the elements of U ∪ V by d1, . . . , dα and the elements
of W by dα+1, . . . , dβ, such that

d1 ≥ d2 ≥ · · · ≥ dα and dα+1 ≥ dα+2 ≥ · · · ≥ dβ.
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So, for U = Uτ , V = Vτ and W = Wτ the di (i = 1, . . . , β) are the absolute
values of the nonzero differences of consecutive entries of the initial part
( a

(τ)
1 ... a

(τ)
qτ+1 ) of a(τ). Now b is defined by

bi =















i
∑

j=1

dj for 1 ≤ i ≤ α,

v −
i

∑

j=α+1

dj for α + 1 ≤ i ≤ β.

In addition, let b0 = 0.

Example 2. Let us consider vector a = ( 2 2 3 7 7 9 8 5 5 12 ) from Example 1.
We start with the peak U0 = ∅, V0 = {2, 1, 4, 2}, W0 = {1, 3} with associated
vector b = ( 4 6 8 9 6 5 ). After extracting the first two shapes as in Example
1 we obtain a(1) = ( 1 1 2 3 3 5 5 5 5 12 ) with peak U1 = {1, 1, 1, 2}, V1 = {7},
W1 = {12} and associated vector b = ( 2 3 4 5 12 0 ).

Now we want to show that under the condition of minimal DT the elim-
ination of the first maximum in a(τ) can be reduced to the reduction of the
associated vector b to an increasing sequence. The following example illus-
trates the method for our example vector.

Example 3. Start with the following reduction of b = ( 4 6 8 9 6 5 ).

b − 3 ( 1 1 1 1 0 0 ) − ( 0 1 1 1 1 0 ) ( 4 6 8 9 6 5 ) ( 1 2 4 5 5 5 ) .

The two shapes can be described by the parameters (l′1, r
′
1) = (1, 4) and

(l′2, r
′
2) = (2, 5), indicating the first and the last 1-entry. For a correspond-

ing reduction of a we require that we extract one shape with coefficient 3
and parameters (l1, r1) and another shape with coefficient 1 and parameters
(l2, r2) such that

al1 − al1−1 = bl′1
− bl′1−1 = 4, ar1 − ar1+1 = br′1

− br′1+1 = 3,

al2 − al2−1 = bl′2
− bl′2−1 = 2, ar2 − ar2+1 = br′2

− br′2+1 = 1.

Clearly, the first two shapes in Example 1 (in opposite order) with (l1, r1) =
(4, 7) and (l2, r2) = (1, 6) satisfy these requirements.

The following lemma makes this correspondence between the reductions
of a and b rigorous.

Lemma 2. Fix some τ , 0 ≤ τ ≤ t − 1, and let b = ( b1 ... bβ ) be the vector
associated with the (aqτ

, apτ+1, aqτ+1)–peak (Uτ , Vτ , Wτ ), defined according to
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(7)–(9), where α = |Uτ ∪ Vτ | and β = α + |Wτ |. Also let U ′ be a partition of
aqτ+1, and let c1, . . . , cρ be positive integers with

ρ
∑

j=1

cj = apτ+1 − aqτ+1. (11)

Then the following statements are equivalent.

1. There exist integers lj, rj with 1 ≤ lj ≤ pτ+1 ≤ rj < qτ+1 (j = 1, . . . , ρ),

such that for a′ = a(τ) −
ρ

∑

j=1

cjs
(j), where

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , ρ; i = 1, . . . , n)

we have

(a) 0 ≤ a′
1 ≤ a′

2 ≤ · · · ≤ a′
qτ+1

(b) {a′
i − a′

i−1 : 1 ≤ i ≤ qτ+1, a′
i 6= a′

i−1} = U ′ (where a′
0 = 0).

2. There exist integers l′j, r′j with 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , ρ,

such that for b′ = b −
∑ρ

j=1 cjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , ρ; i = 1, . . . , β)

we have

(a) b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ

(b) {b′i − b′i−1 : 1 ≤ i ≤ β, b′i 6= b′i−1} = U ′ (where b′0 = 0).

Observe that the sum over τ of the right hand side of (11) is the minimal
DT of a decomposition of a [8]. Hence (11) together with the first statement
(for all τ) characterize the decompositions with minimal DT.

Proof. Let

R1 = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1},

R2 = {i : pτ+1 ≤ i < qτ+1, a
(τ)
i 6= a

(τ)
i+1}.

Clearly,

Uτ ∪ Vτ = {a
(τ)
i − a

(τ)
i−1 : i ∈ R1} and Wτ = {a

(τ)
i − a

(τ)
i+1 : i ∈ R2}.
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By construction of b, we also have

Uτ ∪Vτ = {bi − bi−1 : 1 ≤ i ≤ α} and Wτ = {bi − bi+1 : α ≤ i ≤ β − 1}.

Together this implies that there are bijections

ϕ1 : R1 → {1, . . . , α}, ϕ2 : R2 → {α, . . . , β − 1},

such that

a
(τ)
i − a

(τ)
i−1 = bϕ1(i) − bϕ1(i)−1 for i ∈ R1 and

a
(τ)
i − a

(τ)
i+1 = bϕ2(i) − bϕ2(i)+1 for i ∈ R2.

The proof of the characterization of the minimal DT (Theorem 1 in [8])
implies that in a decomposition with minimal DT we must have ali > ali−1

and ari
> ari

+ 1 for all i. As observed above, lj , rj (j = 1, . . . , ρ) as in the
first statement occur in a DT-optimal decomposition, so we have lj ∈ R1 and
rj ∈ R2 for all j. Similarly, for l′j , r′j (j = 1, . . . , ρ) as in the second statement
we have l′j ≤ α and r′j ≥ α for all j. Suppose that lj, rj (j = 1, . . . , ρ) satisfy
the conditions of the first statement. The difference of the entries number i
and i − 1 changes only when lj = i or rj = i − 1 for some j. Thus, if i 6∈ R1

and i − 1 6∈ R2 we have

a′
i − a′

i−1 = a
(τ)
i − a

(τ)
i−1 = 0.

