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Abstract

We present an algorithm for optimal step-and-shoot intensity modulated radiation therapy
minimizing tongue-and-groove effects. Adapting the concepts of [7] we characterize the minimal
decomposition time as the maximal weight of a path in a properly constructed weighted digraph.
We also show that this decomposition time can be realized by a unidirectional plan, thus proving
that the algorithm of Kamath et al. [9] is monitor unit optimal in general and not only for
unidirectional leaf movement. Our characterization of the minimal decomposition time has the
advantage that it can be used to derive a heuristic for the reduction of the number of shape
matrices following the ideas of [7].
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1 Introduction

An important method in cancer treatment is the use of high energetic radiation. In order to kill
tumor cells the patient is exposed to radiation that is delivered by a linear accelerator whose beam
head can be rotated about the treatment couch. Inevitably the healthy tissue surrounding the
tumor is also exposed to some radiation. So the problem arises to arrange the treatment in a way
such that the tumor receives a sufficiently high uniform dose while the damage to the normal tissue
is as small as possible. The standard approach to this problem is as follows. First the patient body
is discretized into so called voxels. The set of voxels is then partitioned into three sets: the clinical
target volume, the critical structures and the remaining tissue. There are certain dose constraints
for each of these parts. Basically the dose in the target volume has to be sufficient to kill the
cancerous cells and the dose in the critical structures must not destroy the functionality of the
corresponding organs. The determination of a combination of radiation fields is usually done by
inverse methods based on certain physical models of how the radiation passes through a body. In the
early 1990s the method of intensity modulated radiation therapy (IMRT) was developed in order to
obtain additional flexibility. Using a multileaf collimator (MLC) it is possible to form homogeneous
fields of different shapes. By superimposing some homogeneous fields an intensity modulated field
is delivered. An MLC consists of two banks of metal leaves which block the radiation and can be
shifted to form irregularly shaped beams (Figure 1).

The most common approach in treatment planning is to divide the optimization into two phases.
At first, a set of beam angles and corresponding fluence matrices are determined. In a second step
a sequence of leaf positions for the MLC for each of the angles is determined that yields the

∗Algorithmic Operations Research 3(2):165–174, 2008

1



Figure 1: The leaf pairs of a multileaf collimator (MLC).

desired fluence distribution. Very recently there have been attempts to combine both steps into
one optimization routine [5, 12].

In this paper we concentrate on the second step, the shape matrix decomposition problem.
Suppose we have fixed the beam angles from which the radiation is released, and for each of
the beam angles we are given a fluence distribution that we want the patient to be exposed to.
After discretizing the beam into bixels we can assume that the fluence distribution is given as a
nonnegative integer m nmatrix A. Each row of the matrix corresponds to a pair of leaves of the
MLC, and the entry aij represents the required fluence at bixel (i, j). When the MLC is used
in the so called stepandshoot mode the given fluence distribution is realized by superimposing a
number of differently shaped homogeneous fields coming from different combinations of the leaf.
For example, Figure 2 shows a sequence of leaf positions for the matrix

A =


1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

 = 2 ·


0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

+


0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

 +


1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

 (1)

where the shading indicates the region which is covered by the leaves.
The problem of realizing a given intensity matrix A leads to the problem of representing A as a

positive integer combination of certain (0, 1)-matrices, called shape matrices, which represent the
possible leaf positions. So the realization in Figure 2 corresponds to the decomposition in (1). In
order to compare different decompositions of an intensity map we consider two quantities (where we
adopt the terminology of [1]). For a decomposition A =

∑t
k=1 ukS

(k), the sum of the coefficients
is proportional to the total irradiation time and is called decomposition time, DT =

∑1
k=1 uk.

The number k of used shape matrices, called decomposition cardinality (DC), influences the total
treatment time due to the setup time between the delivery of different shapes. Our objectives in
constructing a decomposition are to minimize both DT and DC. In this paper we consider two
additional constraints that come from the technical restrictions in many of the available MLCs.
The interleaf collision constraint (ICC) forbids the overlapping of opposite leaves in adjacent rows.
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Figure 2: A realization of the intensity matrix A using an MLC. The numbers below the leaf
positions indicate the number of monitor units required.

