
Optimal multileaf collimator

field segmentation

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

der Mathemathisch–Naturwissenschaftlichen Fakultät

der Universität Rostock

vorgelegt von

Thomas Kalinowski, geb. am 27.11. 1980 in Pasewalk

aus Rostock

Rostock, 1. September 2004

Dekan: Prof. Dr. Udo Kragl

Gutachter: Prof. Dr. K. Engel (Rostock)

Gutachter: Prof. Dr. H. Hamacher (Kaiserslautern)

Gutachter: Prof. Dr. R. Ahlswede (Bielefeld)

Tag der öffentlichen Verteidigung: 28.01.2005

ACKNOWLEDGEMENT

It is a great pleasure for me to thank Prof. Konrad Engel for his reliable
advice concerning all questions arising in connection with my dissertation,
and especially for his patience with several versions of this work. I also thank
my family and friends for always supporting me. Special thanks to Markus
Stoy for many useful LATEX hints.

CONTENTS

1. Introduction . 9

2. TNMU–optimal field segmentation 15
2.1 A Linear Programming formulation 15
2.2 The lower bound . 17
2.3 The algorithm . 33
2.4 Test results . 47

3. A heuristic for the reduction of the number of segments 49
3.1 The algorithm . 50
3.2 Test results . 56

4. Exact minimization of the number of segments 59
4.1 Single row intensity maps . 61
4.2 Multiple row intensity maps 72
4.3 Test results . 82

5. Further Results . 85
5.1 Using the MLC in two directions 85

5.1.1 A lower bound . 85
5.1.2 Heuristic results . 87

5.2 Two orthogonal MLCs . 92

1. INTRODUCTION

In cancer treatment high energetic radiation is used to destroy the tumor. To
achieve this goal the irradiation process must be planned in such a way that
the tumor (target volume) receives a sufficiently high dose while the organs
close to it (organs at risk) are not damaged. In clinical practice the radiation
is delivered by a linear accelerator and the beam head is part of a gantry that
can be rotated about the treatment couch (see Figure 1.1). In order to design

Fig. 1.1: A treatment couch with gantry and beam head.

a treatment plan a set of gantry angles and corresponding beam intensities
have to be determined. See [13, 21, 22] for reviews of different approaches to
this problem. Because of technological developments recently intensity mod-
ulated radiotherapy (IMRT) became an important method to improve the
quality of the treatment. Here instead of one rectangular homogeneous field
a number of differently shaped fields are superimposed, and so an intensity
modulated field is produced. The shapes of the fields are determined by a
multileaf collimator (MLC). A multileaf collimator consists of two opposing
banks of metal leaves (see Figure 1.2). The leaves can be moved independent
of each other and each leaf configuration corresponds to a radiation field of a
particular shape that is realized by inserting the MLC between the radiation
source and the patient. Now the realization of an intensity modulated field

10 1. Introduction

Fig. 1.2: The leaf pairs of a multileaf collimator.

using an MLC can be modeled as follows. The beam head is discretized into
bixels and the modulated field is described by giving the desired intensity
for each bixel. So the intensity map can be considered as an m× n−matrix,
where each row corresponds to a leaf pair. There are two essentially different
ways to generate intensity modulated fields with multileaf collimators: in the
static mode (step–and–shoot) [6–8, 10, 11, 16, 20, 23, 28] the beam is switched
off when the leaves are moving while in the dynamic mode [7, 9, 17, 19, 24–27]
the beam is switched on during the whole treatment and the modulation is
achieved by varying the speed of the leaf motion. Two important criteria
for the quality of a treatment plan are the total irradiation time and the
total treatment time. The total irradiation time should be small since there
is always a small amount of radiation transmitted through the leaves, and
if the used model ignores this leaf transmission the error increases with the
total irradiation time. A small total treatment time is desirable for efficiency
reasons. In the dynamic mode the two criteria coincide. So here the problem
is to determine a velocity function for each leaf such that the given intensity
is realized in the shortest possible time. In the static mode the whole treat-
ment consists of the irradiation and the intervals in between when the leaves
are moved. Thus we have two parameters which influence the total treat-
ment time: the irradiation time and the number of homogeneous fields that
are needed. How these parameters have to be weighted depends on the used
technology: the longer the time intervals between the different fields are, the
more the reduction of the number of fields becomes important. The lengths
of these time intervals are influenced by the leaf velocity and by the so called
verification and record overhead, which is the time necessary to check the
correct positions of the leaves. In a more realistic model one should also take

11

the shapes of the fields into account, because clearly the necessary leaf travel
time between two fields depends on the shapes of these fields [4, 23]. The
dynamic mode has the advantage of a smaller total treatment time, but the
static mode involves no leaf movement with radiation on and so the verifi-
cation of the correct realization of the treatment plan is easier which makes
the method less sensitive to malfunctions of the technology.

There are additional machine–dependent restrictions which have to be
considered when determining the leaf positions:

Interleaf collision constraint (ICC): In some widely used MLCs it is forbid-
den that opposite leaves of adjacent rows overlap, because otherwise
these leaves collide. So leaf positions as illustrated in Figure 1.3 (where
the shading indicates the area that is covered by the leaves) are not
allowed.

Fig. 1.3: Leaf position that is excluded by the ICC.

Tongue and groove constraint: In order to reduce leakage radiation between
adjacent leaves the commercially available MLCs use a tongue–and–
groove (or similar) design with the effect that there is a small overlap
of the regions that are covered by adjacent leaves. This is illustrated
in Figure 1.4 which shows a cut through the leaf bank perpendicular
to the direction of leaf motion.

Radiation

Fig. 1.4: The principle of the tongue–and–groove design.

12 1. Introduction

Consider two bixels x and y that are adjacent along a column and
two homogeneous fields, where in the first field x is irradiated and y is
covered and in the second field y is irradiated and x is covered. Then
in the composition of these fields along the border of x and y there is a
narrow strip (the overlap of the regions that are covered by the leaves
in the rows of x and y, respectively) that receives no radiation at all.
Figure 1.5 illustrates this for the intensity map (2 3

3 4).

3 MU

1 MU

1 MU

2 MU

1 MU

1 MU

a) The overlap of bixels (1, 1) and
(2, 1) receives no radiation because
of the tongue and groove effect.

b) The overlaps of bixels that are ad-
jacent along a column receive the
smaller one of the relevant doses.

Fig. 1.5: Two different realizations of the same intensity map.

To avoid this effect one may require that two bixels that are adjacent
along a column are irradiated simultaneously for the time the lower of
the two doses is delivered. Then the border region receives this lower
dose. If this is the case for all the relevant pairs of adjacent bixels the
treatment plan is said to satisfy the tongue and groove constraint.

In this work we consider the problem of constructing segmentations, tak-
ing into account the interleaf collision constraint, while we neglect the tongue
and groove constraint. Describing the possible leaf positions of the MLC
by certain (0, 1)–matrices, called segments, this amounts to the search for
a realization of the given intensity matrix A with a small total number of
monitor units (TNMU) and a small number of segments (NS). In general
it is not possible to minimize both parameters simultaneously [15]. For the
case of an MLC without ICC there are several segmentation algorithms [6–
8, 11, 20, 23, 28], some of them providing the optimal TNMU but a large NS,
others reducing the NS heuristically at the price of an increased TNMU.
The exact minimization of the NS is NP–hard already for intensity matrices
consisting of just one row [2, 15]. In principle both, TNMU and NS, can be

13

optimized by integer programming and this method can be adapted to addi-
tional restrictions like ICC [18]. But clearly this is applicable only for small
problem sizes. Another approach is the reformulation of the segmentation
problem in a network flow setting. In [4] this is done for MLC–segmentation
with ICC, yielding a network flow algorithm for the TNMU–optimal seg-
mentation. In [2] this approach is developed further and a heuristic for the
reduction of the NS is added. The method of [23] yielding TNMU–optimal
segmentations without ICC is modified in [16] such that it takes into account
the ICC (and an even more general condition). In [10] there is presented an
efficient segmentation algorithm yielding the optimal TNMU and a very small
NS for the segmentation problem without ICC. See [15] for a survey and a
comparison of the different segmentation algorithms. Engel’s algorithm [10]
for the segmentation without ICC is derived from an explicit formula for the
smallest possible TNMU. Evaluating this formula is equivalent to solving a
longest path problem in a properly constructed layered digraph. Theorem 1,
one of the main results of this thesis, is a generalization of that construction
such that the longest path problem in the new digraph corresponds to the
evaluation of the minimal TNMU for a segmentation with ICC. Chapter 2 is
devoted to the proof of this theorem which consists of two parts: using a du-
ality argument we establish that the maximal weight of a path in the digraph
to be described below is a lower bound for the number of monitor units in
a segmentation, and then we describe a method to achieve this bound. In
Chapter 3 we develop a heuristic method to construct a segmentation with
minimal number of monitor units and a small number of segments. In Chap-
ters 4 and 5 we discuss some results for MLC segmentation without ICC.
In Chapter 4 we show that a segmentation with in first instance minimal
TNMU and in second instance minimal NS can be determined in polynomial
time if the entries of the intensity matrix are bounded by a constant. Finally,
in Chapter 5 we suggest two more flexible ways of using the MLC, thus in-
creasing the number of possible shapes for the homogeneous fields. In 5.1 we
study the situation when it is allowed to rotate the MLC about 90◦ between
the delivery of two segments and in 5.2 we consider a pair of two MLCs with
orthogonal directions of leaf motion.

14 1. Introduction

2. AN ALGORITHM FOR TNMU–OPTIMAL FIELD
SEGMENTATION WITH INTERLEAF COLLISION

CONSTRAINT

2.1 A Linear Programming formulation

Throughout m and n are positive integers and for positive integers k we use
the notation [k] := {1, 2, . . . , k}. Let A = (ai,j) 1≤i≤m

1≤j≤n
be an m×n-matrix with

nonnegative integer entries. In addition we put ai,0 = ai,n+1 = 0 (i ∈ [m]). A
segment is a matrix that corresponds to a position of an MLC with interleaf
collision constraint. This is made precise in the following definition.

Definition 1. A segment is an m×n-matrix S = (si,j), such that there exist
integers li, ri (i ∈ [m]) with the following properties:

li ≤ ri + 1 (i ∈ [m]), (2.1)

si,j =

{

1 if li ≤ j ≤ ri

0 otherwise
(i ∈ [m], j ∈ [n]), (2.2)

ICC: li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m − 1]). (2.3)

The interpretation is that li−1 and ri +1 are the positions of the i–th left
and right leaf, respectively. A segmentation of A is a representation of A as
a sum of segments, that is A =

∑k
i=1 uiSi with segments Si (i = 1, 2, . . . , k)

and positive integers ui (i = 1, 2, . . . , k). The TNMU of this segmentation is
∑k

i=1 ui and our goal is to find a segmentation of A with minimal TNMU.

Example 1. A segmentation with 10 MU for a benchmark matrix from [18]
is

(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

= 3

(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+ 3

(

1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

)

+ 1

(

0 0 0 0 0 1
0 0 0 1 1 1
0 0 0 0 1 0
0 1 1 1 1 0

)

+ 1

(

0 0 0 1 1 1
0 0 0 1 0 0
0 1 1 0 0 0
1 1 1 0 0 0

)

+ 1

(

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 1 1 0

)

+ 1

(

1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
0 0 0 0 0 0

)

.

(2.4)

16 2. TNMU–optimal field segmentation

By F we denote the family of subsets of V := [m] × [n] that correspond
to segments, precisely

F = {T ⊆ V : There exists a segment S with (i, j) ∈ T ⇐⇒ si,j = 1}.

With a segmentation A =
∑k

i=1 uiSi we can associate a function f : F → IN :
for 1 ≤ i ≤ k we put f(T) = ui for the T ⊆ V corresponding to the segment
Si, and for the remaining T we put f(T) = 0. Now the LP-relaxation of the
segmentation problem is:

(P)



































minimize
∑

T∈F

f(T) subject to

f(T) ≥ 0 ∀T ∈ F ,

∑

T∈F :(i,j)∈T

f(T) = ai,j ∀(i, j) ∈ V.

The dual variables (one variable for each (i, j) ∈ V) can be considered as a
function g : V → IR and in this formulation the dual program is

(D)



















maximize
∑

(i,j)∈V

ai,jg(i, j) subject to

∑

(i,j)∈T

g(i, j) ≤ 1 ∀T ∈ F .

To solve the segmentation problem we proceed in two steps: first we construct
a feasible solution for the program (D) which yields a lower bound for the
TNMU, and in the second step we construct a sequence of segments that

realizes this lower bound. We define a directed acyclic graph
−→
G = (V ∪

{0, 1}, E). For E we take all possible arcs of the forms (0, (i, 1)) and ((i, n), 1),
as well as all the arcs between the j−th and the (j + 1)−th column (j =
1, 2, . . . , n − 1), precisely E = E1 ∪ E2 ∪ E3, where

E1 = {(0, (i, 1)) : i ∈ [m]},

E2 = {((i, n), 1) : i ∈ [m]},

E3 = {((i, j), (i′, j + 1)) : i, i′ ∈ [m], j ∈ [n − 1]}.

The next step is the definition of a weight function δ (depending on A) on
E. δ reflects the structure of certain dual feasible solutions g (to be defined
in the next section), in such a way that the objective value of the program

2.2. The lower bound 17

(D) for a solution g equals the weight of a certain (0, 1)–path in
−→
G . We put

di,j = ai,j − ai,j−1 (i ∈ [m], j ∈ [n + 1]) and

δ(0, (i, 1)) = ai,1 (i ∈ [m]),

δ((i, n), 1) = 0 (i ∈ [m]),

δ((i, j), (i, j + 1)) = max{0, di,j+1} (i ∈ [m], j ∈ [n − 1]),

δ((i, j), (i′, j + 1)) = max{0, di′,j+1} −
i′−1
∑

k=i

ak,j

(i, i′ ∈ [m], i < i′, j ∈ [n − 1]),

δ((i, j), (i′, j + 1)) = max{0, di′,j+1} −
i
∑

k=i′+1

ak,j

(i, i′ ∈ [m], i > i′, j ∈ [n − 1]).

Since the considered matrix will be clear from the context we omit it in the
notation for the weight function. For a path P = (v0, v1, . . . , vl) in

−→
G its

weight is δ(P) =
∑l

i=1 δ(vi−1, vi). Now we are prepared to formulate the
main result of this chapter.

Theorem 1. The minimal TNMU of a segmentation of a nonnegative matrix

A equals the maximal weight of a (0, 1)−path in
−→
G .

Note that the minimal TNMU in a segmentation without ICC can be
interpreted analogously. In this case the minimal TNMU equals (see [10])

max
1≤i≤m

n
∑

j=1

max{0, di,j},

that is the maximal weight of a (0, 1)−path in the graph that is obtained

from
−→
G by deleting all the arcs ((i, j), (i′, j + 1)) with i 6= i′. For notational

convenience we put

c(A) = max{δ(P) : P is a (0, 1) − path in
−→
G},

so that in order to prove the theorem we have to show that c(A) is a lower
bound for the TNMU of a segmentation of A and that this bound is sharp.

2.2 The lower bound

In this section we show how the (0, 1)−paths in
−→
G correspond to certain

feasible solutions for the program (D) and from this we derive the lower

18 2. TNMU–optimal field segmentation

bound part of Theorem 1. A (0, 1)−path P is uniquely determined by the
indices of the columns in which P changes the row and the indices of the
rows in which P runs between the row changes. So let x1, x2, . . . , xk−1 with
0 < x1 < x2 < · · · < xk−1 < n denote the indices of the columns where P

changes the row, i.e.

(i, xt), (i
′, xt + 1) ∈ P with i 6= i′ (t ∈ [k − 1]),

and let i∗t be the row index with (i∗t , xt) ∈ P (t = 1, 2, . . . , k − 1) and i∗k the
index with (i∗k, n) ∈ P . Finally, we put x0 = 0, and xk = n + 1. Thus

P = (0, (i∗1, 1), (i∗1, 2), . . . , (i∗1, x1), (i
∗
2, x1 + 1), . . . , (i∗2, x2), . . . , . . . , (i

∗
k, n), 1),

and P is uniquely determined by its parameters (i∗1, x1), . . . , (i
∗
k, xk). Now we

define g : V → {1,−1, 0} by

g(i, j) =































1 if xt−1 < j < xt − 1, i = i∗t , di,j ≥ 0, di,j+1 < 0,
1 if xt−1 < j = xt − 1, i = i∗t , di,j ≥ 0,
−1 if xt−1 < j < xt − 1, i = i∗t , di,j < 0, di,j+1 ≥ 0,
−1 if j = xt, i∗t ≤ i < i∗t+1 or i∗t+1 < i ≤ i∗t ,

−1 if j = xt, i = i∗t+1, di,j+1 ≥ 0,
0 otherwise.

(2.5)

For i ∈ [m] we put J(i) := {j ∈ [n] : g(i, j) 6= 0}. Fix some i ∈ [m] and
denote the elements of J(i) by j1, j2, . . . , jp such that

j1 < j2 < · · · < jp.

Then the following observations follow immediately from (2.5).

1. If i = i∗1 and k > 1 then x1 ∈ J(i) and the sequence

g(i, j1), g(i, j2), . . . , g(i, x1)

is an alternating (1,−1)−sequence ending with −1.

2. If i = i∗k, k > 1 and J(i) ∩ {xk−1, xk−1 + 1, . . . , n} 6= ∅ then for

q = min{τ : jτ ≥ xk−1},

g(i, jq), g(i, jq+1), . . . , g(i, jp) is an alternating (1,−1)−sequence start-
ing with −1 and ending with 1.

3. If i = i∗1 and k = 1 then the sequence g(i, j1), g(i, j2), . . . , g(i, jp) is
empty or an alternating (1,−1)−sequence starting and ending with 1.

2.2. The lower bound 19

· //· //

3

��*
**

**
**

**
**

**
* · //· 2 //· 2 //·

��
· //· //· //· //· //·

''·

3
;;wwwwwwwwwww

1 33

2
++

##

·
· //· //· //· //· //·

77

· //· 6 //· //· 1 //· //·

DD

(gi,j) =









1 −1 0 0 0 0
0 −1 0 0 0 0
0 −1 0 0 0 0
0 −1 1 −1 0 1









Fig. 2.1: A path P and the corresponding g.

4. If i = i∗t for 2 ≤ t ≤ k − 1 then xt ∈ J(i) and for

q = min{τ : jτ ≥ xt−1},

g(i, jq), g(i, jq+1), . . . , g(i, xt) is an alternating (1,−1)−sequence start-
ing and ending with −1.

5. If j ∈ J(i) and (i, j) does not correspond to a term in one of the
sequences described in the first 4 cases then j = xt for some t ∈ [k− 1]
with i 6= i∗t and i 6= i∗t+1 and g(i, j) = −1.

Example 2. Fig. 2.1 shows a path P of weight 7 with respect to the matrix

A =

(

3 0 0 0 2 4
1 1 1 2 3 3
2 2 2 1 1 1
0 0 6 0 1 1

)

and the corresponding function g. The dotted lines are some more arcs
labeled with their weight, where the unlabeled arcs have weight 0.

In order to prove that for every (0, 1)−path P the corresponding function g

is a feasible solution for the program (D), we have to show that, for every
T ∈ F ,

∑

(i,j)∈T

g(i, j) ≤ 1.

Lemma 1. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (2.5). In addition let 1 ≤ l ≤ r + 1 ≤ n + 1.
Then, for every i ∈ [m],

r
∑

j=l

g(i, j) ≤ 1,

and equality implies xt−1 < l ≤ r < xt for some t ∈ [k] with i∗t = i.

20 2. TNMU–optimal field segmentation

Proof. We choose an arbitrary i ∈ [m]. As above we denote the elements of
J(i) = {j ∈ [n] : g(i, j) 6= 0} by j1, . . . , jp such that

j1 < j2 < · · · < jp.

As a consequence of the observations before Example 2 we obtain, for 1 ≤
q ≤ p − 1,

g(i, jq) = 1 ⇒ g(i, jq+1) = −1.

Now the first part of the lemma follows from

r
∑

j=l

g(i, j) =

q′
∑

τ=q

g(i, jτ) for some q, q′ ∈ [p].

Suppose
r
∑

j=l

g(i, j) =

q′
∑

τ=q

g(i, jτ) = 1.

By construction the sequence g(i, jq), g(i, jq+1), . . . , g(i, jq′) has to be an al-
ternating (1,−1)−sequence starting and ending with 1. This implies

xt−1 < l < xt and xt′−1 < r < xt′

for some t, t′ ∈ [k] with i = i∗t = i∗t′ . Assume t 6= t′ and put

t′′ = min{σ > t : i∗σ = i} and q′′ = min{τ : jτ ≥ xt′′−1}.

Then
jq < xt < jq′′ < jq′, g(i, xt) = g(i, jq′′) = −1,

and g(i, j) ≤ 0 for all j with xt < j < jq′′ . So g(i, jq), g(i, jq+1), . . . , g(i, jq′)
contains two consecutive (−1)−terms, which is a contradiction. Hence t = t′

and the second part of the lemma follows. �

The next lemma gives a condition that must hold if the sum of the g(i, j)
over a row of a segment vanishes. (By a row of a segment we mean the part
of the row that is left open by the MLC in the corresponding leaf position.)

Lemma 2. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (2.5). Assume i ∈ [m], 1 ≤ l ≤ r + 1 ≤ n + 1
and

r
∑

j=l

g(i, j) = 0.

Suppose in addition that for some t ∈ [k − 1] one of the following conditions
holds

2.2. The lower bound 21

-8 -7 -6 -5 -4 -3 -2
0

1

2

3

4
� � � �

� �

i∗t

i

i∗t+1

li ri xt

a) i∗t < i < i∗t+1 and l ≤ xt

2 3 4 5 6 7 8
0

1

2

3

4
� �

� � �

�

i∗t−1

i∗t = i

i∗t+1

li=xt−1 ri xt

b) t ≥ 2, i∗t = i < i∗t+1 and l ≤ xt−1.

Fig. 2.2: Illustration of Lemma 2.

1. i∗t < i < i∗t+1 and l ≤ xt

2. t ≥ 2, i∗t = i < i∗t+1 and l ≤ xt−1

3. i∗t > i > i∗t+1 and l ≤ xt

4. t ≥ 2, i∗t = i > i∗t+1 and l ≤ xt−1

Then r < xt.

Proof. We consider only the first two cases that are illustrated in Fig. 2.2.
The other two are treated analogously. Assume r ≥ xt. In order to derive
a contradiction we use the following observation several times. If P leaves
row i in (i, j) then g(i, j) = −1, and if P enters row i′ in (i′, j ′), j ′ > 1, then
either g(i′, j ′ − 1) = −1 or the first nonvanishing g(i′, j ′′) we meet on the
subpath starting with (i′, j ′) equals −1. We put

J = {j : l ≤ j ≤ r, g(i, j) 6= 0},

and denote the elements of J by j1, j2, . . . , jp (j1 < j2 < · · · < jp). In
particular jq = xt for some q ∈ [p].

Case 1: g(i, j1) = −1.

By assumption g(i, j1), . . . , g(i, jp) is an alternating (1,−1)−sequence
starting with −1 and ending with 1. From g(i, xt) = −1 follows q < p

and by construction of g the contradiction

g(i, jq) = g(i, jq+1) = −1.

Case 2: g(i, j1) = 1.

22 2. TNMU–optimal field segmentation

This implies l < xt′ for some t′ < t with i∗t′ = i, and consequently
jq′ = xt′ for some q′ ∈ [p − 1], q′ < q. Thus

g(i, jq′) = g(i, jq′+1) = −1,

and g(i, j1), g(i, j2), . . . , g(i, jp) contains two consecutive (−1)−terms.
By assumption this implies g(i, jp) = 1, hence p > q, and by construc-
tion of g,

g(i, jq) = g(i, jq+1) = −1.

But now g(i, j1), g(i, j2), . . . , g(i, jp) contains two pairs of consecutive
(−1)−terms (if q′+1 < q) or three consecutive (−1)−terms (if q ′ +1 =
q). Again this yields a contradiction. �

The following lemma is the crucial step in the proof of the feasibility of
g. We show that the ICC implies that in any segment, between two rows in
which the values of g add up to 1 there is a row in which this sum is at most
−1.

