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Abstract

We study the problem of scheduling maintenance on arcs of a capacitated network so as to maximize
the total flow from a source node to a sink node over a set of time periods. Maintenance on an arc shuts
down the arc for the duration of the period in which its maintenance is scheduled, making its capacity
zero for that period. A set of arcs is designated to have maintenance during the planning period, which
will require each to be shut down for exactly one time period. In general this problem is known to be NP-
hard, and several special instance classes have been studied. Here we propose an additional constraint
which limits the number of maintenance jobs per time period, and we study the impact of this on the
complexity.
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AMS Classification: 90C10, 90B10, 68Q25

Introduction

Motivated by the annual maintenance planning for a coal export supply chain [4], in which maximizing the
annual throughput is a key concern, Boland et al. [2, 3] introduced a general network optimization problem
in which arc maintenance jobs need to be scheduled so as to maximize the total flow in the network over
time. A simplified version of the problem in which all jobs have unit processing time was studied in [1], and
the complexity was determined taking into account certain instance characteristics, such as special network
structures and restrictions on the set of jobs. In the present paper we extend this model by adding the
constraint that the number of jobs scheduled in any time period is bounded by a number K which is given as
part of the input. The problem is defined over a network N = (V,A, s, t, u) with node set V , arc multiset A
(i.e. we admit parallel arcs having the same start and end nodes), source s ∈ V , sink t ∈ V and nonnegative
integral capacity vector u = (ua)a∈A. By δ−(v) and δ+(v) we denote the set of incoming and outgoing
arcs of node v, respectively. We consider this network over a set of T time periods indexed by the set
[T ] := {1, 2, . . . , T}, and our objective is to maximize the total flow from s to t. We are also given a subset
J ⊆ A of arcs that have to be shut down for exactly one time period in the time horizon. In other words,
there is a set of maintenance jobs, one for each arc in J , each with unit processing time. In addition, there
is a parameter K such that the number of maintenance jobs scheduled in any time period must not exceed
K. From a practical point of view, this is a natural variation of the model. In many real world network
maintenance scheduling problems, there are resource and budget constraints which do not allow to do too
many jobs at the same time. Of course, in practice there can be complicated rules about the combinations
of jobs that are allowed. Disregarding these complications, we propose a simple extension of the basic model
which allows us to study the effect of such job limit constraints in a simplified setting. The optimization
problem is to choose the outage time periods in such a way that the total flow from s to t is maximized.

∗This research was supported by the ARC Linkage Grant no. LP0990739 and HVCCC P/L.
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More formally, this can be written as a mixed binary program as follows:

max z =

T∑
i=1

∑
a∈δ+(s)

xai (1)

s.t. xai 6 uayai a ∈ J, i ∈ [T ], (2)

xai 6 ua a ∈ A \ J, i ∈ [T ], (3)

T∑
i=1

yai = T − 1 a ∈ J, (4)∑
a∈δ−(v)

xai =
∑

a∈δ+(v)

xai v ∈ V \ {s, t}, i ∈ [T ], (5)

∑
a∈J

yai > |J | −K i ∈ [T ], (6)

xai > 0 a ∈ A, i ∈ [T ], (7)

yai ∈ {0, 1} a ∈ A, i ∈ [T ], (8)

where xai for a ∈ A and i ∈ [T ] denotes the flow on arc a in time period i, and yai ∈ {0, 1} for a ∈ A and
i ∈ [T ] indicates when the arc a is available in time period i, i.e. yai = 0 in the period i in which the outage
for arc a is scheduled. The problem is to schedule the maintenance jobs so that the total flow of the network
over the time horizon T is maximized.

The reduction from 3-Partition in [3] shows that the general problem is strongly NP-complete for the
class of instances with K = 3. In [1] several instance classes for the problem without the job limit per time
period were analyzed. In order to classify instances we introduce the following notation. Let C be the class
of all instances of the problem (1) to (8). With an upper index K we denote the class of all instances with an
upper bound of K on the number of jobs scheduled per time period, and a lower index indicates additional
restrictions as introduced in [1].

• Let Csp be the class of instances where the underlying network is series-parallel.

• Let Cbal be the class of instances where the underlying network is balanced, i.e. for each transshipment
node v ∈ V \ {s, t} the capacity into this node equals the capacity out of this node.

• Let Cuc be the class of instances where the capacities are ua = 1 for every arc a ∈ A.

• Let Caa be the class of instances where all arcs have a job associated, i.e. J = A.

For instance
(
C3sp ∩ C3aa

)
\ C3bal is the set of all instances with a series-parallel network which is not balanced,

a job associated with every arc, and the constraint that at most 3 jobs can be scheduled per time period.
In general, K is not constant, and we also consider instance classes with varying K, but imposing some

restrictions on how K can vary relative to other instance parameters. For instance, C|J|sp is the class of
instances with a series-parallel network and no limit on the number of jobs per time period, and C|J|/3
contains the instances in which at most one third of all jobs can be scheduled per time period. As proved

in [1], the classes C|J|aa and C|J|sp ∩ C|J|bal are trivial: it is always optimal to schedule all jobs at the same time.

In contrast, the restriction of the problem to C|J|bal is still strongly NP-hard, and the restriction to C|J|sp is
NP-hard, but for fixed T it can be solved in pseudopolynomial time using dynamic programming. Our new
complexity results are summarised in Table 1.