Another restriction is due to the tongue-and-groove leaf arrangement of the MLCs (see Figure 3).
There is a narrow strip in the border region between two adjacent rows that is covered by both

Radiation

Figure 3: The tongue-and-groove design of the leaves of an MLC.

leaves and this may lead to underdosage effects in these regions, as is illustrated in Figure 4 for the
fluence matrix A = ( 2 3

3 4 ).
In order to minimize these effects we require that aij 6 ai+1,j implies that bixel (i + 1, j) is

exposed whenever bixel (i, j) is exposed (similarly for i− 1 instead of i+ 1). Thus we assure that
the overlap region of two bixels always receives the smaller one of the relevant doses. We say that a
shape matrix decomposition of A satisfies the tongue-and-groove constraint (TGC) if this condition
holds for all used shape matrices. This intuitive concept of minimizing underdosage is made more
precise in Lemma 1 below. Of course, when the total delivery time increases due to adding the
TGC, the total leakage radiation through closed leaves also increases, so there might be a tradeoff
between reduction of TG-underdosage and increasing leakage. But numerical experiments indicate
that the increase of delivery time compared to the unconstrained case is rather small.

Starting with [3] and [6] several algorithms were proposed for the shape matrix decomposition
problem [1, 2, 4, 8, 13, 14]. Methods for eliminating the tongue-and-groove underdosage were
presented in [9, 10, 11]. The algorithm from [9] is DT -optimal, as is shown for unidirectional plans
in [9] and will be proved without restriction for the leaf movement direction in the present paper.
Adapting the approach of [4], in [7] we characterized the minimal DT for the decomposition with
ICC as the maximal weight of a path in a certain digraph. In this paper we further modify this
approach such that the TGC is included. In addition, we derive a greedy heuristic for the reduction
of the number of shape matrices and present some numerical test results.
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Figure 4: Two different realizations of the same fluence matrix. The numbers next to the leaf
positions indicate the irradiation times for the corresponding beams. In the left version the overlap
between bixels (1, 1) and (2, 1) receives no radiation at all.

2 Mathematical formulation of the DT-decomposition problem
with ICC and TGC

Throughout the rest of the paper, for a natural number n, [n] denotes the set {1, 2, . . . , n} and for
natural numbers m 6 n, [m,n] denotes the set {m,m+ 1, . . . , n}. In this section we formulate the
shape matrix decomposition problem and give a min-max-characterization of the optimal solution
very similar to the one used in [7]. We start with a formal characterization of the shape matrices
that are allowed in a decomposition of a given intensity matrix A.

Definition 1. Let A be an intensity matrix. A shape matrix is an m × n-matrix S = (sij) with
entries from {0, 1}, such that there exist integers li, ri (i ∈ [m]) with the following properties:

li < ri (i ∈ [m]), (2)

sij =

{
1 if li < j < ri

0 otherwise
(i ∈ [m], j ∈ [n]), (3)

ICC: li < ri+1, ri > li+1 (i ∈ [m− 1]). (4)

A shape matrix is called an A-shape matrix if in addition

TGC:

{
aij 6 ai+1,j ∧ sij = 1 =⇒ si+1,j = 1 (i ∈ [m− 1], j ∈ [n]),
aij 6 ai−1,j ∧ sij = 1 =⇒ si−1,j = 1 (i ∈ [2,m], j ∈ [n]).

(5)

A shape matrix decomposition of an intensity matrix A is a representation

A =

t∑
k=1

ukS
(k) (6)
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with positive integers uk and A-shape matrices S(k) (k ∈ [t]), the decomposition time (DT ) of
this decomposition is

∑t
k=1 uk and shape matrix decomposition problem is to find, for given A, a

shape matrix decomposition with minimal DT . We want to give aprecise description of the sense
in which condition (5) ensures that the TG-underdosage is minimized. For this purpose we define
the tongue and groove error of a decomposition (6) at bixel (i, j) by

T (i, j) = min{aij , ai+1,j} −
t∑

k=1

uks
(k)
ij s

(k)
i+1,j .

The sum in the right hand side of this equation is the total fluence delivered to the overlap between

rows i and i + 1 in column j, because this overlap is open in the kth shape if and only if s
(k)
ij =

s
(k)
i+1,j = 1. This sum is at most min{aij , ai+1,j}:

aij =

t∑
k=1

uks
k
ij 6

t∑
k=1

uks
k
ijs

k
i+1,j ,

and similarly for ai+1,j . Thus T (i, j) > 0 and every positive value of T (i, j) indicates an under-
dosage. The following lemma states that the underdosage is minimized for every (i, j) if all the
shape matrices satisfy condition (5).

