
Scheduling arc maintenance jobs in a network to maximize total

flow over time∗

Natashia Boland Thomas Kalinowski Hamish Waterer Lanbo Zheng

Abstract

We consider the problem of scheduling a set of maintenance jobs on the arcs of a network so
that the total flow over the planning time horizon is maximized. A maintenance job causes an
arc outage for its duration, potentially reducing the capacity of the network. The problem can
be expected to have applications across a range of network infrastructures critical to modern life.
For example, utilities such as water, sewerage and electricity all flow over networks. Products are
manufactured and transported via supply chain networks. Such networks need regular, planned
maintenance in order to continue to function. However the coordinated timing of maintenance
jobs can have a major impact on the network capacity lost to maintenance. Here we describe the
background to the problem, define it, prove it is strongly NP-hard, and derive four local search-
based heuristic methods. These methods integrate exact maximum flow solutions within a local
search framework. The availability of both primal and dual solvers, and dual information from
the maximum flow solver, is exploited to gain efficiency in the algorithms. The performance of
the heuristics is evaluated on both randomly generated instances, and on instances derived from
real-world data. These are compared with a state-of-the-art integer programming solver.

1 Introduction

We consider a problem in which a network with arc capacities is given, together with, for each arc
of the network, a set of maintenance jobs that need to be carried out on the arc. Each maintenance
job has a duration, and a time window during which it must start. A maintenance job cannot be
pre-empted; once started it will continue for its duration. This situation could arise in a range of
network infrastructure settings, for example, when considering maintenance on pipe sections in a
water network, or track sections in a rail network. Such maintenance causes network arc outages,
leading to capacity reduction in the network. Here we measure network capacity as the value of
the maximum flow in the network. This has the advantage of being the simplest way of measuring
network capacity. It is also the approach taken by our industry partner in the application that
motivated this research. The objective of the problem is to schedule all the maintenance jobs so
that the total flow over time is maximized.

We were led to consider this problem through our collaboration with the Hunter Valley Coal
Chain Coordinator Limited (HVCCC). The Hunter Valley Coal Chain (HVCC) constitutes mining
companies, rail operators, rail track owners and terminal operators, together forming the world’s
largest coal export facility. In 2008, the throughput of the HVCC was about 92 million tonnes, or
more than 10% of the world’s total trade in coal for that year. The coal export operation generates
around $15 billion in annual export income for Australia. As demand has increased significantly in
recent years and is expected to increase further in the future, efficient supply chain management

∗Discrete Applied Mathematics, in press, doi:10.1016/j.dam.2012.05.027

1

http://dx.doi.org/10.1016/j.dam.2012.05.027

is crucial. Our industry partner, the HVCCC was founded to enable integrated planning and
coordination of the interests of all involved parties, so as to improve the efficiency of the system as
a whole. More details on the HVCC can be found in [1].

The problem discussed in this paper was motivated by the annual maintenance planning process
carried out by the HVCCC. Supply chain components such as railway track sections, terminal
equipment and load points have to undergo regular preventive and corrective maintenance, causing
a significant loss in system capacity (up to 15%). The HVCCC had observed that careful scheduling
of the maintenance jobs – good alignment of them – could reduce the impact of maintenance on
the network capacity, and established a regular planning activity to carry it out, called “capacity
alignment”. Currently capacity alignment for the approximately 1500 maintenance jobs planned
each year is a labour-intensive, largely manual process, achieved by iterative negotiation between
the HVCCC and the individual operators.

The HVCCC currently uses an automated rule-based calculator to evaluate the quality of can-
didate maintenance schedules. In-depth analysis of both the calculator and the HVCC coal handling
system revealed this to be well modelled as a maximum flow problem in a network in which the
coal flows from the mines to the ships. The arcs represent the relevant pieces of infrastructure:
load points, rail track and different machines at the terminals. A maintenance job on a piece of
the infrastructure simply means that the corresponding arc cannot carry any flow for the duration
of the job. The natural objective is to schedule the maintenance tasks such that the total flow
over the time horizon is maximized. This corresponds to, e.g., annual throughput capacity of the
HVCC.

The maintenance jobs themselves are scheduled initially according to standard equipment re-
quirements, which typically dictate particular types of maintenance jobs be performed at particular
time points. After discussions with the maintenance planners, it emerged that they would be pre-
pared to move the jobs, usually for intervals of plus or minus 7 days, in order to achieve better
overall throughput of the system. We initially expected there would be some inter-maintenance
constraints, for example, that a type of job carried out at four-week intervals could not be carried
out more than 5 weeks apart. But the maintenance planners were not concerned about this issue,
and preferred the simple assumption that jobs could not deviate more than some fixed number of
days around their initial scheduled time. This gives rise to a simple release date and due date job
scheduling structure.

The problem of scheduling maintenance jobs in a network so as to maximize the total flow
over time has some aspects of dynamic maximum flow. The concept was introduced by Ford and
Fulkerson [5]: given a network with transit times on the arcs, determine the maximum flow that
can be sent from a source to a sink in T time units. In the application of interest to us, there
are no transit times on arcs, but the capacities vary over time. This leads to a different type of
dynamic flow problem. Variations of the dynamic maximum flow problem with zero transit times
are discussed in [3, 8, 9], while piecewise constant capacities are investigated by Ogier [14] and
Fleischer [4]. For a comprehensive survey on dynamic network flow problems we refer the reader
to [11, 18], and for a recent, very general treatment of maximum flows over time to [10]. For a given
maintenance schedule, the capacities on the arcs jump between zero and their natural capacity, and
so are piecewise constant. Thus the problem of evaluating a maintenance schedule could be viewed
as a dynamic maximum flow problem of this type. However, in our case the piecewise constant
function is a function of the maintenance schedule, and hence of the schedule decision variables.
This makes our problem quite different.

The problem does have a superficial resemblance to machine scheduling problems (see, e.g.,
the book by Pinedo [15]), but there is no underlying machine, and the association of jobs with
network arcs and a maximum flow objective give it quite a different character. Classical machine

2

scheduling seeks to carry out jobs as quickly as possible (in some sense). The maximum flow
objective motivates quite different strategies. For example, if arcs are “in sequence” in some sense,
it is better to overlap the corresponding maintenance jobs in time as much possible, whereas if they
are “in parallel”, it is better to schedule them with as little overlap as possible.

There is also some resemblance to network design problems (fixed charge network flows), see
e.g. Nemhauser and Wolsey [12] and references therein, but in such problems the arcs are either
designed in, or out, of the network in a single-period setting. Even a multi-period variant (see for
example the recent work of Toriello et al. [19]) would not capture the need for consecutive period
outages implied by a maintenance activity.

An emerging research area that also blends network flow and scheduling elements arises in
restoration of network services in the wake of a major disruption. For example, Nurre et al. [2]
schedule arc restoration tasks so as to maximize total weighted flow over time. They consider
dispatch rule based heuristics and integer programming approaches. The latter performed well in
sewerage, small power infrastructure, and emergency supply chain cases, solving most instances to
optimality in a matter of seconds, but the heuristic was competitive in terms of more quickly finding
good quality solutions. The heuristic was also especially effective in a large power infrastructure
case, finding nearly as good solutions as the exact approach in far less time (see also [13]). We note
that the scheduling part of the problem considered in [2] is more similar to a classical scheduling
setting than ours is: the restoration activity for each arc needs to be scheduled on a machine, (work
group), and one wants to complete all jobs as quickly as possible.

Thus although there are connections of our problem to existing problems, we believe that this
is the first time that the problem has been considered. We believe it has a wide range of natural
applications, a very attractive structure, with tractable special cases (a few of which we discuss),
and some interesting extensions. We thus hope that this paper will stimulate further research on
the problem and its variants. Our contributions in this paper are first to define and introduce the
problem, prove it is strongly NP-hard, and discuss some tractable special cases. We then propose
four different local search heuristics. The heuristics integrate exact maximum flow solutions within a
local search framework, exploiting the max flow objective function structure, the availability of both
primal and dual solvers, and dual information, to gain efficiency in the algorithms. The heuristics
proved to be very effective on both randomly generated and real-world instances, significantly
out-performing a pure integer programming approach, particularly on larger, harder problems.