Note that the problem is solvable in polynomial time if both T and K are bounded, say T 6 T0 and
K 6 K0 for some absolute constants T0 and K0. Then |J | 6 K0T0 for any feasible instance, and we can
enumerate all partitions of J into at most T sets of size at most K of which there are at most

C =

T0∏
i=0

(
K0(T0 − i)

K0

)
.
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Instance class Complexity

C3sp ∩ C3bal ∩ C3aa strongly NP-complete (Proposition 3)

C|J|−1sp ∩ C|J|−1bal ∩ C|J|−1aa NP-complete (Proposition 4)

Cuc NP-complete (Proposition 5)

C2 O(|J |3) (Proposition 1)

Table 1: Complexity results.

For each of these partitions we have to solve T maximum flow problems, hence the run-time is bounded
by CT0nm, since the maximum flow problem can be solved in O(mn) time [7, 8]. Consequently, for the
asymptotic analysis we are interested in instance classes where at least one of the parameters T and K is
unbounded.

The paper is organized as follows. In Section 1 we show that the case K = 2 can be solved in polynomial
time. In addition we provide an explicit description of an optimal solution for K = 2 and a network with a
single transshipment node which leads to a significantly better run-time bound for this case. The hardness
results are proved in Section 2. In Section 3 we present a fully polynomial time approximation scheme for
series-parallel networks with fixed time horizon. We also provide a polynomial time approximation scheme
for series parallel networks in general when K = |J |.

1 The case K = 2

In this section we consider the case K = 2. In Section 1.1 we show that this case can be reduced to a
maximum weighted matching problem and thus is solvable in polynomial time, and in Section 1.2 we give
an explicit description of an optimal solution for the case that the network has only a single transshipment
node.

1.1 General networks

We reduce the problem to a maximum weight perfect matching problem. Let F0 denote the maximum flow
value in the whole network, for a ∈ J let Fa denote the maximum flow when arc a is shut, and for distinct
a, b ∈ J let Fab be the maximum flow when arcs a and b are shut. We set p = max{0, |J | − T} and define
an auxiliary graph whose vertex set contains two vertices for every arc a ∈ J and two sets W and W ′ of
dummy vertices with |W | = 2p and |W ′| = 2(b|J |/2c − p). The two vertices for a ∈ J are denoted by a and
a′, and the weighted edge set of the auxiliary graph is defined as follows:

• For distinct arcs a, b ∈ J there is an edge {a, b} with weight Fab + F0.

• For a ∈ J there is an edge {a, a′} of weight Fa.

• There are all edges of the form {a′, w} for a ∈ J and w ∈W ∪W ′. All these edges have zero weight.

• The vertex set W ′ induces a matching consisting of zero weight edges.

There is a correspondence between perfect matchings in the auxiliary graph and outage schedules. Let M
be a perfect matching in the auxiliary digraph. The corresponding schedule has

• for every edge {a, b} ∈M with a, b ∈ J one time period with arcs a and b shut,

• for every edge {a, a′} ∈M with a ∈ J one time period with only arc a shut,

• all other time periods without shut arcs.

This construction is illustrated in Figure 1 for J = {a, b, . . . , h} and T = 6. The bold edges form a perfect
matching corresponding to scheduling the following outage of schedule: period 1: {a, d}, period 2: {c, f},
period 3: {g, h}, period 4: {b}, period 5: {e}, period 6: ∅.
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Figure 1: A perfect matching in the auxiliary graph.

For a perfect matching M we define subsets M1 ⊆M and M2 ⊆M by

M1 = {{a, b} ∈M : a, b ∈ J}, M2 = {{a, a′} ∈M : a ∈ J}.

Note that the 2p nodes in W must be matched to nodes a′, hence

|M2| 6 |J | − 2p 6 |J | − 2(|J | − T ) = 2T − |J |,

and with |M1| = 1
2 (|J | − |M2|) this implies

|M1|+ |M2| =
1

2
(|J | − |M2|) + |M2| =

1

2
(|J |+ |M2|) 6 T.

The total throughput for the schedule corresponding to the matching M is∑
{a,b}∈M1

Fab +
∑

{a,a′}∈M2

Fa + (T − |M1| − |M2|)F0

=
∑

{a,b}∈M1

(Fab + F0) +
∑

{a,a′}∈M2

Fa + (T − 2|M1| − |M2|)F0 = ω(M) + (T − |J |)F0,

where ω(M) is the weight of M . Thus the original problem is equivalent to finding a maximum weighted
perfect matching in the auxiliary graph, and with an efficient implementation [6] of the blossom algorithm [5]
we have proved the following proposition.

Proposition 1. For K = 2 the problem (1) to (8) can be solved in O(|J |3) time.

1.2 The single node case

Consider a network with a single transshipment node v, a job set J , a time horizon T and K = 2. We use
the notation J− = δ−(v) ∩ J and J+ = δ+(v) ∩ J and assume without loss of generality that |J−| 6 |J+|.
We order the arcs in J− and J+ such that the capacities are non-increasing, i.e. J− = {a1, . . . , ar} and
J+ = {b1, . . . , bs} (s > r) with

ua1 > ua2 > · · · > uar , ub1 > ub2 > · · · > ubs .

Note that it is necessary for the feasibility that r + s 6 2T , and in particular r 6 T . We will show that an
optimal solution can be obtained as follows.
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Proposition 2. An optimal solution for the single node problem with K = 2 is given by the following
schedule.

• For i = 1, 2, . . . , r take arc ai out in time period i.

