Maximal flat antichains of minimum weight

Thomas Kalinowski

Institute of Mathematics University of Rostock

Horizon of Combinatorics Balatonalmádi July 18, 2006

2 The case
$$(k, l) = (2, 3)$$

Outline

Introduction

2 The case
$$(k, l) = (2, 3)$$

A bound for the general case

- 4 More constructions
- 5 Open problems

- *B_n* denotes the power set of [*n*] := {1, 2, ..., *n*} ordered by inclusion.
- Let A denote an antichain in B_n .
- The *size* and the *volume* of A are

$$|\mathcal{A}|$$
 and $v(\mathcal{A}) := \sum_{A \in \mathcal{A}} |A|.$

• \mathcal{A} is called *flat*, if $\mathcal{A} \subseteq {\binom{[n]}{k}} \cup {\binom{[n]}{k+1}}$ for some *k*.

Theorem (Kisvölcsey, Lieby)

For every antichain A in B_n , there is a flat antichain A' with

 $|\mathcal{A}'| = |\mathcal{A}|$ and $v(\mathcal{A}') = v(\mathcal{A})$.

Theorem (Kisvölcsey, Lieby)

For every antichain A in B_n , there is a flat antichain A' with

 $|\mathcal{A}'| = |\mathcal{A}|$ and $v(\mathcal{A}') = v(\mathcal{A})$.

• Define an equivalence relation on the set of all antichains:

$$\mathcal{A} \sim \mathcal{B} \quad \Leftrightarrow \ |\mathcal{A}| = |\mathcal{B}| \text{ and } v(\mathcal{A}) = v(\mathcal{B}).$$

• There is a flat antichain in each equivalence class.

An extremal property of flat antichains

- weight function $w : \{0\} \cup [n] \rightarrow \mathbb{R}^+$
- weight of a family $\mathcal{F} \subseteq 2^{[n]}$,

$$w(\mathcal{F}) = \sum_{F \in \mathcal{F}} w(|F|).$$

- (w_i) convex (concave) ⇒ The flat AC have minimum (maximum) weight within their equivalence classes. (Griggs, Hartmann, Leck, Roberts)
- In particular the flat antichains have minimum LYM-value $LYM(\mathcal{F}) = \sum_{F \in \mathcal{F}} {n \choose |F|}^{-1}$ within their classes.

The problem

- Let 1 < k < n and $w_k, w_{k+1} \in \mathbb{R}^+$ be given.
- What is the minimum weight

$$w(\mathcal{A}) = w_k |\mathcal{A}_k| + w_{k+1} |\mathcal{A}_{k+1}|$$

of a maximal flat antichain $A = A_k \cup A_{k+1}$, where $A_i \subseteq {[n] \choose i}$?

The problem

- Let 1 < k < n and $w_k, w_{k+1} \in \mathbb{R}^+$ be given.
- What is the minimum weight

$$w(\mathcal{A}) = w_k |\mathcal{A}_k| + w_{k+1} |\mathcal{A}_{k+1}|$$

of a maximal flat antichain $\mathcal{A} = \mathcal{A}_k \cup \mathcal{A}_{k+1}$, where $\mathcal{A}_i \subseteq {[n] \choose i}$?

More general: Given 1 < k < l ≤ n and w_k, w_l ∈ ℝ⁺, what is the minimum weight

$$w(\mathcal{A}) = w_k |\mathcal{A}_k| + w_l |\mathcal{A}_l|$$

of a maximal antichain $\mathcal{A} = \mathcal{A}_k \cup \mathcal{A}_l$?

$w(\mathcal{A}) = w_k |\mathcal{A}_k| + w_l |\mathcal{A}_l| \to \min$

• size:
$$w_k = w_l = 1$$

• volume: $w_k = k, w_l = l$
• LYM: $w_k = {n \choose k}^{-1}, w_l = {n \choose l}^{-1}$

Introduction

3 A bound for the general case

4 More constructions

A graph formulation

• With an antichain $A = A_2 \cup A_3$ we associate a graph G(A) = (V, E):

$$V = [n], \qquad E = {[n] \choose 2} \setminus \mathcal{A}_2.$$

- A is a maximal antichain iff every edge of G(A) is contained in a triangle and A is the set of triangles in G(A).
- Let T denote the set of triangles in G(A).

•
$$w(\mathcal{A}) = w_3|T| + w_2\left(\binom{n}{2} - |\mathcal{E}|\right) \rightarrow \min$$

A graph formulation

• With an antichain $A = A_2 \cup A_3$ we associate a graph G(A) = (V, E):

$$V = [n], \qquad E = {[n] \choose 2} \setminus \mathcal{A}_2.$$

- A is a maximal antichain iff every edge of G(A) is contained in a triangle and A is the set of triangles in G(A).
- Let T denote the set of triangles in G(A).
- $w(\mathcal{A}) = w_3|T| + w_2\left(\binom{n}{2} |E|\right) \rightarrow \min$
- We divide by w_2 and put $\lambda := w_3/w_2$
- |E| − λ|T| → max subject to the condition that every edge is contained in a triangle.
- We call the graphs satisfying this condition T-graphs.