The paper is organized as follows. In Section 2, the problem is formally defined, formulated as
an integer program, and proved to be NP-hard. We also outline some tractable special cases. In
Section 3, our local search algorithms for solving the problem are presented. Section 4 contains
computational results on randomly generated test instances, as well as on two instance derived
from real world data. Finally, we summarize the paper in Section 5 and point out some directions
for further investigation.

2 Problem Definition and Complexity Results

Throughout we use the notation [k, l] = {k, k + 1, . . . , l} and [k] = {1, 2, . . . , k} for k, l ∈ Z. Let
(N,A, s, s′, u) be a network with node set N , arc set A, source s and sink s′, and capacities ua ∈ N
for a ∈ A. Also, for a node v ∈ N let δ−(v) and δ+(v) denote the set of arcs entering and leaving
node v, respectively. We consider the network over a time horizon [T]. A maintenance job j is
specified by its associated arc aj ∈ A, its processing time pj ∈ N, its release date rj ∈ [T], and its
deadline dj ∈ [T]. Let J be a set of maintenance jobs, and let let Ja denote the set of jobs j ∈ J
with aj = a. For each job j ∈ J we have to choose a start time Sj ∈ [rj , dj − pj + 1] within the

3

time window for the job. In our model, jobs cannot be preempted, i.e. scheduling a maintenance
job to start at time Sj makes the arc aj unavailable at times Sj , Sj + 1,. . . , Sj + pj − 1. Thus for
a given maintenance job schedule (Sj)j∈J , the arc a has capacity zero at time t if for some j ∈ Ja,
t ∈ [Sj , Sj +pj−1], and ua otherwise, for each time t ∈ [T]. The problem we consider is to schedule
a set J of maintenance jobs so as to maximize the total throughput over the interval [T], i.e. so
as to maximize the sum over t of the flows that can be sent from s to s′ in the network, given
the arc capacities at time t ∈ [T] implied by the maintenance schedule. In this paper we assume
unlimited resources in terms of workforce and machines, i.e. all jobs could be processed at the
same time as far as their time windows allow. It is in principle straightforward to add constraints,
for instance limiting the number of jobs requiring use of a given resource processed at any given
time. We did not do that because in the HVCCC context the input for the optimization consists
of initial maintenance schedules for the different parts of the system (rail network and terminals)
with relevant resource constraints already taken into account.

For this paper we make the additional assumption that the different jobs associated with an
arc do not overlap, i.e. we assume that for any two jobs j and j′ on arc a, [rj , dj] ∩ [rj′ , dj′] = ∅.
This assumption can be made without loss of generality, as the general case can be reduced to this
case by replacing any arc violating the assumption by a path, distributing the intersecting jobs
among the arcs of the path. The reason for making the assumption is to simplify the presentation
of the heuristics below: the local effect of moving a job j (i.e. the effect on the capacity of the arc
associated with j) depends only on job j.

We formally define the problem via an integer programming formulation, which we also use to
provide a baseline for computational testing. We introduce the following variables.

• For a ∈ A and t ∈ [T]

– φat ∈ R+ is the flow on arc a over time interval t,

– xat ∈ {0, 1} indicates the availability of arc a at time t. These variables are not strictly
needed, but are included for convenience.

• For j ∈ J and t ∈ [rj , dj − pj + 1], yjt ∈ {0, 1} indicates if job j starts at time t.

Now we can write down the problem maximum total flow with flexible arc outages (MaxTFFAO).

z = max
T∑
t=1

∑
a∈δ+(s)

φat (1)

s.t.
∑

a∈δ−(v)
φat −

∑
a∈δ+(v)

φat = 0
(
v ∈ N \ {s, s′}, t ∈ [T]

)
, (2)

φat 6 uaxat (a ∈ A, t ∈ [T]) , (3)

dj−pj+1∑
t=rj

yjt = 1 (j ∈ J) , (4)

xat +

min{t,dj}∑
t′=max{rj ,t−pj+1}

yjt′ 6 1 (a ∈ A, t ∈ [T], j ∈ Ja) . (5)

The objective (1) is to maximize the total throughput. Constraints (2) and (3) are flow conservation
and capacity constraints, respectively, (4) requires that every job j is scheduled exactly once, and
(5) ensures that an arc is not available while a job is being processed.

4

Example 1. Consider the network in Figure 1 over a time horizon T = 6 with the job list given
in Table 1. Figure 2 shows that the total throughput can vary significantly depending on the
scheduling of the jobs. Observation of this example shows that, all other things being equal, it is
better for jobs on arcs that are “in series” to overlap as much as possible, and for jobs on arcs
that are “in parallel” to overlap as little as possible. Thus the job on d should overlap as little
as possible with the jobs on e and f , which should overlap as much as possible, and the job on a
should overlap as much as possible with those on e and f . This is achieved in the second schedule
in Figure 2. Of course the situation is more complex for general networks, but the insight can be
useful.

s s′

b (2) c (2)

a (1)

e (2) f (2)

d (1)

Figure 1: An example network. Capacities are
indicated in brackets.

j arc pj rj dj

1 a 3 1 5

2 d 2 2 5

3 e 2 2 5

4 f 2 3 6

Table 1: Example job list.

a
b
c
d
e
f

2 2 0 0 1 1
a
b
c
d
e
f

3 2 2 1 1 3

Figure 2: Two schedules for the example problem. In the horizontal direction, we have the 6 unit
time intervals, and in the vertical direction there are the 6 arcs. The shaded rectangles indicate
the jobs, and below the x-axis is the maximum flow for each time period. The left schedule yields
a total flow of 6, while for the right schedule we obtain a total flow of 12.

Next we observe that the problem MaxTFFAO is strongly NP-hard, suggesting that in order
to tackle instances of practical relevance efficient heuristics might be needed.

Proposition 1. The problem MaxTFFAO is strongly NP-hard.

Proof. Reduction from 3-partition (see [6]).

Instance. B ∈ N, u1, . . . , u3m ∈ N with B/4 < ui < B/2 for all i and
3m∑
i=1

ui = mB.

Problem. Is there a partition of [3m] into m triples (i, j, k) with ui + uj + uk = B?

The corresponding network has 3 nodes: s, v and s′. There are 3m arcs from s to v with capacities
ui (i = 1, . . . , 3m) and one arc from v to s′ with capacity (m− 1)B (see Fig. 3).

There is one job with unit processing time for each arc from s to v, with release dates rj = 1
and deadlines dj = m for all j. It is easy to see that the 3-partition instance has a positive answer
if and only if there is a schedule allowing a total flow of m(m− 1)B. If there is a 3-partition then
the i-th of the m triples corresponds to three jobs to be processed in time period i.

5

u1 u2

u3

u3m−1

u3m

(m− 1)Bb

b

b

Figure 3: The network for the NP-hardness proof.

We conclude this section with some remarks on certain special cases.

1. If the network is a directed path and all the jobs have release date rj = 1 and deadline dj = T ,
it is optimal to start all jobs at the same time, say Sj = 1 for all j. This follows since the
max flow equals the minimum of the arc capacities if all arcs are available, and 0 otherwise.
So

min
a∈A

ua ·
(
T −max

j∈J
pj

)
is an upper bound for the objective z which is attained for the described solution. More
generally, if

⋂
j∈J [rj , dj − pj + 1] 6= ∅, any element t of this intersection determines an

optimal solution by putting Sj = t for all j ∈ J .

2. In general, if the network is a path and all jobs have unit processing time, the problem is
equivalent to the vertex cover problem on the hypergraph with vertex set [T] and edge set
{[rj , dj] : j ∈ J}. This is a 0-1 integer programming problem with an interval matrix
as coefficient matrix. So it is totally unimodular and can be solved efficiently by linear
programming. Another interpretation of this case is that we are looking for a smallest set of
time periods, such that all jobs can start at a time given in the set.