• For i = 1, 2, . . . ,min{T, s} take arc bi out in time period i.

• For i = T + 1, T + 2, . . . , s take arc bi out in time period 2T − i+ 1.

The basic idea for proving Proposition 2 is to start with any schedule and show that, as long as it is not
the described schedule, there is a small modification that does not decrease the objective value and such
that the modified schedule is in some sense closer to the one described in the proposition. This process must
terminate in a finite number of steps, and since we can assume that we start with an optimal schedule this
proves the proposition. In order to justify the modification steps we will need the following notation.

X =
∑

a∈δ−(v)
ua, Y =

∑
a∈δ+(v)

ua,

Xa = X − ua for a ∈ J−, Ya = Y − ua for a ∈ J+,

Xab = X − ua − ub for distinct a, b ∈ J−, Yab = Y − ua − ub for distinct a, b ∈ J+.

Lemma 1. For a, b ∈ J− and c, d ∈ J+ we have

min{Xab, Y }+ min{X,Ycd} 6 min{Xa, Yc}+ min{Xb, Yd}.

Proof. If Y 6 Xab then

min{Xab, Y }+ min{X,Ycd} = Y + Ycd = Yc + Yd = min{Xa, Yc}+ min{Xb, Yd}.

If X 6 Ycd then

min{Xab, Y }+ min{X,Ycd} = Xab +X = Xa +Xb = min{Xa, Yc}+ min{Xb, Yd}.

For the remaining case Xab < Y and Ycd < X, i.e. min{Xab, Y }+ min{X,Ycd} = Xab + Ycd, we check that
this is upper bounded by each of the four possible expressions on the RHS:

Xab + Ycd 6 Xab +X = Xa +Xb,

Xab + Ycd 6 Xa + Yd,

Xab + Ycd 6 Xb + Yc = Yc +Xb,

Xab + Ycd 6 Y + Ycd = Yc + Yd.

Lemma 2. For a, b ∈ J− and c, d ∈ J+ with we have

min{Xab, Y }+ min{X,Yc}+ min{X,Yd} 6 min{Xa, Yc}+ min{Xb, Yd}+ min{X,Y }.

Proof. Without loss of generality we assume uc > ud, i.e. Yc 6 Yd. If Xab > Y then

min{Xab, Y }+ min{X,Yc}+ min{X,Yd} = Y + Yc + Yd = Yc + Yd + Y

= min{Xa, Yc}+ min{Xb, Yd}+ min{X,Y }

If X 6 Yc then

min{Xab, Y }+ min{X,Yc}+ min{X,Yd} = Xab +X +X = Xa +Xb +X

= min{Xa, Yc}+ min{Xb, Yd}+ min{X,Y }
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If Xab < Y and X > Yd, then min{Xab, Y }+ min{X,Yc}+ min{X,Yd} = Xab + Yc + Yd, and we check that
this is upper bounded by every possible expression on the RHS:

Xab + Yc + Yd 6 Xab +X + Yd = Xa +Xb + Yd 6 Xa +Xb + min{X,Y },
Xab + Yc + Yd 6 Xa + Yd + min{X,Y },
Xab + Yc + Yd = Yc +Xab + Yd 6 Yc +Xb + min{X,Y },
Xab + Yc + Yd = Yc + Yd +Xab 6 Yc + Yd + min{X,Y }.

In the remaining case Yc < X < Yd we have min{Xab, Y }+ min{X,Yc}+ min{X,Yd} = Xab + Yc +X, and
again we check that this is upper bounded by every possible expression on the RHS:

Xab + Yc +X = Xab +X + Yc = Xa +Xb + Yc 6 Xa +Xb + min{X,Y },
Xab + Yc +X = Yc +Xb +Xa 6 Yc +Xb + min{X,Y }.

Lemma 3. For a ∈ J− and b, c ∈ J+ we have

min{Xa, Y }+ min{X,Yb} 6 min{Xa, Yb}+ min{X,Y }, and

min{Xa, Y }+ min{X,Ybc} 6 min{Xa, Yb}+ min{X,Yc}.

Proof. If Y 6 Xa then

min{Xa, Y }+ min{X,Yb} = Y + Yb = Yb + Y = min{Xa, Yb}+ min{X,Y }.

If X 6 Yb then
min{Xa, Y }+ min{X,Yb} = Xa +X = min{Xa, Yb}+ min{X,Y }.

In the remaining case we have Xa < Y and Yb < X, hence

min{Xa, Y }+ min{X,Yb} = Xa + Yb = min{Xa, Yb}+ max{Xa, Yb} 6 min{Xa, Yb}+ min{X,Y }.

This proves the first inequality. For the second inequality, if Y 6 Xa then

min{Xa, Y }+ min{X,Ybc} = Y + Ybc = Yb + Yc = min{Xa, Yb}+ min{X,Yc}.

If X 6 Ybc then

min{Xa, Y }+ min{X,Ybc} = Xa +X = min{Xa, Yb}+ min{X,Yc}.

In the remaining case we have Xa < Y and Ybc < X, hence min{Xa, Y }+ min{X,Ybc} = Xa + Ybc and we
check that this is upper bounded by every possible expression on the RHS:

Xa + Ybc 6 Xa + min{X,Yc},
Xa + Ybc 6 Y + Ybc = Yb + Yc,

Xa + Ybc 6 X + Yb = Yb +X.