Lemma 3. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (2.5). Suppose S is a segment described by
l1, l2, . . . , lm,r1, r2, . . . , rm and there are row indices i0, i1 (1 ≤ i0 < i1 ≤ m)
such that

ri0
∑

j=li0

g(i0, j) = 1 and

ri1
∑

j=li1

g(i1, j) = 1.

Then there exists a row index i with i0 < i < i1 and
ri
∑

j=li

g(i, j) ≤ −1.

Proof. W.l.o.g. we may assume that there is no row i with i0 < i < i1 and

ri
∑

j=li

g(i, j) = 1.

Suppose that for all i with i0 < i < i1,
ri
∑

j=li

g(i, j) = 0. By Lemma 1 there

are t, t′ ∈ [k] such that

xt−1 < li0 ≤ ri0 < xt, i∗t = i0 and

xt′−1 < li1 ≤ ri1 < xt′ , i∗t′ = i1.

W.l.o.g. we may assume t < t′. Now let i0 = z0 < z1 < · · · < zp = i1
be an increasing sequence of row indices such that there is a corresponding

2.2. The lower bound 23

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7
� �

� �

� �

� �

� �

� �

� �

z0 = i0

z1

z2

z3 = i1

ri0 xt0 xt1 xt2 xt3 xt′−1 li1

Fig. 2.3: Situation in the proof of Lemma 3 with p = 3.

sequence t = t0 < t1 < · · · < tp ≤ t′ with i∗tq = zq (0 ≤ q ≤ p) and in addition
for 0 ≤ q ≤ p − 1 there is no τ with tq < τ < tq+1 and zq < i∗τ ≤ zq+1.
These sequences always exist, are uniquely determined, and can be obtained
recursively as follows. We put

t0 = t and z0 = i0,

and for q ≥ 1, if zq−1 < i1,

tq = min{τ : zq−1 < i∗τ ≤ i1} and zq = i∗tq .

So for some q we obtain zq = i1, and then we put p = q (see Fig. 2.3).

Claim 1: For 0 ≤ q ≤ p − 1,

rzq
< xtq ⇒ ri < xtq+1−1 for all i with zq ≤ i < zq+1.

Claim 2: For 0 ≤ q ≤ p − 1 we have rzq
< xtq .

Proof of Claim 1. We proceed by induction on i. By assumption

rzq
< xtq ≤ xtq+1−1.

So let zq < i < zq+1 and assume ri−1 < xtq+1−1. The ICC implies

li ≤ ri−1 + 1 ≤ xtq+1−1,

and by Lemma 2 we obtain ri < xtq+1−1.

24 2. TNMU–optimal field segmentation

Proof of Claim 2. Here we use induction on q. Clearly,

rz0 = ri0 < xt = xt0 .

So let q > 0 and assume by induction rzq−1 < xtq−1 . Then by Claim 1,

rzq−1 < xtq−1.

Thus by the ICC

lzq
≤ rzq−1 + 1 ≤ xtq−1,

and hence, again by Lemma 2, rzq
< xtq .

Combining Claims 1 and 2 we obtain

ri1−1 < xtp−1 ≤ xt′−1 < li1 ,

thus ri1−1 < li1 − 1 in contradiction to the ICC. �

Lemma 4. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (2.5). Then g is feasible for (D).

Proof. Let T ∈ F be arbitrary and let S be the corresponding segment with
parameters li, ri (i ∈ [m]). Then

∑

(i,j)∈T

g(i, j) =

m
∑

i=1

ri
∑

j=li

g(i, j).

By Lemma 1, for all i ∈ [m],
ri
∑

j=li

g(i, j) ≤ 1, and by Lemma 3 between two

rows i and i′′ with i < i′′ and

ri
∑

j=li

g(i, j) =

ri′′
∑

j=li′′

g(i′′, j) = 1

there is always a row i′ with i < i′ < i′′ and
ri′
∑

j=li′

g(i′, j) ≤ −1. Consequently,

∑

(i,j)∈T

g(i, j) ≤ 1,

that is the feasibility of g. �

2.2. The lower bound 25

Lemma 5. Let P be a (0, 1)−path with parameters (i∗1, x1), . . . , (i
∗
k, xk), and

let g be defined according to (2.5). Then

∑

(i,j)∈V

g(i, j)aij =

k
∑

t=1

xt−1
∑

j=xt−1+1

max{0, di∗t ,j}−
k−1
∑

t=1





i∗t+1−1
∑

i=i∗t

ai,xt
+

i∗t
∑

i=i∗t+1+1

ai,xt



 .

For brevity of notation, here and for the rest of this work we use the
convention that an empty sum is zero, i.e.

∑s

i=r zi = 0 if s < r.

Proof. Immediately from (2.5) it follows that

xt−1
∑

j=xt−1

g(i∗t , j)ai∗t ,j =
xt−1
∑

j=xt−1+1

max{0, di∗t ,j} (t = 1, 2, . . . , k).

The remaining nonzero g(i, j) correspond to the row changes of P , and we
have to add for t = 1, 2, . . . , k − 1,

i∗t+1−1
∑

i=i∗t

g(i, xt)ai,xt
= −

i∗t+1−1
∑

i=i∗t

ai,xt
if i∗t < i∗t+1 and

i∗t
∑

i=i∗t+1+1

g(i, xt)ai,xt
= −

i∗t
∑

i=i∗t+1+1

ai,xt
if i∗t > i∗t+1. �

For the weight of P to be equal to the value of the program (D) for
the corresponding g we need an additional restriction on P . We call the
(0, 1)−path P with parameters (i∗1, x1), . . . , (i

∗
k, xk) feasible (with respect to

A) if di∗t ,xt
< 0 for t = 1, 2, . . . , k − 1, which in particular implies that the

last arcs of the horizontal parts of P have weight 0.

Lemma 6. Let P be a feasible (0, 1)−path and let g be defined according to
(2.5). Then

∑

(i,j)∈V

g(i, j)ai,j = δ(P).

Proof. Let P be given by parameters (i∗1, x1), . . . , (i
∗
k, xk). For t ∈ [k] we

denote by Pt the subpath from (i∗t , xt−1 + 1) to (i∗t , xt). Thus

δ(P) =

k
∑

t=1

δ(Pt) + δ(0, (i∗1, 1)) +

k−1
∑

t=1

δ((i∗t , xt), (i
∗
t+1, xt + 1)).

26 2. TNMU–optimal field segmentation

From the feasibility of P follows that the last arc of Pt has weight 0 for all
t ∈ [k], and we obtain

δ(Pt) =
xt−1
∑

j=xt−1+2

max{0, di∗t ,j}.

In addition, δ(0, (i∗1, 1)) = ai∗1 ,1 = max{0, di∗1,1}, and for t ∈ [k − 1],

δ((i∗t , xt), (i
∗
t+1, xt + 1)) = max{0, di∗t+1,xt+1} −

i∗t+1−1
∑

i=i∗t

ai,xt
−

i∗t
∑

i=i∗t+1+1

ai,xt
.

Thus

δ(P) =

k
∑

t=1

xt−1
∑

j=xt−1+1

max{0, di∗t ,j} −
k−1
∑

t=1





i∗t+1−1
∑

i=i∗t

ai,xt
+

i∗t
∑

i=i∗t+1+1

ai,xt



 ,

and the claim follows by Lemma 5. �

Lemma 7. There exists a feasible (0, 1)−path P with δ(P) = c(A).

Proof. For any (0, 1)−path P with parameters (i∗1, x1), . . . , (i
∗
k, xk) denote by

R(P) ⊆ [k − 1] the subset of indices that destroy the feasibility of P , i.e.

R(P) = {t ∈ [k − 1] : di∗t ,xt
≥ 0}.

Then

λ(P) =
∑

t∈R(P)

∣

∣i∗t − i∗t+1

∣

∣

measures how far P is from being feasible. In particular, λ(P) = 0 is a neces-
sary and sufficient condition for the feasibility of P . Let P0 be a (0, 1)−path
with parameters (i∗1, x1), . . . , (i

∗
k, xk) and weight δ(P0) = c(A). If λ(P0) = 0

then P0 is feasible and there is nothing to do. So we assume that for r ≥ 1
we have a (0, 1)−path Pr−1 with parameters

(i∗1, x1), . . . , (i
∗
k, xk),

δ(Pr−1) = c(A) and λ(Pr−1) > 0. From this we construct a (0, 1)−path Pr

with δ(Pr) = c(A) and λ(Pr) ≤ λ(Pr−1) − 1. This will prove the lemma,
since after finitely many steps we obtain a path P with δ(P) = c(A) and
λ(P) = 0. Let t be the smallest element of R(Pr−1).

2.2. The lower bound 27

Case 1: di∗t ,j ≥ 0 for xt−1 < j < xt.

We define Pr as follows.

1. If i∗t < i∗t+1 −1 and i∗t−1 6= i∗t +1 the parameters of Pr are (see Fig.
2.4 and 2.6)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t + 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

2. If i∗t > i∗t+1 +1 and i∗t−1 6= i∗t −1 the parameters of Pr are (see Fig.
2.9 and 2.11)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t − 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

3. If i∗t−1−1 = i∗t < i∗t+1−1 or i∗t−1 +1 = i∗t > i∗t+1 +1 the parameters
of Pr are (see Fig. 2.7 and 2.12)

(i∗1, x1), . . . , (i
∗
t−2, xt−2), (i

∗
t−1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

4. If i∗t + 1 = i∗t+1 6= i∗t−1 or i∗t − 1 = i∗t+1 6= i∗t−1 the parameters of Pr

are (see Fig. 2.5 and 2.10)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

5. If i∗t + 1 = i∗t+1 = i∗t−1 or i∗t − 1 = i∗t+1 = i∗t−1 the parameters of Pr

are (see Fig. 2.8 and 2.13)

(i∗1, x1), . . . , (i
∗
t−2, xt−2), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

Case 2: di∗t ,j < 0 for some j with xt−1 < j < xt.

We put

x := max{j ≤ xt : di∗t ,j < 0, di∗t ,j+1 ≥ 0},

and define Pr as follows.

1. If i∗t < i∗t+1 − 1 the parameters of Pr are (see Fig. 2.14)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t , x), (i∗t + 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

2. If i∗t > i∗t+1 + 1 the parameters of Pr are (see Fig. 2.16)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t , x), (i∗t − 1, xt), (i

∗
t+1, xt+1), . . . , (i

∗
k, xk).

28 2. TNMU–optimal field segmentation

3. If i∗t = i∗t+1 − 1 or i∗t = i∗t+1 + 1 the parameters of Pr are (see Fig.
2.15 and 2.17)

(i∗1, x1), . . . , (i
∗
t−1, xt−1), (i

∗
t , x), (i∗t+1, xt+1), . . . , (i

∗
k, xk).

We have to show that δ(Pr) = c(A) and λ(Pr) ≤ λ(Pr−1) − 1. The last
assertion follows from the fact that either

R(Pr) = R(Pr−1) or R(Pr) = R(Pr−1) \ {t},

and consequently,

λ(Pr) = λ(Pr−1) − 1 or λ(Pr) = λ(Pr−1) −
∣

∣i∗t − i∗t+1

∣

∣ .

Now we check that in any case δ(Pr) ≥ δ(Pr−1) and hence δ(Pr) = c(A). In

the following let the vertices of
−→
G be denoted as in the corresponding figures.

In addition for two vertices X and Y on a path P we denote by DP (X, Y)
the weight of the (X, Y)−subpath of P . Then in any case,

δ(Pr) = δ(Pr−1) − DPr−1(U, A) − DPr−1(A, B) − DPr−1(B, V)

+ DPr
(U, A′) + DPr

(A′, B′) + DPr
(B′, V). (2.6)

Cases 1.1(a), 1.4(a): (Fig. 2.4, 2.5)

xt−1 xt

//· U

��?
??

?

·
A

//·
B

//·

��/
//

//
// i∗t

·
V

//· //· i∗t+1

Pr−1

xt−1 xt

//· U

��/
//

//
//

·
A′

//·
B′

//·
��?

??
? i∗t + 1

·
V

//· //· i∗t+1

Pr

Fig. 2.4: Transition from Pr−1 to Pr in Case 1.1.a) i∗t−1 < i∗t .

Using di∗t ,j ≥ 0 for xt−1 < j ≤ xt we obtain

DPr−1(A, B) = ai∗t ,xt
− ai∗t ,xt−1+1,

DPr
(B′, V) = DPr−1(B, V) + ai∗t ,xt

,

DPr
(U, A′) = DPr−1(U, A) −

(

ai∗t ,xt−1+1 − ai∗t ,xt−1

)

− ai∗t ,xt−1 + max{0, di∗t +1,xt−1+1}

= DPr−1(U, A) − ai∗t ,xt−1+1 + max{0, di∗t +1,xt−1+1}.

2.2. The lower bound 29

xt−1 xt

//· U

��/
//

//
//

·
A

//·
B

//·
��?

??
? i∗t

·
V

//· //· i∗t+1

Pr−1

xt−1 xt

//· U

��*
**

**
**

**
**

·
A′

//·
B′

//· //·
V

//· //· i∗t+1

Pr

Fig. 2.5: Transition from Pr−1 to Pr in Case 1.4.a) i∗t−1 < i∗t .

Substituting into (2.6) yields

δ(Pr) = δ(Pr−1) − DPr−1(U, A) −
(

ai∗t ,xt
− ai∗t ,xt−1+1

)

− DPr−1(B, V)

+
(

DPr−1(U, A) − ai∗t ,xt−1+1 + max{0, di∗t +1,xt−1+1}
)

+ DPr
(A′, B′) +

(

DPr−1(B, V) + ai∗t ,xt

)

,

that is

δ(Pr) = δ(Pr−1) + max{0, di∗t +1,xt−1+1} + DPr
(A′, B′)

≥ δ(Pr−1).

Cases 1.1(b), 1.3(a), 1.5(a): (Fig. 2.6, 2.7, 2.8)

xt−1 xt

·A //· //·B

��*
**

**
**

**
** i∗t

//· U

GG�������

·
V

//· //· i∗t+1

Pr−1

xt−1 xt

·A
′

//· //·B
′

��/
//

//
// i∗t + 1

//·
U

??����

·
V

//· //· i∗t+1

Pr

Fig. 2.6: Transition from Pr−1 to Pr in Case 1.1.b) i∗t−1 > i∗t .

Again,

DPr−1(A, B) = ai∗t ,xt
− ai∗t ,xt−1+1,

DPr
(B′, V) = DPr−1(B, V) + ai∗t ,xt

.

But in these cases

DPr
(U, A′) = DPr−1(U, A) −

(

ai∗t ,xt−1+1 − ai∗t ,xt−1

)

+ ai∗t +1,xt−1 + max{0, di∗t +1,xt−1+1}.

30 2. TNMU–optimal field segmentation

xt−1 xt

·A //· //·B

��/
//

//
// i∗t

//·
U

??����

·
V

//· //· i∗t+1

Pr−1

xt−1 xt

//·
U

//·A
′

//· //·B
′

��?
??

? i∗t + 1

·
V

//· //· i∗t+1

Pr

Fig. 2.7: Transition from Pr−1 to Pr in Case 1.3.a) i∗t−1 > i∗t .

xt−1 xt

·A //· //·B

��?
??

? i∗t
//·

U

??���� ·
V

//· //· i∗t+1

Pr−1

xt−1 xt

//·
U

//·A
′

//· //·B
′

//·
V

//· //· i∗t+1

Pr

Fig. 2.8: Transition from Pr−1 to Pr in Case 1.5.a) i∗t−1 > i∗t .

And substituting into (2.6) yields

δ(Pr) = δ(Pr−1) − DPr−1(U, A) −
(

ai∗t ,xt
− ai∗t ,xt−1+1

)

− DPr−1(B, V)

+
[

DPr−1(U, A) −
(

ai∗t ,xt−1+1 − ai∗t ,xt−1

)

+ ai∗t +1,xt−1+

max{0, di∗t +1,xt−1+1}
]

+ DPr
(A′, B′) +

(

DPr−1(B, V) + ai∗t ,xt

)

,

that is

δ(Pr) = δ(Pr−1) + ai∗t ,xt−1 + ai∗t +1,xt−1 + max{0, di∗t +1,xt−1+1} + DPr
(A′, B′)

≥ δ(Pr−1).

Cases 1.2(a), 1.4(b): (Fig. 2.9, 2.10)

xt−1 xt ·V //· //· i∗t+1

·A //· B //·

GG������� i∗t
//·

U

??����

Pr−1

xt−1 xt ·V //· //· i∗t+1

·A
′

//· B′
//·

??���� i∗t − 1

//· U

GG�������

Pr

Fig. 2.9: Transition from Pr−1 to Pr in Case 1.2.a) i∗t−1 > i∗t .

The computation is the same as in Case 1.1(a) but in the formula for
DPr

(U, A′) we have to replace di∗t +1,xt−1+1 by di∗t−1,xt−1+1.

2.2. The lower bound 31

xt−1 xt

·V //· //· i∗t+1

·
A

//·
B
//·

??���� i∗t
//·

U

??����

Pr−1

xt−1 xt

·
A′

//·
B′
//· //·V //· //· i∗t+1

//· U

GG�������

Pr

Fig. 2.10: Transition from Pr−1 to Pr in Case 1.4.b) i∗t−1 > i∗t .

xt−1 xt ·V //· //· i∗t+1

//· U

��/
//

//
//

·
A

//·
B
//·

JJ����������� i∗t

Pr−1

xt−1 xt ·V //· //· i∗t+1

//· U

��?
??

?

·
A′

//·
B′
//·

GG������� i∗t − 1

Pr

Fig. 2.11: Transition from Pr−1 to Pr in Case 1.2.b) i∗t−1 < i∗t .

xt−1 xt ·V //· //· i∗i+1

//· U

��?
??

?

·
A

//·
B
//·

GG������� i∗t

Pr−1

xt−1 xt ·V //· //· i∗i+1

//·U //·
A′

//·
B′
//·

??���� i∗t

Pr

Fig. 2.12: Transition from Pr−1 to Pr in Case 1.3.b) i∗t−1 < i∗t .

xt−1 xt

//· U

��?
??

? ·V //· //· i∗i+1

·
A

//·
B
//·

??���� i∗t

Pr−1

xt−1 xt

//·U //·
A′

//·
B′
//· //·V //· //· i∗t+1

Pr

Fig. 2.13: Transition from Pr−1 to Pr in Case 1.5.b) i∗t−1 < i∗t .

32 2. TNMU–optimal field segmentation

Cases 1.2(b), 1.3(b), 1.5(b): (Fig. 2.11, 2.12, 2.13)

The computation is the same as in Case 1.1(b) but in the formula for
DPr

(U, A′) we have to replace di∗t +1,xt−1+1 by di∗t−1,xt−1+1.

Cases 2.1, 2.3(a): (Fig. 2.14, 2.15)

//·
��?

??
? x xt

· //·
U

//·A //·

��/
//

//
//
B i∗t

·
V

//· i∗t+1

Pr−1

//·
��?

??
? x xt

· //·
U ��?

??
? i∗t

·A
′

//·B
′

��?
??

? i∗t + 1

·
V

//· i∗t+1

Pr

Fig. 2.14: Transition from Pr−1 to Pr in Case 2.1.

//·
��?

??
? x xt

· //·
U

//·A //·
��?

??
?B i∗t

·
V

//· i∗t+1

Pr−1

//·
��?

??
? x xt

· //·
U ��?

??
? i∗t

·A
′

//·B
′

//·
V

//· i∗t+1

Pr

Fig. 2.15: Transition from Pr−1 to Pr in Case 2.3.a) i∗t−1 < i∗t .

Using di∗t ,j ≥ 0 for x < j < xt, we obtain

DPr−1(U, A) = ai∗t ,x+1 − ai∗t ,x,

DPr−1(A, B) = ai∗t ,xt
− ai∗t ,x+1,

DPr
(B′, V) = DPr−1(B, V) + ai∗t ,xt

,

DPr
(U, A′) = max{0, di∗t +1,x+1} − ai∗t ,x

= max{0, di∗t +1,x+1} + DPr−1(U, A) − ai∗t ,x+1,

and so with (2.6)

δ(Pr) = δ(Pr−1) − DPr−1(U, A) −
(

ai∗t ,xt
− ai∗t ,x+1

)

− DPr−1(B, V)

+
(

max{0, di∗t +1,x+1} + DPr−1(U, A) − ai∗t ,x+1

)

+ DPr
(A′, B′) +

(

DPr−1(B, V) + ai∗t ,xt

)

,

that is

δ(Pr) = δ(Pr−1) + max{0, di∗t +1,x+1} + DPr
(A′, B′)

≥ δ(Pr−1).

2.3. The algorithm 33

x xt ·V //· i∗t+1

· //·
U

//·
A

//·

GG�������
B

i∗t
//·

??����

Pr−1

x xt ·V //· i∗t+1

·
A′

//·

??����
B′

i∗t − 1

· //·

??����
U

i∗t
//·

??����

Pr

Fig. 2.16: Transition from Pr−1 to Pr in Case 2.2.

x xt

·V //· i∗t+1

· //·
U

//·
A

//·

??����
B

i∗t
//·

??����

Pr−1

x xt

·
A′

//·
B′

//·V //· i∗t+1

· //·

??����
B

i∗t
//·

??����

Pr

Fig. 2.17: Transition from Pr−1 to Pr in Case 2.3.b) i∗t−1 > i∗t .

Cases 2.2, 2.3(b): (Fig. 2.16, 2.17) The computation is the same as in Case
2.1 but in the formula for DPr

(U, A′) we have to replace di∗t +1,x+1 by
di∗t−1,x+1. �

From Lemmas 4, 6 and 7 we deduce by duality that c(A) is a lower bound
for the sum of the coefficients of a segmentation of A and thus we have already
proved the first half of the theorem.

2.3 The algorithm

In this section we assume c(A) > 0 and construct a segment S such that A−S

is still nonnegative and c(A − S) ≤ c(A) − 1. Iterating this construction we
obtain a sequence of c(A) segments whose sum is A. For (i, j) ∈ V we
denote by α1(i, j) the maximal weight of a (0, (i, j))−path, by α2(i, j) the
maximal weight of an ((i, j), 1)−path and by α(i, j) the maximal weight of
a (0, 1)−path through (i, j), that is

α1(i, j) = max{δ(P) : P (0, (i, j)) − path in
−→
G},

α2(i, j) = max{δ(P) : P ((i, j), 1) − path in
−→
G},

α(i, j) = α1(i, j) + α2(i, j).

Now we define two subsets V1, V2 ⊆ V . In V1 we collect the pairs (i, j)
that determine local maxima or right ends of plateaus in the sequences

34 2. TNMU–optimal field segmentation

ai,1, ai,2, . . . , ai,n (i = 1, 2, . . . , m), precisely

V1 = {(i, j) ∈ V : di,j ≥ 0, di,j+1 < 0}.

The second subset V2 is defined to be the set of pairs (i, j) ∈ V1 with the
following properties

1. There exists a (0, 1)−path P of weight c(A) through (i, j).

2. The sequence ai,1, . . . , ai,j is nondecreasing, i.e. ai,1 ≤ · · · ≤ ai,j.

3. The horizontal (0, (i, j))−path is a (0, (i, j))−path of maximal weight.

In other words,

V2 = {(i, j) ∈ V1 : α(i, j) = c(A) and α1(i, j) = ai,j}.

Observe that for (i, j) ∈ V1, δ((i, j), (i, j + 1)) = 0 and thus, for j ′′ > j,

δ((0, (i, 1), (i, 2), . . . , (i, j ′′))) =

j′′
∑

j′=1

max{0, di,j′}

≥

j
∑

j′=1

di,j′ +

j′′
∑

j′=j+2

di,j′ = ai,j + (ai,j′′ − ai,j+1)

> ai,j′′,

and hence α1(i, j
′′) > ai,j′′. In particular, for any fixed row i there is at

most one column index j with (i, j) ∈ V2. In order to see that c(A) > 0
implies V2 6= ∅ consider a feasible (0, 1)−path P with δ(P) = c(A). If P

is a horizontal path without any row change then δ(P) > 0 implies that P

contains an element of V1. Otherwise let ((i, j), (i′, j + 1)) be the first row
change of P . Then by the feasibility of P , di,j < 0 and thus the subpath
0, (i, 1), . . . , (i, j) contains an element of V1. In both cases the first vertex on
P which is in V1 is in V2 as well. Note that the α1(i, j) ((i, j) ∈ [m] × [n])
can be determined as follows.

for i = 1 to m do α1(i, 1) := ai,1

for j = 2 to n do

for i = 1 to m do α1(i, j) := max
1≤i′≤m

α1(i
′, j − 1) + δ((i′, j − 1), (i, j))

The α2(i, j) can be determined analogously by running through the matrix
from right to left. Obviously, this gives a method to determine c(A) and the
set V2 in time O(m2n). We denote the elements of V2 by

(i1, j1), (i2, j2), . . . , (it, jt),

2.3. The algorithm 35

such that i1 < i2 < · · · < it. A segment S (given by the parameters
l1, l2, . . . , lm, r1, r2, . . . , rm) is constructed according to the following strat-
egy. In row ik (k ∈ [t]) we choose the open part maximal under the condition
that the right boundary is jk, i.e. we put

rik = jk and lik = max{j ≤ jk : aik ,j = 0} + 1.