3. Inspired by the construction in the hardness proof in Proposition 1, we can ask under what
conditions an instance of MaxTFFAO with unit processing times and jobs that can move
freely (rj = 1 and dj = T) is optimally solved by scheduling all jobs at the same time. For
a set A′ ⊆ A of arcs let zA′ denote the max flow in the network with arc set A \ A′. Then
scheduling all jobs at the same time is always optimal iff

∀A1, A2 ⊆ A A1 ∩A2 = ∅ =⇒ z∅ + zA1∪A2 > zA1 + zA2 . (6)

The if part follows, since if the implication is true, and we are given a solution scheduling jobs
at times t1 6= t2, we can always shift all the jobs scheduled at t2 to t1 without decreasing the
objective function. Conversely, if there are disjoint arc sets A1 and A2 with z∅ + zA1∪A2 <
zA1 + zA2 , then for an instance with one job on every arc in A1 ∪A2, it is better to schedule
the jobs on A1 at a different time than the jobs on A2. Note that the first example of the
directed path is a special case of this.

4. Using the characterization (6), we can generalize the path example. Suppose the network
N − s′ (i.e. the original network without the sink) is a tree, all arcs pointing away from the
source, and in the full network precisely the leaves of this tree are connected to the sink.
Assume also that there are no bottlenecks, i.e. for every node v 6= s the capacity of the

6

arc entering v is at least as large as the sum of the capacities of the arcs leaving v. Under
these conditions (6) is satisfied, so freely movable jobs with unit processing times should be
scheduled at the same time.

3 Local search for MaxTFFAO

3.1 Evaluating the objective function

We consider a solution of MaxTFFAO to be specified by the start time indicator variables yjt for
all jobs j ∈ J . For given y, the values xat can be fixed by

xat = 1−max
j∈Ja

min{t,dj−pj+1}∑
t′=max{rj ,t−pj+1}

yjt′ ,

and then the best solution for the given y can be determined by solving T max flow problems.
As a local search framework requires the frequent evaluation of the objective function, we try to
make use of the problem structure to design a more efficient method. The following four simple
observations indicate potential for such an improvement.

1. A time interval with constant network structure requires only a single max flow computation.

2. If there is a change in the network between time t and time t + 1, the solution for t can be
used as a warm start for t+ 1. As a consequence, the objective function can be evaluated by
solving at most 2|J |+1 max flow problems, and if this number is really necessary, consecutive
networks differ in exactly one arc.

3. To update the flows after a change of the schedule we can restrict our attention to the time
intervals where the network structure actually changed due to the modification. That means
the effect of local changes in the schedule can be determined by solving a short sequence of
max flow problems on very similar networks.

4. How the similarity of the networks for different time periods can be used depends on the
way the max flow problems are solved. In our LP based implementation (see discussion in
Section 3.2 for details) it is natural to reoptimize from the current solution using the primal
simplex method if an arc is added and the dual simplex method if an arc is removed.

To make this more precise we introduce more notation for the start times associated with a solution
vector y: Let Sj(y) be the start time of job j, i.e. Sj(y) is the unique t with yjt = 1. If there is no
danger of confusion we will omit the argument y in the notation and just write Sj . Now we can
associate with each solution a set of times

R = {Sj , Sj + pj : j ∈ J} ∪ {1, T + 1}

containing exactly the set of times t such that there is a change of capacity on at least one arc
between time t − 1 and time t. The times t = 1 and t′ = T + 1 can be interpreted this way by
adding virtual networks at times 0 and T + 1 with zero capacities. We denote the elements of R by

1 = t0 < t1 < · · · < tM−1 < tM = T + 1.

The set [ti−1, ti−1] is called time slice i and its length is denoted by li = ti− ti−1. The time slicing
is illustrated in Figure 4. In this setup the above observations imply that the objective function
can be evaluated as described in Algorithm 1.

7

time slice 1 time slice i time slice M

t0 = 1 t1 ti−1 ti tM−1 tM = T + 1

Figure 4: Time slicing.

Algorithm 1 Objective evaluation.

Input: Schedule given by Sj for j ∈ J
R = {Sj , Sj + pj : j ∈ J} ∪ {1, T + 1} = {1 = t0 < t1 < · · · < tM−1 < tM = T + 1}
Construct the network (N,A, s, s′, u)
for i = 1 to M do

Update upper bounds of the flow variables according to the outages in time slice i
(Re)solve the network flow problem and store the max flow zi

Output: z =
M∑
i=1

zi · li

3.2 Moving single jobs

The feasible region is the set of all binary vectors y = (yjt)j∈J,rj6t6dj satisfying (4). Note that the
generation of an initial solution is easy, as we can choose arbitrary start times in the corresponding
time windows. A simple neighbourhood is one that is induced by single job movements:

N1(y) =
{
y′ : Sj(y

′) 6= Sj(y) for at most one job j
}
.

The size of this neigbourhood is

|N1(y)| = 1 +
∑
j∈J

(dj − pj − rj + 1) .

In the following we give a characterization of the optimal neighbours, implying an exact method
to determine an optimal neighbour.

3.2.1 Preliminary considerations

Moving a job from its current start time Sj to another start time S′j has two different effects:

1. For any time t ∈ [Sj , Sj + pj − 1] \ [S′j , S
′
j + pj − 1] the arc aj is released and we gain capacity

on this arc which could lead to an increase in the max flow for time t.

2. For any time t ∈ [S′j , S
′
j + pj − 1] \ [Sj , Sj + pj − 1] we lose the arc, and if it has positive flow

in the current max flow, the max flow for time t might decrease.

In order to characterize the impact of a job movement on the objective value we introduce the
following parameters measuring the effect of changing the availability status of arc a in time slice
i for all a ∈ A and i ∈ [M]:

• z+ai is the max flow in the network of time slice i, with arc a added (with capacity ua) if it is
missing in the current solution.

8

• z−ai is the max flow in the network of time slice i, with arc a removed if it is present in the
current solution.

We start with some simple observations.

• z−ai 6 zi 6 z+ai for all a ∈ A and i ∈ [M].

• xat = 1 for t ∈ [ti−1, ti − 1] =⇒ z+ai = zi.

• xat = 0 for t ∈ [ti−1, ti − 1] =⇒ z−ai = zi.

• For an unavailable arc a (i.e. xat = 0 for t ∈ [ti−1, ti − 1]), releasing arc a increases the max
flow by ∆+

ai := z+ai − zi.

• For an available arc a (i.e. xat = 1 for t ∈ [ti−1, ti − 1]), removing arc a decreases the max
flow by ∆−ai := zi − z−ai.

To efficiently calculate the net effect on the objective, ∆j(S
′
j), of moving a job j from start time

Sj to start time S′j , one need only consider the set of time slices τ+j (S′j), defined to be those which
are covered by [Sj , Sj + pj − 1] and that will be (at least partially) uncovered by the move, and the
set of time slices τ−j (S′j), defined to be those which are not covered by [Sj , Sj + pj − 1] but that

will be (at least partially) covered by [S′j , S
′
j + pj − 1]. We also need for each i ∈ τ+j (S′j) ∪ τ−j (S′j),

the length of the time slice covered by [S′j , S
′
j + pj − 1], denoted by l−ij(S

′
j). Then

∆j(S
′
j) =

∑
i∈τ+j (S′j)

∆+
ai · (li − l−ij(S′j))−

∑
i∈τ−j (S′j)

∆−ai · l−ij(S′j). (7)

Provided ∆+
ai and ∆−ai have been calculated for the appropriate time slices, it is thus straightforward

to calculate ∆j(S
′
j) for any j and S′j , and hence to determine an optimal neighbour.

Proposition 2. Finding an optimal neighbour of the given schedule (Sj)j∈J is equivalent to

max
{

∆j(S
′
j) : j ∈ J, S′j ∈ [rj , dj − pj + 1]

}
.

If ∆j(S
′
j) 6 0 for all pairs (j, S′j), there is no improving solution in the neighbourhood of the current

schedule.

3.2.2 The basic method

Proposition 2 immediately suggests a local search strategy: compute ∆j(S
′
j) for (a subset of) all

pairs (j, S′j), choose one or more pairs with a high value of this bound, perform the corresponding

changes of the schedule, and iterate. This could be done naively by first calculating ∆+
ai and ∆−ai

for each time slice i and arc a. The formula (7) shows that we can then easily calculate ∆j(S
′
j) as

required. This approach would appear at first sight to be computationally prohibitive, requiring the
solution of two max flow problems to calculate z+ai and z−ai for each arc a and time slice i. A number
of mitigating factors make this approach more attractive than appearances suggest. First, each arc
in a given time slice is either missing or present in the current solution, and so from observations
in the previous section, one of z+ai and z−ai is given by zi; it is only for the other that a max flow
problem needs to be solved. More importantly,

1. if an arc is added in a time slice where it was previously blocked, the flow stays primal feasible
but might no longer be optimal, and

9

2. similarly, if an arc with nonzero flow is taken out, the dual stays feasible.