Lemma 1. For a decomposition A =
∑t

k=1 ukS
(k) with shape matrices S(k), we have T (i, j) = 0

for all (i, j) ∈ [m1]× [n] if and only if every shape matrix S(k) (5).

Proof. By symmetry, we may assume aij 6 ai+1,j . We obtain T (i, j) = 0 iff and only if

aij =
t∑

k=1

uks
(k)
ij =

t∑
k=1

uks
(k)
ij s

(k)
i+1,j ,

and this is the case if and only if s
(k)
i+1,j = 1 whenever s

(k)
ij = 1.

In order to characterize the minimal DT we use a similar approach as in [7]. We construct a
digraph G = (V,E) as follows.

V = {0, 1} ∪ ([m]× [0, n+ 1]) , E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(0, (i, 0)) : i ∈ [m]} ∪ {((i, n+ 1), 1) : i ∈ [m]},
E2 = {((i, j), (i+ 1, j)) : i ∈ [m− 1], j ∈ [n− 1]},
E3 = {((i, j), (i− 1, j)) : i ∈ [2,m], j ∈ [n− 1]},
E4 = {((i, j − 1), (i, j)) : i ∈ [m], j ∈ [n+ 1]}.

Here 0 and 1 serve as starting and end point, respectively, and the vertices in [m]× [n] correspond
to the entries of A. The two extra columns [m]×{0} and [m]×{n+1} have the purpose to simplify
the notation: they assure that for every (i, j) ∈ [m]× [n] there are vertices (i, j − 1) and (i, j + 1).
Without this, in several of the arguments below, it would be necessary to treat the first and the last
column seperately (then 0 and 1 would have to play the role of (i, 0) and (i, n + 1), respectively).
To be able to treat the first and the n-th column exactly as the remaining columns, we also put
ai,0 = ai,n+1 = 0 (i ∈ [m]). Observe that we omit the vertical arcs ((i, n), (i ± 1, n)) in the n-th
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column: this is to make the vertex (i, n) of any (0, 1)-path unique. This is no loss of generality,
because we will see that we are interested only in (0, 1)-paths of maximal weight, the weights of
vertical arcs are nonpositive and the arcs right of column n have weight 0. We define the weight
function w : E → Z:

w(0, (i, 0)) = w((i, n+ 1), 1) = 0 (i ∈ [m]),

w((i, j), (i+ 1, j)) = min{0, ai+1,j − aij} (i ∈ [m− 1], j ∈ [n− 1]),

w((i, j), (i− 1, j)) = min{0, ai−1,j − aij} (i ∈ [2,m], j ∈ [n− 1]),

w((i, j − 1), (i, j)) = max{0, aij − ai,j−1} (i ∈ [m], j ∈ [n+ 1]).

Example 1. Figure 5 shows the digraph G corresponding to the matrix A =

(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
.
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Figure 5: The digraph G corresponding to matrix A.

The following theorem, which is proved in Sections 3 and 4, is the main result of this paper and
the basis of the decomposition algorithm.

Theorem 1. The minimal DT of a shape matrix decomposition of a nonnegative matrix A equals
the maximal weight of a (0, 1)−path in G.

For convenience we denote this maximal weight by c(A):

c(A) = max{w(P ) : P is a (0, 1)− path in G}. (7)

Observe that the results from [4] and [7] can be seen as characterizations of the minimal DT in
terms of maximal path weights for different variants of the problem corresponding to manfacturer
specific restrictions.

• MLC without restriction of leaf movement: use the graph G without the vertical arcs.

• MLC with interleaf collision but without tongue and groove: use the same graph G, but with
modified weights for the vertical arcs.