Theorem

For any T-graph on n vertices and any $\lambda > 0$ we have

$$|E| - \lambda |T| \leq rac{(n+\lambda)^2}{8\lambda}.$$

Theorem

For any T-graph on n vertices and any $\lambda > 0$ we have

$$|E| - \lambda |T| \leq rac{(n+\lambda)^2}{8\lambda}.$$

Corollary

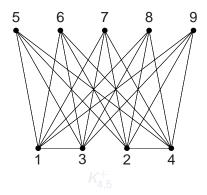
If $\mathcal{A} \subseteq \binom{[n]}{2} \cup \binom{[n]}{3}$ is a maximal antichain, then

$$w(\mathcal{A}) \geq {\binom{n}{2}} - rac{(n+\lambda)^2}{8\lambda}.$$

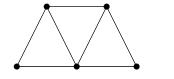
A construction

• The graph $K^+_{2s,n-2s}$:

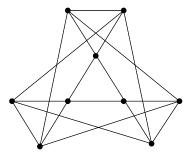
 $E = ([2s] \times ([n] \setminus [2s])) \cup \{\{i, i+s\} : i = 1, 2, \dots, s\},\$



Exceptional cases for small *n*



 G_{5a}



Theorem

Let $\mathcal{A} \subseteq {\binom{[n]}{2}} \cup {\binom{[n]}{3}}$ be a maximal antichain. Then $|\mathcal{A}| \ge {\binom{n}{2}} - \left\lfloor \frac{(n+1)^2}{8} \right\rfloor,$

and equality holds if and only if

$$\begin{array}{ll} (i) & n \in \{5,9\} & \text{and} & G(\mathcal{A}) \in \{G_{5a}, G_{5b}, G_{9}\}, \text{ or} \\ (ii) & n \equiv 0 \pmod{4} & \text{and} & G(\mathcal{A}) \cong K^{+}_{n/2,n/2}, \text{ or} \\ (iii) & n \equiv 1 \pmod{4} & \text{and} & G(\mathcal{A}) \cong K^{+}_{(n-1)/2,(n+1)/2} \\ & \text{or} & G(\mathcal{A}) \cong K^{+}_{(n+3)/2,(n-3)/2}, \text{ or} \\ (iv) & n \equiv 2 \pmod{4} & \text{and} & G(\mathcal{A}) \cong K^{+}_{(n+2)/2,(n-2)/2}, \text{ or} \\ (v) & n \equiv 3 \pmod{4} & \text{and} & G(\mathcal{A}) \cong K^{+}_{(n+1)/2,(n-1)/2}. \end{array}$$

Introduction

A bound for the general case

- 4 More constructions
- 5 Open problems

•
$$\mathcal{A} \subseteq {\binom{[n]}{k}} \cup {\binom{[n]}{l}}$$

- Similar to the (2,3)-case we are looking for a *k*-uniform hypergraph (*k*-graph) H = (V, E) with the property that every edge is contained in some complete *k*-graph on *l* vertices. (Call these hypergraphs (*k*, *l*)-graphs.)
- Subject to this condition we have to maximize e_k λe_l, where e_k is the number of edges and e_l is the number of complete k-graphs on l vertices.

•
$$W(\mathcal{A}) = \binom{n}{k} - (e_k - \lambda e_l)$$

• We may assume $e_l = O(n^k)$.

The bound

- We may assume $e_l = O(n^k)$.
- The hypergraph removal lemma (Nagl, Rödl, Schacht; Tao; Gowers) implies
 - By deleting o(n^k) edges we can obtain a hypergraph
 H' = (V, E') without complete k-graphs on l vertices.

•
$$|\mathcal{E}'| \leq t_k(n, l)$$

The bound

- We may assume $e_l = O(n^k)$.
- The hypergraph removal lemma (Nagl, Rödl, Schacht; Tao; Gowers) implies
 - By deleting o(n^k) edges we can obtain a hypergraph
 H' = (V, E') without complete k-graphs on l vertices.
- $|\mathcal{E}'| \leq t_k(n, l)$
- For e ∈ E let t(e) denote the number of complete k-graphs on l vertices containing e (in H).

•
$$|\mathcal{E}'| \leq \sum_{e \in \mathcal{E}'} t(e) \leq \left(\binom{l}{k} - 1\right) e_l$$

The bound

- We may assume $e_l = O(n^k)$.
- The hypergraph removal lemma (Nagl, Rödl, Schacht; Tao; Gowers) implies
 - By deleting o(n^k) edges we can obtain a hypergraph
 H' = (V, E') without complete k-graphs on l vertices.
- $|\mathcal{E}'| \leq t_k(n, l)$
- For e ∈ E let t(e) denote the number of complete k-graphs on l vertices containing e (in H).