In the remaining rows we choose the open part minimal (in a sense to be
made precise below) under the condition that the final result is a segment.
The rows i < i1 and i > it remain closed. If lik > rik+1

+ 1 we choose the
open part in row ik + 1 maximal with rik+1 = lik − 1. If necessary we repeat
this step in the following rows, until finally li ≤ rik+1

+ 1 for some i with
ik < i < ik+1. If lik+1

> rik + 1 we proceed analogously, starting in row
ik+1 − 1. For the details of the construction see Algorithm 1.

Example 3. Let

A =





0 0 0 0 0 0 0 5 9
0 0 0 0 1 1 2 4 2
0 0 2 2 3 3 3 2 1
1 1 2 2 1 1 1 1 1
1 3 4 2 2 2 4 4 7
2 2 2 2 1 2 2 3 3
0 2 2 7 2 2 2 1 1



 .

Then c(A) = 9, V2 = {(1, 9), (5, 3), (7, 4)} and the algorithm yields the seg-
ment

S =





0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0



 ,

where the bold 1’s correspond to the elements of V2. For the resulting matrix

A − S =





0 0 0 0 0 0 0 4 8
0 0 0 0 0 0 1 4 2
0 0 1 1 3 3 3 2 1
1 1 2 2 1 1 1 1 1
0 2 3 2 2 2 4 4 7
2 2 2 2 1 2 2 3 3
0 1 1 6 2 2 2 1 1



 .

we have c(A − S) = 8.

Note that in Algorithm 1 each row i is considered exactly once and that
li and ri are defined either depending on some already defined values or by
searching for a zero entry running through the row from right to left. So the
total time complexity of Algorithm 1 is at most O(mn). This is dominated
by the construction of V2, hence the complexity of the construction of S is
O(m2n). To prove the correctness of the algorithm we need an alternative

description of paths in
−→
G that yields some insight into the relation between

the constructed segment S and the path weights. For this let
−→
H be a directed

36 2. TNMU–optimal field segmentation

Algorithm 1 Segment

Input: A = (ai,j) 1≤i≤m
1≤j≤n

and V2 = {(i1, j1), . . . , (it, jt)}

Output: li, ri (i = 1, . . . , m)
for (i, j) ∈ V2 do

li := max{j ′ ≤ j : ai,j′ = 0}+1
ri := j

end for
5: for i = 1 to i1 − 1 do

li := li1; ri := li − 1
end for
for i = it + 1 to m do

li := lit; ri := li − 1
10: end for

for k = 1 to t − 1 do
if jk > jk+1 then

i := ik
while i < ik+1 and li > rik+1

+ 1 do
15: i := i + 1

ri := li−1 − 1
li := max{j ≤ ri : ai,j = 0} + 1

end while
for i′ = i + 1 to ik+1 − 1 do

20: ri′ := rik+1
; li′ := ri′ + 1

end for
else

i := ik+1

while i > ik and li > rik + 1 do
25: i := i − 1

ri := li+1 − 1
li := max{j ≤ ri : ai,j = 0} + 1

end while
for i′ = ik + 1 to i − 1 do

30: ri′ := rik ; li′ := ri′ + 1
end for

end if
end for
return li, ri (i = 1, . . . , m)

2.3. The algorithm 37

graph with vertex set V ∪ {0, 1}. As the arc set of H we take E0 = E
(1)
0 ∪

E
(2)
0 ∪ E

(3)
0 ∪ E

(4)
0 , where

E
(1)
0 = {(0, (i, 1)) : i ∈ [m]} ∪ {((i, n), 1) : i ∈ [m]},

E
(2)
0 = {((i, j), (i, j + 1) : i ∈ [m], j ∈ [n − 1])},

E
(3)
0 = {((i, j), (i + 1, j)) : i ∈ [m − 1], j ∈ [n − 1]},

E
(4)
0 = {((i, j), (i − 1, j)) : 2 ≤ i ≤ m, j ∈ [n − 1]}.

Let the weight function δ0 on E0 be defined by

δ0(0, (i, 1)) = ai,1 (i ∈ [m]),

δ0((i, n), 1) = 0 (i ∈ [m]),

δ0((i, j), (i, j + 1)) = max{0, di,j+1} (i ∈ [m], j ∈ [n − 1]),

δ0((i, j), (i + 1, j)) = −ai,j (i ∈ [m − 1], j ∈ [n − 1]),

δ0((i, j), (i − 1, j)) = −ai,j (2 ≤ i ≤ m, j ∈ [n − 1]).

Example 4. Figure 2.18 shows
−→
H corresponding to the matrix

A =

(

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

.

· 1 //

−4
��

· 0 //

−5

��

· 1 //

0

��

· 3 //

−1

��

· 1 //

−4

��

·

0

1��4
44

44
44

44
44

4

· 2 //

−2

��

−2
YY

· 0 //

−4

��

−4
YY

· 2 //

−1

��

−1
YY

· 0 //

−3

��

−3
YY

· 3 //

−1

��

−1

YY

· 0

''OOOOOOO

·

4

0

;;wwwwwwwwwwwwwwwww
2

33gggggggggggggg
2

++WWWWWWWWWWWWWW

5

##GGG
GG

GGG
GGG

GGG
GG

G ·

· 1 //

−2

��

−2
YY

· 0 //

−3

��

−3
YY

· 0 //

−2

��

−2
YY

· 1 //

−1

��

−1
YY

· 2 //

−2

��

−2

YY

·
0

77ooooooo

· 0 //

−5
YY

· 0 //

−3
YY

· 0 //

−3
YY

· 3 //

−2
YY

· 0 //

−5

YY

·

0

DD

Fig. 2.18: The digraph corresponding to the matrix A in Example 4.

It is easy to see that there is a bijection between the paths in
−→
G and the

paths in
−→
H with the additional restriction that the last arc is in E

(1)
0 ∪ E

(2)
0 .

In addition this bijection preserves the weight, that is for a path P in
−→
G and

the corresponding path Q in
−→
H we have

δ(P) = δ0(Q).

38 2. TNMU–optimal field segmentation

In particular, there is a weight–preserving bijection between the (0, 1)−paths

in
−→
G and

−→
H . The advantage of Q compared to P is that possibly existing

”long, skew” arcs in P are replaced by a sequence of vertical arcs and one
horizontal arc, and the weights of these arcs are easier to control. Analogous
to α, α1 and α2 we define for (i, j) ∈ V ,

β1(i, j) = max{δ0(Q) : Q (0, (i, j)) − path in
−→
H},

β2(i, j) = max{δ0(Q) : Q ((i, j), 1) − path in
−→
H},

β(i, j) = β1(i, j) + β2(i, j).

We need some information about the connection between the weights in
−→
G

and
−→
H . Obviously β2(i, j) = α2(i, j) for all (i, j) ∈ V . The next lemma is an

analogous result about α1 and β1 for the vertices on (0, 1)−paths of maximal
weight.

Lemma 8. For all (i, j) ∈ V with α(i, j) = c(A), we have β1(i, j) = α1(i, j).

Proof. β1(i, j) ≥ α1(i, j) is trivial, since for every (0, (i, j))−path in
−→
G there

is the corresponding (0, (i, j))−path in
−→
H of the same weight. Let Q1 and

Q2 be a (0, (i, j))−path in
−→
H and an ((i, j), 1)−path in

−→
H , respectively, with

δ0(Q1) = β1(i, j) and δ0(Q2) = β2(i, j) = α2(i, j).

By concatenating Q1 and Q2 we obtain a (0, 1)−path Q in
−→
H with

δ0(Q) = β1(i, j) + α2(i, j).

Since the last arc of Q is in E
(1)
0 , this implies the existence of a (0, 1)−path

P in
−→
G with δ(P) = β1(i, j) + α2(i, j). So

β1(i, j) + α2(i, j) ≤ c(A) = α1(i, j) + α2(i, j),

and thus β1(i, j) ≤ α1(i, j). �

Lemma 9. Let (i, j), (k, l) ∈ V , i > k and put p = i − k.

1. If j < l and there are column indices j ′1, j
′
2, . . . , j

′
p such that

j ≤ j ′1 ≤ j ′2 ≤ · · · ≤ j ′p < l and

ai−q,j′q
= 0 for q = 1, 2, . . . , p,

then there exists a ((i, j), (k, l))−path P in
−→
G with

δ(P) ≥ ak,l − ai,j.

2.3. The algorithm 39

j ′1 = j ′2 j ′3 j ′4
...

...
. . . ∗ ∗ ∗ ∗ 0 ak,l . . .

∗ ∗ 0 ∗ ∗ ∗

∗ 0 ∗ ∗ ∗ ∗

∗ 0 ∗ ∗ ∗ ∗
. . . ai,j ∗ ∗ ∗ ∗ ∗ . . .

...
...

· //· //·
(k,l)

//·

· //·

OO

·

OO

· //·

OO

· (i,j)

OO

Fig. 2.19: A part of a matrix A and the corresponding path Q.

2. If j > l and there are column indices j ′1, j
′
2, . . . , j

′
p such that

l ≤ j ′1 ≤ j ′2 ≤ · · · ≤ j ′p < j and

ak+q,j′q
= 0 for q = 1, 2, . . . , p,

then there exists a ((k, l), (i, j))−path P in
−→
G with

δ(P) ≥ ai,j − ak,l.

Proof. We consider only the first case that is illustrated in Fig. 2.19. The
second one is treated analogously. First we construct a ((i, j), (k, l))−path

Q in
−→
H . We take ((i, j), (i − 1, j)) with weight −ai,j as the first arc and

complete this arc to a ((i, j), (k, l))−path Q in such a way, that row changes
occur only along the arcs

((i − q, j ′q), (i − q − 1, j ′q)) (1 ≤ q ≤ p − 1).

This is possible by our assumption on the j ′q. Thus the vertical arcs of Q,
except for the first one, have weight 0 and since the horizontal arcs have
nonnegative weight in any case we conclude that the ((i, j), (k, j ′p))−subpath
of Q has weight at least −ai,j. Finally the weight of the path

(k, j ′p), (k, j ′p + 1), . . . , (k, l)

is at least ak,l and from l > j ′p follows that the last arc of Q is in E
(2)
0 and

thus there exists a ((i, j), (k, l))−path P in
−→
G with

δ(P) = δ(Q) ≥ ak,l − ai,j.

�

40 2. TNMU–optimal field segmentation

Lemma 10. Algorithm 1 yields a segment S.

Proof. Suppose the algorithm does not yield a segment. This is possible only
if for some k ∈ [t − 1] the condition of the while–loop in line 14 (resp. line
24) holds for all i ∈ {ik, ik + 1, . . . , ik+1 − 1} (resp. for all i ∈ {ik + 1, ik +
2, . . . , ik+1}). If jk = jk+1 then

lik ≤ rik+1
and lik+1

≤ rik .

So we may assume jk 6= jk+1. Let jk > jk+1. (The case jk < jk+1 can be
treated analogously.) We put p = ik+1 − ik and

j ′q = lik+1−q − 1 (q = 1, 2, . . . , p).

The assumption that the while–condition is fulfilled for all ik+1 − q (q =
1, 2, . . . , p) implies

rik+1
+ 1 ≤ j ′1 ≤ j ′2 ≤ · · · ≤ j ′p < jk and

aik+1−q,j′q
= 0 (q = 1, 2, . . . , p).

Thus by Lemma 9 there is a ((ik+1, jk+1 + 1), (ik, jk))−path P0 in
−→
G of

weight at least aik,jk
− aik+1,jk+1+1. Using (ik+1, jk+1) ∈ V2, i.e. aik+1,jk+1

>

aik+1,jk+1+1, this yields

δ0(P0) > aik ,jk
− aik+1,jk+1

.

Now we concatenate the path 0, (ik+1, 1), (ik+1, 2), . . . , (ik+1, jk+1 + 1) with
P0 to obtain a (0, (ik, jk))−path of weight at least

aik+1,jk+1
+ δ(P0) > aik ,jk

,

in contradiction to (ik, jk) ∈ V2. �

Let S = (si,j) be the result of Algorithm 1. By construction, si,j = 1
implies ai,j ≥ 1 and so the entries of A − S are nonnegative. We put

a′
i,j = ai,j − si,j (i ∈ [m], j ∈ [n]),

a′
i,0 = ai,n+1 = 0 (i ∈ [m]),

d′
i,j = a′

i,j − a′
i,j−1 (i ∈ [m], j ∈ [n]).

2.3. The algorithm 41

By δ′ and δ′0 we denote the weight functions on
−→
G and

−→
H , respectively, which

correspond to A′ = (a′
i,j). For (i, j) ∈ V we put

α′
1(i, j) = max{δ′(P) : P (0, (i, j)) − path in

−→
G},

α′
2(i, j) = max{δ′(P) : P ((i, j), 1) − path in

−→
G},

α′(i, j) = α′
1(i, j) + α′

2(i, j),

β ′
1(i, j) = max{δ′(Q) : Q (0, (i, j)) − path in

−→
H},

β ′
2(i, j) = max{δ′(Q) : Q ((i, j), 1) − path in

−→
H},

β ′(i, j) = β ′
1(i, j) + β ′

2(i, j).

By T we denote the subset of V which corresponds to the segment S, that is

T = {(i, j) ∈ V : si,j = 1}.

The next lemma asserts that for (i, j) ∈ T the sequence ai,1, . . . , ai,j is non-
decreasing and the horizontal path from 0 to (i, j) has maximal weight with

respect to A in both of
−→
G and

−→
H .

Lemma 11. For (i, j) ∈ T we have

β1(i, j) = α1(i, j) = ai,j and α(i, j) = c(A).

Proof. Let (i, j) ∈ T . Clearly, β1(i, j) ≥ α1(i, j) ≥ ai,j. Assume P0 is a

(0, (i, j))−path in
−→
G with δ(P0) > ai,j. Recall that V2 = {(i1, j1), . . . , (it, jt)}

with i1 < i2 < · · · < it. We claim that for some k ∈ [t] there is an

((i, j), (ik, jk))−path P1 in
−→
G of weight at least aik ,jk

− ai,j. To see this
we distinguish three types of vertices in T :

1. i = ik and j ≤ jk for some k ∈ [t]:

The path (ik, j), (ik, j + 1), . . . , (ik, jk) has weight aik,jk
− aik,j.

2. ik < i < ik+1 for some k ∈ [t − 1] with jk > jk+1:

By construction of S there are column indices j ′1, j
′
2, . . . , j

′
p, where p =

i − ik, such that

j ≤ j ′1 ≤ j ′2 ≤ · · · ≤ j ′p < jk and

ai−q,j′q
= 0 (q = 1, 2, . . . , p).

Thus the claim follows by Lemma 9.

42 2. TNMU–optimal field segmentation

3. ik−1 < i < ik for some k ∈ {2, 3, . . . , t} with jk−1 < jk:

By construction of S there are column indices j ′1, j
′
2, . . . , j

′
p, where p =

ik − i, such that

j ≤ j ′1 ≤ j ′2 ≤ · · · ≤ j ′p < jk and

ai+q,j′q
= 0 (q = 1, 2, . . . , p).

Thus the claim follows by Lemma 9.

But now we can concatenate P0 and P1 to obtain a (0, (ik, jk))−path P in
−→
G

with
δ(P) = δ(P0) + δ(P1) > ai,j + (aik,jk

− ai,j) = aik,jk

in contradiction to (ik, jk) ∈ V2. This proves α1(i, j) = ai,j. In addition,
concatenating the paths (0, (i, 1), (i, 2), . . . , (i, j)), P1 and a ((ik, jk), 1)−path
of maximal weight yields α(i, j) = c(A) and thus also β1(i, j) = α1(i, j) by
Lemma 8. �

Now we want to prove that for (i, j) ∈ T the horizontal (0, (i, j))−path is
still maximal with respect to A′. We need the following necessary condition
for β1(i, j) > ai,j.

Lemma 12. Suppose β1(i, j) > ai,j and Q is a (0, (i, j))−path in
−→
H with

δ0(Q) = β1(i, j). Then there exists a vertex (i′, j ′) ∈ V1 such that either

• j ′ = 1 and ((i′, 1), (i′, 2)) is an arc of Q or

• 1 < j ′ < n and ((i′, j ′ − 1), (i′, j ′)), ((i′, j ′), (i′, j ′ + 1) are arcs of Q.

If in addition β(i, j) = c(A) then we can choose (i′, j ′) even in V2.

Proof. Let Q be a (0, (i, j))−path with δ0(Q) = β1(i, j) and assume there
is no such vertex in V1. We show δ0(Q) = ai,j which gives the desired
contradiction. Clearly, δ0(Q) ≥ ai,j. The first arc of Q is of the form (0, (i′, 1))
and has weight ai′,1. So we may assume that Q has more than one arc and
proceed by induction on the number of arcs of an initial subpath of Q.

Case 1: The last arc of Q is in E
(3)
0 ∪ E

(4)
0 .

W.l.o.g. the last arc is ((i − 1, j), (i, j)) with weight −ai−1,j . Since by
induction δ0(Q \ {(i, j)}) = ai−1,j, we obtain δ0(Q) = 0 ≤ ai,j.

Case 2: The last arc of Q is in E
(2)
0 , and the second last arc is in E

(3)
0 ∪E

(4)
0 .

W.l.o.g. the last two arcs of Q are ((i− 1, j − 1), (i, j − 1)) and ((i, j −
1), (i, j)). By induction the weight of the (0, (i− 1, j − 1))−subpath of
Q is ai−1,j−1. Thus the weight of the (0, (i, j − 1))−subpath is 0 and
by maximality of Q follows ai,j−1 = 0, hence δ0(Q) = ai,j.

2.3. The algorithm 43

Case 3: The last two arcs of Q are in E
(1)
0 ∪ E

(2)
0 .

By induction the (0, (i, j − 1))−subpath of Q has weight ai,j−1. By
maximality of Q this implies di,j′ ≥ 0 for all j ′, 1 ≤ j ′ ≤ j − 1. Now
di,j ≥ 0, since otherwise (i, j − 1) is a vertex in V1 that fulfills the
conditions of the lemma. Thus δ0(Q) = ai,j.

Now suppose β(i, j) = c(A). Then we can complete Q to a (0, 1)−path Q′ of

weight c(A). Let P be the corresponding (0, 1)−path in
−→
G , and let (i′, j ′) ∈

V1 be the first vertex on Q that has the claimed properties. Then (i′, j ′) ∈ P

and the (0, (i′, j ′))−subpath of P has weight ai′,j′, that is (i′, j ′) ∈ V2. �

Lemma 13. For (i, j) ∈ T we have β ′
1(i, j) = α′

1(i, j) = a′
ij.

Proof. Again trivially,

β ′
1(i, j) ≥ α′

1(i, j) ≥ a′
i,j.

Let (i, j) ∈ T and assume β ′
1(i, j) > a′

i,j. In particular, j > 1 since obviously

β ′
1(i, 1) = a′

i,1 for all i ∈ [m]. There is a (0, (i, j))−path Q in
−→
H with

δ′0(Q) = β ′
1(i, j) > a′

i,j.

W.l.o.g. we may assume that (i, j) is the first counterexample to the lemma
on Q, i.e.

β ′
1(i0, j0) = a′

i0,j0
for all (i0, j0) ∈ (Q \ {(i, j)}) ∩ T.

Case 1: (Q \ {(i, j)}) ∩ T = ∅.

Let e be the last arc of Q. Then δ0(e1) = δ′0(e1) for all arcs e1 6= e of
Q.

Case 1.1: e ∈ E
(2)
0 .

Then δ0(e) = δ′0(e)+1, hence δ0(Q) = δ′0(Q)+1, and consequently
(using Lemma 11),

β ′
1(i, j) = δ0(Q) − 1 ≤ β1(i, j) − 1 = a′

i,j.

Case 1.2: e ∈ E
(3)
0 ∪ E

(4)
0 .

W.l.o.g. e = ((i − 1, j), (i, j)) and δ0(e) = δ′0(e) = −ai−1,j , and
thus

δ0(Q) = δ′0(Q) = β ′
1(i, j).

44 2. TNMU–optimal field segmentation

Assume δ0(Q) = β1(i, j) = ai,j. Then δ0(Q) > 0, and thus

δ0(Q \ {(i, j)}) > ai−1,j .

By Lemma 11, β(i, j) = α(i, j) = c(A) and consequently by
Lemma 12, Q \ {(i, j)} contains a vertex (i0, j0) ∈ V2 ⊆ T . This
is a contradiction and we conclude

β ′
1(i, j) = δ0(Q) < β1(i, j) = ai,j,

and thus β ′
1(i, j) = a′

i,j.

Case 2: (Q \ {(i, j)}) ∩ T 6= ∅.

Let (i0, j0) be the last vertex on Q \ {(i, j)} that is in T and denote
by Q1 and Q2 the (0, (i0, j0))−subpath and the ((i0, j0), (i, j))−subpath
of Q, respectively. By assumption δ′0(Q1) = a′

i0,j0
, so w.l.o.g. we may

assume Q1 = (0, (i0, 1), (i0, 2), . . . , (i0, j0)), and then

δ0(Q1) = β1(i0, j0) = ai0,j0 = δ′0(Q1) + 1. (2.7)

We denote the arcs of Q2 by e1, e2, . . . , ep. For p = 1 we obtain

δ′0(Q) = δ′0(Q1) − a′
i0,j0

= 0 if e1 ∈ E
(3)
0 ∪ E

(4)
0 and

δ′0(Q) = δ′0(Q1) + max{0, d′
i,j} if e1 ∈ E

(2)
0 .

Since e1 ∈ E
(2)
0 implies (i, j), (i, j − 1) ∈ T and thus d′

ij = di,j ≥ 0
(Lemma 11), we obtain δ′0(Q) ≤ a′

i,j and consequently β ′
1(i, j) = a′

i,j.
So let p > 1. Then

δ′0(ei) = δ0(ei) (2 ≤ i ≤ p − 1), (2.8)

δ′0(e1) =











δ0(e1) + 1 if e1 ∈ E
(3)
0 ∪ E

(4)
0 ,

δ0(e1) + 1 if e1 ∈ E
(2)
0 and di0,j0+1 ≥ 0,

δ0(e1) if e1 ∈ E
(2)
0 and di0,j0+1 < 0 and

(2.9)

δ′0(ep) =

{

δ0(ep) if ep ∈ E
(3)
0 ∪ E

(4)
0 ,

δ0(ep) − 1 if ep ∈ E
(2)
0 ,

(2.10)

and in particular,

δ′0(Q2) ≤ δ0(Q2) + 1.

2.3. The algorithm 45

·
(i0,j0)//·

e1
��·

AA������ · //·
(i1,j1)

//·
ep

(i,j)��·

a) e1 ∈ E
(3)
0 ∪ E

(4)
0

·
(i0,j0)

//·
e1 //·

��·

AA������ ·
(i1,j1)//· //·

ep

(i,j)��·

b) e1 ∈ E
(2)
0 and di0,j0+1 ≥ 0

Fig. 2.20: Paths Q as in Case 2.2. of Lemma 13.

Case 2.1: δ′0(Q2) ≤ δ0(Q2).

δ′0(Q) = δ′0(Q1) + δ′0(Q2) ≤ a′
i0,j0

+ δ0(Q2) < δ0(Q) implies

β ′
1(i, j) < β1(i, j) = ai,j,

and thus β ′
1(i, j) = a′

i,j.

Case 2.2: δ′0(Q2) = δ0(Q2) + 1.