So the only case that cannot be treated in this framework is an MLC with tongue and groove and
without interleaf collision.
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3 The lower bound

In this section we show that the maximal weight of a (0, 1)−path in G is a lower bound for the DT
of a decomposition of A, thus proving the first half of Theorem 1. The basic idea of the proof is a
combination of the arguments in [1] and [9], the main difference to [9] being that we do not require
the leaf sequence to be unidirectional. For our argument below we need an exact description of
how the numbers

α(i, j) := max{w(P ) : P is a (0, (i, j))− path in G}

can be computed. This description is given in Algorithm 1. The underlying principle can be

Algorithm 1 Computation of the numbers α(i, j)

for i = 1, . . . ,m do α(i, 1)← ai1
for j = 2, . . . , n+ 1 do

for i = 1, . . . ,m do α(i, j)← α(i, j − 1) + w((i, j − 1), (i, j))
for i = 2, . . . ,m do

if α(i, j) < α(i− 1, j) + w((i− 1, j), (i, j)) then
α(i, j)← α(i− 1, j) + w((i− 1, j), (i, j))

if α(i− 1, j) < α(ij) + w((i+ 1, j), (i, j)) then Update(i− 1)

Function Update(k)
α(k, j)← α(k + 1, j) + w((k + 1, j), (i, j))
if k > 2 and α(k − 1, j) < α(kj) + w((k, j), (k − 1, j)) then Update(k − 1)

described as follows. We proceed columnwise. Assuming we have already determined the values in
column j − 1 we initialize column j with α(i, j) ← α(i, j − 1) + w((i, j − 1), (i, j)). After that we
modify these values in order to satisfy the conditions

α(i, j) > α(i− 1, j) + w((i− 1, j), (i, j)) for i ∈ [2,m],

α(i, j) > α(i+ 1, j) + w((i+ 1, j), (i, j)) for i ∈ [m− 1].

Now the statement of the following lemma is obvious.

Lemma 2. Algorithm 1 computes the numbers α(i, j) in time O(m2n).

Suppose A =
∑t

k=1 S
(k) is a shape matrix decomposition of A. We characterize the shape

matrix S(k) by its left and right leaf positions l
(k)
i and r

(k)
i (i ∈ [m]). For (i, j) ∈ [m]× [n+ 1], let

Lij denote the set of indices k with l
(k)
i < j, and similarly, let Rij denote the set of indices k with

r
(k)
i 6 j. More formally,

Lij = {k ∈ [t] : l
(k)
i < j}, Rij = {k ∈ [t] : r

(k)
i 6 j}.

Then |Lin| is the number of shape matrices which contribute to row i, and maxi∈[m] |Lin| is a lower
bound for the DT . In the next lemma we collect some simple observations about the sets Lij and
Rij .

Lemma 3. 1. For (i, j) ∈ [m]× [n], Rij ⊆ Lij and |Lij \Rij | = aij.
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2. For (i, j) ∈ [m]× [n], |Lij | > |Li,j−1|+ max{0, aij − ai,j−1}.

3. For (i, j) ∈ [2,m]× [n], Ri−1,j ⊆ Lij and Rij ⊆ Li−1,j.

4. For (i, j) ∈ [2,m]× [n],

ai−1,j 6 aij =⇒ Li−1,j \Ri−1,j ⊆ Lij \Rij

ai−1,j > aij =⇒ Li−1,j \Ri−1,j ⊇ Lij \Rij

Proof. The first statement is a simple consequence of the facts that r
(k)
i 6 j implies l

(k)
i < j

and that s
(k)
ij = 1 if and only if k ∈ Lij \ Rij . The second statement is clear if aij 6 ai,j−1, since

Li,j−1 ⊆ Lij . If aij > ai,j−1, there must be at least aij − ai,j−1 shape matrices S(k) with s
(k)
ij = 1

and s
(k)
i,j−1 = 0. For these shape matrices we have l

(k)
i = j − 1, so k ∈ Lij \ Li,j−1 and this proves

the second claim. Using the ICC we obtain the first inclusion in the third statement:

k ∈ Ri−1,j =⇒ r
(k)
i−1 6 j =⇒ l

(k)
i < j =⇒ k ∈ Lij ,

and similarly the second one. For the fourth statement, assume ai−1,j 6 aij . Using the TGC we
obtain

k ∈ Li−1,j \Ri−1,j =⇒ s
(k)
i−1,j = 1 =⇒ s

(k)
ij = 1 =⇒ k ∈ Lij \Rij .

This gives the first implication, and the second one is proved similarly. �
Next, we show that the numbers α1(i, j) bound the cardinalities |Lij | from below.