Lemma 4. For a ∈ J− and b, c, d ∈ J+ with ub > uc we have

min{Xa, Yc}+ min{X,Yb} 6 min{Xa, Yb}+ min{X,Yc}, and

min{Xa, Yc}+ min{X,Ybd} 6 min{Xa, Yb}+ min{X,Ycd}.

Proof. If X 6 Yb then

min{Xa, Yc}+ min{X,Yb} = Xa +X = min{Xa, Yb}+ min{X,Yc}.

If Yc 6 Xa then

min{Xa, Yc}+ min{X,Yb} = Yc + Yb = Yb + Yc = min{Xa, Yb}+ min{X,Yc}.
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In the remaining case we have (using Yb 6 Yc)

min{Xa, Yc}+ min{X,Yb} = Xa + Yb 6 min{Xa, Yb}+ min{X,Yc}.

This proves the first inequality. For the second inequality, if X 6 Ybd, then

min{Xa, Yc}+ min{X,Ybd} = Xa +X = min{Xa, Yb}+ min{X,Ycd}.

If Yc 6 Xa, then

min{Xa, Yc}+ min{X,Ybd} = Yc + Ybd = Yb + Ycd = min{Xa, Yb}+ min{X,Ycd}.

In the remaining case we have X > Ybd and Yc > Xa, hence min{Xa, Yc}+ min{X,Ybd} = Xa + Ybd, and we
check that this is upper bounded by every possible expression on the RHS:

Xa + Ybd 6 Xa + min{X,Ycd},
Xa + Ybd 6 Yc + Ybd = Yb + Ycd,

Xa + Ybd 6 X + Yb = Yb +X.

Lemma 5. For a, b ∈ J− and c, d ∈ J+ with ua > ub and uc > ud we have

min{Xa, Yd}+ min{Xb, Yc} 6 min{Xa, Yc}+ min{Xb, Yd}.

Proof. Note that Xa 6 Xb and Yc 6 Yd. If Xb 6 Yc then

min{Xa, Yd}+ min{Xb, Yc} = Xa +Xb = min{Xa, Yc}+ min{Xb, Yd}.

If Xa > Yd then

min{Xa, Yd}+ min{Xb, Yc} = Yd + Yc = Yc + Yd = min{Xa, Yc}+ min{Xb, Yd}.

Finally, if Yc < Xb and Xa < Yd then

min{Xa, Yd}+ min{Xb, Yc} = Xa + Yc = min{Xa, Yc}+ max{Xa, Yc} 6 min{Xa, Yc}+ min{Xb, Yd}.

Lemma 6. For a, b, c ∈ J+ with ua > ub, uc we have

min{X,Yab}+ min{X,Y } 6 min{X,Ya}+ min{X,Yb}, and

min{X,Yab}+ min{X,Yc} 6 min{X,Ya}+ min{X,Ybc}.

Proof. If X 6 Yab then

min{X,Yab}+ min{X,Y } = X +X = min{X,Ya}+ min{X,Yb}.

If Y 6 X then

min{X,Yab}+ min{X,Y } = Yab + Y = Ya + Yb = min{X,Ya}+ min{X,Yb}.

Finally, if Yab < X < Y then min{X,Yab} + min{X,Y } = Yab + X and it is easy to see that this is upper
bounded by any of the possible expressions on the RHS: X +X, X + Yb, Ya +X and Ya + Yb. This proves
the first inequality, and the second one is proved similarly.

Lemma 7. For a, b, c, d ∈ J+ with ua > ub > uc > ud we have

min{X,Yab}+ min{X,Ycd} 6 min{X,Yad}+ min{X,Ybc}.
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Proof. Note that Yab = min{Yab, Ycd, Ybc, Yad} and Ycd = max{Yab, Ycd, Ybc, Yad}. If X 6 Yab then

min{X,Yab}+ min{X,Ycd} = X +X = min{X,Yad}+ min{X,Ybc}.

If X > Ycd then

min{X,Yab}+ min{X,Ycd} = Yab + Ycd = Yad + Ybc = min{X,Yad}+ min{X,Ybc}.

Finally, if Yab < X < Ycd then min{X,Yab}+ min{X,Ycd} = Yab +X and it is easy to see that this is upper
bounded by the possible expressions on the RHS: X +X, X + Ybc, Yad +X and Yad + Ybc = Yab + Ycd.

Lemma 8. For a, b, c, d ∈ J+ with ua > ub > uc > ud we have

min{X,Yac}+ min{X,Ybd} 6 min{X,Yad}+ min{X,Ybc}.

Proof. Note that Ybd > Ybc > Yac and Ybd > Yad > Yac. If X 6 Yac then

min{X,Yac}+ min{X,Ybd} = X +X = min{X,Yad}+ min{X,Ybc}.

If X > Ybd then

min{X,Yac}+ min{X,Ybd} = Yac + Ybd = Yad + Ybc = min{X,Yad}+ min{X,Ybc}.

Finally, if Yac < X < Ybd then min{X,Yac} + min{X,Ybd} = Yac + X and we check that this is upper
bounded by any of the possible expressions on the RHS:

Yac +X 6 X +X,

Yac +X = X + Yac 6 X + Ybc,

Yac +X 6 Yad +X,

Yac +X 6 Yac + Ybd = Yad + Ybc.

With the help of Lemmas 1 to 8 we can now prove Proposition 2.