•
$$|\mathcal{E}'| \leq \sum_{e \in \mathcal{E}'} t(e) \leq \left(\binom{l}{k} - 1 \right) e_l$$

• $e_k - e_l = |\mathcal{E}'| - e_l + o(n^k) \leq \frac{\binom{l}{k} - 2}{\binom{l}{k} - 1} t_k(n, l) + o(n^k)$

Numerical Examples

•
$$(k, l) = (3, 4)$$
:
 $e_3 - e_4 \le \frac{2}{3}t_3(n, 4) + o(n^3) \le \frac{2}{3}\frac{3 + \sqrt{17}}{12}\frac{1}{6}n^3 + o(n^3)$
(Chung, Lu)
• $(k, l) = (2, 4)$:
 $e_2 - e_4 \le \frac{4}{5}t_2(n, 4) + o(n^2) = \frac{4}{15}n^2 + o(n^2)$.

Introduction

2 The case
$$(k, l) = (2, 3)$$

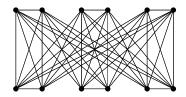
3 A bound for the general case

- 4 More constructions
- 5 Open problems

A construction for (k, l) = (2, 4)

• Assume
$$n = 4t$$
.

• $E = [1, 2t] \times [2t + 1, 4t] \cup \{(2i - 1, 2i) : i = 1, 2, ..., 2t\}$



•
$$e_2 - e_4 = \frac{3}{16}n^2 + \frac{n}{2}$$

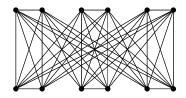
Conjecture

In any (2,4)-graph we have $e_2 - e_4 \leq \frac{3}{16}n^2 + o(n^2)$.

A construction for (k, l) = (2, 4)

• Assume
$$n = 4t$$
.

• $E = [1, 2t] \times [2t + 1, 4t] \cup \{(2i - 1, 2i) : i = 1, 2, ..., 2t\}$



•
$$e_2 - e_4 = \frac{3}{16}n^2 + \frac{n}{2}$$

Conjecture

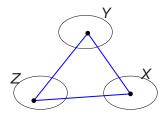
In any (2,4)-graph we have $e_2 - e_4 \le \frac{3}{16}n^2 + o(n^2)$.

• Under the additional assumption that the number of triangles is $o(n^3)$ the conjecture follows from the removal lemma.

A construction for (k, l) = (3, 4)

- Assume n = 3t with $t \equiv 1$ or 3 (mod 6).
- Let *S* be a Steiner triple system on $\{1, \ldots, t\}$.
- Vertex set $X \cup Y \cup Y$ with $X = \{x_1, ..., x_t\}$, $Y = \{y_1, ..., y_t\}, Z = \{z_1, ..., z_t\}.$
- Triple system $T = T_1 \cup T_2 \cup T_3$ by

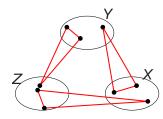
 $T_{2} = \{x_{i}x_{j}y_{k}, y_{i}y_{j}z_{k}, z_{i}z_{j}x_{k} : i, j, k \in [t], i \neq j\},$ $T_{3} = \{x_{i}x_{j}z_{k}, y_{i}y_{j}x_{k}, z_{i}z_{j}y_{k} : ijk \in S\}.$



A construction for (k, l) = (3, 4)

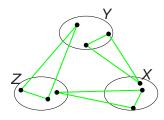
- Assume n = 3t with $t \equiv 1$ or 3 (mod 6).
- Let *S* be a Steiner triple system on $\{1, \ldots, t\}$.
- Vertex set $X \cup Y \cup Y$ with $X = \{x_1, ..., x_t\}$, $Y = \{y_1, ..., y_t\}, Z = \{z_1, ..., z_t\}.$
- Triple system $T = T_1 \cup T_2 \cup T_3$ by

$$T_3 = \{x_i x_j z_k, y_i y_j x_k, z_i z_j y_k : ijk \in S\}.$$



A construction for (k, l) = (3, 4)

- Assume n = 3t with $t \equiv 1$ or 3 (mod 6).
- Let *S* be a Steiner triple system on $\{1, \ldots, t\}$.
- Vertex set $X \cup Y \cup Y$ with $X = \{x_1, ..., x_t\}$, $Y = \{y_1, ..., y_t\}, Z = \{z_1, ..., z_t\}.$
- Triple system $T = T_1 \cup T_2 \cup T_3$ by



Lemma

T is a (3,4)-graph and
$$e_3 - e_4 = \frac{n^3}{27} + \frac{n^2}{18} - \frac{n}{2}$$
.

Conjecture

In any (3, 4)-graph we have $e_3 - e_4 \le \frac{n^3}{27} + o(n^3)$.

Introduction

2 The case
$$(k, l) = (2, 3)$$

A bound for the general case

- 4 More constructions
- 5 Open problems

- upper bounds without the regularity lemma
- proof of the optimality of the construction in the (2,4)-case
- constructions for the cases (2, I) and (k, k + 1)