Lemma 4. For (i, j) ∈ [m]× [n], we have α(i, j) 6 |Lij |.

Proof. We proceed by induction. For j = 1, α(i, 1) = ai1 and the claim is obvious, since we need

at least ai1 shape matrices with l
(k)
i = 0. Suppose the statement of the lemma is false, and let j be

the index of the first column where, for some row i, we have α(i, j) > |Lij |. From Lemma 3 we get

|Lij | > |Li,j−1|+ max{0, aij − ai,j−1} > α(i, j − 1) + w((i, j − 1), (i, j)).

Hence after the initialization of column j in Algorithm 1 (line 3), we still have α(i, j) 6 |Lij | for
all i ∈ [m]. Now let i be the index of the row where the claim of the lemma is violated for the first
time when the algorithm is running. Consider this first violation and assume it occurs in line 6 of
Algorithm 1. The case that it occurs in the function Update(k) is treated analogously.

Case 1. ai−1,j 6 aij . In this case w((i− 1, j), (i, j)) = 0, hence the updating step of the algorithm
is α(i, j) := α(i− 1, j). By (iii) and (iv) in Lemma 3 we have

Ri−1,j ⊆ Lij and Li−1,j \Ri−1,j ⊆ Lij .

Hence Li−1,j ⊆ Lij , and consequently α(i, j) = α(i− 1, j) 6 |Lij |, contradicting the assump-
tion that the step leads to a violation of the claim.

Case 2. ai−1,j > aij . Now the considered step is α(ij) := α(i−1, j)− (ai−1,j −aij). Again by (iii)
and (iv) from Lemma 3,

Ri−1,j ⊆ Lij and Lij \Rij ⊆ Li−1,j \Ri−1,j .

This implies (using (i) from Lemma 3)

|Lij | > |Ri−1,j |+ |Lij \Rij | = (|Li−1,j | − ai−1,j) + aij

> α(i− 1, j)− ai−1,j + aij = α(i, j),

contradicting the assumption. �
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Lemma 4 shows that the numbers α(i, n) (i ∈ [m]) are lower bounds for the DT . We state this
conclusion as a lemma.

Lemma 5. For any shape matrix decomposition of an intensity matrix A, we have

DT > max
i∈[m]

α(i, n) = c(A).

4 The algorithm

We compute a shape matrix decomposition of A according to Algorithm 2. This is essentially a
reformulation of the algorithm of Kamath et al. [9], but we need it in this form in order to show
that our characterization of the minimal DT in Theorem 1 is correct.

Algorithm 2 DT-optimal shape matrix decomposition

for t = 1, . . . , c(A) do
for i = 1, . . . ,m do

l
(t)
i := max{j ∈ [0, n] : α(i, j) < t or j = n}
r
(t)
i := min{j ∈ [n+ 1] : α(i, j) > t+ aij or j = n+ 1}

for (i, j) ∈ [m]× [n] do

s
(t)
ij :=

{
1 if l

(t)
i < j < r

(t)
i

0 otherwise

Lemma 6. From Algorithm 2 we obtain a shape matrix decomposition of A with DT = c(A).

Proof. Clearly, the DT of the sum of shape matrices returned by the algorithm is c(A). We divide
the proof of the theorem into three parts.

Claim 1. The matrices S(t) form indeed a decomposition of A, that means A =
∑c(A)

t=1 S
(t).

Fix some (i, j) ∈ [m]× [n]. We have(
l
(t)
i < j ⇐⇒ α(i, j) > t

)
and

(
r
(t)
i > j ⇐⇒ α(i, j) < t+ aij

)
.

Together we obtain s
(t)
ij = 1 ⇐⇒ α(i, j)− aij < t 6 α(i, j), hence

∑c(A)
t=1 s

(t)
ij = aij , and this proves

the claim.

Claim 2. The matrices S(t) satisfy the ICC.

Assume the claim is false. That means, for some t ∈ [c(A)] and i ∈ [m−1], l
(t)
i > r

(t)
i+1 or r

(t)
i 6 l

(t)
i+1.

We consider only the first case, since the second one can be treated similarly. We put j = r
(t)
i+1. By

construction and our assumption, we have

α(i, j) < t and α(i+ 1, j) > t+ ai+1,j .