Proof of Proposition 2. Suppose we have an optimal schedule that is not the one described in the proposition.
As long as there is any time period with two inbound jobs we can use Lemmas 1 and 2 to reduce the number
of time periods with two inbound jobs without decreasing the objective value. After these modifications
we can assume without loss of generality that the jobs on the arcs a1, a2, . . . , ar are scheduled in the time
periods 1, 2, . . . , r. If in time period i 6 r no outbound job is scheduled then by Lemma 3 we can move an
outbound job to period i without decreasing the objective function. Hence we can assume that in each of the
time periods 1, 2, . . . , r exactly one inbound and one outbound job are scheduled. If a job on one of the arcs
b1, . . . , br is scheduled in in a time period i > r, then by Lemma 4 it can be exchanged with an outbound
job in a time period j 6 r without decreasing the objective value. Hence we can assume that the jobs on
the arcs b1, . . . , br are scheduled in the time periods 1, . . . , r. If they are not scheduled in the right order we
can swap outbound jobs using Lemma 5, hence we may assume that, for i = 1, 2, . . . , r, the job on arc bi is
scheduled for time period i. If a job on an arc bi with r + 1 6 i 6 2T − s is scheduled together with a job
on an arc bj , j > i, then by Lemma 6 we can reschedule so that the job on arc bi is the only job in its time
period. If s 6 T we are done at this point. So we may assume that s > T , for i = r + 1, r + 2, . . . , 2T − s
the job on arc bi is the only job in time period i, and in each of the time periods 2T − s + 1, . . . , T there
are two outbound jobs. Using Lemma 7 we can ensure that the jobs on arcs bi for i = 2T − s+ 1, . . . , T are
scheduled in distinct time periods, hence we may assume that, for these i, the job on arc bi is scheduled in
time period i. Finally, Lemma 8 asserts that the jobs on arcs bT+1, . . . , bs can be reordered as described in
the proposition without decreasing the objective value, and this concludes the proof.

Since sorting the arcs dominates the run-time of the algorithm to find the solution described in Proposi-
tion 2 we obtain the following stronger run-time bound for the single-node case.

Corollary 1. For K = 2 and a single transshipment node the problem can be solved on time O(|J | log|J |).
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2 Hardness results

Before proving the hardness results we make precise the definition of series-parallel network. In the present
paper this term refers to a two-terminal series-parallel network : a network that has a single source and single
sink and is constructed by a sequence of series and parallel compositions starting from single arcs. For two
networks N1 and N2 the parallel composition of N1 and N2 is obtained by identifying the source node s1 and
sink node t1 of N1 with the source node s2 and sink node t2 of N2, respectively. The series composition of
N1 and N2 is obtained by identifying the sink node t1 of N1 with the source node s2 of N2. The construction
of a series parallel network can be encoded into a tree, the so-called SP-tree, whose leaves are the arcs of the
network. This is illustrated in Figure 2.

s t
v1

a

b

c

d

S

P P

a b c d

Figure 2: A series-parallel network and the corresponding SP-tree.

Proposition 3. The restrictions of problem (1) to (8) to the instance class C3sp ∩ C3bal ∩ C3aa is strongly
NP-complete.

Proof. We use reduction from 3-Partition. Let a 3-Partition instance be given by an integer B and a
set {u1, . . . , u3n} of integers with B/4 < uj < B/2 for all j and

∑3n
j=1 uj = nB. The problem is to decide

if there is a partition of the set {u1, . . . , u3n} into n triples such that the sum of each triple equals B. We
define new numbers u′i for i = 1, . . . , 3n by u′i = 3ui −B. Note that u′i + · · ·+ u′3n = 0 and

ui + uj + uk = B ⇐⇒ u′i + u′j + u′k = 0.

Without loss of generality we can assume that for some integer r, we have ui > 0 for i 6 r and ui < 0 for
i > r. We define an instance of our problem with K = 3, T = n, a single transshipment node v and the
following arcs:

• For i = 1, 2, . . . , r there is an arc into v having capacity u′i, and

• for i = r + 1, . . . , 3n there is an out of v arc of capacity −u′i.
This is illustrated in Figure 3, where the arc labels represent capacities and all arcs have an associated
job, i.e. J = A. It follows from u′i + · · · + u′3n = 0 that this network is balanced. Let X be the capacity
of the network. The upper bound of (n − 1)X for the total throughput can be achieved if and only if
the set {u′i : i = 1, . . . , 3n} can be partitioned into triples that sum up to zero, or equivalently, the set
{ui : i = 1, . . . , 3n} can be partitioned into triples that sum up to B.

Proposition 4. The restriction of problem (1) to (8) to the instance class C|J|−1sp ∩ C|J|−1bal ∩ C|J|−1aa is NP-
complete.

Proof. We use reduction from Partition. Let a Partition instance be given by an integer B and a set
{u1, . . . , un} of integers with

∑n
j=1 uj = 2B. The problem is to decide if there is a partition of the set

{u1, . . . , un} into two parts such that the sum of each part equals B. The network used for the reduction is
shown in Figure 4, where the arc labels represent capacities and all arcs have an associated job, i.e. J = A.
Consider this network for the time horizon T = 2 and with K = n + 1. The upper bound of 2B can be
achieved if and only if the Partition instance is a YES instance.
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Figure 3: The network for C3sp ∩ C3bal ∩ C3aa.
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Figure 4: The network for C|J|−1sp ∩ C|J|−1bal ∩ C|J|−1aa .