Thus the maximum flow problems to be solved in calculating z+ai and z−ai can use a primal (dual)
method respectively “hot started” from the existing solution for the time slice i. We also observe
from (7) that only jobs j with ∆+

aji
> 0 for some time slices i covered by [Sj , Sj + pj − 1] can

be moved to give a better solution: these are the promising jobs. So we should first determine
∆+
ai to discover the promising jobs, and then only calculate ∆−ai values as needed for these jobs.

Furthermore, ∆+
ai can only be positive if the reduced cost of arc a in the maximum flow problem

is positive; otherwise it must be zero. Thus even if the arc is missing from the network, as long
as it is included in the original max flow calculation (with zero capacity), and we use a max flow
method which makes reduced costs available, we can avoid further max flow calculations (z+ai can
simply be set to zi if the reduced cost of a in time slice i is not positive).

Algorithm 2 describes how the effects ∆+
ai (adding an arc) and ∆−ai (blocking an arc) are de-

termined. We do not make explicit here how z+ai and z−ai are calculated, since these depend on the
specific max flow method used; these implementation issues are discussed in Section 4.1.2. Finally,

Algorithm 2 Effects of change.

PromisingJobs= ∅
for i = 1 to M do

Aout
i = {a ∈ A : xat = 0 for t ∈ [ti−1, ti − 1]}

for a ∈ Aout
i do

∆+
ai = z+ai − zi

if ∆+
ai > 0 then

Add the job j with aj = a and time window containing slice i to PromisingJobs

for j ∈ PromisingJobs do
Put i0 = min{i : ti > rj} and i1 = max{i : ti 6 dj + 1} − 1
for i = i0 to i1 do ∆−aji = zi − z−ai

Output:∆+
ai – benefit (per time unit) of releasing arc a in time slice i

∆−ai – loss (per time unit) of removing arc a in time slice i
PromisingJobs – set of jobs whose movement could give an improvement

Algorithm 3 describes the complete procedure of the greedy rescheduling algorithm which will be
denoted by GreedyResched. In our implementation we use the following three stopping criteria:

Algorithm 3 GreedyResched.

Initialize time slicing and flow problems (Algorithm 1)
while not STOP do

Determine PromisingJobs and the values ∆+
ai and ∆−ai (Algorithm 2)

for j ∈ PromisingJobs and S′j ∈ [rj , dj − pj + 1] do calculate ∆j(S
′
j)

if maxj,S′j ∆j(S
′
j) < 0 then STOP

else
Choose (j, S′j) with maximal ∆j(S

′
j)

Update time slicing and and resolve the max flow problems with changed input data

10

1. a time limit,

2. 100 iterations without improvement, and

3. 2 consecutive iterations without improvement and only a single pair (j, S′j) with ∆j(S
′
j) = 0.

The reason for the last criterion is that in this situation the algorithm just alternates between two
solutions having the same objective value.

3.2.3 Variations

Here we present some natural modifications of the algorithm GreedyResched.

Randomization. Instead of choosing the best neighbour in each iteration one can choose ran-
domly from a set of candidates, similar to the strategy applied in the construction phase of greedy
randomized adaptive search procedures [16]. More precisely, we order the pairs (j, S′j) by nonincreas-
ing value of ∆j(S

′
j) and choose randomly from the first k of this list (uniformly distributed), where

k depends on the total number of possibilities, for instance with K = #{(j, S′j) : ∆j(S
′
j) > 0}

denoting the number of moves with nondecreasing objective value we can take

k = max {min {κ1,K} , dκ2Ke} ,

where κ1 ∈ N and κ2 ∈ {κ ∈ R : 0 6 κ 6 1} are parameters of the algorithm. After
satisfying the stopping criterion, we can restart the algorithm from the initial solution, iterate
this, and finally choose the best solution from all runs. We denote this randomized variant by
GreedyRandResched(κ1, κ2). In Figure 5 we plot the behaviour of K in GreedyResched for the
randomly generated instances we used in our computational experiments (see Section 4). For these
experiments we choose (κ1, κ2) = (5, 0.15). Some further possible modifications to randomization

Figure 5: Number of possible moves, i.e. pairs (j, S′j) with ∆j(S
′
j) > 0.

are as follows.

11

1. Instead of going back to the initial solution each time the stopping criterion is met, we
can collect the intermediate solutions with a large value of K (indicating many improving
directions) in a solution pool, and choose the starting point for each run from the solution
pool (randomly or deterministically).

2. If the computation time until reaching the stopping criterion is large the following combination
of the ideas underlying GreedyResched and GreedyRandResched might be beneficial.

(a) Do a small number, say k1, improvements randomly choosing from the improving moves
(as in GreedyRandResched).

(b) Repeat the step (a) a small number, say k2, times.

(c) Choose the best of the k2 solutions obtained and continue with step (a).

Testing the effectiveness of these further ideas will be the subject of future research.

Making several moves at a time. In order to speed up the progress of the method we can
do several moves corresponding to pairs (j, S′j) with nonnegative value of ∆j(S

′
j) simultaneously, if

they do not affect the same time slices. This can be implemented by looping over the list of pairs
(j, S′j), ordered by nonincreasing ∆j(S

′
j), and choosing a pair if its affected time slices do not overlap

with those of the pairs already chosen. The benefit of this approach is that it saves recalculations
of the values ∆j(S

′
j), which may be relatively expensive. An iteration of this algorithm can be

considered as a greedy accumulation of GreedyResched steps, and so we denote the algorithm by
GreedyAccResched. We also consider a randomized version of this approach. While the list of
pairs (j, S′j), ordered by nonincreasing ∆j(S

′
j), is non-empty, we choose at random a pair from the

first k in the list, and then remove from the list all pairs with affected time slices overlapping those
of the chosen pair, before looping again to choose a random pair from the first k. We call this the
GreedyRandAccResched algorithm.

3.3 Moving multiple jobs

Clearly, there are some limitations in the approach to consider only movements of single jobs. It is
easy to construct examples where no single job movement yields an improvement, but moving two
jobs at the same time does. However, the benefit of moving jobs simultaneously is only of interest
if the jobs interact, in the sense of overlapping in time. We thus propose to search neighbourhoods
of the form:

Ñj0(y) =
{
y′ : Sj(y

′) 6= Sj(y) only for jobs j ∈ J(j0)
}
,

for some j0 ∈ J , where J(j0) is the set of jobs whose time window (plus processing time) overlaps
with that of j0, i.e.

J(j0) = {j ∈ J : [rj , dj] ∩ [rj0 , dj0] 6= ∅}.
The size of Ñj0(y) is

∏
j∈J(j0)(dj − pj − rj + 2). This is exponential in the number of jobs that

have at least two possible start times and overlap with j0. In particular, the instance used in the
proof of Proposition 1 has the property that all job pairs overlap. Thus in general it is NP-hard
to optimize over this neighbourhood, and we propose to explore it via a randomized approach as
follows.

We consider each job in turn as the base job, j0, and systematically search a selection C(j0) ⊆
[rj0 , dj0] of its possible start times. Our idea is that C(j0) should start small, allowing a “rough”
exploration of the alternatives, and increase as the algorithm progresses, thus refining the search.
We explain this more precisely later. For each possible start time S′j0 ∈ C(j0), we would like to

12

know how “good” that choice of start time is, taking into account interactions of j0 with other
jobs, i.e. we would like to find the best y′ such that Sj(y

′) 6= Sj(y) only for jobs j ∈ J(j0).
Equivalently, we would like to simultaneously optimize the start times of all jobs in J(j0), finding a
local optimum with respect to j0. However we expect that doing so would be prohibitive in terms
of computational time. Thus we sample from a restricted neighbourhood, restricting the possible
start times of jobs in J(j0)\{j0} heuristically, using the intuition that jobs should either overlap as
little, or as much, as possible to get best results. To see where this intuition comes from consider
two arcs a and a′ with the property that every source-sink path through a also contains a′. If these
are the only two arcs with maintenance jobs it is clearly best possible to maximize the overlap
between jobs on these arcs. On the other hand, if there is no path containing both arcs a and a′,
then the total throughput is maximized when the jobs overlap is minimized. Each j ∈ J(j0) \ {j0}
has a set of (up to four) possible start times C(j), so that either the job’s start or end aligns with
the start or end of job j0, (assuming j0 starts at S′j0). This choice of C(j) is motivated by the fact
that in general, there is always an optimal solution such that for every job j one of the following is
true.