In this case (2.7) and (2.8)–(2.10) imply

δ′0(Q) = δ0(Q) and ep ∈ E
(3)
0 ∪ E

(4)
0 ,

w.l.o.g. ep = ((i − 1, j), (i, j)) with weight −ai−1,j . Assume
δ0(Q) = β1(i, j). Then δ0(Q) > 0 and thus

β1(i − 1, j) > ai−1,j .

By Lemma 11, β(i, j) = α(i, j) = c(A), and by Lemma 12 there is
a vertex (i1, j1) ∈ V2 such that Q contains the arc ((i1, j1), (i1, j1 +
1)). From (2.8)–(2.10) it follows that δ′0(Q2) = δ0(Q2) + 1 is
possible only if

e1 ∈ E
(3)
0 ∪ E

(4)
0 or (e1 ∈ E

(2)
0 and di0,j0+1 ≥ 0).

Hence, using di0,j′ ≥ 0 for 1 ≤ j ′ ≤ j0, (i1, j1) 6∈ Q1 and we obtain
the contradiction

(i1, j1) ∈ (Q \ {(i, j), (i0, j0)}) ∩ V2.

Thus δ′0(Q) = δ0(Q) < β1(i, j) = ai,j, and so β ′
1(i, j) = a′

i,j. �

Now we are prepared for the final step.

Lemma 14. c(A′) ≤ c(A) − 1.

46 2. TNMU–optimal field segmentation

Proof. Let Q be a (0, 1)−path in
−→
H with δ′0(Q) = c(A′) and let (i0, j0) be

the last vertex on Q that is in T . We denote the (0, (i0, j0))−subpath and
the ((i0, j0), 1)−subpath of Q by Q1 and Q2, respectively. By Lemmas 11
and 13,

β1(i0, j0) = ai0,j0 = a′
i0,j0

+ 1 = β ′
1(i0, j0) + 1,

and w.l.o.g. we may assume Q1 = (0, (i0, 1), (i0, 2), . . . , (i0, j0)). For the first
arc e0 of Q2 we have δ0(e0) = δ′0(e0) or δ0(e0) = δ′0(e0) − 1, and for all arcs
e 6= e0 of Q2, δ0(e) = δ′0(e).

Case 1: δ0(e0) = δ′0(e0).

δ0(Q) = δ0(Q1) + δ0(Q2) = δ′0(Q1) + 1 + δ′0(Q2)

= δ′0(Q) + 1 = c(A′) + 1,

and thus c(A) ≥ c(A′) + 1.

Case 2: δ0(e0) = δ′0(e0) − 1.

By the same argument as in the first case we only get

δ0(Q) = c(A′).

Assume δ0(Q2) = α2(i0, j0). From

α(i0, j0) = c(A) and α1(i0, j0) = ai0,j0

we deduce δ0(Q) = c(A). Now consider two cases:

1. If Q has a vertex (i, j) with β1(i, j) > ai,j, then by Lemma 12, Q

contains an arc ((i1, j1), (i1, j1 + 1)) with (i1, j1) ∈ V2.

2. If β1(i, j) = ai,j for every (i, j) ∈ Q, let (i1, j1) be the second last
vertex of Q, i.e. j1 = n and ((i1, j1), 1) is the last arc of Q. Note
that β1(i1, j1) = ai1,j1 implies (i1, j1) ∈ V2.

From δ0(e0) = δ′0(e0) − 1 follows that either

e0 ∈ E
(3)
0 ∪ E

(4)
0 or (e0 ∈ E

(2)
0 and di0,j0+1 ≥ 0).

Hence, using di0,j′ ≥ 0 for 1 ≤ j ′ ≤ j0, (i1, j1) 6∈ Q1 and we obtain the
contradiction

(Q2 \ {(i0, j0)}) ∩ V2 6= ∅.

Consequently, δ0(Q2) < α2(i0, j0) and there exists an ((i0, j0), 1)−path
Q∗

2 with δ0(Q
∗
2) > δ0(Q2). By concatenating Q1 and Q∗

2 we obtain a
(0, 1)−path Q∗ with δ0(Q

∗) > c(A′), and thus

c(A) ≥ c(A′) + 1.

�

2.4. Test results 47

Now we collect the lemmas to prove Theorem 1.

Proof of Theorem 1. That the maximal weight of a path is a lower bound for
the TNMU is an immediate consequence of Lemmas 4, 6 and 7 and duality.
The existence of a segmentation with

∑k

i=1 ui = c(A) is proved by induction
on c(A). If c(A) = 0 then A = 0 and there is nothing to do. For c(A) > 0 we
apply Algorithm 1 to construct a segment S with c(A − S) ≤ c(A) − 1. By
induction there are segments S2, S3, . . . , Sk and positive integers u2, u3, . . . , uk

such that

A − S =

k
∑

i=2

uiSi and

k
∑

i=2

ui = c(A − S) ≤ c(A) − 1,

and thus with S1 = S and u1 = 1,

A =
k
∑

i=1

uiSi and
k
∑

i=1

ui = c(A − S) + 1 ≤ c(A).

�

As observed after Example 3 each segment can be determined in time
O(m2n), so the time needed for the whole segmentation is bounded by

c(A)O(m2n). On any 0 − 1−path in
−→
H the number of arcs with positive

weight is bounded by n, because only the horizontal arcs can have positive
weight. And for each of these arcs the weight is bounded by

L = max{ai,j : i = 1, . . . , m; j = 1, . . . , n}.

So c(A) ≤ nL and the complexity of the whole segmentation algorithm is
O(m2n2L).

2.4 Test results

Table 2.1 shows some test results of our algorithm in comparison with other
algorithms. Each row shows the average TNMU for a 15 × 15–matrix with
randomly chosen entries from {0, . . . , L}. The columns labeled ’Xia–Verhey’,
’Bortfeld’ and ’Galvin’ contain the results for the algorithms of Xia and
Verhey [28], Bortfeld et al [6] and Galvin et al [11], respectively. The numbers
in these columns are taken from Xia and Verhey [28]. The last column shows
the average TNMU obtained by Engel’s algorithm [10], which is TNMU–
optimal for the segmentation problem without ICC. To obtain the results
of the column labeled ’new’ we implemented Algorithm 1 in C++. For a

48 2. TNMU–optimal field segmentation

L new Xia–
Verhey

Bortfeld Galvin Engel (with-
out ICC)

3 15.4 19.5 17.7 19.7 14.0
4 19.5 29.6 22.8 40.5 17.9
5 23.6 30.9 27.9 40.1 21.7
6 27.6 46.8 32.8 44.2 25.6
7 31.7 45.6 37.9 67.1 29.4
8 35.7 63.4 42.8 72.3 33.2
9 39.8 67.1 47.8 72.3 37.0
10 43.8 68.6 52.6 76.5 40.9
11 47.7 68.6 57.6 81.4 44.7
12 51.8 101.1 62.4 106.8 48.5
13 55.7 100.6 67.3 101.1 52.3
14 59.8 100.0 72.2 112.7 56.2
15 63.8 98.0 77.1 116.0 59.8
16 67.7 124.9 82.0 154.5 63.3

Tab. 2.1: Average TNMU for random 15 × 15–matrices with maximal entry L.

matrix A the segment S was determined and subtracted from A, and this
was iterated until the zero matrix was reached. For each L this was done
for 10000 random matrices A and the average TNMU was determined. On
a 1.3 GHz PC the computation for the whole column (i.e. the segmentation
of 140000 matrices) took 206 seconds.

3. A HEURISTIC FOR THE REDUCTION OF THE
NUMBER OF SEGMENTS

In this chapter we present a greedy–heuristic that can be used to find a
segmentation with minimal TNMU and a small NS. For brevity of notation

we slightly modify the digraph
−→
H from Chapter 2. We add vertices (0, i)

and (n + 1, i) (for i ∈ [m]) and replace every arc (0, (i, 1)) by the two arcs
(0, (i, 0)), ((i, 0), (i, 1)) and every arc ((i, n), 1) by the two arcs ((i, n), (i, n +
1)), ((i, n + 1), 1). The weights of the new arcs are determined by

δ0(0, (i, 0)) = δ0((i, n), (i, n + 1)) = δ0((i, n + 1), 1) = 0,

δ0((i, 0), (i, 1)) = ai,1

for all i ∈ [m]. The resulting digraph is called
−→
H again. Figure 3.1 illustrates

the modification for m = n = 4. By the results of Chapter 2, we may assume

· //

��

· //

��

· //

��

·
0

1��9
99

99
99

99
99

· //

��

[[

· //

��

[[

· //

��

[[

· 0

((RRRRRRR

·

a1,1

0

<<zzzzzzzzzzzzz

a2,1 33hhhhhhhhhh a3,1

++VVVVVVVVVV

a4,1

""DD
DD

DD
DD

DD
DD

D ·
· //

��

[[

· //

��

[[

· //

��

[[

·
0

66lllllll

· //

[[

· //

[[

· //

[[

·

0

BB�����������

·
a1,1 //· //

��

· //

��

· //

��

· 0 //·
0

1��;
;;

;;
;;

;;
;

·
a2,1 //· //

��

]]

· //

��

]]

· //

��

]]

· 0 //· 0

))SSSSSSS

·

0

0

AA����������
0 55kkkkkkk 0

))SSSSSSS

0
��;

;;
;;

;;
;;

; ·
·

a3,1 //· //

��

]]

· //

��

]]

· //

��

]]

· 0 //·
0

55kkkkkkk

·
a4,1 //· //

]]

· //

]]

· //

]]

· 0 //·

0

AA����������

Fig. 3.1: The old and the new digraph.

that we have already determined the minimal TNMU which equals

c(A) = max{δ0(P) : P is a (0, 1) − path in
−→
H},

and for every (i, j) ∈ [m] × [n] the values

β1(i, j) = max{δ0(P) : P is a (0, (i, j)) − path in
−→
H}, (3.1)

β2(i, j) = max{δ0(P) : P is a ((i, j), 1) − path in
−→
H}. (3.2)

50 3. A heuristic for the reduction of the number of segments

3.1 The algorithm

Adopting the terminology of [10] we call the pair (u, S) of a positive integer
u and a segment S an admissible segmentation pair if

A′ = A − uS is nonnegative and

c(A′) = c(A) − u.

The essential step of our algorithm is to determine the maximal coefficient
u with the property that there exists a segment S, such that (u, S) is an
admissible segmentation pair. Iterating this step with A′ = A−uS we clearly
obtain a segmentation of A with c(A) monitor units. In order to derive an
upper bound for the coefficient u in an admissible segmentation pair (u, S),
we identify, according to [4], the set of segments with the set of paths from
D to D′ in the layered digraph Γ = (W, F), constructed as follows. The
vertices in the i−th layer correspond to the possible leaf positions in row i

(1 ≤ i ≤ m) and two additional vertices D and D′ are added:

W = {(i, l, r) : i = 1, . . . , m, l = 1, . . . , n + 1, r = l − 1, . . . , n} ∪ {D, D′}.

Between two vertices (i, l, r) and (i+1, l′, r′) there is an arc if the correspond-
ing leaf positions are consistent with the ICC, i.e. if l′ ≤ r +1 and r′ ≥ l− 1.
In addition, the arc set F contains all arcs from D to the first layer and from
the last layer m to D′, so

F = F+(D) ∪ F−(D′) ∪
m−1
⋃

i=1

F+(i), where

F+(D) = {(D, (1, l, r)) : (1, l, r) ∈ W},

F−(D) = {((m, l, r), D′) : (m, l, r) ∈ W},

F+(i) = {((i, l, r), (i + 1, l′, r′)) : l′ ≤ r + 1, r′ ≥ l − 1}.

There is a bijection between the possible leaf positions and the paths from
D to D′ in Γ. This is illustrated in Fig. 3.2 which shows the paths in Γ for
m = 4, n = 2, corresponding to the segments

(

1 0
0 1
1 1
1 0

)

(straight lines) and

(

0 1
1 1
1 0
0 1

)

(dotted lines).

Assume, for every triple (i, l, r), 1 ≤ i ≤ m, 1 ≤ l ≤ r + 1 ≤ n + 1, we
have already determined some upper bound u0(i, l, r) for the coefficient u in

3.1. The algorithm 51

/. -,() *+D

vvlllllllllllll

((/. -,() *+110 /. -,() *+111

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX /. -,() *+112 /. -,() *+121 /. -,() *+122

tt

/. -,() *+132

/. -,() *+210 /. -,() *+211 /. -,() *+212

yy

/. -,() *+221 /. -,() *+222

ttiiiiiiiiiiiiiiiii
/. -,() *+232

/. -,() *+310 /. -,() *+311

,,

/. -,() *+312

yysss
sss

ss
/. -,() *+321 /. -,() *+322 /. -,() *+332

/. -,() *+410 /. -,() *+411

((RRRRRRRRRRRRR
/. -,() *+412 /. -,() *+421 /. -,() *+422

vv

/. -,() *+432

/. -,() *+D′

Fig. 3.2: The vertices of Γ for m = 4, n = 2 and two (D,D ′)–paths.

an admissible segmentation pair (u, S), where S is a segment with li = l and
ri = r. In other words, u ≤ u0(i, li, ri) for all i if (u, S) is an admissible
segmentation pair and li, ri (i = 1, . . . , m) are the parameters of S. We put

û = max{u : There is a path D, (1, l1, r1), . . . , (m, lm, rm), D′

in Γ with u0(i, li, ri) ≥ u for i = 1, . . . , m}.

Clearly, û is an upper bound for the coefficient u in an admissible segmen-
tation pair (u, S). Now we describe an algorithm which constructs an ad-
missible segmentation pair (u, S) with maximal u. Fix u and assume we
have already determined the first i − 1 rows of a segment. If it is possi-
ble to complete these i − 1 rows to obtain a segment S such that (u, S) is
an admissible segmentation pair, then procedure Complete Segment(i) (Al-
gorithm 2) determines li, . . . , lm and ri, . . . , rm realizing such a completion.

Here MaxWeight(i) denotes the maximal weight of a path in
−→
H that has all

its vertices in the first i rows, where the arc weights are determined accord-
ing to A − uS for any segment S with parameters l1, . . . , li and r1, . . . , ri in
the first i rows. Clearly MaxWeight(i) depends only on the values that are
already determined and the condition in line 4 is necessary for the possibility
to continue with the candidates li, ri and obtain an admissible segmentation
pair. Now the pair (u, S) is constructed by procedure Construct Segment

(Algorithm 3). Clearly, the efficiency of the backtracking depends very much
on the quality of the bounds u0(i, l, r). We give some bounds that turned
out to be quite good in numerical experiments. Trivially, in an admissible
segmentation pair (u, S) we have, for all i,

u ≤ v1(i, li, ri) := min{ai,j : li ≤ j ≤ ri}.

52 3. A heuristic for the reduction of the number of segments

Algorithm 2 Complete Segment(i)

for (li, ri) with 1 ≤ li ≤ ri−1 + 1,
max{li, li−1} − 1 ≤ ri ≤ n and
u0(i, li, ri) ≥ u do

if MaxWeight(i) ≤ c(A) − u then
if i < m then
Complete Segment(i + 1)

else
finished:=true

end if
end if

end for

Algorithm 3 Construct Segment

u := û

finished:=false
l0 := 1, r0 := n + 1
while not finished do
Complete Segment(1)
if not finished then

u := u − 1
end if

end while

3.1. The algorithm 53

Fix an admissible segmentation pair (u, S), denote by δ′0 the weight function

on
−→
H corresponding to A′ = A − uS and let

β ′
1(i, j) = max{δ′0(P) : P is a (0, (i, j)) − path in

−→
H}, (3.3)

β ′
2(i, j) = max{δ′0(P) : P is a ((i, j), 1) − path in

−→
H}. (3.4)

The upper bounds below are based on the following simple observations.

1. The only arcs e with δ′0(e) < δ0(e) are of the form e = ((i, li − 1), (i, li))
(1 ≤ i ≤ m), and for these arcs δ′0(e) ≥ δ0(e) − u.

2. For arcs of the form e = ((i, j), (i ± 1, j)) with li ≤ j ≤ ri we have
δ′0(e) = δ0(e) + u.

3. If j < lk for some k ∈ [m] then, on every (0, (k, j))−path P , the number
of arcs of the form ((i, li − 1), (i, li)) is equal to or less than the number
of arcs of the form ((i, j), (i ± 1, j)) with li ≤ j ≤ ri.

4. If j ≥ lk for some k ∈ [m] then, on every ((k, j), 1)−path P , the number
of arcs of the form ((i, li − 1), (i, li)) is equal to or less than the number
of arcs of the form ((i, j), (i ± 1, j)) with li ≤ j ≤ ri.

The third observation is valid since for a fixed (0, (k, j))−path P there is an
injective mapping from the set of arcs of the form ((i, li − 1), (i, li)) on P

to the set of arcs of the form ((i, j), (i ± 1, j)) with li ≤ j ≤ ri on P : an
arc ((i, li − 1), (i, li)) is mapped to the arc ((i′ ± 1, j ′), (i′, j ′)) where (i′, j ′)
is the first vertex on the ((i, li), (k, j))−subpath of P which is covered by
some left leaf. Here the ICC assures that li′±1 ≤ j ′ ≤ ri′±1. Similarly, in
the fourth observation the arcs of the form ((i, li − 1), (i, li)) can be mapped
injectively to the arcs of the form ((i, j), (i ± 1, j)) with li ≤ j ≤ ri by
mapping ((i, li − 1), (i, li)) to ((i′ ± 1, j ′), (i′, j ′)) where (i′ ± 1, j ′) is the last
vertex on the ((k, j), (i, li))−subpath of P which is not covered by some left
leaf. This is illustrated in Figure 3.3. It follows, for 1 ≤ i ≤ m,

β ′
1(i, j) ≥ β1(i, j) for j < li,

β ′
2(i, j) ≥ β2(i, j) for j ≥ li.

Lemma 15. Let (u, S) be an admissible segmentation pair with li = l and
ri = r. Then u ≤ v2(i, l, r) where

v2(i, l, l − 1) = c(A) − β1(i, l − 1) − max{0, di,l} − β2(i, l),

54 3. A heuristic for the reduction of the number of segments

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

�

� � � �

�

� �

� �

� �

�

�

� � � �

� �

�

Fig. 3.3: Illustration of observations 3 and 4.

and if r ≥ l then v2(i, l, r) = min{γ1, γ2, γ3, γ4}, where

γ1 = c(A) − β1(i, l − 1) − β2(i, l),

γ2 = c(A) − β1(i, l − 1) −
r
∑

j=l+1

max{0, di,j} − β2(i, r + 1),

γ3 = c(A) − β1(i, l − 1) − di,l −
r
∑

j=l+1

max{0, di,j} − di,r+1 − β2(i, r + 1),

γ4 =
1

2

(

c(A) − β1(i, l − 1) −
r
∑

j=l+1

max{0, di,j} − di,r+1 − β2(i, r + 1)

)

.

Proof. Let P be the the concatenation of the paths P1, P2 and P3, where
P1 is a (0, (i, l − 1))−path with δ0(P1) = β1(i, l − 1), P2 is the path ((i, l −
1), (i, l), . . . , (i, r+1)), and P3 is an ((i, r+1), 1)−path with δ0(P2) = β2(i, r+
1).

Case 1: r = l − 1. Using the above observations, we obtain

c(A) − u = c(A′) ≥ δ′0(P) ≥ β1(i, l − 1) + max{0, di,l} + β2(i, l),

and thus u ≤ c(A) − β1(i, l − 1) − max{0, di,l} − β2(i, l).

Case 2: r ≥ l. Now

δ′0(P) = δ′0(P1) + max{0, di,l − u} +
r
∑

j=l+1

max{0, di,j}

+ max{0, di,r+1 + u} + δ′0(P2),

3.1. The algorithm 55

and thus

β1(i, l − 1) + max{0, di,l − u} +
r
∑

j=l+1

max{0, di,j}

+ max{0, di,r+1 + u} + β2(i, r + 1) ≤ c(A) − u,

or

u + max{0, di,l − u} + max{0, di,r+1 + u} ≤ c(A) − β1(i, l − 1)

−
r
∑

j=l+1

max{0, di,j} − β2(i, r + 1),

which implies u ≤ γi (i = 2, 3, 4). To see u ≤ γ1, consider the path
Q that is the concatenation of P1, the arc ((i, l − 1), (i, l)) and an
((i, l), 1)−path P4 with δ0(P4) = β2(i, l). Then

δ′0(Q) ≥ β1(i, l − 1) + β2(i, l),

and thus u ≤ γ1. �

Lemma 16. Suppose (u, S) is an admissible segmentation pair, fix some i,
2 ≤ i ≤ m − 1, and put

λ1 = max
li≤t≤ri

{β1(i − 1, t) − ai−1,t − ai,t + β2(i + 1, t)},

λ2 = max
li≤t≤ri

{β1(i + 1, t) − ai+1,t − ai,t + β2(i − 1, t)}.

Then
u ≤ v3(i, li, ri) := c(A) − min{λ1, λ2}.

Proof. By symmetry, w.l.o.g. λ1 ≤ λ2. Assume u > c(A) − λ1, and let t

be an index where the maximum in the definition of λ1 is attained. Let
P be the concatenation of the three paths P1, P2 and P3, where P1 is an
(0, (i− 1, t))−path with δ0(P1) = β1(i− 1, t), P2 = ((i− 1, t), (i, t), (i + 1, t))
and P3 is an ((i + 1, t), 1)–path with δ0(P3) = β2(i + 1, t). Then

δ′0(P) ≤ c(A′) = c(A) − u < λ1 = δ0(P).

By the above observations, we have δ′0(P1) ≥ δ0(P1)− u, δ′0(P3) ≥ δ0(P3)− u

and

δ′0(P2) =

{

δ0(P2) + 2u if li−1 ≤ t ≤ ri−1,

δ0(P2) + u otherwise.

56 3. A heuristic for the reduction of the number of segments

So δ′0(P) < δ0(P) implies

δ′0(P1) < δ0(P1),

δ′0(P2) = δ0(P2) + u,

δ′0(P3) < δ0(P3).

And from this follows

li−1 ≤ t and li+1 > t.

Now denote by t′ the index where the maximum in the definition of λ2 is
attained. Since u > c − λ1 ≥ c − λ2, by the same argument as above we
obtain

li+1 ≤ t′ and li−1 > t′.

But this is a contradiction to li+1 > t if t′ ≤ t and to li−1 ≤ t if t′ > t. �

Thus we may put

u0(i, l, r) = min{vk(i, l, r) : k = 1, 2, 3}, (3.5)

and obtain the following result.

Theorem 2. If the u0(i, l, r) are determined according to (3.5) the algorithm
Construct Segment yields an admissible segmentation pair (u, S) such that
u′ ≤ u for any admissible segmentation pair (u′, S ′).

Example 5. For the benchmark matrix from [18] our algorithm yields the
segmentation (2.4) from Example 1.

3.2 Test results

To test our algorithm we computed segmentations for 15× 15–matrices with
random entries from {0, 1, . . . , L} for 3 ≤ L ≤ 16. Table 3.1 shows the
results. The numbers in the columns TNMU (new) and NS (new) are the
average total number of monitor units and the average number of segments,
where we have averaged over 10000 matrices with randomly chosen entries
from {0, . . . , L} (uniformly distributed). The remaining columns show the
corresponding results from [28]: the columns labeled X–V, B, G contain the
results for the algorithms of Xia and Verhey [28], Bortfeld et al [6] and Galvin
et al [11], respectively. On an 1.3 GHz–PC the computation of the two new
entries in a row of the table, i.e. the segmentation of 10000 matrices, took
approximately 1 hour. But it should be mentioned that the algorithm is
fast for the vast majority of the matrices, while there are some very rare
exceptions. We also tested the algorithm on 13 clinical sample matrices
(10 × 10–matrices with entries between 0 and 10). The results are shown in
Table 3.2.