But on the other hand,

α(i, j) > α(i+ 1, j) + w((i+ 1, j), (i, j)) = α(i+ 1, j) + min{0, aij − ai+1,j},

thus α(i, j) > t, and this contradiction proves the claim.
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Claim 3. The matrices S(t) satisfy the TGC.

Suppose aij 6 ai+1,j and s
(t)
ij = 1, or equivalently l

(t)
i < j < r

(t)
i . By construction, this implies

t 6 α(i, j) < t+ aij . (8)

Observe, that

w((i, j), (i+ 1, j)) = 0 and w((i+ 1, j), (i, j)) = aij − ai+1,j ,

since aij 6 ai+1,j . Using (8), we obtain the bounds

α(i+ 1, j) > α(i, j) + w((i, j), (i+ 1, j)) = α(i, j) > t and

t+ aij > α(i, j) > α(i+ 1, j) + w((i+ 1, j), (i, j))

t+ aij > α(i+ 1, j) + (aij − ai+1,j).

Hence t 6 α(i+ 1, j) < t+ ai+1,j , and according to Algorithm 2, s
(t)
i+1,j = 1. Thus the first TGC is

satisfied, and the second one is proved similarly. �
Together, Lemmas 5 and 6 prove Theorem 1.

5 Minimizing the number of shape matrices

The problem of minimizing the number of shape matrices is NP-hard even for a single row intensity
matrix [1]. So it is natural to look for a heuristic approach that yields decompositions with a small
number of shape matrices in a reasonable time even if optimality is not always reached. In [7] we
used a greedy strategy in order to find a decomposition with minimal DT and a small number
of shape matrices for MLCs with ICC but neglecting the TGC. This method can be modified to
respect the TGC. In order to characterize the maximal coefficient u for which there is an A-shape
matrix S, such that uS can be a term in a DT -optimal decomposition of A, we need the following
lemma.

Lemma 7. Let A =
∑k

t=1 utS
(t) be a decomposition of A (i.e. the S(t) are A-shape matrices), and

put A(0) = A and A(t) = A−
∑t

t′=1 ut′S
(t′) for t ∈ [k]. Then, for every t ∈ [k] we have

• s(t)ij = 1 and s
(t)
i+1,j = 0 ⇒ a

(t−1)
ij > a(t−1)i+1,j + u (i ∈ [m− 1], j ∈ [n]),

• s(t)ij = 1 and s
(t)
i−1,j = 0 ⇒ a

(t−1)
ij > a(t−1)i−1,j + u (i ∈ [2,m], j ∈ [n]).

Informally speaking, if we consider the sequence of matrices starting with A and subtracting
one by one the S(t) taking S(t) exactly ut times, the lemma claims that in each step we subtract
an A′-shape matrix, where A′ is the resulting matrix after the previous step.

Proof. Assume the contrary and let t be the first index where one of the two claims fails to be true.
By symmetry, we assume

s
(t)
ij = 1, s

(t)
i+1,j = 0, a

(t−1)
ij < a

(t−1)
i+1,j + u.

Since S(t) is an A-shape matrix, the TGC implies aij > ai+1,j . From our assumption we obtain

a
(t)
ij < a

(t)
i+1,j , hence

s
(t′)
ij = 0 and s

(t′)
i+1,j = 1

for some t′ > t, contradicting the assumption that S(t′) is an A-shape matrix.
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We call a pair (u, S) of a positive integer u and an A-shape matrix S an admissible segmentation
pair, if

• A− uS is nonnegative,

• sij = 1 and si+1,j = 0 ⇒ aij > ai+1,j + u (i ∈ [m− 1], j ∈ [n]),

• sij = 1 and si−1,j = 0 ⇒ aij > ai−1,j + u (i ∈ [2,m], j ∈ [n]),

• c(A− uS) = c(A)− u.

Now we proceed exactly as in [7]: we find an admissible segmentation pair (u, S) with maximal u
and continue with A−uS until we reach the zero matrix. In order to derive an upper bound for the
coefficient u in an admissible segmentation pair (u, S), we use an idea from [2] and identify the set
of segments with the set of paths from D to D′ in the layered digraph Γ = (W,F ), constructed as
follows. The vertices in the i−th layer correspond to the possible leaf positions in row i (1 6 i 6 m)
and two additional vertices D and D′ are added:

W = {(i, l, r) : i ∈ [m], l ∈ [0, n], r ∈ [l + 1, . . . , n+ 1]} ∪ {D,D′}.