Hence, for i = 1, . . . , qτ+1,

a′
i − a′

i−1 6= 0 =⇒ i ∈ R1 or i − 1 ∈ R2.

Put

C1(i) = {j ∈ [ρ] : lj = i} for i ∈ R1,

C2(i) = {j ∈ [ρ] : rj = i} for i ∈ R2.

Then

a′
i − a′

i−1 = a
(τ)
i − a

(τ)
i−1 −

∑

j∈C1(i)

cj for i ∈ R1

a′
i − a′

i+1 = a
(τ)
i − a

(τ)
i+1 −

∑

j∈C2(i)

cj for i ∈ R2.

By condition (a) of the first statement we have a′
i − a′

i+1 ≤ 0 for i =
0, . . . , qτ+1 − 1. For i ∈ R2 this yields

∑

j∈C2(i)

cj ≥ a
(τ)
i − a

(τ)
i+1,
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and together with

∑

i∈R2

∑

j∈C2(i)

cj =

ρ
∑

j=1

cj = apτ+1 − aqτ+1 =
∑

i∈R2

(

a
(τ)
i − a

(τ)
i+1

)

we obtain for i ∈ R2,
∑

j∈C2(i)

cj = a
(τ)
i − a

(τ)
i+1,

and thus a′
i − a′

i+1 = 0 for i ∈ R2. So the only nonzero differences a′
i − a′

i−1

come from indices i ∈ R1. Now put l′j = ϕ1(lj) and r′j = ϕ2(rj) (j = 1, . . . , ρ)
and let b′ be defined as in the second statement. Then l′j = ϕ1(i) iff j ∈ C1(i)
and r′j = ϕ2(i) iff j ∈ C2(i), hence for i ∈ R1 we have

b′ϕ1(i) − b′ϕ1(i)−1 = bϕ1(i) − bϕ1(i)−1 −
∑

j : l′j=ϕ1(i)

cj

= bϕ1(i) − bϕ1(i)−1 −
∑

j∈C1(i)

cj

= ai − ai−1 −
∑

j∈C1(i)

cj

= a′
i − a′

i−1,

and for i ∈ R2,

b′ϕ2(i) − b′ϕ2(i)+1 = bϕ2(i) − bϕ2(i)+1 −
∑

j : r′j=ϕ2(i)

cj

= bϕ2(i) − bϕ2(i)+1 −
∑

j∈C2(i)

cj

= ai − ai+1 −
∑

j∈C2(i)

cj

= a′
i − a′

i+1 = 0.

So the second statement holds, and since all the arguments are reversible,
we have proved that lj , rj (j = 1, . . . , ρ) satisfy the conditions of the first
statement iff l′j = ϕ1(lj), r′j = ϕ2(rj) (j = 1, . . . , ρ) satisfy the conditions of
the second statement, and this proves the lemma.

In fact the proof shows even more than just the equivalence of the two
statements: knowing l′j and r′j (j = 1, . . . , ρ) and R1 and R2, we can deter-

mine the lj , rj (j = 1, . . . , ρ) and R′ = {i : 1 ≤ i ≤ qτ+1, a
(τ+1)
i 6= a

(τ+1)
i−1 }
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in a number of steps that is bounded by a constant. Lemma 2 motivates
the following definitions. For a given vector b (associated with the peak
(Uτ , Vτ , Wτ )) and a partition U ′ of aqτ+1 we want to know how many shapes
are needed to reduce a(τ) such that the peak for a(τ+1) starts with U ′.

Definition 3. Let b = ( b1 ... bβ ) be the vector associated with some (u, v, w)–
peak (U, V, W ) where α = |U ∪V | and β = α+ |W |, and let U ′ be a partition
of w. Let T be the set of positive integers ρ such that there are integers
l1, . . . , lρ, r1, . . . , rρ and coefficients c1, . . . , cρ ∈ N \ {0} such that

1.
ρ

∑

j=1

cj = v − w,

2. 1 ≤ lj ≤ rj ≤ β − 1 for j = 1, 2, . . . , ρ.

and for b′ = b −
ρ

∑

j=1

cjf
(j), where

f
(j)
i =

{

1 if lj ≤ i ≤ rj,

0 otherwise,
(j = 1, . . . , ρ; i = 1, . . . , β)

we have

3. b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ = w and

4. {b′i − b′i−1 : 1 ≤ i ≤ β, b′i 6= b′i−1} = U ′ (with b′0 = 0).

Then we define

ρ(b, U ′) =

{

min T if T 6= ∅,

∞ if T = ∅.

Definition 4. Let (U, V, W ) and (U ′, V ′, W ′) be a (u, v, w)–peak and a
(u′, v′, w′)−peak, respectively, where u′ = w. Then we put

δ((U, V, W ), (U ′, V ′, W ′)) = ρ(b, U ′),

where b is the vector associated with (U, V, W ).

In order to model the decomposition process we define a digraph G =
(V, E). The vertex set is

V = {(τ, U, Vτ , Wτ) : 0 ≤ τ ≤ t, U is a partition of aqτ
},
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Figure 2: The digraph for the vector a.

where

Vτ = {ai − ai−1 : qτ < i ≤ pτ+1, ai 6= ai−1},

Wτ = {ai − ai+1 : pτ+1 ≤ i < qτ+1, ai 6= ai+1}

for 0 ≤ τ ≤ t. Observe that there is only one vertex with first component 0,
namely (0, ∅, V0, W0) corresponding to a(0) = a and there is only one vertex
with first component t, namely (t, ∅, ∅, ∅) corresponding to the zero vector.
In general, the vertices with first component τ represent the possibilities for
(Uτ , Vτ , Wτ ), and for each τ , the vertices with first component τ differ only
in the second component Uτ , because Vτ and Wτ depend only on a. In the
arc set E we include all arcs of the form

((τ, U, Vτ , Wτ ), (τ + 1, U ′, Vτ+1, Wτ+1))

for τ = 0, . . . , t − 1.

