Maximal flat antichains of minimum weight

Thomas Kalinowski

Institute of Mathematics
University of Rostock

Horizon of Combinatorics
Balatonalmádi
July 18, 2006

Outline

(1) Introduction
(2) The case $(k, I)=(2,3)$
(3) A bound for the general case
(4) More constructions
(5) Open problems

Outline

(2) The case $(k, I)=(2,3)$
(3) A bound for the general case

4 More constructions
(5) Open problems

- B_{n} denotes the power set of $[n]:=\{1,2, \ldots, n\}$ ordered by inclusion.
- Let \mathcal{A} denote an antichain in B_{n}.
- The size and the volume of \mathcal{A} are

$$
|\mathcal{A}| \quad \text { and } \quad v(\mathcal{A}):=\sum_{A \in \mathcal{A}}|A| .
$$

- \mathcal{A} is called flat, if $\mathcal{A} \subseteq\binom{[n]}{k} \cup\binom{[n]}{k+1}$ for some k.

Theorem (Kisvölcsey, Lieby)

For every antichain \mathcal{A} in B_{n}, there is a flat antichain \mathcal{A}^{\prime} with

$$
\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}| \quad \text { and } \quad v\left(\mathcal{A}^{\prime}\right)=v(\mathcal{A}) .
$$

Theorem (Kisvölcsey, Lieby)

For every antichain \mathcal{A} in B_{n}, there is a flat antichain \mathcal{A}^{\prime} with

$$
\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}| \quad \text { and } \quad v\left(\mathcal{A}^{\prime}\right)=v(\mathcal{A}) .
$$

- Define an equivalence relation on the set of all antichains:

$$
\mathcal{A} \sim \mathcal{B} \quad \Leftrightarrow|\mathcal{A}|=|\mathcal{B}| \text { and } v(\mathcal{A})=v(\mathcal{B}) .
$$

- There is a flat antichain in each equivalence class.

An extremal property of flat antichains

- weight function $w:\{0\} \cup[n] \rightarrow \mathbb{R}^{+}$
- weight of a family $\mathcal{F} \subseteq 2^{[n]}$,

$$
w(\mathcal{F})=\sum_{F \in \mathcal{F}} w(|F|)
$$

- $\left(w_{i}\right)$ convex (concave) \Rightarrow The flat AC have minimum (maximum) weight within their equivalence classes. (Griggs, Hartmann, Leck, Roberts)
- In particular the flat antichains have minimum LYM-value $\operatorname{LYM}(\mathcal{F})=\sum_{F \in \mathcal{F}}\binom{n}{|F|}^{-1}$ within their classes.
- Let $1<k<n$ and $w_{k}, w_{k+1} \in \mathbb{R}^{+}$be given.
- What is the minimum weight

$$
w(\mathcal{A})=w_{k}\left|\mathcal{A}_{k}\right|+w_{k+1}\left|\mathcal{A}_{k+1}\right|
$$

of a maximal flat antichain $\mathcal{A}=\mathcal{A}_{k} \cup \mathcal{A}_{k+1}$, where $\mathcal{A}_{i} \subseteq\binom{[n]}{i}$?

- Let $1<k<n$ and $w_{k}, w_{k+1} \in \mathbb{R}^{+}$be given.
- What is the minimum weight

$$
w(\mathcal{A})=w_{k}\left|\mathcal{A}_{k}\right|+w_{k+1}\left|\mathcal{A}_{k+1}\right|
$$

of a maximal flat antichain $\mathcal{A}=\mathcal{A}_{k} \cup \mathcal{A}_{k+1}$, where $\mathcal{A}_{i} \subseteq\binom{[n]}{i}$?

- More general: Given $1<k<I \leq n$ and $w_{k}, w_{l} \in \mathbb{R}^{+}$, what is the minimum weight

$$
w(\mathcal{A})=w_{k}\left|\mathcal{A}_{k}\right|+w_{l}\left|\mathcal{A}_{l}\right|
$$

of a maximal antichain $\mathcal{A}=\mathcal{A}_{k} \cup \mathcal{A}_{l}$?