3.2. Test results 57

L TNMU TNMU TNMU TNMU NS NS NS NS
(new) (X–V) (B) (G) (new) (X–V) (B) (G)

3 15.4 19.5 17.7 19.7 12.6 13.3 17.7 13.4
4 19.5 29.6 22.8 40.5 14.5 18.6 22.8 20.4
5 23.6 30.9 27.9 40.1 16.0 19.0 27.9 20.4
6 27.6 46.8 32.8 44.2 17.2 20.3 32.8 21.5
7 31.7 45.6 37.9 67.1 18.2 20.0 37.9 27.1
8 35.7 63.4 42.8 72.3 19.1 24.3 42.8 28.2
9 39.8 67.1 47.8 72.3 19.9 24.3 47.8 28.3
10 43.8 68.6 52.6 76.5 20.7 25.7 52.6 28.9
11 47.7 68.6 57.6 81.4 21.3 25.7 57.6 30.9
12 51.8 101.1 62.4 106.8 21.9 27.0 62.4 34.8
13 55.7 100.6 67.3 101.1 22.5 26.9 67.3 35.5
14 59.8 100.0 72.2 112.7 23.0 26.9 72.2 35.6
15 63.8 98.0 77.1 116.0 23.5 26.7 77.1 35.9
16 67.7 124.9 82.0 154.5 24.0 30.0 82.0 41.7

Tab. 3.1: Average TNMU and NS for random 15 × 15–matrices with maximal
entry L.

no. MU NS CPU–time
1 18 10 0.05 s
2 16 8 0.06 s
3 16 8 0.05 s
4 20 10 0.10 s
5 19 11 0.05 s
6 18 9 0.05 s
7 17 9 0.11 s
8 23 12 0.22 s
9 24 11 0.17 s
10 22 10 0.22 s
11 30 15 0.17 s
12 23 13 0.22 s
13 22 11 0.22 s

Tab. 3.2: Test results for clinical matrices.

58 3. A heuristic for the reduction of the number of segments

4. EXACT MINIMIZATION OF THE NUMBER OF

SEGMENTS FOR COLLIMATORS WITHOUT INTERLEAF
COLLISION CONSTRAINT

The problem of minimizing the number of segments is NP–complete in the
strong sense even for single row matrices. The NP–hardness was shown in [2]
by reduction of 2–Partition [12]. Woeginger gave an unpublished proof of
the NP–hardness in the strong sense by a reduction of 3–Partition [12]. In
[15] the NS–minimization for one row has been reduced to the bipartite case
of Minimum Edge–Cost Flow [12]. For special instances of Minimum

Edge–Cost Flow there is a reduction in the reverse direction and this
yields a new point of view on Woegingers argument which is presented below.
The following special case of Minimum Edge–Cost Flow has been shown
to be strongly NP–complete in [3] by a reduction of 3–Partition.

Instance: A complete bipartite graph G = (U ∪ V, E) with |U | = 3|V | and a
function w : U → IN \ {0}.

Question: Is there a flow function f : E → IN such that

∀x ∈ U
∑

y∈V

f(xy) = w(x), (4.1)

∀y ∈ V
∑

x∈U

f(xy) = 3w, where w =
1

|U |

∑

x∈U

w(x), (4.2)

|{xy ∈ E : f(xy) > 0}| ≤ |U |. (4.3)

This problem can be reduced to the NS–minimization problem as follows. We
put q = |V |, n = 4q, denote the elements of U by u1, . . . , u3q, the elements
of V by v1, . . . , vq, and define the row vector a = (a1 ... an) as follows.

ai =

i
∑

j=1

w(uj) for 1 ≤ i ≤ 3q,

ai = 3(n − i)w for 3q + 1 ≤ i ≤ n.

60 4. Exact minimization of the number of segments

Theorem 3 (Woeginger). There is a segmentation of a with 3q segments
iff there is a function f : E → IN satisfying (4.1)–(4.3).

Proof. “⇒”: Suppose there is a segmentation

a =

3q
∑

j=1

cjs
(j) (4.4)

where the segments are described by

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise.
(j ∈ [3q], i ∈ [n]).

By Lemma 1 from [15] we may assume that lj ≤ 3q ≤ rj for all j ∈ [3q].
Moreover, ai > ai−1 for all i ∈ [3q] (where a0 = 0) implies that for each
i ∈ [3q] there is some j ∈ [3q] with lj = i, hence we may assume li = i

for i ∈ [3q]. Let

f(uivri−3q+1) = ci (i ∈ [3q])

and f(xy) = 0 for all the remaining edges xy. Observe that an = 0, so
ri < n for all i and 1 ≤ ri − 3q + 1 ≤ q. Clearly, (4.3) is satisfied. Now
fix i ∈ [3q]. From (4.4) and the fact that j = i is the only index with
lj = i we obtain that

w(ui) = ai − ai−1 = ci = f(uivri
) =

∑

y∈V

f(uiy),

so (4.1) is satisfied. Now fix i, 3q + 1 ≤ i ≤ n. From (4.4) we obtain

3w = ai−1 − ai =
∑

j∈[3q]:rj=i−1

cj

=
∑

j∈[3q]:rj=i−1

f(ujvi−3q) =

3q
∑

j=1

f(ujvi−3q),

thus (4.2) is satisfied.

“⇐”: Suppose there is a function f satisfying (4.1)–(4.3). By (4.1) and (4.3),
for each j ∈ [3q] there is exactly one k(j) ∈ [q] with f(ujvk(j)) > 0. For
j ∈ [3q], put

cj = f(ujvk(j)), lj = j, rj = 3q + k(j) − 1,

4.1. Single row intensity maps 61

and define segments s(j) by

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise.
(j ∈ [3q], i ∈ [n]).

This yields a segmentation of a: for i ≤ 3q we have s
(j)
i = 1 iff lj ≤ i,

and so

3q
∑

j=1

cjs
(j)
i =

i
∑

j=1

cj =

i
∑

j=1

∑

v∈V

f(uj, v) =

i
∑

j=1

w(uj) = ai,

and for i > 3q we have s
(j)
i = 1 iff rj ≥ i, so

3q
∑

j=1

cjs
(j)
i =

n−1
∑

t=i

∑

j∈[3q]:rj=t

cj =

n−1
∑

t=i

∑

j∈[3q]:k(j)=t−3q+1

cj

=
n−1
∑

t=i

3q
∑

j=1

f(ujvt−3q+1) = (n − i)w = ai.

�

This shows that the NS–minimization is NP–hard. But the reduction
essentially depends on the fact that the entries can become arbitrary large.
In this chapter we show that the NS–minimization problem can be solved in
time polynomial in the matrix dimensions m and n if the maximal entry L of
the intensity matrix is bounded. This seems to be a reasonable assumption in
practice: for instance Xia and Verhey [28] report that they obtained matrices
with 7 nonzero intensity levels when they applied a preliminary version of
the CORVUS inverse treatment planning system (NOMOS corporation) to
a very complex head and neck tumor case. The algorithm proposed here is
an application of the dynamic programming principle (see [5]).

4.1 Single row intensity maps

First we give an exact formulation of the problem L–One Row–Min MU–

Min NS:

Instance: A vector a = (a1 a2 ... an) of integers with 0 ≤ ai ≤ L (i = 1, . . . , n).

Problem: Find a segmentation with in first instance minimal TNMU and in
second instance minimal NS!

62 4. Exact minimization of the number of segments

As before, we put a0 = an+1 = 0. Let

P = {i ∈ [n] : ai ≥ ai−1 and ai > ai+1},

Q = {i ∈ [n] : ai < ai−1 and ai ≤ ai+1}.

Clearly, |P | = |Q|+ 1 if an 6= 0 and |P | = |Q| if an = 0. If an 6= 0 denote the
elements of P and Q by p1, . . . , pt and q1, . . . , qt−1 such that

p1 < q1 < p2 < q2 < · · · < qt−1 < pt,

and put q0 = 0 and qt = n + 1. If an = 0 denote the elements of P and Q by
p1, . . . , pt and q1, . . . , qt such that

p1 < q1 < p2 < q2 < · · · < qt−1 < pt < qt.

From the results of [10] it follows that in a TNMU–optimal segmentation

a =

k
∑

j=1

cjs
(j)

every segment is of the form

s
(j)
i =

{

1 for lj ≤ i ≤ rj,

0 otherwise,

with qτ−1 < lj ≤ pτ and pτ ′ ≤ rj < qτ ′ for some τ, τ ′ ∈ [t]. Since the
order of the segments is not relevant, we may order them in such a way that
r1 ≤ · · · ≤ rk. For τ ∈ [t − 1], let k0(τ) be the unique index with rj < qτ for
j ≤ k0(τ) and rj ≥ qτ for j > k0(τ), and put

a(τ) = a −

k0(τ)
∑

j=1

cjs
(j).

Also put k0(0) = 0, k0(t) = k, a(0) = a and a(t) = 0. For j > k0(τ), from
rj ≥ qτ it follows that for i ≤ qτ ,

s
(j)
i = 1 ⇐⇒ lj ≤ i.

In particular, for i = 1, . . . , qτ − 1 and j = k0(τ) + 1, . . . , k,

s
(j)
i = 1 =⇒ s

(j)
i+1 = 1. (4.5)

4.1. Single row intensity maps 63

For 0 ≤ τ ≤ t − 1, we have

a(τ) =

k
∑

j=k0(τ)+1

cjs
(j),

hence (4.5) implies that

a
(τ)
1 ≤ a

(τ)
2 ≤ · · · ≤ a(τ)

qτ
,

and the multisets

Uτ = {a(τ)
i − a

(τ)
i−1 : 1 ≤ i ≤ qτ , a

(τ)
i 6= a

(τ)
i−1}, (4.6)

Vτ = {a(τ)
i − a

(τ)
i−1 : qτ < i ≤ pτ+1, a

(τ)
i 6= a

(τ)
i−1}, (4.7)

Wτ = {a
(τ)
i − a

(τ)
i+1 : pτ+1 ≤ i < qτ+1, a

(τ)
i 6= a

(τ)
i+1} (4.8)

are partitions of aqτ
, apτ+1 − aqτ

and apτ+1 − aqτ+1, respectively. Observe that

a
(τ)
i = ai for i ≥ qτ , hence Vτ and Wτ depend only on a, while Uτ depends

also on the pairs
(s(1), c1), . . . , (s

(k0(τ)), ck0(τ)).

Considering the sequence (Uτ , Vτ , Wτ) (τ = 0, . . . , t), where we add Ut =
Vt = Wt = ∅, we will derive a method to construct the desired segmentation.

Definition 2. For integers u, v and w with 0 ≤ u ≤ v ≤ L and 0 ≤ w < v,
a (u, v, w)−peak is a triple (U, V, W) of unordered partitions of u, v − u and
v − w, i.e. a triple of multisets of positive integers with

∑

x∈U

x = u,
∑

x∈V

x = v − u,
∑

x∈W

x = v − w.

In addition, the triple (∅, ∅, ∅) is called (0, 0, 0)−peak.

Thus for τ = 0, . . . , t, (Uτ , Vτ , Wτ) is an (aqτ
, apτ+1, aqτ+1)−peak (where

apt+1 = aqt+1 = 0), and for τ ≤ t − 1, the choice of the pairs

(s(k0(τ)+1), ck0(τ)+1), . . . , (s
(k0(τ+1)), ck0(τ+1))

can be considered as the choice of a way to go from the peak (Uτ , Vτ , Wτ) to
the peak (Uτ+1, Vτ+1, Wτ+1). We claim that the number of segments needed
for this step does not depend on the particular a(τ), but only on the multisets
Uτ ∪ Vτ , Wτ and Uτ+1. To prove this we associate with a (u, v, w)–peak
(U, V, W) a vector b = (b1 ... bβ) as follows. Put α = |U | + |V |, β = α +

64 4. Exact minimization of the number of segments

|W |, denote the elements of U ∪ V by d1, . . . , dα and the elements of W by
dα+1, . . . , dβ, such that

d1 ≥ d2 ≥ · · · ≥ dα and dα+1 ≥ dα+2 ≥ · · · ≥ dβ.

So, for U = Uτ , V = Vτ and W = Wτ the di (i = 1, . . . , β) are the absolute
values of the nonzero differences of consecutive entries of the initial part
(a

(τ)
1 ... a

(τ)
qτ+1) of a(τ). Now b is defined by

bi =















i
∑

j=1

dj for 1 ≤ i ≤ α,

v −
i
∑

j=α+1

dj for α + 1 ≤ i ≤ β.

In addition, let b0 = 0.

Example 6. The associated vector for any peak with U ∪ V = {4, 2, 1, 1}
and W = {2, 2, 1} is b = (4 6 7 8 6 4 3).

Lemma 17. Fix some τ , 0 ≤ τ ≤ t − 1, and let b = (b1 ... bβ) be the vector
associated with the (aqτ

, apτ+1, aqτ+1)–peak (Uτ , Vτ , Wτ), defined according to
(4.6)–(4.8), where α = |Uτ ∪Vτ | and β = α+ |Wτ |. Also let U ′ be a partition
of aqτ+1, and let c1, . . . , cρ be positive integers with

ρ
∑

j=1

cj = apτ+1 − aqτ+1. (4.9)

Then the following statements are equivalent.

1. There exist integers lj, rj with 1 ≤ lj ≤ pτ+1 ≤ rj < qτ+1 (j = 1, . . . , ρ),

such that for a′ = a(τ) −
ρ
∑

j=1

cjs
(j), where

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , ρ; i = 1, . . . , n)

we have

(a) 0 ≤ a′
1 ≤ a′

2 ≤ · · · ≤ a′
qτ+1

(b) {a′
i − a′

i−1 : 1 ≤ i ≤ qτ+1, a′
i 6= a′

i−1} = U ′ (where a′
0 = 0).

4.1. Single row intensity maps 65

2. There exist integers l′j, r′j with 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , ρ,

such that for b′ = b −
∑ρ

j=1 cjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , ρ; i = 1, . . . , β)

we have

(a) b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ

(b) {b′i − b′i−1 : 1 ≤ i ≤ β, b′i 6= b′i−1} = U ′ (where b′0 = 0).

Proof. Let

R1 = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1},

R2 = {i : pτ+1 ≤ i < qτ+1, a
(τ)
i 6= a

(τ)
i+1}.

Clearly,

Uτ ∪ Vτ = {a
(τ)
i − a

(τ)
i−1 : i ∈ R1} and

Wτ = {a
(τ)
i − a

(τ)
i+1 : i ∈ R2}.

But by construction of b we also have

Uτ ∪ Vτ = {bi − bi−1 : 1 ≤ i ≤ α} and

Wτ = {bi − bi+1 : α ≤ i ≤ β − 1}.

Together this implies that there are bijections

ϕ1 : R1 → {1, . . . , α}, ϕ2 : R2 → {α, . . . , β − 1},

such that

a
(τ)
i − a

(τ)
i−1 = bϕ1(i) − bϕ1(i)−1 for i ∈ R1 and

a
(τ)
i − a

(τ)
i+1 = bϕ2(i) − bϕ2(i)+1 for i ∈ R2.

It is an easy consequence of the results of [10], that from the assumption
(4.9) it follows that for lj, rj (j = 1, . . . , ρ) as in the first statement, we
have lj ∈ R1 and rj ∈ R2 for all j and for l′j, r′j (j = 1, . . . , ρ) as in the
second statement we have l′j ≤ α and r′j ≥ α for all j. Suppose that lj, rj

(j = 1, . . . , ρ) satisfy the conditions of the first statement. The difference of
the entries number i and i − 1 changes only when lj = i or rj = i − 1 for
some j. Thus, if i 6∈ R1 and i − 1 6∈ R2 we have

a′
i − a′

i−1 = a
(τ)
i − a

(τ)
i−1 = 0.

66 4. Exact minimization of the number of segments

Hence, for i = 1, . . . , qτ+1,

a′
i − a′

i−1 6= 0 =⇒ i ∈ R1 or i − 1 ∈ R2.

Put

C1(i) = {j ∈ [ρ] : lj = i} for i ∈ R1,

C2(i) = {j ∈ [ρ] : rj = i} for i ∈ R2.

Then

a′
i − a′

i−1 = a
(τ)
i − a

(τ)
i−1 −

∑

j∈C1(i)

cj for i ∈ R1

a′
i − a′

i+1 = a
(τ)
i − a

(τ)
i+1 −

∑

j∈C2(i)

cj for i ∈ R2.

By condition (a) of the first statement we have a′
i − a′

i+1 ≤ 0 for i =
0, . . . , qτ+1 − 1. For i ∈ R2 this yields

∑

j∈C2(i)

cj ≥ a
(τ)
i − a

(τ)
i+1,

and together with

∑

i∈R2

∑

j∈C2(i)

cj =

ρ
∑

j=1

cj = apτ+1 − aqτ+1 =
∑

i∈R2

(

a
(τ)
i − a

(τ)
i+1

)

we obtain for i ∈ R2,
∑

j∈C2(i)

cj = a
(τ)
i − a

(τ)
i+1.

and thus a′
i − a′

i+1 = 0 for i ∈ R2. So the only nonzero differences a′
i − a′

i−1

come from indices i ∈ R1. Now put l′j = ϕ1(lj) and r′j = ϕ2(rj) (j = 1, . . . , ρ)
and let b′ be defined as in the second statement. Then l′j = ϕ1(i) iff j ∈ C1(i)
and r′j = ϕ2(i) iff j ∈ C2(i), hence for i ∈ R1 we have

b′ϕ1(i) − b′ϕ1(i)−1 = bϕ1(i) − bϕ1(i)−1 −
∑

j : l′j=ϕ1(i)

cj

= bϕ1(i) − bϕ1(i)−1 −
∑

j∈C1(i)

cj

= ai − ai−1 −
∑

j∈C1(i)

cj

= a′
i − a′

i−1,

4.1. Single row intensity maps 67

and for i ∈ R2,

b′ϕ2(i) − b′ϕ2(i)+1 = bϕ2(i) − bϕ2(i)+1 −
∑

j : r′j=ϕ2(i)

cj

= bϕ2(i) − bϕ2(i)+1 −
∑

j∈C2(i)

cj

= ai − ai+1 −
∑

j∈C2(i)

cj

= a′
i − a′

i+1 = 0.

So the second statement holds, and since all the arguments are reversible,
we have proved that lj, rj (j = 1, . . . , ρ) satisfy the conditions of the first
statement iff l′j = ϕ1(lj), r′j = ϕ2(rj) (j = 1, . . . , ρ) satisfy the conditions of
the second statement, and this proves the lemma. �

In fact the proof shows even more than just the equivalence of the two
statements: knowing l′j and r′j (j = 1, . . . , ρ) and R1 and R2, we can deter-

mine the lj, rj (j = 1, . . . , ρ) and R′ = {i : 1 ≤ i ≤ qτ+1, a
(τ+1)
i 6= a

(τ+1)
i−1 }

in a number of steps that is bounded by a constant.

Example 7. Suppose a(τ) = (2 2 3 7 7 9 8 5 5 12) with Uτ = {2, 1}, Vτ =
{4, 2}, Wτ = {3, 1}, R1 = {1, 3, 4, 6} and R2 = {6, 7}. The associated vector
is b = (4 6 8 9 6 5) and bijections as in the proof of Lemma 17 are given by

ϕ1 : 1 7→ 2, 3 7→ 4, 4 7→ 1, 6 7→ 3,

ϕ2 : 6 7→ 5, 7 7→ 4.

Now from

(4 4 4 5 5 5) = (4 6 8 9 6 5) − (0 2 2 2 0 0) − (0 0 1 1 1 0) − (0 0 1 1 0 0),

where we have

l′1 = 2, r′1 = 4, l′2 = 3, r′2 = 5, l′3 = 3, r′3 = 4,

we obtain

l1 = 1, r1 = 7, l2 = 6, r2 = 6, l3 = 6, r3 = 7,

corresponding to

(0 0 1 5 5 5 5 5 5 12) = (2 2 3 7 7 9 8 5 5 12) − (2 2 2 2 2 2 2 0 0 0)

− (0 0 0 0 0 1 0 0 0 0) − (0 0 0 0 0 1 1 0 0 0).

68 4. Exact minimization of the number of segments

Lemma 17 motivates the following definitions.

Definition 3. Let b = (b1 ... bβ) be the vector associated with some (u, v, w)–
peak (U, V, W) where α = |U ∪V | and β = α+ |W |, and let U ′ be a partition
of w. Let T be the set of positive integers ρ such that there are integers
l1, . . . , lρ, r1, . . . , rρ and coefficients c1, . . . , cρ ∈ IN \ {0} such that

1.
ρ
∑

j=1

cj = v − w,

2. 1 ≤ lj ≤ rj ≤ β − 1 for j = 1, 2, . . . , ρ.

and for b′ = b −
ρ
∑

j=1

cjf
(j), where

f
(j)
i =

{

1 if lj ≤ i ≤ rj,

0 otherwise,
(j = 1, . . . , ρ; i = 1, . . . , β)

we have

3. b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ = w and

4. {b′i − b′i−1 : 1 ≤ i ≤ β, b′i 6= b′i−1} = U ′ (with b′0 = 0).

Then we define

ρ(b, U ′) =

{

min T if T 6= ∅,
∞ if T = ∅.

Definition 4. Let (U, V, W) and (U ′, V ′, W ′) be a (u, v, w)–peak and a
(u′, v′, w′)−peak, respectively, where u′ = w. Then we put

δ((U, V, W), (U ′, V ′, W ′)) = ρ(b, U ′),

where b is the vector associated with (U, V, W).

In order to model the segmentation process we define a digraph G =
(V, E). The vertex set is

V = {(τ, U, Vτ , Wτ) : 0 ≤ τ ≤ t, U is a partition of aqτ
},

where

Vτ = {ai − ai−1 : qτ < i ≤ pτ+1, ai 6= ai−1},

Wτ = {ai − ai+1 : pτ+1 ≤ i < qτ+1, ai 6= ai+1}

4.1. Single row intensity maps 69

·

2

d

g
""EE

EE
EE

EE
EE

EE
EEE

EE
E

·
b

∞

55lllllllllllllll

1

))RRRRRRRRRRRRRRR

∞

��:
::

::
::

::
::

::
::

::
::

::
:

·

1

55lllllllllllllll
a 1

))RRRRRRRRRRRRRRR · 3e //·

·

∞

BB����������������������

1
55lllllllllllllll

1c

))RRRRRRRRRRRRRRR

·

4

f

<<yyyyyyyyyyyyyyyyyy

Fig. 4.1: The digraph for the vector a.

for 0 ≤ τ ≤ t. Observe that there is only one vertex with first component 0,
namely (0, ∅, V0, W0) corresponding to a(0) = a and there is only one vertex
with first component t, namely (t, ∅, ∅, ∅) corresponding to the zero vector.
In general, the vertices with first component τ represent the possibilities for
(Uτ , Vτ , Wτ), and by the observation before Definition 2 for each τ there is
only one choice for Vτ and Wτ , depending only on a. In the arc set E we
include all arcs of the form

((τ, U, Vτ , Wτ), (τ + 1, U ′, Vτ+1, Wτ+1))

for τ = 0, . . . , t − 1. Figure 4.1 shows G for a = (1 3 2 4 3 4), where the
vertices are labeled as follows.

a = (0, ∅, {1, 2}, {1}), b = (1, {2}, {2}, {1}), c = (1, {1, 1}, {2}, {1}),

d = (2, {3}, {1}, {4}), e = (2, {2, 1}, {1}, {4}), f = (2, {1, 1, 1}, {1}, {4})

g = (3, ∅, ∅, ∅).

We define the arc weights in G to be the distances of the corresponding
peaks, i.e.

δ((τ, U, Vτ , Wτ), (τ + 1, U ′, Vτ+1, Wτ+1)) = δ((U, Vτ , Wτ), (U
′, Vτ+1, Wτ+1))

for 0 ≤ τ ≤ t − 1 and all partitions U and U ′ of aqτ
and aqτ+1, respec-

tively. Observe that in this definition we used the fact that (U, Vτ , Wτ) and
(U ′, Vτ+1, Wτ+1) are an (aqτ

, apτ+1, aqτ+1)–peak and an (aqτ+1, apτ+2, aqτ+2)–
peak, respectively. This assures that the condition u′ = w in the definition
of δ is satisfied. For instance, the segment (1 1 0 0 0 0) corresponds to the arc
(a, b), since

a − (1 1 0 0 0 0) = (0 2 2 4 3 4),

70 4. Exact minimization of the number of segments

while (0 1 0 0 0 0) corresponds to the arc (a, c), since

a − (0 1 0 0 0 0) = (1 2 2 4 3 4).

In general, an arc of weight ρ corresponds to a linear combination of ρ seg-
ments. Now with a segmentation we can associate a path

(0, ∅, V0, W0), (1, U1, V1, W1), . . . , (t, ∅, ∅, ∅) (4.10)

in G.