Between two vertices (i, l, r) and (i+ 1, l′, r′) there is an arc if the corresponding leaf positions are
consistent with the ICC, i.e. if l′ < r and r′ > l. In addition, the arc set F contains all arcs from
D to the first layer and from the last layer m to D′, so

F = F+(D) ∪ F−(D′) ∪
m−1⋃
i=1

F+(i), where

F+(D) = {(D, (1, l, r)) : (1, l, r) ∈W},
F−(D) = {((m, l, r), D′) : (m, l, r) ∈W},
F+(i) = {((i, l, r), (i+ 1, l′, r′)) : l′ < r, r′ > l}.

There is a bijection between the possible leaf positions and the paths from D to D′ in Γ. This is
illustrated in Fig. 6 which shows the paths in Γ for m = 4, n = 2, corresponding to the shape
matrices (

1 0
0 1
1 1
1 0

)
(straight lines) and

(
0 1
1 1
1 0
0 1

)
(dashed lines).

For each vertex (i, l, r) let u0(i, l, r) denote an upper bound for the coefficient in an admissible
segmentation pair (u, S) where S is a shape matrix with li = l and ri = r. Then any admissible
segmentation pair (u, S) corresponds to a path

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′

with the following properties.

• For i ∈ [m], u0(i, li, ri) > u.

• For i ∈ [m− 1] and j ∈ [n],

li < j 6 li+1 or ri+1 6 j < ri =⇒ aij > ai+1,j + u,

li+1 < j 6 li or ri 6 j < ri+1 =⇒ ai+1,j > aij + u.

11



301

401

201

101

302

402

202

102

303

403

203

103

312

412

212

112

313

413

213

113

323

423

223

123

D

D′

Figure 6: The vertices of Γ for m = 4, n = 2 and two (D,D′)-paths.

If we have good upper bounds u0(i, l, r), this yields a considerable reduction of the set of shape
matrices that have to be considered in the search an admissible segmentation pair. In our imple-
mentation we used the bound from the following lemma.

Lemma 8. For i ∈ [m], let gi = c(A) −
∑n

j=1 max{0, aij − ai,j−1}, and suppose (u, S) is an
admissible segmentation pair with parameters li, ri (i ∈ [m]). Then for i ∈ [m],

u 6 gi if ri = li + 1 (9)

u 6 min{gi + max{0, ai,r−1 − air}, gi + max{0, ai,l+1 − ail},
1
2 (gi + max{0, ai,l+1 − ail}+ max{0, ai,r−1 − air})} if ri > li + 1. (10)

Proof. For brevity of notation, let dij = max{0, aij − ai,j−1} for (i, j) ∈ [m] × [n]. Observe
that

∑n
j=1 dij is just the weight of the path

0, (i, 0), (i, 1), . . . , (i, n), (i, n+ 1), 1

in G. The fact that (u, S) is an admissible segmentation pair implies,

n∑
j=1

d′ij 6 c(A)− u, (11)

where A′ = (a′ij) = A− uS and d′ij = max{0, a′ij − a′i,j−1}. If ri = li + 1, a′ij = aij for all j and this
implies (9). For (10), observe that

d′i,li+1 = di,li+1 −min{u, di,li+1},
d′i,ri = di,ri + max{0, u−max{0, ai,ri−1 − airi}},
d′ij = dij for j 6∈ {li+1, ri}.

With (11) we obtain

n∑
j=1

dij −min{u, di,li+1}}+ max{0, u−max{0, ai,ri−1 − airi}}} 6 c(A)− u,
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hence
u−min{u, di,li+1}+ max{0, u−max{0, ai,ri−1 − airi}} 6 gi

and this implies (10). �

Algorithm 3 DT-optimal shape matrix decomposition with reduced DC

while A 6= 0 do
Determine the complexity c(A) and the numbers u0(i, l, r) for
i ∈ [m], l ∈ [0, n], r ∈ [n+ 1] according to Lemma 8
u := max{k : There is a path P from D to D′ in Γ

with u0(i, l, r) > k for all (i, l, r) ∈ P}
complete:=false;
while (not complete) do

for the paths P in Γ with u0(i, l, r) > k for all (i, l, r) ∈ P do
Let S be the shape matrix corresponding to P
if (u, S) is an admissible segmentation pair then

complete:=true
if (not complete) u := u− 1

A := A− S

Algorithm 3 summarizes our greedy approach for the construction of a DT -optimal shape matrix
decomposition with a small DC.