• Job j starts at its earliest possible start time rj , or

• job j starts at its latest possible start time dj − pj + 1, or

• there is a job j′ that starts at the same time Sj = Sj′ , or

• there is a job j′ that ends at the same time Sj + pj − 1 = Sj′ + pj′ − 1, or

• there is a job j′ such that the start of job j aligns with the end of job j′, i.e. Sj = Sj′ + pj′ ,
or

• there is a job j′ such that the end of job j aligns with the start of job j′, i.e. Sj + pj = Sj′ .

We simply sample randomly from the neighbourhood σ times, choosing the best, for σ an al-
gorithm parameter. This randomized method for moving multiple jobs, denoted by RandMultiJob,
is described more formally in Algorithm 4.

To implement the method the choice of the candidate start sets C(j0) has to be specified. For
our experiments, C(j0) consists of k evenly spaced elements in the interval [rj , dj], where k ∈ N.
k starts small (at k = 1), and increases by one whenever no improvement has been found for
a number of consecutive iterations. In our experiments, we use |J | iterations for the increment
criterion. Since each job may be the base job multiple times for the same value of k, we want to
avoid choosing the same subset of start times every time. Thus we include a mechanism for cycling
through sets of k evenly spaced points, modulo the time window width. More precisely, in the m-th
run through the outer loop of Algorithm 4, we put

• W = dj0 − pj0 − rj0 + 2 (width of the time window of job j0),

• θ = b(W − 1)/kc, and

• C(j0) =

{
{rj0 + (m+ iθ) (mod W) : i = 0, . . . , k − 1} if θ > 1,

[rj0 , dj0 + pj0 + 1] if θ = 1.

Note that W and θ vary with j0, but we forgo using a j0 subscript to improve readability. To
illustrate how this works, consider the case that W = 7, k = 3 and take rj0 = 1. Then θ = 2 and
when m ≡ 0 (mod W) we get C(j0) = {1, 3, 5}, when m ≡ 1 (mod W) we get C(j0) = {2, 4, 6},

13

Algorithm 4 RandMultiJob.

Input: A feasible solution (Sj)j∈J with objective value z and parameter σ

while not Stop do
for j0 ∈ J do

choose a subset C(j0) ⊆ [rj0 , dj0 − pj0 + 1]
J(j0) = {j ∈ J : [rj , dj] ∩ [rj0 , dj0] 6= ∅}
Put S = (Sj)j∈J(j0)
for S′j0 ∈ C(j0)

for j ∈ J(j0) \ {j0} do
set C(j) = [rj , dj − pj + 1] ∩

{
S′j0 , S

′
j0
− pj , S′j0 + pj0 , S

′
j0

+ pj0 − pj + 1
}

repeat
for j ∈ J(j0) \ {j0} do

if C(j) 6= ∅ do choose random S′j from C(j) else S′j = Sj
compute the objective z′ for starting job j at time S′j for all j ∈ J(j0)

if z′ > z then replace S by (S′j)j∈J(j0) and z by z′

until done σ times

if enough consecutive iterations with no improvement have passed then increase k

Output: An improved solution (Sj)j∈J

when m ≡ 2 (mod W) we get C(j0) = {3, 5, 7}, when m ≡ 3 (mod W) we get C(j0) = {1, 4, 6},
etc.

In future work, we will consider allowing σ to vary during the course of the algorithm, by
making it dependent on the size of the neighbourhood Ñj0(y) at the current solution y, so that
more samples are taken from larger neighbourhoods.

4 Computational Experiments

In this section we report on the results of computational tests of our proposed algorithm variants.
The first subsection is concerned with randomly generated instances, while the second subsection
contains results for two instances coming from real world data.

4.1 Randomly generated instances

We first describe how our random test instances have been generated, then we present the details
of the experiments that have been run, and finally, we compare the performance of the considered
algorithms.

4.1.1 Instance generation

Our tests are carried out for a time horizon with T = 1, 000. We need to generate networks and
job lists. We generate eight different networks using the RMFGEN generator of Goldfarb and
Grigoriadis [7]. For parameters a, b, c1 and c2 the generated network has a2b nodes arranged in b
frames of a2 nodes each. The capacities between frames are randomly chosen from [c1, c2], while

14

all capacities inside frames are c2a
2. We generated 8 different networks for the parameter pairs

(a, b) ∈
{

(2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
}

with c1 = 10 and c2 = 20.
In order to generate a job list for a given network, for each arc we first choose α, the number

of jobs. Then we divide the time horizon into α equal subintervals, each of them associated with
one of the jobs to be created. For each job we choose a processing time and a number of start time
candidates randomly. Finally, we choose a random release date, making sure that it is compatible
with the job being completed in its subinterval. This is made more precise in Algorithm 5 where
the input parameters are

• X — set of possible number of jobs per arc,

• Y — set of possible processing times, and

• Z — set of possible sizes for start time windows.

Algorithm 5 Generate JobList (X,Y, Z) (X,Y, Z ⊆ N)

for a ∈ A do
Initialize Ja = ∅
choose random α ∈ X and put µ = bT/αc
for η = 1 to α do

choose random β ∈ Y and γ ∈ Z
choose random r ∈ {1, 2, . . . , µ− β − γ + 2}
add job with processing time β, release date rj = (η − 1)µ+ r
and deadline rj + β + γ − 2 to Ja

Let α, β and γ be the maximum elements of X, Y and Z, respectively. In order to guarantee
feasible job lists we must have

(γ + β − 1)α 6 T.

As the number of binary variables in the MIP model (1)–(5) is determined by the sizes of the
time windows we decided to focus on studying the influence of the set Z. So we fix X = [5, 15],
Y = [10, 30] and test two variants for Z.

1. There are a variety of time window sizes: Z1 = [1, 35] (the first instance set).

2. All time windows are large: Z2 = [25, 35] (the second instance set).

For each network and each triple (X,Y, Zi) we generated 10 instances, giving a total of 160 instances.
The network sizes and the average numbers of jobs obtained in this way are shown in Table 2. In
Tables 3 and 4 we report the average problem sizes for the MIP formulation (1)–(5).

4.1.2 Experimental setup

Each of the generated instances is solved by the following methods:

Algorithm CPX. CPLEX with default settings applied to the formulation (1)–(5),

15

Small networks Large networks

Network Nodes Arcs Jobs Network Nodes Arcs jobs

1 12 32 303.2 5 36 123 1159.8

2 16 44 421.0 6 32 92 870.7

3 18 57 542.4 7 48 176 1674.2

4 27 90 847.5 8 64 240 2278.0

Table 2: The sizes of the random networks.

Network # Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

1 50,810 69,925 226,402 36,925 0.5

2 69,714 95,381 312,255 50,381 1.4

3 87,589 122,784 404,722 64,784 1.6

4 137,141 192,544 638,215 101,544 7.0

5 187,607 262,799 886,817 138,799 21.4

6 145,025 197,037 658,174 104,037 5.5

7 265,983 375,552 1,278,099 198,552 37.8

8 361,293 511,157 1,746,054 270,157 92.1

Table 3: Average problem sizes for the first instance set (Z = [1, 35]).

Algorithm GR. GreedyResched using CPLEX to solve the max flow subproblems,

Algorithm GRR. GreedyRandResched (Section 3.2.3) with parameters (κ1, κ2) = (5, 0.15),

Algorithm GAR. GreedyAccResched (Section 3.2.3),

Algorithm GRAR. GreedyRandAccResched (Section 3.2.3) with the same parameter values as
for GRR, and

Algorithm RMJ σ. RandMultiJob with parameter σ.