Example 4. Figure 2 shows G for a = ( 1 3 2 4 3 4 ), where the vertices are
labeled as follows.

a = (0, ∅, {1, 2}, {1}), b = (1, {2}, {2}, {1}), c = (1, {1, 1}, {2}, {1}),

d = (2, {3}, {1}, {4}), e = (2, {2, 1}, {1}, {4}), f = (2, {1, 1, 1}, {1}, {4})

g = (3, ∅, ∅, ∅).

We define the arc weights in G to be the distances of the corresponding
peaks, i.e.

δ((τ, U, Vτ , Wτ ), (τ + 1, U ′, Vτ+1, Wτ+1)) = δ((U, Vτ , Wτ ), (U
′, Vτ+1, Wτ+1))
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for 0 ≤ τ ≤ t − 1 and all partitions U and U ′ of aqτ
and aqτ+1, respec-

tively. Observe that in this definition we used the fact that (U, Vτ , Wτ ) and
(U ′, Vτ+1, Wτ+1) are an (aqτ

, apτ+1, aqτ+1)–peak and an (aqτ+1, apτ+2, aqτ+2)–
peak, respectively. This assures that the condition u′ = w in the definition
of δ is satisfied.

Example 5. The first two shape matrices in Example 1 correspond to the arc
(a, b) of weight 2: the residual vector a(1) corresponds to a peak starting with
U ′ = {2, 1, 1, 1}, the second component of vertex b. The whole decomposition
from this example corresponds to the path a, b, f of weight 7. Following the
path a, c, f instead yields better decompositions, for instance

a = ( 0 0 1 1 1 1 0 0 0 0 ) + 3 ( 0 0 0 1 1 1 1 0 0 0 ) + 2 ( 1 1 1 1 1 1 1 1 1 1 )

+ ( 0 0 0 1 1 1 1 1 1 1 ) + 2 ( 0 0 0 0 0 1 1 1 1 1 ) + 7 ( 0 0 0 0 0 0 0 0 0 1 )

with a(1) = ( 2 2 2 3 3 5 5 5 5 12 ). Similarly, for the path a, d, f we obtain the
decomposition

a = ( 0 0 0 1 1 1 0 0 0 0 ) + 2 ( 1 1 1 1 1 1 1 0 0 0 ) + ( 0 0 1 1 1 1 1 0 0 0 )

+ 3 ( 0 0 0 1 1 1 1 1 1 1 ) + 2 ( 0 0 0 0 0 1 1 1 1 1 ) + 7 ( 0 0 0 0 0 0 0 0 0 1 )

with a(1) = ( 0 0 0 3 3 5 5 5 5 12 ). The weight ∞ for the arc (a, f) comes from
the fact that it is not possible to find a leaf sequence and coefficients summing
up to 4, such that the reduced vector has associated vector ( 1 2 3 4 5 12 ).

With any decomposition we can associate a path

(0, ∅, V0, W0), (1, U1, V1, W1), . . . , (t, ∅, ∅, ∅)

in G. The minimal number of shape matrices needed to realize a decompo-
sition corresponding to a given path equals the weight of this path.

Lemma 3. In time O(1) we can determine the values ρ(b, U ′) for all vectors
b that are associated with some (u, v, w)–peak and for all partitions U ′ of w.
In addition, we obtain values cj, l′j, r′j (j = 1, . . . , ρ(b, U ′)) satisfying the
conditions of Definition 3.

Proof. The total number of vectors b associated with some (u, v, w)−peak
when u, v and w run through all the possible values is

L
∑

v=1

v−1
∑

w=0

PvPv−w

14



where Pi is the number of partitions of i ∈ N. Fix one of these vectors b. We
consider all the sets S = {(l′j, r

′
j, cj) : j = 1, . . . , ρ} (ρ ∈ N), such that the

vectors f (1), . . . , f (ρ), defined as in Definition 3 and the coefficients c1, . . . , cρ

satisfy the conditions in Definition 3. We claim that there are at most

vv−w ≤ LL

possibilities for S. Writing
∑cj

k=1 f (j) for cjf
(j) we can express

∑ρ
j=1 cjf

(j)

as a sum of
∑ρ

j=1 cj = v − w (0, 1)−vectors. In order to satisfy conditions
1 and 3 of Definition 3, for i = α, . . . , β − 1, in exactly bi − bi+1 of these
(0, 1)−vectors must be 0 at position i + 1 and a 1 at position i. So we may
assume that the v −w right leaf positions are fixed. Since for each right leaf
position there are at most v left leaf positions the claim follows. For each
S the resulting partition U ′ of w can be computed in O(1) steps, since ρ is
bounded by v −w ≤ L, and β is bounded by 2L. Thus the number of peaks
is bounded by a constant, the number of sets S to be checked for each peak
is bounded by a constant, for each of these sets the number of steps for the
checking is bounded by a constant, and this completes the proof.

Lemma 4. In time O(n) we can determine the arc weights δ(e) for all e ∈ E
and for each arc e a sequence

(s(1), c1), . . . , (s
(δ(e)), cδ(e))

realizing its weight.