6 Test results

We implemented Algorithm 3 in C++ and computed decompositions for 15× 15−matrices, where
the entries are chosen uniformly and independently from {0, . . . , L}. Table 1 shows the results for
different values of L, where for each row of the table we averaged over 1000 sample matrices. In the

L DT DC (plain) DC (reduced) CPU time (sec)

4 21.2 21.0 18.0 93

7 34.9 34.2 24.1 276

10 48.2 46.3 28.1 399

13 61.7 57.9 31.2 556

16 74.8 68.2 33.5 647

Table 1: Test results for random 15× 15-matrices with entries from {0, . . . , L}.

second column we have the average DT , which is the same as for the algorithm of Kamath et al. [9].
The third column shows the DC of a decomposition according to Algorithm 2 (or equivalently the
algorithm of Kamath et al.). Clearly, this algorithm just aims at minimizing the DT without taking
the DC into account, hence the DC almost equals the DT . In the fourth column we have the DC
of the decompositions according to Algorithm 3, and we see that this approach yields considerable
savings in terms of the number of used shape matrices. The CPU times (on a 2GHz workstation
with 2GB RAM) in the third columns show that the algorithm is practicable for intensity matrices
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of the considered size (note that the times are for the decomposition of 1000 matrices, so the average
time for a single matrix is still below a second). But of course the backtracking for determining the
maximal value of u becomes very slow for larger matrices, and more efficient methods are needed
for matrix dimensions of practical relevance. In order to evaluate the influence of the TGC, in
Table 2 we compare results for different types of constraints.

L unconstrained only ICC ICC and TGC

DT DC DT DC DT DC

4 17.9 10.9 19.5 14.5 21.2 18.0

7 29.5 13.1 31.7 18.2 34.9 24.1

10 40.9 14.7 43.8 20.7 48.2 28.1

13 52.4 15.8 55.7 22.5 61.7 31.2

16 63.8 16.8 67.7 24.0 74.8 33.5

Table 2: Test results for random 15× 15-matrices with entries from {0, 1, . . . , L} for different types
of constraints.

Finally, we also tested our algorithm with 13 clinical matrices, each with 10 fluence levels. The
results are shown in Table 3. The computation times for these matrices were negligible (less than
a second).

unconstrained only ICC ICC and TGC

no. size DT DC DT DC DT DC

1 10× 11 16 8 16 8 17 11

2 10× 9 16 7 16 8 19 13

3 9× 9 20 8 20 10 20 12

4 9× 9 19 8 19 11 21 15

5 10× 8 15 7 18 9 19 11

6 9× 9 17 9 17 9 19 11

7 10× 8 18 7 18 10 21 12

8 14× 12 22 9 22 10 25 14

9 14× 10 26 10 30 15 34 19

10 14× 10 22 9 23 13 28 15

11 15× 10 22 10 22 11 25 16

12 15× 11 23 10 23 12 23 16

13 14× 10 23 9 24 11 27 17

Table 3: Test results for random 15× 15-matrices with entries from {0, 1, . . . , L} for different types
of constraints.

Clearly, the addition of the TGC causes an increase in the DT and in the DC. Further invest-
igations are necessary in order to evaluate the potential tradeoff between DT (and corresponding
leakage) and tongue-and-groove underdosage.
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7 Conclusion

We have presented an algorithm for MLC shape matrix decomposition taking into account the
interleaf collision constraint and eliminating tongue-and-groove underdosage effects. We proved
that our algorithm is optimal with respect to the total number of monitor units, thus completing the
argument of [9] where the optimality was proved only for unidirectional schedules. In addition, we
derived a heuristic approach to the reduction of the number of shape matrices. Two open questions
arise immediately and are the subject of ongoing research. 1. Is there a nice characterization
for the minimal decomposition time if we have no interleaf constraint but still want to eliminate
tongue-and-groove underdosage? 2. What about a computationally more efficient heuristic for the
decomposition cardinality?
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