For ease of implementation, and so as to more readily exploit reduced cost information, and ac-
cess primal and dual algorithm variants, we decided to solve the max flow subproblems in the
algorithms GreedyResched, GreedyRandResched, GreedyAccResched and GreedyRandAccResched

using CPLEX as LP solver instead of implementing combinatorial algorithms. The following three
remarks on the implementation of Algorithm 2, which underlies the three greedy approaches, are

Network # Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

1 57,763 75,215 322,204 42,215 1.1

2 79,481 102,783 448,435 57,783 5.8

3 100,483 132,480 583,899 74,480 1.4

4 157,521 207,922 920,092 116,922 33.6

5 214,415 283,148 1,257,642 159,148 427.8

6 165,634 212,561 944,456 119,561 204.6

7 303,721 404,331 1,800,871 227,331 207.5

8 413,640 550,940 2,469,028 309,940 828.7

Table 4: Average problem sizes for the second instance set (Z = [25, 35]).

16

based on the observations in Section 3.2.2.

1. The value ∆+
ai is computed only if the reduced cost of the arc a is positive in the current

solution for time slice i as otherwise there is no potential for improvement.

2. For calculating the values z+ai, i.e. the gain obtained by adding in arc a, we use the primal
simplex method starting from the current max flow for time slice i.

3. For calculating the values z−ai, i.e. the loss due to taking out arc a, we use the dual simplex
method starting from the current max flow for time slice i.

For GreedyResched, we also note that among the pairs (j, S′j) with maximal value of ∆j(S
′
j) it is

always possible to choose one causing at most one time slice split. A simple way to achieve this is
to choose the pair with the smallest S′j : This ensures that S′j or S′j + pj is one of the breakpoints
ti in the current time slicing. We use this approach in our implementation. For RandMultiJob we
solve the max flow problems using the implementation of the push-relabel algorithm in the Boost
library [17]. Here we don’t take advantage of the similarities between the networks of different
time slices, but we still use the third observation in Section 3.1 that after changing the schedule
we only have to reevaluate the flow for time slices that are actually affected by the change. We
experimented with σ = 1, 2, 4 and 8. We found that results for σ = 8 were dominated by the other
values, and that whilst σ = 4 did give better values than σ = 1 or 2 on a very small proportion of
instances, it did not give the best value over all algorithms for any instance (random or real world).
Thus we only present detailed results for σ = 1 and 2.

For all algorithms, we impose a time limit of 30 minutes, and all of them start with an initial
solution given by

Sj =

⌊
rj + dj

2

⌋
.

All computations are done on a Dell PowerEdge 2950 with dual quad core 3.16GHz Intel Xeon
X5460 processors and 64GB of RAM running Red Hat Enterprise Linux 5. CPLEX v12.1 was
running in deterministic mode using a single thread.

4.1.3 Results

As a performance measure to compare algorithms we use the relative gap between the algorithm’s
solution value and the best known solution value over all algorithms. If the best known solution
value for an instance I is zbest and the current algorithm returns z, its performance measure on
that instance is given by

P(I) =
zbest − z
zbest

.

In Figures 6 to 9, we plot for CPLEX and the Greedy algorithms the proportion of instances for
which the solution found by the algorithm is within a factor of 1 − τ of the best, for increasing
values of τ , i.e. we plot

1

n
·# {I : I instance with P(I) 6 τ}

as a function of τ , where n is the total number of instances (in our case 80 for each instance set).
Note that for the 5 minute plots (Figures 6 and 8) we take zbest to be the best known solution over
all algorithms after 30 minutes. Tables 5 and 6 contain the average number of max flow problems
solved for each of the local search algorithms and every network. For algorithms GR and GAR we
also report the run times, GRR, GRAR and RMJ 2 ran for the whole 30 minutes. Tables 7 to 10

17

Figure 6: Performance profiles for the first in-
stance set (Z = [1, 35]) with computation time
limited to 5 minutes.

Figure 7: Performance profiles for the first in-
stance set (Z = [1, 35]) with computation time
limited to 30 minutes.

GR GRR GAR GRAR RMJ 2

Network Time(s) mf calls mf calls Time(s) mf calls mf calls mf calls

1 12 210 31,296 17 179 16,500 96,618

2 25 351 22,741 30 287 13,772 74,739

3 25 460 29,168 40 344 16,386 61,270

4 128 1,256 15,201 100 677 9,681 38,703

5 308 2,007 10,693 324 1,247 7,320 25,605

6 115 838 11,574 115 585 7,041 37,588

7 524 2,984 8,871 519 2,010 6,146 14,827

8 825 3,256 6,607 605 1,540 4,090 8,276

Table 5: Average numbers of max flow problems (divided by 1,000) for the first instance set
(Z = [1, 35]).

provide information about the relative gaps (average and maximal) and the numbers of instances
where each algorithm found the best solution, for all algorithms. Here the relative gap is computed
as (z′ − z)/z′ where z′ is the best upper bound obtained by CPLEX in 30 minutes, and z is the
objective value of the best solution found by the considered algorithm in the respective time (5 or
30 minutes).

We make the following observations.

• For the first instance set CPLEX outperforms all other algorithms, but on the large networks
the heuristics, in particular GreedyAccResched and GreedyRandAccResched, arequite good
in providing a reasonably good solution in a short time. The 5 minute performance profiles
both show the distinct advantage of GreedyAccResched and GreedyRandAccResched over the
other methods for short run times. For long run times, the 30 minute performance profiles
show CPLEX to be the clear winner for the first instance set, with GreedyRandResched and
GreedyRandAccResched best for the second instance set.

• For the second instance set, on the small networks CPLEX is still superior, but on the larger

18

Figure 8: Performance profiles for the second in-
stance set (Z = [25, 35]) with computation time
limited to 5 minutes.

Figure 9: Performance profiles for the second in-
stance set (Z = [25, 35]) with computation time
limited to 30 minutes.

GR GRR GAR GRAR RMJ 2

Network time [sec] mf calls mf calls time [sec] mf calls mf calls mf calls

1 14 321 37,818 12 214 30,966 83,170

2 36 627 28,411 23 382 25,900 65,355

3 28 724 38,786 26 490 32,253 54,133

4 160 1,982 19,304 84 1,129 19,702 35,745

5 367 2,928 13,907 229 1,966 7,793 23,858

6 197 1,762 15,022 96 776 7,603 33,656

7 709 4,704 11,133 499 3,485 5,714 14,388

8 956 4,723 8,147 536 2,334 3,808 8,056

Table 6: Average numbers of max flow problems (divided by 1000) for the second instance set
(Z = [25, 35]).

networks, the local search heuristics outperform CPLEX, with all heuristics giving solutions
with smaller gaps on average for all (large) instances over short run times, and all Greedy
heuristics giving smaller gaps on average over long run times – significantly smaller for 3 out
of the 4 (largest) networks.

• Comparing GreedyResched and GreedyAccResched we see that in all cases it pays off to save
the time for reevaluating the possible moves after each step and thus being able to make more
moves in the same amount of time. A similar observation applies to GreedyRandResched and
GreedyRandAccResched, but the benefits of the latter are less pronounced.

• Across the board, randomized greedy algorithms give better results than their non-random
counterparts, due to the possibility to escape local minima.

• RandMultiJob performs better with σ = 1 than 2, particularly for larger networks in the
second instance set, and for the first instance set, with the shorter run time. On the first
instance set with the longer run time, the two are difficult to separate, but σ = 2 gives

19

1 2 3 4 5 6 7 8

avg gap 0.0 0.4 0.3 1.1 3.0 3.7 3.9 12.9

CPX max gap 0.1 0.8 1.7 2.6 6.1 4.6 5.4 20.2

best sol 10 10 9 10 7 10 8 3

avg gap 2.1 2.8 1.9 1.6 2.3 4.9 2.1 3.3

GR max gap 4.1 4.0 3.5 1.9 2.5 5.5 2.7 5.3

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.6 1.5 2.4 4.1 2.4 3.7

GRR max gap 2.2 3.1 2.4 2.0 2.7 5.2 3.1 6.1

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.5 1.4 2.1 4.0 1.5 1.5

GAR max gap 1.9 2.4 2.2 1.6 2.5 4.8 1.9 2.2

best sol 0 0 1 0 2 0 2 6

avg gap 1.4 1.8 1.4 1.4 2.0 3.8 1.5 1.5

GRAR max gap 1.8 2.2 2.2 1.6 2.4 4.2 1.8 2.2

best sol 0 0 1 0 1 0 0 1

avg gap 3.0 5.1 2.0 4.5 7.3 11.1 5.2 5.7

RMJ 1 max gap 4.9 7.1 2.8 6.9 8.5 12.5 6.5 7.6

best sol 0 0 0 0 0 0 0 0

avg gap 2.5 4.6 1.9 4.8 7.3 11.2 5.3 5.9

RMJ 2 max gap 3.8 6.0 2.6 7.1 8.1 13.2 6.7 8.0

best sol 0 0 0 0 0 0 0 0

Table 7: Average and maximal relative gaps and number of best solutions found on the first instance
set, Z = [1, 35] (runtime 5 minutes).

better results on more networks, and in particular does better on the difficult case of the
sixth network. As might be expected, the RandMultiJob algorithms show more significant
improvement than the greedy heuristics when given more run time. However in no case do
the RandMultiJob algorithms outperform the greedy heuristics. (Hence we omit their profiles
from Figures 6 to 9, to avoid cluttering them.)