Proof. By Lemma 3 we may assume that we know all the ρ(b, U ′). First we
determine in time O(n) the sets

P = {p1, . . . , pt}, Q = {q0, . . . , qt},

R1,τ = {i : qτ < i ≤ pτ+1, ai 6= ai−1} (τ = 0, . . . , t − 1),

R2,τ = {i : pτ+1 ≤ i < qτ+1, ai 6= ai+1} (τ = 0, . . . , t − 1),

and the partitions Vτ and Wτ (τ = 0, . . . , t). By induction, we assume that
we have already determined the weights of the arcs up to layer τ for some
τ , 0 ≤ τ ≤ t − 1. The number of vertices in layers τ and τ + 1 are bounded
by Paqτ

and Paqτ+1
, respectively. So the number of arcs is bounded by P2

L.
Fix some (τ, Uτ , Vτ , Wτ ) and (τ +1, Uτ+1, Vτ+1, Wτ+1). Also by induction, we
assume that we know the set

R1 = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1}
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for some possible a(τ) corresponding to (τ, Uτ , Vτ , Wτ). Now by Lemma 2
(and its proof) we obtain

δ((τ, Uτ , Vτ , Wτ ), (τ + 1, Uτ+1, Vτ+1, Wτ+1))

and a sequence realizing this value in constant time from the corresponding
data for b and U ′ where b is the vector associated with (Uτ , Vτ , Wτ ) and
U ′ = Uτ+1. If τ ≤ t − 2 this also yields

R′
1 = {i : 1 ≤ i ≤ pτ+2, a

(τ+1)
i 6= a

(τ+1)
i−1 }

for some possible a(τ+1) corresponding to (τ + 1, Uτ+1, Vτ+1, Wτ+1). So the
weights for all arcs between adjacent layers can be determined in time O(1).
Since the number of layers t + 1 is bounded by n, the lemma is proved.

Now the search for a decomposition with minimal DC amounts to the
search for a path of minimal weight in a layered digraph with at most n
layers where the number of vertices per layer is bounded by the constant PL.
This can be done in time O(n) [11]. Thus we have proved

Theorem 1. L–One Row–Min DT–Min DC can be solved in time O(n).

3 Multiple row intensity maps

In this section we generalize the basic idea of Section 2 to prove that for
bounded L the DC–minimization is polynomially solvable also for multiple
row matrices. The problem L–Min DT–Min DC is:

Instance: An integer matrix A = (ai,j) 1≤i≤m
1≤j≤n

with 0 ≤ ai,j ≤ L (i ∈ [m], j ∈

[n]).

Problem: Find a shape matrix decomposition of A with in first instance
minimal DT and in second instance minimal DC.

Assume we have already determined the minimal DT c. For any decomposi-
tion of A =

∑k

i=1 ciSi, the coefficients form a partition c = c1 + c2 + · · ·+ ck.
First we consider the problem to check for a given partition if there is a
decomposition of A with coefficients c1, . . . , ck. This problem can be solved
by checking the rows of A independently. For the moment we omit the row
index and denote by a = ( a1 ... an ) a fixed row of A and as before we put
a0 = an+1 = 0. Compared to the single row case an additional difficulty in
the multiple row case arises from the fact that the minimal DT that would be
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sufficient for a decomposition of a might be smaller than c. As a consequence
we cannot use Lemma 2, where condition (11) is essential. Here the order
of the elements of the considered partition must be taken into consideration.
For instance, for b = ( 2 5 0 ) there is a decomposition with coefficients 4, 1
and 1, namely

b = 4( 0 1 0 ) + ( 1 1 0 ) + ( 1 0 0 ),

while there is no decomposition with these coefficients for b′ = ( 3 5 0 ). So
instead of peaks we have to consider ordered peaks to be defined below. Also,
in order to describe the decomposition, we attach to a peak a multiset X of
coefficients, and call the result an extended ordered peak. This is made precise
in the following definition.

Definition 5. For integers v and w with 0 ≤ w < v ≤ L an extended ordered
(v, w)–peak is a pair (b, X) of an integer vector b = ( b1 b2 ... bβ ), such that
there is an integer α with 1 ≤ α < β and

0 < b1 < b2 < · · · < bα = v,

v = bα > bα+1 > · · · > bβ = w,

and a multiset X of positive integers. In addition, a pair (b, X), where b = ()
is the empty tuple and X is a multiset of positive integers, is called extended
ordered (0, 0)–peak.

Example 6. (( 2 5 7 4 3 ) , {1, 2, 2, 3, 3}) is an extended ordered (7, 3)–peak
(with α = 3, β = 5).

Let p1, . . . , pt and q0, . . . , qt be defined as in the preceding section. Then
for a decomposition

a =
k

∑

j=1

cjs
(j)

we can define k0(τ) and a(τ) (τ = 0, . . . , t) as before. Now for τ = 0, . . . , t,
we associate with a(τ) an extended ordered (apτ+1, aqτ+1)–peak (b(τ), Xτ ) as
follows. For τ < t, let

Iτ = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1},

Jτ = {i : pτ+1 < i ≤ qτ+1, a
(τ)
i 6= a

(τ)
i−1},

denote the elements of Iτ by i1, . . . , iα and the elements of Jτ by iα+1, . . . , iβ
such that i1 < i2 < · · · < iβ , and put

b0 = 0, bl = ail (l = 1, . . . , β).
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Let X0 = {c1, . . . , ck} and

Xτ+1 = Xτ \ {ck0(τ)+1, ck0(τ)+2, . . . , ck0(τ+1)} (τ = 0, . . . , t − 1).

Now for τ < t, (b(τ), Xτ) describes the initial part of a(τ) (up to column qτ+1)
together with the coefficients available for the remaining shape matrices.
In the final state (τ = t) we have the zero row a(t) = 0 and a multiset
Xt of coefficients, that are not needed for the considered row. With the
zero row we associate the empty tuple b(t) = (), and thus we obtain from
any decomposition a sequence (b(0), X0), (b(1), X1), . . ., (b(t), Xt) of extended
ordered peaks. This is illustrated by the following example.