Example 8. The segmentation

a = (1 1 0 0 0 0) + (0 1 1 1 0 0) + (0 1 1 1 1 1) + 2(0 0 0 1 1 1) + (0 0 0 0 0 1)

corresponds to the path (a, b, e, g) in Figure 4.1 as follows.

a =̂ (1 3 2 4 3 4)

(a, b) =̂ −(1 1 0 0 0 0)

b =̂ =(0 2 2 4 3 4)

(b, e) =̂ −(0 1 1 1 0 0)

e =̂ =(0 1 1 3 3 4)

(e, g) =̂ −(0 1 1 1 1 1)

−(0 0 0 2 2 2)

−(0 0 0 0 0 1)

g =̂ =(0 0 0 0 0 0).

With these definitions the minimal number of segments needed to realize
a segmentation corresponding to (4.10) equals the weight of this path.

Lemma 18. In time O(1) we can determine the values ρ(b, U ′) for all vectors
b that are associated with some (u, v, w)–peak and for all partitions U ′ of w.
In addition we obtain values cj, l′j, r′j (j = 1, . . . , ρ(b, U ′)) satisfying the
conditions of Definition 3.

Proof. The total number of vectors b associated with some (u, v, w)−peaks
when u, v and w run through all the possible values is

L
∑

v=1

v−1
∑

w=0

PvPv−w

where Pi is the number of partitions of i ∈ IN . Fix one of these vectors b.
We consider all the sets S = {(l′j, r

′
j, cj) : j = 1, . . . , ρ} (ρ ∈ IN), such

4.1. Single row intensity maps 71

that the vectors f (1), . . . , f (ρ), defined as in Definition 3 and the coefficients
c1, . . . , cρ satisfy the conditions in Definition 3. We claim that there are at
most

vv−w ≤ LL

possibilities for S. Writing
∑cj

k=1 f (j) for cjf
(j) we can express

∑ρ
j=1 cjf

(j)

as a sum of
∑ρ

j=1 cj = v − w (0, 1)−vectors. In order to satisfy Conditions
1 and 3 of Definition 3, for i = α, . . . , β − 1, in exactly bi − bi+1 of these
(0, 1)−vectors there must be 0 at position i + 1 and a 1 at position i. So we
may assume that the v−w right leaf positions are fixed. Since for each right
leaf position there are at most v left leaf positions the claim follows. For each
S the resulting partition U ′ of w can be computed in O(1) steps, since ρ is
bounded by v −w ≤ L, and β is bounded by 2L. Thus the number of peaks
is bounded by a constant, the number of sets S to be checked for each peak
is bounded by a constant, for each of these sets the number of steps for the
checking is bounded by a constant, and this completes the proof. �

Lemma 19. In time O(n) we can determine the arc weights δ(e) for all
e ∈ E and for each arc e a sequence

(s(1), c1), . . . , (s
(δ(e)), cδ(e))

realizing its weight.

Proof. By Lemma 18 we may assume that we know all the ρ(b, U ′). First we
determine in time O(n) the sets

P = {p1, . . . , pt},

Q = {q0, . . . , qt},

R1,τ = {i : qτ < i ≤ pτ+1, ai 6= ai−1} (τ = 0, . . . , t − 1),

R2,τ = {i : pτ+1 ≤ i < qτ+1, ai 6= ai+1} (τ = 0, . . . , t − 1),

and the partitions Vτ and Wτ (τ = 0, . . . , t). By induction, we assume that
we have already determined the weights of the arcs up to layer τ for some
τ , 0 ≤ τ ≤ t − 1. The number of vertices in layers τ and τ + 1 are bounded
by Paqτ

and Paqτ+1
, respectively. So the number of arcs is bounded by P2

L.
Fix some (τ, Uτ , Vτ , Wτ) and (τ +1, Uτ+1, Vτ+1, Wτ+1). Also by induction, we
assume that we know the set

R1 = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1}

for some possible a(τ) corresponding to (τ, Uτ , Vτ , Wτ). Now by Lemma 17
(and its proof) we obtain

δ((τ, Uτ , Vτ , Wτ), (τ + 1, Uτ+1, Vτ+1, Wτ+1))

72 4. Exact minimization of the number of segments

and a sequence realizing this value in constant time from the corresponding
data for b and U ′ where b is the vector associated with (Uτ , Vτ , Wτ) and
U ′ = Uτ+1. If τ ≤ t − 2 this also yields

R′
1 = {i : 1 ≤ i ≤ pτ+2, a

(τ+1)
i 6= a

(τ+1)
i−1 }

for some possible a(τ+1) corresponding to (τ + 1, Uτ+1, Vτ+1, Wτ+1). So the
weights for all arcs between adjacent layers can be determined in time O(1).
And since the number of layers t+1 is bounded by n, the lemma is proved. �

Now the search for a segmentation with minimal NS amounts to the search
for a path of minimal weight in a layered digraph with at most n layers where
the number of vertices per layer is bounded by the constant PL. This can be
done in time O(n) ([14]). Thus we have proved

Theorem 4. L–One Row–Min MU–Min NS can be solved in time O(n).

4.2 Multiple row intensity maps

In this subsection we generalize the basic idea of the preceding subsection to
prove that for bounded L and an MLC without ICC the NS–minimization is
polynomially solvable also for multiple row matrices. The problem L–Min

MU–Min NS is:

Instance: An integer matrix A = (ai,j) 1≤i≤m
1≤j≤n

with 0 ≤ ai,j ≤ L (i ∈ [m], j ∈

[n]).

Problem: Find a segmentation of A with in first instance minimal TNMU
and in second instance minimal NS!

Assume we have already determined the minimal TNMU c. From a seg-
mentation of A we obtain a partition c = c1 + c2 + · · · + ck where ci is the
coefficient of the i–th segment (i = 1, . . . , k). First we consider the problem
to check for a given partition if there is a segmentation of A with coefficients
c1, . . . , ck. This problem can be solved by checking the rows of A indepen-
dently. For the moment we omit the row index and denote by a = (a1 ... an)
a fixed row of A and we put a0 = an+1 = 0. Compared to the single row case
an additional difficulty in the multiple row case arises from the fact that the
minimal TNMU that would be sufficient for a segmentation of a might be
smaller than c. As a consequence we can not use Lemma 17, where condition
(4.9) is essential. Here the order of the elements of the considered partition

4.2. Multiple row intensity maps 73

must be taken into consideration. For instance, for b = (2 5 0) there is a
segmentation with coefficients 4, 1 and 1, namely

b = 4(0 1 0) + (1 1 0) + (1 0 0),

while there is no segmentation with these coefficients for b′ = (3 5 0). So
instead of peaks we have to consider ordered peaks to be defined below.
Also, in order to describe the segmentation, we attach to a peak a multiset
X of coefficients, and call the result an extended ordered peak. This is made
precise in the following definition.

Definition 5. For integers v and w with 0 ≤ w < v ≤ L an extended ordered
(v, w)–peak is a pair (b, X) of an integer vector b = (b1 b2 ... bβ), such that
there is an integer α with 1 ≤ α < β and

0 < b1 < b2 < · · · < bα = v,

v = bα > bα+1 > · · · > bβ = w,

and a multiset X of positive integers. In addition, a pair (b, X), where b = ()
is the empty tuple and X is a multiset of positive integers is called extended
ordered (0, 0)–peak.

Example 9. ((2 5 7 4 3) , {1, 2, 2, 3, 3}) is an extended ordered (7, 3)–peak
(with α = 3, β = 5).

Let p1, . . . , pt and q0, . . . , qt be defined as in the preceding section. Then
for a segmentation

a =
k
∑

j=1

cjs
(j)

we can define k0(τ) and a(τ) (τ = 0, . . . , t) as before. Now for τ = 0, . . . , t,
we associate with a(τ) an extended ordered (apτ+1, aqτ+1)–peak (b(τ), Xτ) as
follows. For τ < t, let

Iτ = {i : 1 ≤ i ≤ pτ+1, a
(τ)
i 6= a

(τ)
i−1},

Jτ = {i : pτ+1 < i ≤ qτ+1, a
(τ)
i 6= a

(τ)
i−1},

denote the elements of Iτ by i1, . . . , iα and the elements of Jτ by iα+1, . . . , iβ
such that i1 < i2 < · · · < iβ, and put

b0 = 0, bl = ail (l = 1, . . . , β).

Let X0 = {c1, . . . , ck} and

Xτ+1 = Xτ \ {ck0(τ)+1, ck0(τ)+2, . . . , ck0(τ+1)} (τ = 0, . . . , t − 1).

74 4. Exact minimization of the number of segments

Now for τ < t, (b(τ), Xτ) describes the initial part of a(τ) (up to column
qτ+1) together with the coefficients available for the remaining segments.
In the final state (τ = t) we have the zero row a(t) = 0 and a multiset
Xt of coefficients, that are not needed for the considered row. With the
zero row we associate the empty tuple b(t) = (), and thus we obtain from
any segmentation a sequence (b(0), X0), (b(1), X1), . . ., (b(t), Xt) of extended
ordered peaks.

Example 10. Suppose a = (2 4 3 1 6 3 0 6 1) is a row in an intensity matrix
with minimal TNMU c = 18, and we are checking the partition c = 5 + 3 +
2 + 2 + 2 + 1 + 1 + 1 + 1. Then from the segmentation

(2 4 3 1 6 3 0 6 1)

= (2 2 2 0 0 0 0 0 0)

+ (0 1 0 0 0 0 0 0 0)

+ (0 0 0 0 3 0 0 0 0)

+ (0 0 0 0 2 2 0 0 0)

+ (0 1 1 1 1 1 0 0 0)

+ (0 0 0 0 0 0 0 5 0)

+ (0 1 0 0 0 0 0 1 1)

we obtain

τ a(τ) b(τ) Xτ

0 (2 4 3 1 6 3 0 6 1) (2 4 3 1) {5,3,2,2,2,1,1,1,1}
1 (0 1 1 1 6 3 0 6 1) (1 6 3 0) {5,3,2,2,1,1,1}
2 (0 0 0 0 0 0 0 6 1) (6 1 0) {5,2,1,1}
3 (0 0 0 0 0 0 0 0 0) () {2,1}

That the vectors b(τ) provide enough information to construct the seg-
mentation, follows from the simple observation, that w.l.o.g. a sequence of
consecutive entries of equal value

ai1 = ai1+1 = · · · = ai2

can be considered as one single entry. This is intuitively clear and proved
formally in the next lemma.

Lemma 20. Let a =
∑k

j=1 cjs
(j) be a segmentation with

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , k).

There are integers l′j and r′j (j = 1, . . . , k) with the following properties.

4.2. Multiple row intensity maps 75

1. We have a =
k
∑

j=1

cjs
′(j) where

s
′(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , k).

2.

ai = ai−1 =⇒ s
′(j)
i = s

′(j)
i−1 (i = 2, . . . , n; j = 1, . . . , k). (4.11)

Proof. In order to satisfy the last condition, we have to replace the segments
with s

(j)
i 6= s

(j)
i−1 but ai = ai−1 for some i. Our strategy is to modify the given

segments as follows. For each sequence of consecutive entries of a of equal
value we choose one representative, for instance the rightmost one, and adapt
the entries for each segment to the chosen column. This corresponds to the
following shifting of the leaves: if the left leaf covers a part of the plateau it
is shifted to the right until the whole plateau is open, and if the right leaf
covers a part of the plateau it is shifted to the left until the whole plateau is
covered.

First observe that s
(j)
i can differ from s

(j)
i−1 only if i = lj or i − 1 = rj. So

for (4.11) it is sufficient that, for all j, we have

al′j
6= al′j−1 and ar′j

6= ar′j+1. (4.12)

Suppose alj = alj−1 for some j. Then i1 < lj ≤ i2 for some i1, i2 with

ai1 = ai1+1 = · · · = ai2 = a and ai1−1, ai2+1 6= a. (4.13)

Since we want to adapt the entries of the segment to the rightmost column
i2 we have to shift the left leaf to the left and put l′j = i1. Similarly, if
arj

= arj+1, then i1 ≤ rj < i2 for some i1, i2 with (4.13), and in order to
adapt the entries of the segment to column i2, we have to shift the right leaf
to the left and put r′j = i1 − 1. In summary, for j ∈ [k] we put

l′j =

{

lj if alj 6= a′
lj−1

max{i < lj : ai 6= alj} + 1 if alj = a′
lj−1

r′j =

{

rj if arj
6= a′

rj+1

max{i < rj : ai 6= arj
} if arj

= a′
rj+1

Then (4.12) is valid for all j, hence (4.11) is satisfied. In order to check the

first condition of the lemma, fix some i ∈ [n]. If s
′(j)
i = s

(j)
i for all j, then

k
∑

j=1

cjs
′(j)
i =

k
∑

j=1

cjs
(j)
i = ai.

76 4. Exact minimization of the number of segments

So assume s
′(j)
i 6= s

(j)
i for some j. By construction this can be the case only

if ai = ai−1 or ai = ai+1. Now let i1 and i2 be the indices with i1 ≤ i ≤ i2,

ai1 = ai1+1 = · · · = ai = · · · = ai2 and ai1−1, ai2+1 6= ai.

We claim that s
′(j)
i = s

(j)
i2

(j = 1, . . . , k). If s
(j)
i2

= 0, lj > i2 or rj < i2. By
construction, in the first case l′j > i2 and in the second case r′j < i1, so in

both cases s
′(j)
i = 0. If s

(j)
i2

= 1, lj ≤ i2 and rj ≥ i2. By construction, l′j ≤ i1

and r′j ≥ i2, hence s
′(j)
i = 1 and the claim is proved. From this follows

k
∑

j=1

cjs
′(j)
i =

k
∑

j=1

cjs
(j)
i2

= ai2 = ai,

and since this argument works for any i ∈ [n] the first condition of the lemma
is satisfied. �

By Lemma 20 applied to a(τ), w.l.o.g. we may assume that a
(τ)
lj

6= a
(τ)
lj−1

and a
(τ)
rj 6= a

(τ)
rj+1 for all j > k0(τ). With this assumption the next lemma,

whose proof is obvious, justifies that we use the b(τ) instead of the a(τ).

Lemma 21. For fixed τ , 0 ≤ τ ≤ t−1, let b(τ) and Xτ be defined as described
above and let {c1, . . . , cρ} ⊆ Xτ be fixed. If aqτ+1 6= 0 let g = (g1 ... gγ) be
some vector with

0 < g1 < · · · < gγ = aqτ+1.

Then the following statements are equivalent.

1. There exist integers lj, rj with 1 ≤ lj ≤ rj < qτ+1, a
(τ)
lj

6= a
(τ)
lj−1 and

a
(τ)
rj 6= a

(τ)
rj+1 (j = 1, . . . , ρ) such that for a′ = a(τ) −

ρ
∑

j=1

cjs
(j), where

s
(j)
i =

{

1 if lj ≤ i ≤ rj

0 otherwise
(j = 1, . . . , ρ; i = 1, . . . , n)

we have

(a) 0 ≤ a′
1 ≤ a′

2 ≤ · · · ≤ a′
qτ+1

= aqτ+1

(b) If aqτ+1 6= 0 there are exactly γ indices 1 ≤ i1 < · · · < iγ ≤ qτ+1

with a′
i∗
6= a′

i∗−1 (where a′
0 = 0) and we have

(

ai1 ai2 . . . aiγ

)

= g.

4.2. Multiple row intensity maps 77

2. There exist integers l′j, r′j with 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , ρ,

such that for b′ = b −
∑ρ

j=1 cjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j
0 otherwise

(j = 1, . . . , ρ; i = 1, . . . , β)

we have

(a) b′1 ≤ b′2 ≤ · · · ≤ b′β = bβ = aqτ+1

(b) If aqτ+1 6= 0 there are exactly γ indices 1 ≤ i1 < · · · < iγ ≤ β with
b′i∗ 6= b′i∗−1 (where b′0 = 0) and we have

(

bi1 bi2 . . . biγ

)

= g.

Now for τ = 0, 1, . . . , t − 1 the choice of the pairs
(

sk0(τ)+1, ck0(τ)+1

)

, . . . ,
(

sk0(τ+1), ck0(τ+1)

)

can be viewed as a way to go from the extended ordered (apτ+1, aqτ+1)–peak

(b(τ), Xτ) to the extended ordered (apτ+2, aqτ+2)–peak (b(τ+1), Xτ+1) (with
apt+1 = aqt+1 = 0).

Definition 6. Let 0 ≤ w < v and let (b, X) be an extended ordered (v, w)–
peak, and let v′, w′ be integers with w ≤ v′ ≤ L and 0 ≤ w′ < v′ or
v′ = w′ = 0. In addition let X ′ be a submultiset of X and denote the
elements of X ′ by x1, . . . , x|X′|. We call an extended ordered (v′, w′)–peak
(b′, X \X ′) accessible from (b, X) if there are integers l′1, . . . , l

′
|X′|, r′1, . . . , r

′
|X′|

such that

1. 1 ≤ l′j ≤ r′j ≤ β − 1 for j = 1, . . . , |X ′| (where b = (b1 ... bβ)).

and for b′′ = b −
|X′|
∑

j=1

xjf
(j), where

f
(j)
i =

{

1 if l′j ≤ i ≤ r′j,

0 otherwise,
(j = 1, . . . , |X ′|; i = 1, . . . , β)

we have b′′ = 0 if v′ = w′ = 0 and otherwise

2. b′′1 ≤ b′′2 ≤ · · · ≤ b′′β = bβ = w and

3. If i1 < i2 < · · · < iγ′ are the indices with b′′i∗ 6= b′′i∗−1 (where b′′0 = 0),
then

b′1 < b′2 < · · · < b′γ′ = w,

and we have
(

b′′i1 b′′i2 . . . b′′iγ′

)

=
(

b′1 b′2 . . . b′γ′

)

.

78 4. Exact minimization of the number of segments

The definition can be interpreted as follows. Assume ap1 = v, aq1 = w,

ap2 = v′, aq2 = w′, let b(0) be associated with a(0) as above, and let b′ =
(b′1 ... b′

β′) be a vector with

0 < b′1 < · · · < b′α′ = v′, v′ = b′α′ > · · · > b′β′ = w′.

Then (b′, X \ X ′) is accessible from (b(0), X) iff we can assign segments s(j)

to the elements of X ′, described by lj, rj (j = 1, . . . , |X ′|) with rj < q1 for
all j, such that for

a(1) = a(0) −

|X′|
∑

j=1

xjs
(j)

we have a
(1)
1 ≤ a

(1)
2 ≤ · · · ≤ a

(1)
p2 and the extended ordered (v′, w′)–peak

associated with a(1) is (b′, X \ X ′).

Example 11. Let a = (0 2 5 5 7 4 3 3 5 6 8 2), X = {5, 3, 2, 2, 2, 1, 1, 1} and
X ′ = {3, 1}. The associated extended ordered (7, 3)–peak is (b, X) where
b = (2 5 7 4 3). Now we want to determine the extended ordered (8, 0)–peaks
(b′, X \ X ′) that are accessible from (b, X), where

b′ =
(

b′1 . . . b′γ = 3 5 6 8 2
)

.

We obtain that (b′, X \X ′) and (b′′, X \X ′) are accessible from (b, X), where
b′ = (2 3 5 6 8 2) and b′′ = (1 3 5 6 8 2):

(2 2 3 3 3) = b − (0 3 3 0 0) − (0 0 1 1 0),

(1 1 3 3 3) = b − (0 3 3 0 0) − (1 1 1 1 0).

This corresponds to the following possible beginnings of a segmentation.

(0 2 5 5 7 4 3 3 5 6 8 2)

− (0 0 3 3 3 0 0 0 0 0 0 0)

− (0 0 0 0 1 1 0 0 0 0 0 0)

= (0 2 2 2 3 3 3 3 5 6 8 2)

and

(0 2 5 5 7 4 3 3 5 6 8 2)

− (0 0 3 3 3 0 0 0 0 0 0 0)

− (0 1 1 1 1 1 0 0 0 0 0 0)

= (0 1 1 1 3 3 3 3 5 6 8 2) .

4.2. Multiple row intensity maps 79

On the other hand one can check that ((3 5 6 8 2) , X \ X ′) is not accessible
from (b, X) and this corresponds to the fact that it is not possible to find
(l1, r1) and (l2, r2) with r1, r2 < 7 such that after subtracting the correspond-
ing segments with coefficients 3 and 1 from a we obtain a row vector a′ with
a′

1 = · · · = a′
i = 0, a′

i+1 = · · · = a′
7 = 3 for some i, 1 ≤ i ≤ 6. Similar

statements can be made for b′ = (1 2 3 5 6 8 2).

Lemma 22. Let (b, X) be an extended ordered (v, w)−peak. Then the set
of all (b′, X \ X ′) that are accessible from (b, X) can be determined in time
O(1).

Proof. Observe that the accessibility does not depend on the whole vec-
tor b′ but only on the initial part (b′1 ... b′

γ′
=w). So in order to determine

the accessible extended ordered peaks it is sufficient to determine the pairs
((b′1 ... b′

γ′), X \ X ′) of initial parts and multisets of coefficients. Let b =
(b1 ... bβ) and let α be the unique index with bα = v. We have b1 < · · · < bα

and bα > · · · > bβ. So for 1 ≤ k ≤ v − 1 there are at most two indices i

and i′ with 1 ≤ i, i′ ≤ β − 1 and bi = k, bi′ = k (namely the first one with
1 ≤ i ≤ α − 1 and the second one with α + 1 ≤ i′ ≤ β − 1). The only index
i with bi = v is i = α, and so we have

β−1
∑

i=1

bi ≤ v + 2

v−1
∑

k=1

k ≤ L2.

Hence it is sufficient to consider at most PL2 candidates for X ′, where each
of these has at most L2 elements. Fix one of these X ′. Labeling the elements
of X ′ as in Definition 6, for each xj ∈ X ′ there are at most

(

2L−1
2

)

choices for

f (j). So the total number of choices for the pairs (f (j), xj) that have to be
considered is bounded by

[(

2L − 1

2

)]|X′|

≤

[(

2L − 1

2

)]L2

.

For each of these choices the time needed to determine the resulting b′′ is
bounded by a constant. Precisely, in order to subtract one of the xjf

(j) we
have to do at most 2L subtractions. So after at most L2 · 2L subtractions
we have determined b′′. Finally, in order to determine the corresponding
(b′1 ... b′

γ′) according to condition 3 of Definition 6, we have to run through
the at most 2L entries of b′. This proves the lemma, since the number of
steps to determine the required data is bounded by

80 4. Exact minimization of the number of segments

PL2

[(

2L − 1

2

)]L2

(L2 + 1)2L.

�

In order to model the segmentation we construct sets V0, . . . ,Vt of ex-
tended ordered peaks. Put V0 = {(b(0), X0)} and suppose we have already
constructed V0, . . . ,Vτ for some τ with 0 ≤ τ < t. Now we put

Vτ+1 = {(b′, X ′) : (b′, X ′) is an (apτ+2, aqτ+2) − peak that

is accessible from some (b, X) ∈ Vτ}.

Here for brevity of notation we put apt+1 = 1 and aqt+1 = 0. The elements of

Vτ represent the possibilities for (b(τ), Xτ). There is a segmentation of the
row with coefficients c1, . . . , ck iff Vt 6= ∅. Note that a natural interpretation
of this construction is a breadth first search (BFS) in the tree with vertex set
V0 ∪ . . .∪Vt starting at (b(0), X0), where two vertices (b, X) and (b′, X ′) are
connected by an edge iff (b, X) ∈ Vτ , (b′, X ′) ∈ Vτ+1 for some τ and (b′, X ′)
is accessible from (b, X).

Lemma 23. For given Vτ , the set Vτ+1 can be determined in time O(nL+1).

Proof. According to [10], the sum of the elements of X0, which is the minimal
TNMU equals

c = max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1} ≤ nL.