Special cases

- size: $w_{k}=w_{l}=1$
- volume: $w_{k}=k, w_{l}=l$
- LYM: $w_{k}=\binom{n}{k}^{-1}, w_{l}=\binom{n}{l}^{-1}$

Outline

(2) The case $(k, I)=(2,3)$
(3) A bound for the general case

4 More constructions
(5) Open problems

- With an antichain $\mathcal{A}=\mathcal{A}_{2} \cup \mathcal{A}_{3}$ we associate a graph $G(\mathcal{A})=(V, E):$

$$
V=[n], \quad E=\binom{[n]}{2} \backslash \mathcal{A}_{2} .
$$

- \mathcal{A} is a maximal antichain iff every edge of $G(\mathcal{A})$ is contained in a triangle and \mathcal{A} is the set of triangles in $G(\mathcal{A})$.
- Let T denote the set of triangles in $G(\mathcal{A})$.
- $w(\mathcal{A})=w_{3}|T|+w_{2}\left(\binom{n}{2}-|E|\right) \rightarrow \min$
- With an antichain $\mathcal{A}=\mathcal{A}_{2} \cup \mathcal{A}_{3}$ we associate a graph
$G(\mathcal{A})=(V, E):$

$$
V=[n], \quad E=\binom{[n]}{2} \backslash \mathcal{A}_{2} .
$$

- \mathcal{A} is a maximal antichain iff every edge of $G(\mathcal{A})$ is contained in a triangle and \mathcal{A} is the set of triangles in $G(\mathcal{A})$.
- Let T denote the set of triangles in $G(\mathcal{A})$.
- $w(\mathcal{A})=w_{3}|T|+w_{2}\left(\binom{n}{2}-|E|\right) \rightarrow \min$
- We divide by w_{2} and put $\lambda:=w_{3} / w_{2}$
- $|E|-\lambda|T| \rightarrow \max$ subject to the condition that every edge is contained in a triangle.
- We call the graphs satisfying this condition T-graphs.

An upper bound

Theorem

For any T-graph on n vertices and any $\lambda>0$ we have

$$
|E|-\lambda|T| \leq \frac{(n+\lambda)^{2}}{8 \lambda} .
$$

An upper bound

Theorem

For any T-graph on n vertices and any $\lambda>0$ we have

$$
|E|-\lambda|T| \leq \frac{(n+\lambda)^{2}}{8 \lambda} .
$$

Corollary

If $\mathcal{A} \subseteq\binom{[n]}{2} \cup\binom{[n]}{3}$ is a maximal antichain, then

$$
w(\mathcal{A}) \geq\binom{ n}{2}-\frac{(n+\lambda)^{2}}{8 \lambda}
$$

A construction

- The graph $K_{2 s, n-2 s}^{+}$:

$$
E=([2 s] \times([n] \backslash[2 s])) \cup\{\{i, i+s\}: i=1,2, \ldots, s\},
$$

Exceptional cases for small n

Theorem

Let $\mathcal{A} \subseteq\binom{[n]}{2} \cup\binom{[n]}{3}$ be a maximal antichain. Then

$$
|\mathcal{A}| \geq\binom{ n}{2}-\left\lfloor\frac{(n+1)^{2}}{8}\right\rfloor
$$

and equality holds if and only if
(i) $n \in\{5,9\} \quad$ and $G(\mathcal{A}) \in\left\{G_{5 a}, G_{5 b}, G_{9}\right\}$, or
(ii) $n \equiv 0(\bmod 4)$ and $G(\mathcal{A}) \cong K_{n / 2, n / 2}^{+}$, or
(iii) $n \equiv 1(\bmod 4)$ and $G(\mathcal{A}) \cong K_{(n-1) / 2,(n+1) / 2}^{+}$ or $\quad G(\mathcal{A}) \cong K_{(n+3) / 2,(n-3) / 2}^{+}$, or
(iv) $n \equiv 2(\bmod 4)$ and $G(\mathcal{A}) \cong K_{(n+2) / 2,(n-2) / 2}^{+}$, or
(v) $n \equiv 3(\bmod 4)$ and $G(\mathcal{A}) \cong K_{(n+1) / 2,(n-1) / 2}^{+}$.