Example 7. Suppose a = ( 2 4 3 1 6 3 0 6 1 ) is a row in an intensity matrix
with minimal DT c = 18, and we are checking the partition c = 5 + 3 + 2 +
2 + 2 + 1 + 1 + 1 + 1. Then from the decomposition

( 2 4 3 1 6 3 0 6 1 ) = 2 ( 1 1 1 0 0 0 0 0 0 ) + ( 0 1 0 0 0 0 0 0 0 ) + 3 ( 0 0 0 0 1 0 0 0 0 )

+ 2 ( 0 0 0 0 1 1 0 0 0 ) + ( 0 1 1 1 1 1 0 0 0 ) + 5 ( 0 0 0 0 0 0 0 1 0 ) + ( 0 0 0 0 0 0 0 1 1 )

we obtain

τ a(τ) b(τ) Xτ

0 ( 2 4 3 1 6 3 0 6 1 ) ( 2 4 3 1 ) {5,3,2,2,2,1,1,1,1}
1 ( 0 1 1 1 6 3 0 6 1 ) ( 1 6 3 0 ) {5,3,2,2,1,1,1}
2 ( 0 0 0 0 0 0 0 6 1 ) ( 6 1 0 ) {5,2,1,1}
3 ( 0 0 0 0 0 0 0 0 0 ) () {2,1}

The vectors b(τ) provide enough information to construct the decomposi-
tion. This follows from the simple observation, that w.l.o.g. a plateau, i.e. a
sequence of consecutive entries of equal value

ai1 = ai1+1 = · · · = ai2

can be considered as one single entry. That means we can always choose
the shapes in such a way that the entries corresponding to a plateau are
either all 0 or all 1. This is intuitively clear and proved formally in the
next lemma. The idea is to modify any decomposition without changing the
coefficients such that the new decomposition has the required property. This
is illustrated by the following example.

Example 8. We take the decomposition

( 2 4 5 5 1 ) = 4 ( 0 0 0 1 0 ) + 2 ( 0 1 1 0 0 ) + 2 ( 1 1 1 0 0 ) + ( 0 0 1 1 1 ) ,

18



where the first three shapes are not constant on the plateau of 5–entries. By
replacing s3 by s4 in every shape we get the new decomposition

( 2 4 5 5 1 ) = 4 ( 0 0 1 1 0 ) + 2 ( 0 1 0 0 0 ) + 2 ( 1 1 0 0 0 ) + ( 0 0 1 1 1 ) .

Lemma 5. Let a =
∑k

j=1 cjs
(j) be a decomposition with

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , k).

There are integers l′j and r′j (j = 1, . . . , k) with the following properties.

1. We have a =
k

∑

j=1

cjs
′(j) where

s
′(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , k).

2.

ai = ai−1 =⇒ s
′(j)
i = s

′(j)
i−1 (i = 2, . . . , n; j = 1, . . . , k). (12)

Proof. In order to satisfy the last condition, we have to replace the shape
matrices with s

(j)
i 6= s

(j)
i−1 but ai = ai−1 for some i. Our strategy is to

modify the given shape matrices as follows. For each plateau we choose one
representative, for instance the rightmost entry, and adapt the entries for
each shape matrix to the chosen column. This corresponds to the following
shifting of the leaves: If the left leaf covers a part of the plateau it is shifted
to the left until the whole plateau is open, and if the right leaf covers a part
of the plateau it is shifted to the left until the whole plateau is covered.

First observe that s
(j)
i can differ from s

(j)
i−1 only if i = lj or i − 1 = rj . So

for (12) it is sufficient that, for all j, we have

al′j
6= al′j−1 and ar′j

6= ar′j+1. (13)

Suppose alj = alj−1 for some j. Then i1 < lj ≤ i2 for some i1, i2 with

ai1 = ai1+1 = · · · = ai2 = a and ai1−1, ai2+1 6= a. (14)

Since we want to adapt the entries of the shape matrix to the rightmost
column i2 we have to shift the left leaf to the left and put l′j = i1. Similarly,
if arj

= arj+1, then i1 ≤ rj < i2 for some i1, i2 with (14), and in order to
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adapt the entries of the shape matrix to column i2, we have to shift the right
leaf to the left and put r′j = i1 − 1. In summary, for j ∈ [k] we put

l′j =

{

lj if alj 6= a′
lj−1,

max{i < lj : ai 6= alj} + 1 if alj = a′
lj−1,

r′j =

{

rj if arj
6= a′

rj+1,

max{i < rj : ai 6= arj
} if arj

= a′
rj+1.

Then (13) is valid for all j, hence (12) is satisfied. In order to check the first

condition of the lemma, fix some i ∈ [n]. If s
′(j)
i = s

(j)
i for all j, then

k
∑

j=1

cjs
′(j)
i =

k
∑

j=1

cjs
(j)
i = ai.

So assume s
′(j)
i 6= s

(j)
i for some j. By construction this can be the case only

if ai = ai−1 or ai = ai+1. Now let i1 and i2 be the indices with i1 ≤ i ≤ i2,

ai1 = ai1+1 = · · · = ai = · · · = ai2 and ai1−1, ai2+1 6= ai.

We claim that s
′(j)
i = s

(j)
i2

(j = 1, . . . , k). If s
(j)
i2

= 0, lj > i2 or rj < i2. By
construction, in the first case l′j > i2 and in the second case r′j < i1, so in

both cases s
′(j)
i = 0. If s

(j)
i2

= 1, lj ≤ i2 and rj ≥ i2. By construction, l′j ≤ i1

and r′j ≥ i2, hence s
′(j)
i = 1 and the claim is proved. From this it follows that

k
∑

j=1

cjs
′(j)
i =

k
∑

j=1

cjs
(j)
i2

= ai2 = ai,

and since this argument works for any i ∈ [n] the first condition of the lemma
is satisfied.