4.2 Instances derived from real world data

The real world maintenance scheduling problem is complicated by additional constraints imposed,
for example, by daylight restrictions, availability of equipment or labour force to carry out the
maintenance, incompatibility issues between jobs, or conflicts with other users of the infrastructure.
All of this can be modelled in an MIP framework and taken into account in a local search, both of
which are the subject of ongoing work. For the present paper, we ignore the additional constraints
and conduct some experiments on pure MaxTFFAO instances derived from real world data. The
network shown in Figure 10 is a simplified version of the real situation. We generate two instances
using the maintenance job lists and the actual maintenance schedules for 2010 and 2011. These job
lists contain 1, 457 and 1, 234 jobs, respectively. Based on the level of detail occurring in practice,
we use a time discretization of 1 hour, leading to instances with time horizons T = 365 · 24 =
8, 760. The processing times vary between an hour and several days, while 75% of the jobs have a

20

1 2 3 4 5 6 7 8

avg gap 0.0 0.2 0.3 0.3 1.6 2.0 0.9 2.8

CPX max gap 0.0 0.4 1.7 0.8 2.8 2.7 2.1 6.1

best sol 10 10 9 10 7 10 8 3

avg gap 2.1 2.8 1.9 1.6 2.3 4.9 1.6 1.6

GR max gap 4.1 4.0 3.5 1.9 2.5 5.5 2.1 2.3

best sol 0 0 0 0 0 0 0 0

avg gap 1.4 1.7 1.5 1.4 2.0 3.7 1.4 1.5

GRR max gap 2.2 2.2 2.3 1.9 2.3 4.9 2.0 2.2

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.5 1.4 2.1 4.0 1.5 1.5

GAR max gap 1.9 2.4 2.2 1.6 2.5 4.8 1.9 2.2

best sol 0 0 1 0 2 0 2 6

avg gap 1.3 1.7 1.4 1.3 2.0 3.7 1.4 1.5

GRAR max gap 1.7 2.1 2.2 1.5 2.4 4.2 1.8 2.2

best sol 0 0 1 0 1 0 0 1

avg gap 2.9 5.0 2.0 3.9 6.3 9.9 4.2 4.6

RMJ 1 max gap 4.9 6.9 2.8 5.7 6.8 11.9 5.7 6.2

best sol 0 0 0 0 0 0 0 0

avg gap 2.5 4.5 1.8 3.9 6.3 9.5 4.2 4.6

RMJ 2 max gap 3.8 5.9 2.6 6.1 7.0 11.0 5.0 6.5

best sol 0 0 0 0 0 0 0 0

Table 8: Average and maximal relative gaps and number of best solutions found on the first instance
set, Z = [1, 35] (runtime 30 minutes).

processing time between 1 and 18 hours. For every job we assume a time window of two weeks, i.e.
dj = rj +pj +14 ·24−2 for all j. This model leads to really large problems as indicated in Table 11,
containing the problem sizes. As a start solution we used a snapshot of the HVCCC maintenance
scheduling process. We increased the time limit to 2 hours, and the results are shown in Figures 11
and 12. For clarity, the same results for CPLEX and a selection of the better algorithms is given
in Figures 13 and 14.

We observe that the MIP seems to be really hard. For the 2010 data, CPLEX finds one integer
solution with better objective value than the start solution, and for 2011 no improving solution can
be found at all. Confirming the results for the random instances, the greedy approaches perform
very well in terms of finding high quality solutions quickly. The impacts, i.e. the annual capacity
reductions due to maintenance, for the start solutions were 37.6Mt (2010) and 32.5 Mt (2011).
Table 12 shows the impact reductions achieved by the different algorithms. We note two features
that seem to be different to the behaviour for the random instances.

1. Randomization does not always improve the greedy heuristics. Of course, looking at two
instances is very limited evidence, but for the 2011 data the randomized variants give slightly
worse results. GreedyAccResched gives the best result for this instance.

2. RandMultiJob keeps improving even after 2 hours, while the other local search strategies
seem to get trapped in local optima comparatively early. Both σ = 1 and 2 values give better

21

1 2 3 4 5 6 7 8

avg gap 0.1 3.9 0.0 6.3 20.5 21.9 16.1 17.0

CPX max gap 0.4 6.2 0.1 11.0 25.3 39.5 22.8 24.8

best sol 10 10 10 9 0 3 0 0

avg gap 1.8 4.0 1.6 1.9 3.4 8.2 2.5 3.6

GR max gap 2.5 4.7 2.1 2.8 4.6 10.0 3.4 5.6

best sol 0 0 0 0 1 0 0 2

avg gap 1.4 3.2 1.2 1.9 3.5 7.7 2.6 4.0

GRR max gap 2.1 4.0 1.4 2.7 4.8 10.8 3.2 5.8

best sol 0 0 0 0 1 2 0 1

avg gap 1.4 3.4 1.2 1.8 2.9 7.7 1.4 1.3

GAR max gap 2.3 4.5 1.4 2.5 3.5 9.1 1.8 1.9

best sol 0 0 0 0 7 3 4 4

avg gap 1.3 3.0 1.2 1.8 2.8 7.7 1.4 1.4

GRAR max gap 2.3 3.9 1.4 2.4 3.5 9.4 1.8 1.9

best sol 0 0 0 1 1 2 6 3

avg gap 2.0 6.5 1.4 4.6 8.1 15.3 5.1 4.9

RMJ 1 max gap 3.0 8.2 1.7 8.3 9.3 18.8 5.9 6.6

best sol 0 0 0 0 0 0 0 0

avg gap 1.9 6.5 1.4 4.7 8.2 15.5 5.0 5.0

RMJ 2 max gap 2.8 8.2 1.7 8.7 10.0 18.4 5.9 6.6

best sol 0 0 0 0 0 0 0 0

Table 9: Average and maximal relative gaps and number of best solutions found on the second
instance set, Z = [25, 35] (runtime 5 minutes).

results than any of the greedy heuristics or CPLEX for the 2010 instance, with σ = 2 giving
the best result overall.

22

1 2 3 4 5 6 7 8

avg gap 0.0 1.9 0.0 1.6 7.4 8.9 6.6 13.3

CPX max gap 0.1 3.3 0.1 4.9 10.8 14.2 10.1 18.3

best sol 10 10 10 9 0 3 0 0

avg gap 1.8 4.0 1.6 1.9 3.1 8.2 1.5 1.3

GR max gap 2.5 4.7 2.1 2.8 4.1 10.0 2.0 1.6

best sol 0 0 0 0 1 0 0 2

avg gap 1.3 3.1 1.2 1.8 2.8 7.2 1.4 1.3

GRR max gap 1.8 3.9 1.4 2.5 3.5 9.0 1.8 1.5

best sol 0 0 0 0 1 2 0 1

avg gap 1.4 3.4 1.2 1.8 2.9 7.7 1.4 1.3

GAR max gap 2.3 4.5 1.4 2.5 3.5 9.1 1.7 1.9

best sol 0 0 0 0 7 3 4 4

avg gap 1.3 3.0 1.2 1.7 2.8 7.3 1.4 1.3

GRAR max gap 1.8 3.8 1.4 2.3 3.5 8.5 1.8 1.9

best sol 0 0 0 1 1 2 6 3

avg gap 2.0 6.4 1.4 3.9 7.0 13.9 4.1 4.0

RMJ 1 max gap 3.0 8.2 1.6 7.2 7.9 17.4 5.2 5.8

best sol 0 0 0 0 0 0 0 0

avg gap 1.9 6.2 1.3 3.8 7.1 14.1 4.2 4.0

RMJ 2 max gap 2.8 8.2 1.7 7.0 8.2 17.1 4.9 5.7

best sol 0 0 0 0 0 0 0 0

Table 10: Average and maximal relative gaps and number of best solutions found on the second
instance set, Z = [25, 35] (runtime 30 minutes).

Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

2010 2,741,944 3,317,433 13,500,830 1,775,673 3,823

2011 2,735,919 3,310,352 13,226,945 1,768,592 7,154

Table 11: Problem sizes for the instances derived from real world data.

2010 2011

Impact (Mt) Reduction (%) Gap (%) Impact (Mt) Reduction (%) Gap (%)

CPX 28.9 22.9 7.8 32.5 0.0 13.4

GR 26.4 29.6 6.1 19.8 39.0 4.9

GRR 25.6 31.8 5.5 20.3 37.5 5.2

GAR 25.4 32.3 5.4 19.8 39.1 4.9

GRAR 25.0 33.4 5.1 19.9 38.7 4.9

RMJ 1 24.8 33.9 4.9 20.5 36.8 5.4

RMJ 2 24.6 34.6 4.8 20.4 37.3 5.3

Table 12: Impact reduction obtained by the different local search strategies. The column labeled
“Gap” contains the relative gap to the best known upper bound from CPLEX.

23

Figure 10: The HVCC network. The circled parts of the network represent the flow of coal through
terminal handling equipment. The rest represents the rail network, sourcing coal from 33 coal load
points.

Figure 11: Progress for the 2010 data. Figure 12: Progress for the 2011 data.

24

Figure 13: Progress for the 2010 data (selected
algorithms).

Figure 14: Progress for the 2011 data (selected
algorithms).

25

5 Future directions

We want to point out three directions for further investigation, other than those already indicated
in the paper.

1. A natural idea is to develop the local search towards a Greedy Randomized Adaptive Search
Procedure (GRASP) [16]. That means, instead of using a fixed start solution, start solutions
are constructed in a randomized greedy manner.

2. As the general problem is NP-hard, it is interesting to look for special cases (special in terms
of the network structure and/or in terms of properties of the job list) that can be solved
efficiently.

3. In the other direction, there might be generalizations of the problem that are worth studying,
for instance allowing

• arbitrary subsets of [T] as sets of possible start times (not only intervals [rj , dj]), and

• job processing to only reduce the arc capacity by some fraction, rather than taking it
out completely.

The former arises in the Hunter Valley coal chain application in respect of rail track mainten-
ance, where crews must work during daylight hours of the working week. The latter obviously
arises in contexts such as highway maintenance, where lane closures and slow-downs come
into effect.

These examples of possible future directions illustrate what an exciting new problem we believe
maximum total flow with flexible arc outages to be, with great potential for both theoretical and
practical development.

Acknowledgment

We like to acknowledge the valuable contributions of Jonathon Vandervoort, Rob Oyston, Tracey
Giles, and the Capacity Planning Team from the Hunter Valley Coal Chain Coordinator (HVCCC)
P/L. Without their patience, support, and feedback, this research could not have occurred. We
also thank the HVCCC and the Australian Research Council for their joint funding under the ARC
Linkage Grant no. LP0990739. Furthermore, we are very grateful to the anonymous referees for
their helpful comments and suggestions.

References

[1] N. Boland and M. Savelsbergh. “Optimizing the Hunter Valley coal chain”. In: Supply Chain
Disruptions: Theory and Practice of Managing Risk. Ed. by H. Gurnani, A. Mehrotra and
S. Ray. Springer-Verlag London Ltd., 2011, pp. 275–302.

[2] B. Cavdaroglu, J.E. Mitchell, S.G. Nurre, T.C. Sharkey and W.A. Wallace. Restoring infra-
structure systems: An integrated network design and scheduling problem. Tech. rep. www.rp
i.edu/~sharkt/RIS.pdf (13 November 2011). Rensselaer Polytechnic Institute, 2010.

[3] L. Fleischer. “Faster algorithms for the quickest transshipment problem”. In: SIAM journal
on Optimization 12.1 (2001), pp. 18–35. doi: 10.1137/S1052623497327295.

26

www.rpi.edu/~sharkt/RIS.pdf
www.rpi.edu/~sharkt/RIS.pdf
http://dx.doi.org/10.1137/S1052623497327295

[4] L. Fleischer. “Universally maximum flow with piecewise-constant capacities”. In: Networks
38.3 (2001), pp. 115–125. doi: 10.1002/net.1030.

[5] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton, N.J.: Princeton Univ. Press,
1962.

[6] M.R. Garey and D.S. Johnson. Computers and intractability, a guide to the theory of NP–
completeness. W.H. Freeman, 1979.

[7] D. Goldfarb and M.D. Grigoriadis. “A computational comparison of the Dinic and network
simplex methods for maximum flow”. In: Annals of Operations Research 13.1 (1988), pp. 81–
123. doi: 10.1007/BF02288321.

[8] B. Hajek and R.G. Ogier. “Optimal dynamic routing in communication networks with con-
tinuous traffic”. In: Networks 14.3 (1984), pp. 457–487. doi: 10.1002/net.3230140308.

[9] B. Hoppe and É. Tardos. “Polynomial time algorithms for some evacuation problems”. In:
Proc. 5th ACM-SIAM symposium on discrete algorithms SODA 1994. Society for Industrial
and Applied Mathematics. 1994, pp. 433–441.

[10] R. Koch, E. Nasrabadi and M. Skutella. “Continuous and discrete flows over time”. In:
Mathematical Methods of Operations Research 73.3 (2011), pp. 301–337. doi: 10.1007/s
00186-011-0357-2.

[11] B. Kotnyek. An annotated overview of dynamic network flows. Tech. rep. 4936. http://ha
l.inria.fr/inria-00071643/ (20 February 2013). INRIA, 2003.

[12] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

[13] S.G. Nurre and T.C. Sharkey. “Restoring infrastructure systems: An integrated network
design and scheduling problem”. In: Proceedings of the 2010 Industrial Engineering Research
Conference. 2010.

[14] R.G. Ogier. “Minimum-delay routing in continuous-time dynamic networks with piecewise-
constant capacities”. In: Networks 18.4 (1988), pp. 303–318. doi: 10.1002/net.3230180405.

[15] M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[16] L.S. Pitsoulis and M.G.C. Resende. “Greedy randomized adaptive search procedures”. In:
Handbook of applied optimization. Ed. by P.M. Pardalos and M.G.C. Resende. Oxford Uni-
versity Press, 2002, pp. 168–183.

[17] J.G. Siek, L.-Q. Lee and A. Lumsdaine. The Boost Graph Library: User Guide and Reference
Manual. C++ In-Depth. Addison-Wesley Professional, 2001.

[18] M. Skutella. “An introduction to network flows over time”. In: Research Trends in Combin-
atorial Optimization (2009), pp. 451–482. doi: 10.1007/978-3-540-76796-1.

[19] A. Toriello, G. Nemhauser and M. Savelsbergh. “Decomposing inventory routing problems
with approximate value functions”. In: Naval Research Logistics 57.8 (2010), pp. 718–727.
doi: 10.1002/nav.20433.

27

http://dx.doi.org/10.1002/net.1030
http://dx.doi.org/10.1007/BF02288321
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1007/s00186-011-0357-2
http://dx.doi.org/10.1007/s00186-011-0357-2
http://hal.inria.fr/inria-00071643/
http://hal.inria.fr/inria-00071643/
http://dx.doi.org/10.1002/net.3230180405
http://dx.doi.org/10.1007/978-3-540-76796-1
http://dx.doi.org/10.1002/nav.20433

	Introduction
	Problem Definition and Complexity Results
	Local search for MaxTFFAO
	Evaluating the objective function
	Moving single jobs
	Preliminary considerations
	The basic method
	Variations

	Moving multiple jobs

	Computational Experiments
	Randomly generated instances
	Instance generation
	Experimental setup
	Results

	Instances derived from real world data

	Future directions