Note that the algorithm from [1] for series-parallel networks and K = |J | which is pseudopolynomial for
fixed T can be adapted to the case K = |J | − 1. This algorithm computes a list of T -dimensional vectors
for each node of the SP-tree. The vectors at a node v of the SP-tree represent the possible throughputs
for the corresponding subnetwork: (z1, . . . , zT ) is in the list at node v if and only if the jobs for arcs in the
subnetwork can be scheduled such that the maximum flow value for the subnetwork in time period i is zi
(i = 1, . . . , T ). In each node of the tree we flag a vector that can only be achieved by scheduling all jobs at
the same time (which is at most one per node in the tree). Finally, when we scan the list at the root node
in order to determine the optimal solution, we exclude the flagged vector.

In [1], the class Cuc of instances where every arc has unit capacity was shown to be tractable when there
is no limit for the number of jobs per time period. We finish this section with a proof that this class becomes
NP-complete when such a limit is introduced.

Proposition 5. The restriction of problem (1) to (8) to the instance class Cuc is NP-complete.

Proof. We use reduction from 3-Partition. Let a 3-Partition instance be given by an integer B and a
set {u1, . . . , u3n} of integers with B/4 < uj < B/2 for all j and

∑3n
j=1 uj = nB. This can be reduced to the

instance presented in Figure 5, where every arc has unit capacity and the set J is represented by dashed arcs.
Since 3-Partition is strongly NP-hard we may assume that the numbers ui are bounded by a polynomial in

u1 arcs

u2 arcs

u3n−1 arcs

u3n arcs

b b b

b b b

b

b

b

b b b

b b b

b

b

b

3(n− 1) arcs

s t

Figure 5: Instance for the reduction in the proof of Proposition 5. The dashed arcs indicate the set J of arcs
with an associated job.

the input size, and this ensures that the network size is polynomial in the size of the 3-Partition instance.
We consider this network with a time horizon T = n and a bound of K = B jobs per time period. From
|J | = nB it follows that exactly B jobs have to be scheduled in each time period. The proof is finished by
the observation that the upper bound of 3n(n − 1) on the total throughput can be achieved if and only if
the 3-Partition instance is a YES instance.

3 An FPTAS for series-parallel networks with fixed T

In this section we restrict our attention to series-parallel networks. We modify the algorithm from [1] such
that the bound K can be taken into account. For fixed time horizon T , this algorithm runs in pseudopoly-
nomial time, and we use it together with scaling and rounding [9] to design an FPTAS.
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The algorithm presented in [1] starts at the leaves of the SP-tree and computes a list of vectors z =
(z1, . . . , zT ) for each node of the SP-tree, where the list at a node v in the SP-tree contains exactly the
vectors z such that there exists some schedule for which the subnetwork corresponding to v can carry flow zi
in time period i for i = 1, . . . , T . In the problem variant studied in [1] there is no restriction on the number
of arcs that can be shut in a period, so it is sufficient to keep track of the possible flow vectors at the nodes
of the SP-tree. But the same capacity vector can be realised through different schedules. For instance, for
the network shown in in Figure 6, there are three possibilities to get the flow vector (7, 0), i.e. 7 units in the
first time period and zero flow in the second period:

• shut 2 arcs in period 1 (arcs with capacities 1 and 2), and 2 arcs in period 2 (arcs with capacities 8
and 7); or

• shut 1 arc in period 1 (arc with capacity 1 or 2), and 3 arcs in period 2 (arcs with capacities 8, 7 and
(2 or 1)); or

• shut no arc in period 1, and all four arcs in period 2.

Thus with a limit K for the number of shut arcs per time period it becomes important to keep track of
the number of arcs shut in each period along with maximum flow that can be sent in that period. Let ji
represent the number of arcs shut in the ith period. We determine a lists of job-capacity vectors of the
form z = ((j1, z1), (j2, z2), . . . , (jT , zT )) at each node of the SP-tree. The interpretation of such a vector
z in the list of node N is that there is a solution in which, for i = 1, . . . , T , in time period i exactly ji
arcs from the subnetwork corresponding to N are shut, and this subnetwork has capacity zi. Due to the
symmetry with respect to the time periods it is no loss of generality to require the job-capacity vectors to
be ordered. Hence we consider only vectors that satisfy, for i = 1, . . . , T − 1, either zi > zi+1 or zi = zi+1

and ji > ji+1. We say that a vector with this property is in standard form, and we note that for every
job-capacity vector there is a unique vector in standard form which can be obtained by a permutation of the
entries. The list at a leaf node of the tree, corresponding to an arc a of the network, consists of the unique
vector ((0, ua), (0, ua), . . . , (0, ua), (1, 0)) if a ∈ J or ((0, ua), (0, ua), . . . , (0, ua), (0, ua)) if a /∈ J . As in [1],
let L and W denote the sets of leaves and internal nodes of the SP-tree, and let Wi (i = 0, . . . , d) be the set
of internal nodes at distance i from the root. The lists of job-capacity vectors are computed as described in
the Algorithm 1.

Example 1. Consider the series-parallel graph in Figure 6 where arc labels indicate capacities, all arcs need
maintenance for a period over a time horizon of 2 periods. Suppose that K = 3. In Figure 7, we show how
job-capacity vectors are computed in the SP-tree.

s t

v

8

2

1

7

Figure 6: Example network.