By Lemma 5 applied to a(τ), w.l.o.g. we may assume that a
(τ)
lj

6= a
(τ)
lj−1

and a
(τ)
rj 6= a

(τ)
rj+1 for all j > k0(τ). With this assumption the next lemma,

whose proof is obvious, justifies that we use the b(τ) instead of the a(τ).

Lemma 6. For fixed τ , 0 ≤ τ ≤ t−1, let b(τ) and Xτ be defined as described
above and let {c1, . . . , cρ} ⊆ Xτ be fixed. If aqτ+1 6= 0 let g = ( g1 ... gγ ) be
some vector with

0 < g1 < · · · < gγ = aqτ+1.

Then the following statements are equivalent.
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1. There exist integers lj, rj with 1 ≤ lj ≤ rj < qτ+1, a
(τ)
lj

6= a
(τ)
lj−1 and

a
(τ)
rj 6= a

(τ)
rj+1 (j = 1, . . . , ρ) such that for a′ = a(τ) −

ρ
∑

j=1

cjs
(j), where

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , ρ; i = 1, . . . , n)

we have

(a) 0 ≤ a′
1 ≤ a′

2 ≤ · · · ≤ a′
qτ+1

= aqτ+1

(b) If aqτ+1 6= 0 there are exactly γ indices 1 ≤ i1 < · · · < iγ ≤ qτ+1

with a′
ij
6= a′

ij−1 for j ∈ [γ] (where a′
0 = 0) and we have

(

ai1 ai2 . . . aiγ

)

= g.

2. There exist integers l′j, r′j with 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , ρ,

such that for b′ = b −
∑ρ

j=1 cjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise,

(j = 1, . . . , ρ; i = 1, . . . , β),

we have

(a) b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ = aqτ+1

(b) If aqτ+1 6= 0 there are exactly γ indices 1 ≤ i1 < · · · < iγ ≤ β with
b′ij 6= b′ij−1 for j ∈ [γ] (where b′0 = 0) and we have

(

bi1 bi2 . . . biγ

)

= g.

Now for τ = 0, 1, . . . , t − 1 the choice of the pairs
(

sk0(τ)+1, ck0(τ)+1

)

, . . . ,
(

sk0(τ+1), ck0(τ+1)

)

can be viewed as a way to go from the extended ordered (apτ+1, aqτ+1)–peak

(b(τ), Xτ ) to the extended ordered (apτ+2, aqτ+2)–peak (b(τ+1), Xτ+1) (with
apt+1 = aqt+1 = 0).

Definition 6. Let 0 ≤ w < v and let (b, X) be an extended ordered (v, w)–
peak, and let v′, w′ be integers with w ≤ v′ ≤ L and 0 ≤ w′ < v′ or
v′ = w′ = 0. In addition let X ′ be a submultiset of X and denote the
elements of X ′ by x1, . . . , x|X′|. We call an extended ordered (v′, w′)–peak
(b′, X \X ′) accessible from (b, X) if there are integers l′1, . . . , l

′
|X′|, r′1, . . . , r

′
|X′|

such that
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1. 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , |X ′| (where b = ( b1 ... bβ )).

and for b′′ = b −
|X′|
∑

j=1

xjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , |X ′|; i = 1, . . . , β),

we have b′′ = 0 if v′ = w′ = 0 and otherwise

2. b′′1 ≤ b′′2 ≤ · · · ≤ b′′β = bβ = w and

3. If i1 < i2 < · · · < iγ′ are the indices with b′′ij 6= b′′ij−1 for j ∈ [γ] (where
b′′0 = 0), then

(

b′′i1 b′′i2 . . . b′′iγ′

)

=
(

b′1 b′2 . . . b′γ′

)

.

The definition can be interpreted as follows. Assume ap1 = v, aq1 = w,

ap2 = v′, aq2 = w′, let b(0) be associated with a(0) as above, and let b′ =
( b′1 ... b′

β′ ) be a vector with

0 < b′1 < · · · < b′α′ = v′, v′ = b′α′ > · · · > b′β′ = w′.

Then (b′, X \X ′) is accessible from (b(0), X) iff we can assign shape matrices
s(j) to the elements of X ′, described by lj , rj (j = 1, . . . , |X ′|) with rj < q1

for all j, such that for

a(1) = a(0) −

|X′|
∑

j=1

xjs
(j)

we have a
(1)
1 ≤ a

(1)
2 ≤ · · · ≤ a

(1)
p2 and the extended ordered (v′, w′)–peak

associated with a(1) is (b′, X \ X ′).

Example 9. Let a = ( 0 2 5 5 7 4 3 3 5 6 8 2 ), X = {5, 3, 2, 2, 2, 1, 1, 1} and
X ′ = {3, 1}. The associated extended ordered (7, 3)–peak is (b, X) where
b = ( 2 5 7 4 3 ). We want to determine the extended ordered (8, 0)–peaks
(b′, X \ X ′) that are accessible from (b, X), where

b′ =
(

b′1 . . . b′γ−1 b′γ 5 6 8 2
)

with b′γ = 3. We obtain that (b(1), X \ X ′) and (b(2), X \ X ′) are accessible

from (b, X), where b(1) = ( 2 3 5 6 8 2 ) and b(2) = ( 1 3 5 6 8 2 ):

( 2 2 3 3 3 ) = b − ( 0 3 3 0 0 ) − ( 0 0 1 1 0 ),

( 1 1 3 3 3 ) = b − ( 0 3 3 0 0 ) − ( 1 1 1 1 0 ).
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This corresponds to the following possible beginnings of a decomposition.