Now in any partition c = c1+· · ·+ck where the ci (i ∈ [k]) are the coefficients
of a segmentation of A, we have ci ≤ L for i ∈ [k]. Hence such a partition can
be described by an L–tuple (λ1, . . . , λL) of integers, where λr is the number
of summands equal to r for r ∈ [L]. Then

λr ≤
nL

r
(r ∈ [L]),

and so there are O(nL) choices for X0. Now the multiset X in

(b, X) ∈ Vτ

is a partition of some c′ with 0 ≤ c′ ≤ c ≤ nL with all summands less than
or equal to L. So there are nL possibilities for c′, and for each of these there
are O(nL) possible partitions. Thus the number of choices for X is bounded

4.2. Multiple row intensity maps 81

by O(nL+1). The vectors b in the elements of Vτ differ only in the initial
part (b1 ... bγ), where bγ = aqτ

. But these initial parts are in bijection to the
ordered partitions of aqτ

, and of these there are (see for instance [1])

aqτ
∑

i=1

(

aqτ
− 1

i − 1

)

≤ L

(

L

bL
2
c

)

.

Since L is bounded by a constant we obtain that |Vτ | is bounded by O(nL+1).
By Lemma 22, for each (b, X) ∈ Vτ the set of accessible (b′, X \ X ′) can be
determined in time bounded by a constant, and this yields the claim. �

Lemma 24. For a fixed partition c = c1 + · · ·+ ck, it can be checked in time
O(nL+2) if there is a segmentation of a with coefficients c1, . . . , ck.

Proof. We only have to check if Vt 6= ∅. Since t ≤ n the claim is an immediate
consequence of Lemma 23. �

Now we can prove

Theorem 5. The problem L–Min MU–Min NS can be solved in time
O(mn2L+2).

Proof. Obviously,

c = max
1≤i≤m

n
∑

j=1

max{0, ai,j − ai,j−1}

can be determined in time O(mn). As in the proof of Lemma 23 the number
of partitions of c = c1 + · · · + ck that have to be considered is bounded by
O(nL). By Lemma 24, for a fixed partition c = c1 + · · ·+ ck it can be checked
in time O(mnL+2) if there is a segmentation of A with coefficients c1, . . . , ck,
and this concludes the proof. �

We finish this section with a remark concerning practical aspects of this
result. Though the time complexity of the NS–minimization is polynomial in
m and n the exponent grows linearly with L and also the L–dependent con-
stants that were used to estimate the time–complexities of the different steps
of the algorithm, grow rapidly with L. So we expect an efficient algorithm
only for very small L. In the proof of the polynomiality we constructed the
whole sets Vτ (τ = 1, . . . , t), i.e. we performed a BFS as described before
Lemma 23. But in order to decide if there is a segmentation with the con-
sidered coefficients we need to know only if Vt is nonempty, and in order to
reconstruct a segmentation basically one path from the unique element of V0

to some element of Vt is sufficient. So for practical purposes it is natural to
use depth first search (DFS) instead of BFS.

82 4. Exact minimization of the number of segments

4.3 Test results

We implemented the algorithm described in the preceding section and Tables
4.1 and 4.2 show test results for random 10 × 10– and 15 × 15–matrices,
respectively. The computations where done on a 2 GHz workstation and
we determined the minimal NS for 1000 randomly generated matrices with
maximal entry L. The entry in column ’max. time’ is the maximal time
needed for one single matrix, and the entry in column ’total time’ is the time
needed for all the 1000 matrices. For comparison the tables also contain
heuristic results that were obtained with a slightly improved version of the
algorithm described in [10]. In order to evaluate the performance of the

exact heuristic
L NS max. time total time NS total time
3 6.9 1 s 9 s 6.9 0.9 s
4 7.6 1 s 13 s 7.8 1.0 s
5 8.1 1 s 29 s 8.4 1.1 s
6 8.5 21 s 99 s 8.9 1.2 s
7 8.8 50 s 5.6 min 9.3 1.2 s
8 9.1 66 s 6.2 min 9.7 1.3 s
9 9.3 3.4 min 16.1 min 10.0 1.3 s
10 9.5 5.6 min 41.3 min 10.3 1.4 s
11 9.8 11.0 min 1.3 h 10.6 1.4 s
12 9.9 24.0 min 2.0 h 10.9 1.5 s
13 10.0 1.4 h 7.0 h 11.1 1.5 s

Tab. 4.1: Average number of segments for random 10×10–matrices with maximal
entry L. Each entry is averaged over 1000 matrices.

heuristic we determined the differences between the heuristic values and the
exact minimums. Tables 4.3 and 4.4 show the frequencies of the values of
the differences when 1000 matrices where treated for each value of L. We
conclude that for the considered range of parameters the exact algorithm
yields only small improvements in terms of the number of segments, while
the computational effort is extremely high already for small values of L. So
for practical purposes the heuristic seems to be a good compromise between
computation time and accuracy of the optimization. Finally, we also tested
our algorithm with the 13 clinical matrices, and the results are shown in
Table 4.5.

4.3. Test results 83

exact heuristic
L NS max. time total time NS total time
3 9.7 1 s 16 s 9.8 4.8 s
4 10.7 1 s 31 s 10.9 5.4 s
5 11.3 12 s 175 s 11.7 5.8 s
6 11.8 54 s 18.6 min 12.4 6.5 s
7 12.3 3.1 min 0.8 h 13.0 6.8 s
8 12.6 4.5 h 14.7 h 13.5 7.1 s
9 12.9 24.1 h 37.9 h 14.0 7.4 s
10 13.2 10.0 h 44.7 h 14.5 7.6 s

Tab. 4.2: Average number of segments for random 15×15–matrices with maximal
entry L. Each entry is averaged over 1000 matrices.

L 0 1 2 3
3 969 31 0 0
4 876 123 1 0
5 780 218 2 0
6 663 331 2 0
7 525 456 19 0
8 437 516 47 0
9 335 603 62 0
10 306 584 104 6
11 262 615 121 2
12 168 654 173 5
13 141 641 213 5

Tab. 4.3: Frequencies of the differences
between the heuristic num-
ber of segments and the exact
minimum for 10×10–matrices.

L 0 1 2 3 4
3 940 60 0 0 0
4 809 189 2 0 0
5 609 379 12 0 0
6 453 509 37 1 0
7 327 585 86 2 0
8 250 594 151 5 0
9 150 609 230 11 0
10 85 551 335 28 1

Tab. 4.4: Frequencies of the differences
between the heuristic num-
ber of segments and the exact
minimum for 15×15–matrices.

84 4. Exact minimization of the number of segments

exact heuristic
no. MU NS CPU–time NS CPU–time
1 16 7 0.04 s 8 0.01 s
2 16 7 0.19 s 7 0.00 s
3 20 8 0.39 s 8 0.01 s
4 19 7 0.04 s 8 0.00 s
5 15 7 0.01 s 7 0.00 s
6 17 8 0.70 s 9 0.00 s
7 18 7 0.03 s 7 0.00 s
8 22 9 1.30 s 9 0.01 s
9 26 9 25.77 s 10 0.00 s
10 22 8 0.62 s 9 0.00 s
11 22 10 7.88 s 10 0.00 s
12 23 9 1.96 s 10 0.01 s
13 23 9 2.36 s 9 0.01 s

Tab. 4.5: Test results for clinical matrices

5. FURTHER RESULTS

In this chapter we discuss some more results concerning the use of multi-
leaf collimators without interleaf collision constraint. In the first section we
propose to change the direction of leaf movement between the different seg-
ments and present some numerical results for a heuristic approach to the
TNMU–minimization in this setup. A possible further step in this direction
is discussed in the second section: one could use two MLC’s, perpendicular
to each other, so that there is a leaf pair for each row and a leaf pair for each
column. The numerical tests presented here suggest that this might yield
considerable savings in terms of the TNMU.

5.1 Using the MLC in two directions

Here and in the next section we are concerned only with the minimization of
the TNMU, neglecting the number of segments. So for simplicity we assume
that every segment has coefficient 1. In this section we search for a realization
of the given intensity matrix A in the following setup: the multileaf collimator
has no interleaf collision constraint and can be rotated about 90◦. So there
are two different types of segments, called horizontal and vertical segments,
according to the choice of the direction of leaf motion. In the first subsection
we derive a backtracking algorithm for the TNMU–minimization problem.
Due to the computational complexity this algorithm is applicable only for
small problem sizes (10 × 10–matrices with entries between 0 and 7), but
in any case we obtain a lower bound for the TNMU by interrupting the
backtracking after some time. In the second subsection these lower bounds
are compared with heuristic results.

5.1.1 A lower bound

Theorem 6. Let c1, c2 be nonnegative integers and put c = c1 + c2. Then
a segmentation of A with c1 horizontal and c2 vertical segments exists iff
B := cJ −A (where J is the all–one–matrix of size m× n) can be written as
a sum of four nonnegative integer matrices P = (pi,j), Q = (qi,j), R = (ri,j),
S = (si,j) with the following properties.

86 5. Further Results

1. pi,j + qi,j ≤ c1, ri,j + si,j ≤ c2 for (i, j) ∈ [m] × [n]

2. pi,j ≥ pi,j+1, qi,j ≤ qi,j+1 for i ∈ [m], j ∈ [n − 1]

3. ri,j ≥ ri+1,j, si,j ≤ si+1,j for i ∈ [m − 1], j ∈ [n]

Proof. ”⇒”: By construction, bi,j is the number of times the bixel (i, j) has
to be covered in a segmentation with c monitor units. Suppose there is
given a segmentation with c1 horizontal and c2 vertical segments. For
(i, j) ∈ [m] × [n], let pi,j, qi,j, ri,j and si,j be the number of segments
in which bixel (i, j) is covered by the left, the right, the upper and the
lower leaf, respectively. This yields the desired decomposition of B.

”⇐”: Suppose B = P +Q+R+S where P , Q, R and S satisfy the conditions
of the theorem. Now we define segments S(1), S(2), . . . , S(c) as follows.
For 1 ≤ k ≤ c1, let

σ
(k)
i,j =

{

0 if k ≤ pi,j,

1 otherwise,
τ

(k)
i,j =

{

0 if k > c1 − qi,j,

1 otherwise.

For c1 + 1 ≤ k ≤ c, let

σ
(k)
i,j =

{

0 if k − c1 ≤ ri,j,

1 otherwise,
τ

(k)
i,j =

{

0 if k − c1 > c2 − si,j,

1 otherwise.

Finally, for all k ∈ [c], put s
(k)
i,j = σ

(k)
i,j τ

(k)
i,j . To conclude the proof we

have to check that the matrices S(k) = (s
(k)
i,j) are segments and that

their sum is A. Condition 1 in the theorem implies that, for each k and
each (i, j), at most one of the numbers σ

(k)
i,j and τ

(k)
i,j is 0, corresponding

to the fact that a bixel can not be covered by both leaves of a leaf pair
at the same time. Thus the number of indices k with s

(k)
i,j = 0 equals

pi,j + qi,j + ri,j + si,j = bi,j, hence

c
∑

k=1

s
(k)
i,j = c − bi,j = ai,j.

We show that S(k) is a horizontal segment for k ≤ c1. For k > c1 one
obtains similarly that S(k) is a vertical segment. If s

(k)
i,j = 0, either

σ
(k)
i,j = 0 or τ

(k)
i,j = 0. By construction of the σ

(k)
i,j , τ

(k)
i,j and by Condition

2 in the theorem this implies σ
(k)
i,j′ = 0 for all j ′ < j or τ

(k)
i,j′ = 0 for all

j ′ > j, and consequently s
(k)
i,j = 0 for all j ′ < j or for all j ′ > j. �

5.1. Using the MLC in two directions 87

Example 12. For A =

(

1 4 2 5
1 3 3 2
1 3 2 5
6 4 6 0

)

and c = 6 = 4 + 2 we have

B =

(

5 2 4 1
5 3 3 4
5 3 4 1
0 2 0 6

)

=

(

3 2 2 0
2 1 0 0
3 2 0 0
0 0 0 0

)

+

(

0 0 0 0
1 1 1 2
0 0 0 0
0 0 0 4

)

+

(

2 0 2 1
2 0 2 1
2 0 2 0
0 0 0 0

)

+

(

0 0 0 0
0 1 0 1
0 1 0 1
0 2 0 2

)

.

This yields

σ(1) =

(

0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 1

)

, τ (1) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0

)

, S(1) =

(

0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 0

)

,

σ(2) =

(

0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 1

)

, τ (2) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0

)

, S(2) =

(

0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 0

)

,

σ(3) =

(

0 1 1 1
1 1 1 1
0 1 1 1
1 1 1 1

)

, τ (3) =

(

1 1 1 1
1 1 1 0
1 1 1 1
1 1 1 0

)

, S(3) =

(

0 1 1 1
1 1 1 0
0 1 1 1
1 1 1 0

)

,

σ(4) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)

, τ (4) =

(

1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

)

, S(4) =

(

1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

)

,

σ(5) =

(

0 1 0 0
0 1 0 0
0 1 0 1
1 1 1 1

)

, τ (5) =

(

1 1 1 1
1 1 1 1
1 1 1 1
1 0 1 0

)

, S(5) =

(

0 1 0 0
0 1 0 0
0 1 0 1
1 0 1 0

)

,

σ(6) =

(

0 1 0 1
0 1 0 1
0 1 0 1
1 1 1 1

)

, τ (6) =

(

1 1 1 1
1 0 1 0
1 0 1 0
1 0 1 0

)

, S(6) =

(

0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

)

.

Based on Theorem 6, Algorithm 4 finds the minimal TNMU c and a
decomposition of B = cJ − A corresponding to a segmentation with this
TNMU. The step in line 7 can be realized using backtracking. Of course this
method is very time–consuming. Our implementation solved the problem
for 10× 10–matrices with random entries between 0 and 7 in a few seconds,
but for larger problems this algorithm is not practicable. By interrupting
the backtracking when some fixed time limit is reached without getting a
construction or a contradiction in line 7, we still obtain a lower bound for
the TNMU.

5.1.2 Heuristic results

For notational convenience we add a 0−th and an (m + 1)−th row with
a0,j = am+1,j = 0 (j ∈ [n]), and put

α(i) =

n
∑

j=1

max{0, ai,j − ai,j−1} (i ∈ [m]),

β(j) =
m
∑

i=1

max{0, ai,j − ai−1,j} (j ∈ [n]).

88 5. Further Results

Algorithm 4 Minimal TNMU for 2–directional segmentation

c = max{ai,j : (i, j) ∈ [m] × [n]}
finished:=false
while not finished do

B := cJ − A

5: c1 := c; c2 := 0
while not finished and c1 ≥ 0 do

Construct a decomposition of B as in Theorem 6 or derive a contra-
diction from the assumption that such a decomposition exists
if Construction successful then

finished:=true
10: else

c1 := c1 − 1; c2 := c2 + 1
end if

end while
if not finished then

15: c := c + 1
end if

end while

Let also

chor(A) = max
1≤i≤m

α(i), cvert(A) = max
1≤j≤n

β(j).

According to [10] there is a segmentation without vertical segments with
chor(A) monitor units, and there is a segmentation without horizontal seg-
ments with cvert(A) monitor units. Hence an upper bound for the minimal
number of monitor units needed to realize A is c(A) = min{chor(A), cvert(A)}.

As in Chapter 2 we construct a segmentation by successively subtracting
segments until the zero matrix is reached. For the choice of the segment S

we suggest a heuristic method. First chor(A) and cvert(A) are determined and
the direction of leaf motion is chosen to be horizontal if chor(A) ≤ cvert(A)
and vertical otherwise. We describe the construction of S for the horizontal
case, the vertical case is treated analogously. For the new matrix A′ := A−S,
we have two aims. Firstly, we want that

chor(A
′) = chor(A) − 1, (5.1)

and secondly cvert(A
′) should be small. Let us consider the second condition

first. With the segments we associate (D, D′)–paths in a layered digraph

5.1. Using the MLC in two directions 89

Γ = (V, E) similar to the digraph Γ in Chapter 3:

V = {D, D′} ∪ {(i, l, r) : i ∈ [m], 1 ≤ l ≤ r + 1 ≤ n + 1,

ai,j > 0 for l ≤ j ≤ r},

and E consists of all possible arcs between row i and row i+1 (i = 1, . . . , m−
1), all arcs between D and row 1, and all arcs between row m and D′. Now
we define a weight function on E and determine the segment S as a path
of maximal weight in Γ. This approach seems to be natural because the
values a′

i,j − a′
i−1,j, and thus cvert(A

′) depend on the combinations of the leaf
positions in adjacent rows. Experiments have shown that for the considered
range of parameters the weight function w described below works quite well.

w(D, (1, l, r)) =
r
∑

j=l

max{1, β(j) + 5 − cvert(A)} (1 ≤ l ≤ r + 1 ≤ n)

w((m, l, r), D′) = 0 (1 ≤ l ≤ r + 1 ≤ n + 1)

In order to define the weights for the arcs ((i − 1, l, r), (i, l′, r′)) we put, for
i = 2, 3, . . . , m and j = 1, 2, . . . , n,

ρ1(i, j) =

{

max{1, β(j) + 5 − cvert(A)} if ai,j ≥ ai−1,j

0 otherwise,

ρ2(i, j) =

{

max{1, β(j) + 5 − cvert(A)} if ai,j > ai−1,j

0 otherwise.

ρk(i, j) (k = 1, 2) measure the influence of a potential segment with si,j 6=
si−1,j on ai,j − ai−1,j and thus on β(j). ρ1(i, j) is nonzero if a segment with
si,j = 0 and si−1,j = 1 increases the value of max{0, ai,j − ai−1,j}, and sim-
ilarly ρ2(i, j) is nonzero if a segment with si,j = 1 and si−1,j = 0 decreases
max{0, ai,j − ai−1,j}. The magnitudes of the ρk(i, j) (k = 1, 2) are chosen
according to the idea that columns j with β(j) close to cvert(A) should be
considered more important than columns j with a small value of β(j). Now

90 5. Further Results

we define w as follows.

w((i − 1, l, r), (i, l′, r′)) =



























































































































































−
l′−1
∑

j=l

ρ1(i, j) −
r
∑

j=r′+1

ρ1(i, j)

if l ≤ l′ ≤ r′ + 1 ≤ r + 1,

−
l′−1
∑

j=l

ρ1(i, j) +
r′
∑

j=r+1

ρ2(i, j)

if l ≤ l′ ≤ r + 1 ≤ r′,

−
r
∑

j=l

ρ1(i, j) +
r′
∑

j=l′
ρ2(i, j)

if l ≤ r + 1 < l′ ≤ r′ + 1,

l−1
∑

j=l′
ρ2(i, j) −

r
∑

j=r′+1

ρ1(i, j)

if l′ < l ≤ r′ + 1 ≤ r + 1,

l−1
∑

j=l′
ρ2(i, j) +

r′
∑

j=r+1

ρ2(i, j)

if l′ < l ≤ r + 1 ≤ r′,

r′
∑

j=l′
ρ2(i, j) −

r
∑

j=l

ρ1(i, j)

if l′ ≤ r′ + 1 < l ≤ r + 1.

Example 13. Let rows i − 1 and i of matrix A be

(2 4 1 4 3 4 3 3
1 5 3 2 7 4 3 2) ,

and consider the arc e = ((i−1, 4, 7), (i, 2, 6)), corresponding to the two rows

(0 0 0 1 1 1 1 0
0 1 1 1 1 1 0 0) .

If we choose a segment with these rows the corresponding part of A′ is

(2 4 1 3 2 3 2 3
1 4 2 1 6 3 3 2)

The relevant columns for w(e) are columns number 2, 3 and 7. Assume

cvert(A) = 23, β(2) = 20, β(3) = 21 and β(7) = 17.

Then

ρ1(i, 2) = 2, ρ1(i, 3) = 3, ρ1(i, 7) = 1

ρ2(i, 2) = 2, ρ2(i, 3) = 3, ρ2(i, 7) = 0

5.1. Using the MLC in two directions 91

and we obtain

w(e) = 2 + 3 − 1 = 4.

Here the positive terms correspond to

max{0, a′
i,2 − a′

i−1,2} = 0 < 1 = max{0, ai,2 − ai−1,2} and

max{0, a′
i,3 − a′

i−1,3} = 1 < 2 = max{0, ai,3 − ai−1,3},

while the negative term corresponds to

max{0, a′
i,7 − a′

i−1,7} = 1 > 0 = max{0, ai,7 − ai−1,7}.

Finally, we delete all vertices (i, l, r) that lead to segments violating (5.1).
Fix some vertex (i, l, r) and put

a′
i,j =

{

ai,j − 1 if l ≤ j ≤ r,

ai,j otherwise.

A segment corresponding to a path through (i, l, r) can not satisfy (5.1) if
α′(i) :=

∑n

j=1 max{0, a′
i,j −a′

i,j−1} > chor(A)− 1. But the only terms in α′(i)
that could be different from the corresponding terms in α(i) are the terms
for j = l and j = r + 1 (if r < n), and for these terms we have, if l ≤ r,

max{0, a′
i,l − a′

i,l−1} =

{

max{0, ai,l − ai,l−1} − 1 if ai,l > ai,l−1

max{0, ai,l − ai,l−1} if ai,l ≤ ai,l−1,

max{0, a′
i,r+1 − a′

i,r} =

{

max{0, ai,r+1 − ai,r} + 1 if ai,r ≤ ai,r+1

max{0, ai,r+1 − ai,r} if ai,r > ai,r+1,

So

α′(i) =























α(i) − 1 if l ≤ r, ai,l > ai,l−1 and ai,r > ai,r+1,

α(i) if l = r + 1,
α(i) if l ≤ r, ai,l > ai,l−1 and ai,r ≤ ai,r+1,

α(i) if l ≤ r, ai,l ≤ ai,l−1 and ai,r > ai,r+1,

α(i) + 1 if l ≤ r, ai,l ≤ ai,l−1 and ai,r ≤ ai,r+1.

Consequently, we have to delete all vertices satisfying one of the following
conditions.

1. α(i) = chor(A) and r = l − 1

2. α(i) = chor(A) and (ai,l ≤ ai,l−1 or ai,r ≤ ai,r+1)

3. α(i) = chor(A) − 1 and (l ≤ r, ai,l ≤ ai,l−1 and ai,r ≤ ai,r+1)

92 5. Further Results

Now we choose a segment S corresponding to a (D, D′)−path of maximal
weight. In Table 5.1 the results of the heuristic are compared to the average
lower bound obtained by the backtracking method from Subsection 5.1.1 and
to the optimal TNMU when the MLC is used in only one direction. On a 2
GHz workstation the computation times for the whole heuristic columns were
172 seconds (10×10) and 926 seconds (15×15). For the clinical matrices our

10 × 10 15 × 15
L TNMU TNMU Lower TNMU TNMU Lower

(old) (new) bound (old) (new) bound
3 9.8 7.2 6.7 14.0 10.0 8.3
4 12.6 9.0 8.3 17.9 12.4 10.2
5 15.5 10.8 10.1 21.7 14.8 12.3
6 18.1 12.6 11.8 25.6 17.2 14.5
7 20.8 14.3 13.5 29.4 19.6 16.2
8 23.6 15.9 14.7 33.2 21.9 18.0
9 26.4 17.7 16.6 37.0 24.2 20.1
10 29.0 19.5 18.4 40.9 26.6 21.8
11 31.8 21.3 19.6 44.7 29.0 24.0
12 34.5 23.0 21.9 48.5 31.4 25.7
13 36.9 24.6 22.8 52.3 33.7 27.8
14 39.8 26.3 24.8 56.2 36.1 29.5
15 42.4 28.2 26.2 59.8 38.3 31.3
16 45.2 29.8 27.9 63.3 40.7 32.6

Tab. 5.1: Average TNMU for random 10 × 10– and 15 × 15–matrices with
maximal entry L when the MLC is used in both directions (column
’TNMU(new)’), compared to the average lower bound and the results
for the one–directional usage of the MLC (column ’TNMU(old)’).

implementation of Algorithm 4 yields the optimal solution in a reasonable
time and the results are shown in Table 5.2.