S

P

P

[((0, 8), (1, 0))] [((0, 1), (1, 0))]

[((0, 2), (1, 0)]

[((0, 7), (1, 0)]

[((0, 9), (2, 0)), ((1, 8), (1, 1))]

[((0, 11), (3, 0)), ((1, 10), (2, 1)),
((1, 9), (2, 2)), ((2, 8), (1, 3))]

[((2, 7), (2, 0)), ((1, 7), (3, 0)), ((1, 3), (3, 0)),

((2, 2), (2, 0)), ((2, 1), (2, 0)), ((3, 0), (1, 0))]

Figure 7: Computation of job-capacity vectors.

Proposition 6. Let m be the number of arcs, B be an upper bound for the capacities and K be the limit on
the number of arcs that can be shut in a period. For series-parallel networks the problem (1) to (8) can be
solved in time O(T log T (KmB)2TT !m).
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Algorithm 1 Maximizing total throughput for series-parallel networks under uniform maintenance limit K

for v ∈ L do
Let a ∈ A be the arc corresponding to v
if a ∈ J then Lv ← [((0, ua), (0, ua), . . . , (0, ua), (1, 0))]
else Lv ← [((0, ua), (0, ua), . . . , (0, ua), (0, ua))]

for i = d, d− 1, . . . , 0 do
for v ∈ Wi do

Lv ← [] {initialize empty list}
Let u and w be the child nodes of v
for (z, z′) ∈ Lu × Lw and π permutation of {1, 2 . . . , T} do

for i ∈ [T ] do j′′i = ji + j′π(i)
if j′′i 6 K for all i ∈ [T ] then

if v is a parallel composition node then
for i ∈ [T ] do z′′i = zi + z′π(i)

else
for i ∈ [T ] do z′′i = min{zi, z′π(i)}

sort z′′ to get the corresponding canonical vector
if z′′ 6∈ Lv then add z′′ to Lv

Let v be the root node

return max
z∈Lv

T∑
i=1

zi

Proof. The first and second component of an entry of a vector in the list at an internal node are bounded by
K and mB respectively, hence each entry can take KmB possible values. Therefore every list can contain
at most (KmB)T elements. Thus the loop over (z, z′) ∈ Lu × Lw and permutations π is over at most
T !(KmB)2T elements. If hash tables are used for the check of z′′ ∈ Lv then the bound of O(T log T ) for
sorting z′′ dominates the run-time of the loop. In total there are m− 1 internal nodes, thus the run-time of
the complete algorithm is O(T log T (KmB)2TT !m).

From Proposition 6, it follows that for fixed T the problem (1) to (8) on series-parallel networks can
be solved in O(m2T+1B2TK2T ) time where B is the maximum capacity of an arc in the network. Now
we use a scaling approach to derive a fully polynomial approximation scheme (FPTAS), that is a family
(Aε) of algorithms, parameterized by a positive real number ε, such that algorithm Aε produces a solution
with objective value at least (1 − ε)z∗, where z∗ is the optimal value, and the run-time of algorithm Aε is
polynomially bounded in the input size and 1/ε.

Our approximation scheme is based on scaling the problem such that the maximum capacity becomes
bounded. In order to ensure that the solution of the scaled problem is sufficiently close to the optimum we
need a lower bound for the optimal objective value. If |J | 6 K(T − 1) there is a feasible solution having
one time period without any outage, and the flow value for such a time period will be sufficient as lower
bound for our purpose. For |J | > K(T − 1) the situation is more complicated, and we need a preprocessing
step to transform a given instance into an equivalent one with some control on the maximum capacity. Let
ρ = max{0, |J | − K(T − 1)} ∈ {0, 1, . . . ,K}, and let M be the maximum flow value with ρ arcs closed.
For ρ = 0, M is the capacity of a minimum cut and can be computed by solving a max flow problem.
For ρ > 0, the computation of M is described in Algorithm 2. Here, for a node v in the SP-tree and a
number j ∈ {0, 1, . . . , ρ}, zjv is the capacity of the subnetwork corresponding to node v when j arcs in the
intersection of J and this subnetwork are closed. If j is larger than the size of this intersection, we put
zjv = −∞. Algorithm 2 shows that M can be computed efficiently.

Lemma 9. The maximum flow value M subject to the constraint that ρ arcs from J carry zero flow can be
determined in time O(mK2) = O(m3).

No arc can carry more than M units of flow in any time period, hence we may assume w.l.o.g. that
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Algorithm 2 Computing the maximum flow M with ρ outages

for v ∈ L do
Let a ∈ A be the arc corresponding to v
z0v ← ua
if a ∈ J then z1v ← 0 else z1v ← −∞
for j = 2, . . . , ρ do zjv ← −∞

for i = d, d− 1, . . . , 0 do
for v ∈ Wi do

for j = 0, 1, . . . , ρ do zjv ← −∞
Let u and w be the child nodes of v
for j = 0, 1, . . . , ρ do

for j′ = 0, 1, . . . , ρ− j do
if v is a parallel composition node then

zj+j
′

v ← max{zj+j′v , zju + zj
′

w }
else {v is a series composition node}

zj+j
′

v ← max{zj+j′v ,min{zju, zj
′

w }}
Let v be the root node
return M = zρv

B 6 M . We also know that the optimal objective value is at least M because, we can schedule ρ jobs
allowing a flow of value M in time period 1, and then continue arbitrarily. Let L = max{1, εB/(mT )} and
consider the scaled problem with the capacities ua replaced by u′a = bua/Lc. The scaled instance can be
solved in time

O(m2T+1(B/L)2TK2T ) = O(m4T+1K2T /ε2T ).