( 0 2 5 5 7 4 3 3 5 6 8 2 )

− ( 0 0 3 3 3 0 0 0 0 0 0 0 )

− ( 0 0 0 0 1 1 0 0 0 0 0 0 )

= ( 0 2 2 2 3 3 3 3 5 6 8 2 )

and

( 0 2 5 5 7 4 3 3 5 6 8 2 )

− ( 0 0 3 3 3 0 0 0 0 0 0 0 )

− ( 0 1 1 1 1 1 0 0 0 0 0 0 )

= ( 0 1 1 1 3 3 3 3 5 6 8 2 ) .

On the other hand one can check that (( 3 5 6 8 2 ) , X \ X ′) is not accessible
from (b, X) because it is not possible to find (l1, r1) and (l2, r2) with r1, r2 < 7
such that after subtracting the corresponding shape matrices with coefficients
3 and 1 from a we obtain a row vector a′ with a′

1 = · · · = a′
i = 0, a′

i+1 =
· · · = a′

7 = 3 for some i, 1 ≤ i ≤ 6. A similar remark applies to ( 1 2 3 5 6 8 2 ).

Lemma 7. Let (b, X) be an extended ordered (v, w)−peak. Then the set of
all (b′, X \ X ′) that are accessible from (b, X) can be determined in time
O(1).

Proof. Observe that the accessibility does not depend on the whole vec-
tor b′ but only on the initial part ( b′1 ... b′

γ′
=w ). So in order to determine

the accessible extended ordered peaks it is sufficient to determine the pairs
(( b′1 ... b′

γ′ ), X \ X ′) of initial parts and multisets of coefficients. Let b =
( b1 ... bβ ) and let α be the unique index with bα = v. We have b1 < · · · < bα

and bα > · · · > bβ. So for 1 ≤ k ≤ v − 1 there are at most two indices i
and i′ with 1 ≤ i, i′ ≤ β − 1 and bi = k, bi′ = k (namely the first one with
1 ≤ i ≤ α − 1 and the second one with α + 1 ≤ i′ ≤ β − 1). The only index
i with bi = v is i = α, and so we have

β−1
∑

i=1

bi ≤ v + 2

v−1
∑

k=1

k ≤ L2.

Hence it is sufficient to consider at most PL2 candidates for X ′, where each
of these has at most L2 elements. Fix one of these X ′. Indexing the elements
of X ′ as in Definition 6, for each xj ∈ X ′ there are at most

(

2L−1
2

)

choices for

f (j). So the total number of choices for the pairs (f (j), xj) that have to be
considered is bounded by

[(

2L−1
2

)]|X′|
≤

[(

2L−1
2

)]L2

.

For each of these choices the time needed to determine the resulting b′′ is
bounded by a constant. Precisely, in order to subtract one of the xjf

(j) we
have to do at most 2L subtractions. So after at most L2 · 2L subtractions
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we have determined b′′. Finally, in order to determine the corresponding
( b′1 ... b′

γ′ ) according to condition 3 of Definition 6, we have to run through
the at most 2L entries of b′. This proves the lemma, since the number of
steps to determine the required data is bounded by

PL2

[(

2L−1
2

)]L2

(L2 + 1)2L.

In order to model the decomposition we construct sets V0, . . . ,Vt of ex-
tended ordered peaks. Put V0 = {(b(0), X0)} and suppose we have already
constructed V0, . . . ,Vτ for some τ with 0 ≤ τ < t. Now we put

Vτ+1 = {(b′, X ′) : (b′, X ′) is an (apτ+2, aqτ+2) − peak that

is accessible from some (b, X) ∈ Vτ}.

Here, in order to avoid case distinctions for τ = t, we put apt+1 = 1 and

aqt+1 = 0. The elements of Vτ represent the possibilities for (b(τ), Xτ ). There
is a decomposition of the row with coefficients c1, . . . , ck iff Vt 6= ∅. Note
that a natural interpretation of this construction is a breadth first search
(BFS) in the tree with vertex set V0 ∪ . . . ∪ Vt starting at (b(0), X0), where
two vertices (b, X) and (b′, X ′) are connected by an edge iff (b, X) ∈ Vτ ,
(b′, X ′) ∈ Vτ+1 for some τ and (b′, X ′) is accessible from (b, X).

Lemma 8. For given Vτ , the set Vτ+1 can be determined in time O(nL+1).

Proof. The sum of the elements of X0 (the minimal DT) equals

c = max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1} ≤ nL.

In any partition c = c1 + · · ·+ ck where the ci (i ∈ [k]) are the coefficients of
a decomposition of A, we have ci ≤ L for i ∈ [k]. Hence such a partition can
be described by an L–tuple (λ1, . . . , λL) of integers, where λr is the number
of summands equal to r for r ∈ [L]. Then λr ≤ nL/r (r ∈ [L]), and so there
are O(nL) choices for X0. The multiset X in (b, X) ∈ Vτ is a partition of
some c′ with 0 ≤ c′ ≤ c ≤ nL with all summands less than or equal to L. So
there are nL possibilities for c′, and for each of these there are O(nL) possible
partitions. Thus the number of choices for X is bounded by O(nL+1). The
vectors b in the elements of Vτ differ only in the initial part ( b1 ... bγ ), where
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bγ = aqτ
. But these initial parts are in bijection to the ordered partitions of

aqτ
, and of these there are (see for instance [1])

aqτ
∑

i=1

(

aqτ −1
i−1

)

≤ L
(

L

⌊L
2
⌋

)

.

Since L is bounded by a constant we obtain that |Vτ | is bounded by O(nL+1).
By Lemma 7, for each (b, X) ∈ Vτ the set of accessible (b′, X \ X ′) can be
determined in time bounded by a constant, and this yields the claim.