Outline

(2) The case $(k, I)=(2,3)$
(3) A bound for the general case

4 More constructions
(5) Open problems

- $\mathcal{A} \subseteq\binom{[n]}{k} \cup\binom{[n]}{1}$
- Similar to the $(2,3)$-case we are looking for a k-uniform hypergraph (k-graph) $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ with the property that every edge is contained in some complete k-graph on I vertices. (Call these hypergraphs (k, l)-graphs.)
- Subject to this condition we have to maximize $e_{k}-\lambda e_{l}$, where e_{k} is the number of edges and e_{l} is the number of complete k-graphs on / vertices.
- $w(\mathcal{A})=\binom{n}{k}-\left(e_{k}-\lambda e_{l}\right)$
- We may assume $e_{l}=O\left(n^{k}\right)$.
- We may assume $e_{l}=O\left(n^{k}\right)$.
- The hypergraph removal lemma (Nagl, Rödl, Schacht; Tao; Gowers) implies
- By deleting o $\left(n^{k}\right)$ edges we can obtain a hypergraph $\mathcal{H}^{\prime}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ without complete k-graphs on $/$ vertices.
- $\left|\mathcal{E}^{\prime}\right| \leq t_{k}(n, I)$
- We may assume $e_{l}=O\left(n^{k}\right)$.
- The hypergraph removal lemma (Nagl, Rödl, Schacht; Tao; Gowers) implies
- By deleting $o\left(n^{k}\right)$ edges we can obtain a hypergraph $\mathcal{H}^{\prime}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ without complete k-graphs on $/$ vertices.
- $\left|\mathcal{E}^{\prime}\right| \leq t_{k}(n, I)$
- For $e \in \mathcal{E}$ let $t(e)$ denote the number of complete k-graphs on / vertices containing e (in \mathcal{H}).
- $\left|\mathcal{E}^{\prime}\right| \leq \sum_{e \in \mathcal{E}^{\prime}} t(e) \leq\left(\binom{l}{k}-1\right) e_{l}$
- We may assume $e_{l}=O\left(n^{k}\right)$.
- The hypergraph removal lemma (Nagl, Rödl, Schacht; Tao; Gowers) implies
- By deleting $o\left(n^{k}\right)$ edges we can obtain a hypergraph $\mathcal{H}^{\prime}=\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ without complete k-graphs on $/$ vertices.
- $\left|\mathcal{E}^{\prime}\right| \leq t_{k}(n, l)$
- For $e \in \mathcal{E}$ let $t(e)$ denote the number of complete k-graphs on / vertices containing $e($ in $\mathcal{H})$.
- $\left|\mathcal{E}^{\prime}\right| \leq \sum_{e \in \mathcal{E}^{\prime}} t(e) \leq\left(\binom{l}{k}-1\right) e_{\text {/ }}$
- $e_{k}-e_{l}=\left|\mathcal{E}^{\prime}\right|-e_{l}+o\left(n^{k}\right) \leq \frac{\binom{l}{k}-2}{\binom{l}{k}-1} t_{k}(n, I)+o\left(n^{k}\right)$

Numerical Examples

- $(k, I)=(3,4)$:

$$
e_{3}-e_{4} \leq \frac{2}{3} t_{3}(n, 4)+o\left(n^{3}\right) \leq \frac{2}{3} \frac{3+\sqrt{17}}{12} \frac{1}{6} n^{3}+o\left(n^{3}\right)
$$

(Chung, Lu)

- $(k, I)=(2,4)$:

$$
e_{2}-e_{4} \leq \frac{4}{5} t_{2}(n, 4)+o\left(n^{2}\right)=\frac{4}{15} n^{2}+o\left(n^{2}\right)
$$

Outline

(2) The case $(k, I)=(2,3)$
(3) A bound for the general case

4 More constructions
(5) Open problems

A construction for $(k, l)=(2,4)$

- Assume $n=4 t$.
- $E=[1,2 t] \times[2 t+1,4 t] \cup\{(2 i-1,2 i): i=1,2, \ldots, 2 t\}$

- $e_{2}-e_{4}=\frac{3}{16} n^{2}+\frac{n}{2}$

Conjecture

In any $(2,4)$-graph we have $e_{2}-e_{4} \leq \frac{3}{16} n^{2}+o\left(n^{2}\right)$.