For any feasible vector y = (yai)a∈A,i∈[T ] ∈ {0, 1}|J|T , let F (y) and F ′(y) denote the objective values for
the problem on the original network and for the scaled version, respectively. Let y∗ = (y∗ai)a∈A,i∈[T ] and
ỹ = (ỹai)a∈A,i∈[T ] denote optimal solutions of the problem on the original network and of the scaled version,
respectively. In the following lemma, we study the the behaviour of the objective values for these solutions
under the scaling.

Lemma 10. We have the following estimates:

L · F ′(y∗) > (1− ε)F (y∗), (9)

F (ỹ) > L · F ′(ỹ). (10)

Proof. Both inequalities are obvious for for L = 1, because in this case the original and the scaled problem
coincide. So we assume L > 1. For i = 1, . . . , T let Ci be a minimum cut in the network (V,A∗i , s, t, u

′)
where A∗i = {a ∈ A : y∗ai = 1}. Then, using B 6M 6 F (y∗), we obtain

L · F ′(y∗) = L

T∑
i=1

∑
a∈Ci

u′a > L

T∑
i=1

(∑
a∈Ci

ua
L
− |Ci|

)
>

T∑
i=1

∑
a∈Ci

ua − LmT

=

T∑
i=1

∑
a∈Ci

ua − εB > (1− ε)F (y∗).

Similarly, let C ′i be a minimum cut in the network (V, Ãi, s, t, u) where Ãi = {a ∈ A : ỹai = 1}. Then

F (ỹ) =

T∑
i=1

∑
a∈C′i

uai > L

T∑
i=1

∑
a∈C′i

u′ai > LF ′(ỹ).
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Proposition 7. For fixed T , the class Csp of instances with a series-parallel network has an FPTAS with
run-time O(m2T+1(B/L)2TK2T ) = O(m4T+1K2T /ε2T ) = O(m6T+1/ε2T ).

Proof. The run-time bound for the scaled problem is a consequence of Proposition 6, and the approximation
guarantee follows from (9) and (10): F (ỹ) > LF ′(ỹ) > LF ′(y∗) > (1− ε)F (y∗).

Remark 1. The problem can be generalized by allowing the bound on the number of jobs to vary over time.
In other words, the parameter K is replaced by a vector (K1, . . . ,KT ) and constraints (6) are replaced by∑

a∈J
yai > |J | −Ki for all i ∈ [T ].

Algorithm 1 can be modified to solve this more general problem, and with

ρ = max

{
0, |J | −

T∑
i=1

Ki + min
i∈[T ]

Ki

}

we obtain an FPTAS of runtime O(m6T+1/ε2T ) for this problem.

ForK = |J |, it was shown in [1] that the method corresponding to Algorithm 7 runs in timeO(m2T−1B2T−2),
and using the same argument as above, we obtain the following approximation result.

Proposition 8. For fixed T , K = |J | and series-parallel networks, the problem (1) to (8) has an FPTAS
with run-time O(m2T−1(B/L)2T−2) = O(m4T−3/ε2T−2).

Since for K = |J | shutting all arcs in the job set J at the same time gives an approximation ratio of
(1− 1/T ), we have the following result for arbitrary T .

Corollary 2. For K = |J | and series-parallel networks, the problem (1) to (8) has a PTAS with run-time

O
(
f(1/ε)m4/ε−3

)
where f(x) = x5x−5/2ex log x.

Proof. Let ε > 0 be fixed. If 1/T 6 ε we schedule all jobs at time 1. Otherwise T < 1/ε and we run the
ε-approximation algorithm for T . By the argument in [1], the run-time is bounded by

O
(
T log(T )T !(mB/L+ 1)2(T−1)m

)
= O

(
T log(T )T !

(
m2T

ε
+ 1

)2(T−1)
m

)

= O

(
(mT )4T−3 log(T )T !

(
1

εT
+

1

(mT )2

)2(T−1))
. (11)

We have (
1

εT
+

1

(mT )2

)2(T−1)
=

(
m2T + ε

ε(mT )2

)2(T−1)
=

(
1 +

m2T + ε− ε(mT )2

ε(mT )2

)2(T−1)

With α = m2T + ε− ε(mT )2 and β = ε(mT )2 we obtain(
1

εT
+

1

(mT )2

)2(T−1)
=

[(
1 +

α

β

)β/α]2(T−1)α/β
6 e2(T−1)α/β .

Now

2(T − 1)
α

β
6 2T · m

2T + ε− ε(mT )2

ε(mT )2
= 2 · m

2T (1− εT ) + ε

εm2T
6 2/ε+ 1,

and this implies (
1

εT
+

1

(mT )2

)2(T−1)
= O(e2/ε).
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Substituting into (11) yields a run-time bound of

O
(

(mT )4T−3 log(T )T !e2/ε
)
,

and since all terms are increasing in T , we get with T < 1/ε and using Stirling’s formula to bound the
factorial, that the run-time is bounded by

O
(

(1/ε)4/ε−3 log(1/ε)d1/εe!e2/εm4/ε−3
)

= O
(

(1/ε)4/ε−3 log(1/ε)(1/ε)1/εe−1/ε
√

1/εe2/εm4/ε−3
)

= O
(

(1/ε)5/ε−5/2 log(1/ε)e1/εm4/ε−3
)
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