Lemma 9. For a fixed partition c = c1 + · · · + ck, it can be checked in time
O(nL+2) if there is a decomposition of a with coefficients c1, . . . , ck.

Proof. We only have to check if Vt 6= ∅. Since t ≤ n the claim is an imme-
diate consequence of Lemma 8.

Now we can prove

Theorem 2. The problem L–Min DT–Min DC can be solved in time
O(mn2L+2).

Proof. Obviously,

c = max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1}

can be determined in time O(mn). As in the proof of Lemma 8 the number
of partitions of c = c1 + · · · + ck that have to be considered is bounded by
O(nL). By Lemma 9, for a fixed partition c = c1 + · · ·+ ck it can be checked
in time O(mnL+2) if there is a decomposition of A with coefficients c1, . . . , ck,
and this concludes the proof.

Observe that for the algorithm in this section it is not necessary that c
is equal to the minimal value of the DT: For any value c we can determine a
decomposition with DT = c and minimal DC. So one could try to increase c
step by step (starting with the minimal DT) in order to reduce the necessary
number of shape matrices. This approach was considered in [15].

We finish this section with a remark concerning practical aspects of this
result. Though the time complexity of the DC–minimization is polynomial
in m and n the exponent grows linearly with L and also the L–dependent
constants that were used to estimate the time–complexities of the different
steps of the algorithm, grow rapidly with L. So we expect an efficient algo-
rithm only for very small L. In the proof of the polynomiality we constructed
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the whole sets Vτ (τ = 1, . . . , t), i.e. we performed a BFS as described before
Lemma 8. But in order to decide if there is a decomposition with the con-
sidered coefficients we need to know only if Vt is nonempty, and in order to
reconstruct a decomposition basically one path from the unique element of
V0 to some element of Vt is sufficient. So for practical purposes it is natural
to use depth first search (DFS) instead of BFS.

4 Test results

We implemented the algorithm described above and Tables 1 and 2 show
test results for random 10 × 10– and 15 × 15–matrices, respectively. The
computations where done on a 2 GHz workstation and we determined the
minimal DC for optimal DT for 1000 randomly generated matrices with
maximal entry L. The entry in column ’max. time’ is the maximal time
needed for one single matrix, and the entry in column ’total time’ is the time
needed for all the 1000 matrices. For comparison the tables also contain
heuristic results that were obtained with a slightly improved version of the
algorithm described in [8].

exact heuristic
L DC max. time total time DC total time
4 7.6 1 s 13 s 7.8 1.0 s
7 8.8 50 s 5.6 min 9.3 1.2 s
10 9.5 5.6 min 41.3 min 10.3 1.4 s

Table 1: Average number of segments for random 10 × 10–matrices with
maximal entry L. Each entry is averaged over 1000 matrices.

exact heuristic
L DC max. time total time DC total time
4 10.7 1 s 31 s 10.9 5.4 s
7 12.3 6.5 min 1.6 h 13.0 6.8 s
10 13.2 10.0 h 44.7 h 14.5 7.6 s

Table 2: Average number of segments for random 15 × 15–matrices with
maximal entry L. Each entry is averaged over 1000 matrices.

In order to evaluate the performance of the heuristic we determined the
differences between the heuristic values and the exact minima. Tables 3 and
4 show the frequencies of the values of the differences when 1000 matrices

26



L 0 1 2 3
4 876 123 1 0
7 525 456 19 0
10 306 584 104 6

Table 3: Frequencies of the differ-
ences between the heuristic DC and
the exact minimum for 10 × 10–
matrices.

L 0 1 2 3 4
4 809 189 2 0 0
7 327 585 86 2 0
10 85 551 335 28 1

Table 4: Frequencies of the differ-
ences between the heuristic DC and
the exact minimum for 15 × 15–
matrices.

where treated for each value of L. We conclude that for the considered
range of parameters the exact algorithm yields only small improvements in
terms of the DC, while the computational effort is extremely high already
for small values of L. So for practical purposes the heuristic seems to be a
good compromise between computation time and accuracy of the optimiza-
tion. Finally, we also tested our algorithm with 13 clinical matrices of size
about 10 × 10 with 10 fluence levels. The results are shown in Table 5. In

exact heuristic
no. size DT DC CPU–time DC CPU–time
1 10 × 11 16 7 0.04 s 8 0.01 s
2 10 × 9 16 7 0.19 s 7 0.00 s
3 9 × 9 20 8 0.39 s 8 0.01 s
4 9 × 9 19 7 0.04 s 8 0.00 s
5 10 × 8 15 7 0.01 s 7 0.00 s
6 9 × 9 17 8 0.70 s 9 0.00 s
7 10 × 8 18 7 0.03 s 7 0.00 s
8 14 × 12 22 9 1.30 s 9 0.01 s
9 14 × 10 26 9 25.77 s 10 0.00 s
10 14 × 10 22 8 0.62 s 9 0.00 s
11 15 × 10 22 10 7.88 s 10 0.00 s
12 15 × 11 23 9 1.96 s 10 0.01 s
13 14 × 10 23 9 2.36 s 9 0.01 s

Table 5: Test results for clinical matrices.

order to indicate how these clinical matrices look like, we include the matrix
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corresponding to the first row of Table 5:

A =











0 0 0 0 2 9 8 5 0 0 0
0 0 0 0 3 4 0 2 4 0 0
0 0 0 2 7 5 6 5 5 8 0
0 0 0 2 4 6 4 4 2 4 1
0 2 3 3 8 7 4 4 2 5 10
0 3 3 4 4 7 5 6 3 7 9
0 0 1 6 10 8 8 8 8 7 10
0 0 4 6 4 4 3 2 6 10 9
0 0 6 3 1 2 1 1 2 0 0
0 0 0 2 4 1 0 0 0 0 0











.
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