5.2 Two orthogonal MLCs

In this section we suppose that two MLCs without ICC are arranged in such
a way that the leaf pairs of the one are perpendicular to the leaf pairs of the
other, and the segments are the (0, 1)–matrices describing any combination
of leaf positions. For instance,

(0 1 1 0 1 0
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 1 0 0 0
1 0 0 0 1 1

)

(5.2)

5.2. Two orthogonal MLCs 93

no. MU (new) MU (old) CPU–time
1 11 16 0.48 s
2 11 16 0.27 s
3 12 20 0.54 s
4 12 19 50.06 s
5 13 15 0.18 s
6 12 17 0.19 s
7 13 18 0.91 s
8 14 22 1.05 s
9 16 26 4.04 s
10 14 22 13.07 s
11 15 22 93.68 s
12 16 23 1.59 s
13 14 23 201.07 s

Tab. 5.2: Test results for the clinical matrices: the TNMU when the MLC is used
in both directions (’MU (new)’) compared with the TNMU when the
MLC is used in only one direction (’MU (old)’), and the time needed to
determine the segmentation according to Algorithm 4

.

is a segment corresponding to the leaf positions shown in Figure 5.1. The LP–
formulation of the TNMU–segmentation problem given in Section 2.1 is still
valid, we just have a larger set F of allowed segments, and correspondingly
there are more inequalities that have to be satisfied by a dual feasible solution
g. Here we suggest a heuristic segmentation method based on dual feasible
solutions of a particular type. For pairs (i, j) with 2 ≤ i ≤ m − 1 and
2 ≤ j ≤ n − 1 we put

γ1(i, j) = max

{

1

3
(ai,s + ai,t + au,j + av,j − ai,j) : 1≤s<j<t≤n,

1≤u<i<v≤m

}

. (5.3)

Then
c̃(A) = max{γ1(i, j) : 2 ≤ i ≤ m − 1, 2 ≤ j ≤ n − 1}

is a lower bound for the TNMU, because for any (i, j) with 2 ≤ i ≤ m − 1,
2 ≤ j ≤ n − 1 and any numbers s, t, u and v with 1 ≤ s < j < t ≤ n and
1 ≤ u < i < v ≤ m we can define a dual feasible solution g by putting

g(i, s) = g(i, t) = g(u, j) = g(v, j) =
1

3
, g(i, j) = −

1

3

and g(p, q) = 0 for all other (p, q) ∈ [m] × [n]. This is illustrated in Figure
5.2. If we choose s, t, u and v so that the maximum in (5.3) is attained the

94 5. Further Results

Fig. 5.1: Leaf positions corresponding to the segment (5.2).

j

1
3

u

i
1
3

−1
3

1
3

1
3

v

s t

Fig. 5.2: The structure of the dual feasible solution g, where the empty spaces are
filled with zeros.

5.2. Two orthogonal MLCs 95

objective value of g is γ1(i, j) and to see that g is feasible we just have to
observe that in order to cover the bixel (i, j) we have to cover at least one
of the bixels (i, s), (i, t), (u, j), (v, j). Of course, c̃(A) does not have to be
an integer, and since we are using only integer coefficients even dc̃(A)e can
be used as a lower bound for the TNMU. As in Chapter 2, our algorithm
is based on the general principle of extracting segments from A. Precisely,
depending on A we determine a segment S, such that

A′ = A − S

is still nonnegative, and then we iterate this step with A′ until the zero
matrix is reached. The main idea underlying our heuristic approach to the
construction of S is that we try to decrease the value of c̃. Observe that

ai,j = 0 =⇒ si,j = 0 (i ∈ [m], j ∈ [n]) (5.4)

is a necessary and sufficient condition for the nonnegativity of A′ = A − S.
Now we start with S equal to the all–one matrix of dimension m×n and cover
successively all the zero–entries of A. The construction of S is described in
Algorithm 5. Lines 2 to 9 ensure that condition (5.4) is satisfied for bixels

Algorithm 5 Segment for two orthogonal MLCs

si,j := 1 (i ∈ [m], j ∈ [n])
for j = 1 to n do

if a1,j = 0 then s1,j = 0
if am,j = 0 then sm,j = 0

5: end for
for i = 1 to m do

if ai,1 = 0 then si,1 = 0
if ai,n = 0 then si,n = 0

end for
10: while (5.4) is violated do

Choose an (i, j) with ai,j = 0 and si,j = 1
Choose a covering direction from {left, right, up, down}
Cover bixel (i, j) with the leaf from the chosen direction
Let S be the segment corresponding to the new leaf positions

15: end while

(i, j) with i ∈ {1, m} or j ∈ {1, n}. These bixels can be covered without
influencing other bixels, for instance (i, 1) can be covered by the left leaf
of row i, so lines 2 to 9 imply no loss of generality. We still have to make
precise, how we choose the bixel (i, j) in line 11 and the direction from which

96 5. Further Results

we cover it in line 12. For the choice of the bixel we follow the strategy to
cover bixels (i, j) with a high value of γ1(i, j) first. Suppose we have already
chosen the bixel to cover. Now we have to choose the direction from which
we want to cover it. For instance by covering bixel (i, j) by the left leaf we
also cover all bixels (i, j ′) with 1 ≤ j ′ ≤ j. So it is natural to cover bixel
(i, j) from a direction with the property that the maximal entry of a bixel
that is covered although the entry is nonzero, is as small as possible. Let

γ
(left)
2 (i, j) = max{ai,j′ : 1 ≤ j ′ ≤ j},

γ
(right)
2 (i, j) = max{ai,j′ : j ≤ j ′ ≤ n},

γ
(up)
2 (i, j) = max{ai′,j : 1 ≤ i′ ≤ i},

γ
(down)
2 (i, j) = max{ai′,j : i ≤ i′ ≤ m},

and choose the covering direction of bixel (i, j),

dir(i, j) ∈ {left, right, up, down}

to be the direction with the smallest value of γ
(∗)
2 (i, j). To decide between

directions with equal value of γ
(∗)
2 (i, j) we consider the number of bixels (i′, j ′)

violating the condition for the segment (i.e. with ai′,j′ = 0 and si′,j′ = 1)
that are covered when we cover bixel (i, j) from the respective direction. To
make this precise, let

γ
(left)
3 (i, j) = |{(i, j ′) : 1 ≤ j ′ < j, ai,j′ = 0 and si,j′ = 1}| ,

γ
(right)
3 (i, j) = |{(i, j ′) : j < j ′ ≤ n, ai,j′ = 0 and si,j′ = 1}| ,

γ
(up)
3 (i, j) = |{(i′, j) : 1 ≤ i′ < i, ai′,j = 0 and si′,j = 1}| ,

γ
(down)
3 (i, j) = |{(i, j ′) : i < i′ ≤ m, ai′,j = 0 and si′,j = 1}| ,

and choose for dir(i, j) the direction with in first instance minimal value of

γ
(∗)
2 (i, j), and in second instance maximal value of γ

(∗)
3 (i, j). If there is still

a tie it can be decided randomly. Finally, we put

γ3(i, j) = γ
(dir(i,j))
3 (i, j).

We choose among the bixels (i, j) with ai,j = 0 and si,j = 1 one with in first
instance maximal value of γ1(i, j), and in second instance maximal value of

5.2. Two orthogonal MLCs 97

γ3(i, j). Now the chosen bixel (i, j) is covered by the leaf that is given by
dir(i, j). Precisely, we put

si,j′ := 0 for

{

1 ≤ j ′ ≤ j if dir(i, j) = left,
j ≤ j ′ ≤ n if dir(i, j) = right,

si′,j := 0 for

{

1 ≤ i′ ≤ i if dir(i, j) = up,

i ≤ i′ ≤ m if dir(i, j) = down.

This covering step is repeated until (5.4) is satisfied.

Example 14. Consider the matrix

A =

(1 4 3 1 5 1
4 0 3 1 2 1
2 1 5 4 0 0
4 4 5 2 3 3
2 2 2 1 1 1
5 0 0 0 5 3

)

.

γ1(2, 2) = 5 is the maximal value of γ1(i, j), and (2, 2) can be covered from
the right with maximal value of a covered bixel equal to 3, while from all
other directions we would have to cover a bixel with entry 4. For all the
other zero–bixels it is obvious how to cover them without covering a nonzero
bixel. So the first segment is

(1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 0 0 0 1 1

)

,

and continuing we obtain a segmentation with 5 segments.

(1 4 3 1 5 1
4 0 3 1 2 1
2 1 5 4 0 0
4 4 5 2 3 3
2 2 2 1 1 1
5 0 0 0 5 3

)

−

(1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 0 0 0 1 1

)

=

(0 3 2 0 4 0
3 0 3 1 2 1
1 0 4 3 0 0
3 3 4 1 2 2
1 1 1 0 0 0
4 0 0 0 4 2

)

,

(0 3 2 0 4 0
3 0 3 1 2 1
1 0 4 3 0 0
3 3 4 1 2 2
1 1 1 0 0 0
4 0 0 0 4 2

)

−

(0 1 1 0 1 0
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 1 0 0 0
1 0 0 0 1 1

)

=

(0 2 1 0 3 0
2 0 2 0 1 0
0 0 3 2 0 0
2 3 3 0 1 1
0 1 0 0 0 0
3 0 0 0 3 1

)

,

(0 2 1 0 3 0
2 0 2 0 1 0
0 0 3 2 0 0
2 3 3 0 1 1
0 1 0 0 0 0
3 0 0 0 3 1

)

−

(0 1 1 0 1 0
1 0 0 0 0 0
0 0 1 1 0 0
1 1 1 0 1 1
0 1 0 0 0 0
1 0 0 0 1 1

)

=

(0 1 0 0 2 0
1 0 2 0 1 0
0 0 2 1 0 0
1 2 2 0 0 0
0 0 0 0 0 0
2 0 0 0 2 0

)

,

(0 1 0 0 2 0
1 0 2 0 1 0
0 0 2 1 0 0
1 2 2 0 0 0
0 0 0 0 0 0
2 0 0 0 2 0

)

−

(0 1 0 0 1 0
0 0 1 0 1 0
0 0 1 1 0 0
1 1 1 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0

)

=

(0 0 0 0 1 0
1 0 1 0 0 0
0 0 1 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0

)

.

98 5. Further Results

Table 5.3 shows the average TNMU obtained by our algorithm, the aver-
age lower bound c̃(A) and the optimal TNMU when only one MLC is used
in one direction. On a 2 GHz workstation the computation for the whole
10 × 10–column took 91 seconds and for the 15 × 15–column it took 610
seconds. The results for the clinical sample matrices are shown in Table 5.4.

10 × 10 15 × 15
L TNMU TNMU Lower TNMU TNMU Lower

(old) (new) bound (old) (new) bound
3 9.8 5.4 3.9 14.0 7.4 4.0
4 12.6 6.7 5.2 17.9 9.0 5.3
5 15.5 8.0 6.4 21.7 10.5 6.7
6 18.1 9.2 7.6 25.6 12.0 7.9
7 20.8 10.4 8.8 29.4 13.6 9.3
8 23.6 11.7 10.0 33.2 15.1 10.5
9 26.4 12.9 11.2 37.0 16.6 11.8
10 29.0 14.1 12.4 40.9 18.1 13.0
11 31.8 15.4 13.6 44.7 19.6 14.2
12 34.5 16.6 14.8 48.5 21.1 15.7
13 36.9 17.9 16.0 52.3 22.5 16.9
14 39.8 19.1 17.1 56.2 24.1 18.1
15 42.4 20.3 18.3 59.8 25.5 19.6
16 45.2 21.5 19.5 63.3 27.0 20.4

Tab. 5.3: Average TNMU for random 10×10– and 15×15–matrices mith maximal
entry L when two orthogonal MLCs are used (column ’TNMU(new)’),
compared to the average lower bound and the results when one MLC is
used in only one direction (column ’TNMU(old)’).

5.2. Two orthogonal MLCs 99

no. MU (1) MU (2) MU (3) Bound CPU–time
1 16 11 11 11 0.00 s
2 16 11 11 11 0.00 s
3 20 12 11 11 0.00 s
4 19 12 11 10 0.00 s
5 15 13 10 10 0.00 s
6 17 12 12 11 0.01 s
7 18 13 11 11 0.00 s
8 22 14 13 12 0.01 s
9 26 16 13 12 0.01 s
10 22 14 14 13 0.01 s
11 22 15 14 13 0.01 s
12 23 16 14 12 0.02 s
13 23 14 14 12 0.02 s

Tab. 5.4: Test results for clinical matrices: the TNMU with one MLC in one di-
rection (’MU (1)’), with one MLC in two directions (’MU (2)’) and with
two orthogonal MLCs (’MU (3)’), the lower bounds for the last case
(’Bound’) and the times needed to determine the segmentations for two
MLCs with our algorithm.

100 5. Further Results

BIBLIOGRAPHY

[1] M. Aigner. Diskrete Mathematik. Vieweg, Braunschweig/Wiesbaden,
4th edition, 2001.

[2] D. Baatar and H.W. Hamacher. New LP model for multileaf collimators
in radiation therapy. contribution to the conference ORP3, University
of Kaiserslautern, 2003.

[3] T. Benoist and F. Chauvet. Complexity of some FPP related problems.
Technical report, Bouygues’ e–lab, 2001.

[4] N. Boland, H.W. Hamacher, and F. Lenzen. Minimizing beam-on time
in cancer radiation treatment using multileaf collimators. NETWORKS,
43(4):226–240, 2004.

[5] I.M. Bomze and W. Grossmann. Optimierung – Theorie und Algorith-
men. BI–Wissenschaftsverlag, Mannheim, 1993.

[6] T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer. X–ray field
compensation with multileaf collimators. Int. J. Radiat. Oncol. Biol.
Phys., 28:723–730, 1994.

[7] A.L. Boyer and C.Y. Yu. Intensity–modulated radiation therapy with
dynamic multileaf collimators. Semin. Radiat. Oncol., 9:48–59, 1999.

[8] J. Dai and Y. Zhu. Minimizing the number of segments in a deliv-
ery sequence for intensity–modulated radiation therapy with a multileaf
collimator. Med. Phys., 28:2113–2120, 2001.

[9] M.L.P. Dirkx, B.J.M. Heijmen, and J.P.C. van Santvoort. Leaf trajec-
tory calculation for dynamic multileaf collimation to realize optimized
fluence profiles. Phys. Med. Biol., 43(8):1171–1184, 1998.

[10] K. Engel. A new algorithm for optimal multileaf collimator field seg-
mentation. Preprint 03/5, Fachbereich Mathematik, Uni Rostock, under
revision for Discr. Appl. Math., 2003.

102 Bibliography

[11] J.M. Galvin, X.G. Chen, and R.M. Smith. Combining multileaf fields
to modulate fluence distributions. Int. J. Radiat. Oncol. Biol. Phys.,
27:697–705, 1993.

[12] M.R. Garey and D.S. Johnson. Computers and intractability, a guide to
the theory of NP–completeness. W.H. Freeman, 1979.

[13] A. Holder and B. Salter. A tutorial on radiation oncology and opti-
mization. Technical Report 86, Trinity University, San Antonio, Texas,
2004.

[14] D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI–
Wissenschaftsverlag, Mannheim, 1994.

[15] T. Kalinowski. Realization of intensity modulated radiation fields us-
ing multileaf collimators. In R. Ahlswede, with the assistance of L.
Bäumer, and N. Cai, editors, General Theory of Information Transfer
and Combinatorics. Shannon Foundation, to be published 2004. Report
on a Research Project at the ZIF (Center of interdisciplinary research)
in Bielefeld Oct. 1, 2002 – August 31, 2003.

[16] S. Kamath, S. Sahni, J. Li, J. Palta, and S. Ranka. Leaf sequenc-
ing algorithms for segmented multileaf collimation. Phys. Med. Biol.,
48(3):307–324, 2003.

[17] S. Kamath, S. Sahni, J. Palta, and S. Ranka. Algorithms for optimal
sequencing of dynamic multileaf collimators. Phys. Med. Biol., 49(1):33–
54, 2004.

[18] M. Langer, V. Thai, and L. Papiez. Improved leaf sequencing reduces
segments of monitor units needed to deliver IMRT using multileaf colli-
mators. Med. Phys., 28:2450–2458, 2001.

[19] L. Ma, A.L. Boyer, L. Xing, and C.M. Ma. An optimized leaf setting
algorithm for beam intensity modulation using dynamic multileaf colli-
mators. Phys. Med. Biol., 43(6):1629–1643, 1998.

[20] W. Que. Comparison of algorithms for multileaf collimator field seg-
mentation. Med. Phys., 26:2390–2396, 1999.

[21] I.I. Rosen, R.G. Lane, S.M. Morill, and J.A. Belli. Treatment plan
optimization using linear programming. Med. Phys., 18:141–152, 1991.

Bibliography 103

[22] D. Shepard, M. Ferris, G. Olivera, and T. Mackie. Optimizing the de-
livery of radiation therapy to cancer patients. SIAM Review, 41(4):721–
744, 1999.

[23] R.A.C. Siochi. Minimizing static intensity modulation delivery time
using an intensity solid paradigm. Int. J. Radiat. Oncol. Biol. Phys.,
43:671–680, 1999.

[24] S.V. Spirou and C.S. Chui. Generation of arbitrary intensity profiles by
dynamic jaws or multileaf collimators. Med. Phys., 21:1031–1041, 1994.

[25] R. Svensson, P. Källman, and A. Brahme. An analytical solution for the
dynamic control of multileaf collimators. Phys. Med. Biol., 39(1):37–61,
1994.

[26] J.P.C. van Santvoort and B.J.M. Heijmen. Dynamic multileaf collima-
tion without ’tongue-and-groove’ underdosage effects. Phys. Med. Biol.,
41(10):2091–2105, 1996.

[27] S. Webb, T. Bortfeld, J. Stein, and D. Convery. The effect of stair–
step leaf transmission on the ’tongue–and–groove problem’ in dynamic
radiotherapy with a multileaf collimator. Phys. Med. Biol., 42(3):595–
602, 1997.

[28] P. Xia and L. Verhey. Multileaf collimator leaf–sequencing algorithm for
intensity modulated beams with multiple static segments. Med. Phys.,
25:1424–1434, 1998.

.

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne
fremde Hilfe verfaßt, andere als die von mir angegebenen Quellen nicht be-
nutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe.

Thomas Kalinowski

.

LEBENSLAUF

Thomas Kalinowski
geb. am 27.11.1980 in Pasewalk
Familienstand: ledig

Schulbildung

09/86 – 08/92 : Polytechnische Oberschule in Grambow
09/92 – 08/94 : Gymnasium Löcknitz
09/94 – 07/98 : Abitur an der CJD–Jugenddorf–

Christophorusschule Rostock

Studien und akademische Ausbildung

10/99 – 09/03 : Mathematikstudium an der Universität Rostock
(Nebenfach Informatik),
Stipendiat der Studienstiftung des deutschen Volkes

09/01 – 04/02 : Studienaufenthalt als ERASMUS–Stipendiat
an der University of Glasgow (Schottland)

09/03 : Abschluß des Diplomstudiums,
Thema der Diplomarbeit: Realization of intensity
modulated radiation fields using multileaf collimators

Berufliche Tätigkeit

Seit 10/03 : Wissenschaftlicher Mitarbeiter am Fachbereich
Mathematik der Universität Rostock

Schülerförderung

Seit 09/00 : Mitglied im Mathematik–Olympiaden e.V.
09/00 – 07/01 : Leitung einer Mathematik–AG für

Schüler der Klassen 9–10
09/02 – 07/03 : Leitung einer Mathematik–AG für

Schüler der Klassen 11–12

.

Thesen zur Dissertation
von Thomas Kalinowski

1. In der Krebsbehandlung werden Mehrlamellenkollimatoren eingesetzt
um intensitätsmodulierte Bestrahlungsfelder zu erzeugen. Ein Schritt
bei der Erstellung eines Behandlungsplans ist die Realisierung einer ge-
gebenen Fluenzverteilung mit einer geringen Gesamtbestrahlungsdauer
und einer kleinen Anzahl von homogenen Feldern. Die möglichen La-
mellenpositionen des Kollimators können durch (0, 1)−Matrizen, soge-
nannte Segmente, beschrieben werden. Damit lässt sich das Problem
als Suche nach einer Segmentierung einer nichtnegativen ganzzahligen
m × n–Matrix A formulieren, d.h. nach einer Darstellung

A =

k
∑

i=1

uiSi

von A als positive Linearkombination von Segmenten S1, . . . , Sk.

2. In vielen Mehrlamellenkollimatoren verbietet die Lamellenkollisionsbe-
dingung (interleaf collision constraint) das Überlappen von gegenüber-
liegenden Lamellen in benachbarten Zeilen. Für diese Kollimatoren sind
die m × n–Segmente S = (si,j) charakterisiert durch die Existenz von
ganzen Zahlen li, ri (i = 1, . . . , m), so dass

li ≤ ri + 1 (i ∈ [m]),

si,j =

{

1 falls li ≤ j ≤ ri

0 sonst
(i ∈ [m], j ∈ [n]),

li ≤ ri+1 + 1, ri ≥ li+1 − 1 (i ∈ [m − 1]).

3. Die Minimierung der Gesamtbestrahlungsdauer wird als lineares Opti-
mierungsproblem formuliert:

(P)



































∑

S∈S

f(S) → min

f(S) ≥ 0 ∀S ∈ S,

∑

S∈S:(i,j)∈S

f(S) = ai,j ∀(i, j) ∈ V.

Hier ist S die Menge der Segmente, wobei ein Segment S mit der Menge
der Paare (i, j) ∈ [m] × [n] mit si,j = 1 identifiziert wird.

4. Mit Hilfe des dualen Problems

(D)



















∑

(i,j)∈[m]×[n]

ai,jg(i, j) → max

∑

(i,j)∈S

g(i, j) ≤ 1 ∀S ∈ S

wird der minimale Wert der Zielfunktion im Problem (P) als maximales
Gewicht eines 0 − 1−Weges in folgendem gewichteten Digraphen G =
(V, E) charakterisiert:

V = [m] × [n] ∪ {0, 1},

E = E1 ∪ E2 mit

E1 = {(0, (i, 1)) : i ∈ [m]} ∪ {((i, n), 1) : i ∈ [m]},

E2 = {((i, j), (i′, j + 1)) : i, i′ ∈ [m], j ∈ [n − 1]},

mit der Gewichtsfunktion

δ(0, (i, 1)) = ai,1 (i ∈ [m]),

δ((i, n), 1) = 0 (i ∈ [m]),

δ((i, j), (i, j + 1)) = max{0, ai,j+1 − ai,j} (i ∈ [m], j ∈ [n − 1]),

δ((i, j), (i′, j + 1)) = max{0, ai′,j+1 − ai′,j} −
i′−1
∑

k=i

ak,j

(i, i′ ∈ [m], i < i′, j ∈ [n − 1]),

δ((i, j), (i′, j + 1)) = max{0, ai′,j+1 − ai′,j} −
i
∑

k=i′+1

ak,j

(i, i′ ∈ [m], i > i′, j ∈ [n − 1]).

5. Aus dem Beweis der Min–Max–Aussage in These 4 wird ein effizienter
Algorithmus zur Bestimmung einer optimalen Lösung des Problems
(P) abgeleitet.

6. Sei c(A) die minimale Koeffizientensumme einer Segmentierung von A.
Ein Paar (u, S) aus einer natürlichen Zahl u und einem Segment S heiße
zulässig, falls A′ := A − uS nichtnegativ ist und c(A′) = c(A) − u gilt.
Zur Konstruktion einer Segmentierung mit minimaler Koeffizienten-
summe und kleiner Segmentanzahl wird die folgende Greedy–Strategie
verwendet.

1. Bestimme ein zulässiges Paar (u, S) mit maximalem u.

2. Setze A := A − uS.

3. Falls A 6= 0, gehe zu Schritt 1.

7. Die Minimierung der Segmentanzahl ist bereits für m = 1 streng NP–
schwer. Es wird jedoch bewiesen, dass dieses Problem in Linearzeit
gelöst werden kann, wenn die Matrixeinträge durch eine Konstante be-
schränkt sind.

8. Für m > 1 wird ein Algorithmus der Komplexität O(mn2L+2) angege-
ben, der für einen Kollimator ohne Lamellenkollisionsbedingung eine
Segmentierung mit minimaler Gesamtbestrahlungsdauer und minima-
ler Segmentanzahl bestimmt. Hier ist L = max{ai,j : (i, j) ∈ [m]×[n]}.

9. Eine deutliche Reduzierung der Gesamtbestrahlungsdauer ist möglich,
wenn der Kollimator zwischen der Verabreichung der einzelnen Felder
um 90◦ gedreht werden darf. Hierzu wird eine Heuristik implementiert
und getestet.

10. Eine weitere Reduzierung der notwendigen Gesamtbestrahlungsdauer
kann durch die Verwendung von zwei zueinander orthogonal angeord-
neten Kollimatoren erreicht werden, wie wiederum mittels Implemen-
tierung eines heuristischen Algorithmus gezeigt wird.