A construction for $(k, l)=(2,4)$

- Assume $n=4 t$.
- $E=[1,2 t] \times[2 t+1,4 t] \cup\{(2 i-1,2 i): i=1,2, \ldots, 2 t\}$

- $e_{2}-e_{4}=\frac{3}{16} n^{2}+\frac{n}{2}$

Conjecture

In any $(2,4)$-graph we have $e_{2}-e_{4} \leq \frac{3}{16} n^{2}+o\left(n^{2}\right)$.

- Under the additional assumption that the number of triangles is $o\left(n^{3}\right)$ the conjecture follows from the removal lemma.

A construction for $(k, l)=(3,4)$

- Assume $n=3 t$ with $t \equiv 1$ or $3(\bmod 6)$.
- Let S be a Steiner triple system on $\{1, \ldots, t\}$.
- Vertex set $X \cup Y \cup Y$ with $X=\left\{x_{1}, \ldots, x_{t}\right\}$,

$$
Y=\left\{y_{1}, \ldots, y_{t}\right\}, Z=\left\{z_{1}, \ldots, z_{t}\right\} .
$$

- Triple system $T=T_{1} \cup T_{2} \cup T_{3}$ by

$$
\begin{aligned}
& T_{2}=\left\{x_{i} x_{j} y_{k}, y_{i} y_{j} z_{k}, z_{i} z_{j} x_{k}: i, j, k \in[t], i \neq j\right\} \\
& T_{3}=\left\{x_{i} x_{j} z_{k}, y_{i} y_{j} x_{k}, z_{i} z_{j} y_{k}: i j k \in S\right\}
\end{aligned}
$$

A construction for $(k, I)=(3,4)$

- Assume $n=3 t$ with $t \equiv 1$ or $3(\bmod 6)$.
- Let S be a Steiner triple system on $\{1, \ldots, t\}$.
- Vertex set $X \cup Y \cup Y$ with $X=\left\{x_{1}, \ldots, x_{t}\right\}$, $Y=\left\{y_{1}, \ldots, y_{t}\right\}, Z=\left\{z_{1}, \ldots, z_{t}\right\}$.
- Triple system $T=T_{1} \cup T_{2} \cup T_{3}$ by

$$
T_{3}=\left\{x_{i} x_{j} z_{k}, y_{i} y_{j} x_{k}, z_{i} z_{j} y_{k}: i j k \in S\right\}
$$

A construction for $(k, I)=(3,4)$

- Assume $n=3 t$ with $t \equiv 1$ or $3(\bmod 6)$.
- Let S be a Steiner triple system on $\{1, \ldots, t\}$.
- Vertex set $X \cup Y \cup Y$ with $X=\left\{x_{1}, \ldots, x_{t}\right\}$, $Y=\left\{y_{1}, \ldots, y_{t}\right\}, Z=\left\{z_{1}, \ldots, z_{t}\right\}$.
- Triple system $T=T_{1} \cup T_{2} \cup T_{3}$ by

Lemma

T is a $(3,4)$-graph and $e_{3}-e_{4}=\frac{n^{3}}{27}+\frac{n^{2}}{18}-\frac{n}{2}$.
Conjecture
In any $(3,4)$-graph we have $e_{3}-e_{4} \leq \frac{n^{3}}{27}+o\left(n^{3}\right)$.

Outline

(2) The case $(k, I)=(2,3)$
(3) A bound for the general case

4 More constructions
(5) Open problems

- upper bounds without the regularity lemma
- proof of the optimality of the construction in the $(2,4)$-case
- constructions for the cases $(2, I)$ and $(k, k+1)$

